JP2011102500A - Trussed string beam - Google Patents

Trussed string beam Download PDF

Info

Publication number
JP2011102500A
JP2011102500A JP2009258066A JP2009258066A JP2011102500A JP 2011102500 A JP2011102500 A JP 2011102500A JP 2009258066 A JP2009258066 A JP 2009258066A JP 2009258066 A JP2009258066 A JP 2009258066A JP 2011102500 A JP2011102500 A JP 2011102500A
Authority
JP
Japan
Prior art keywords
truss
members
upper chord
chord
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258066A
Other languages
Japanese (ja)
Other versions
JP5468878B2 (en
Inventor
Hiroshi Ogawa
浩 小川
Masao Ueno
正夫 上野
Tsutomu Onodera
勉 小野寺
Masahide Ando
正英 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2009258066A priority Critical patent/JP5468878B2/en
Publication of JP2011102500A publication Critical patent/JP2011102500A/en
Application granted granted Critical
Publication of JP5468878B2 publication Critical patent/JP5468878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce bending moment caused by bearing a vertical load to reduce the cross sections and mass of both chord members while improving the bending rigidity of a trussed string beam including upper chord members, a lower chord member and strut members laid between both chord members, as basic components. <P>SOLUTION: The trussed string beam 1 includes two upper chord members 2, 2 parallel in the width direction; one lower chord member 3 facing both upper chord members 2, 2; and a plurality of strut members 4 laid between the two upper chord members 2, 2 and the lower chord member 3 at spaces in the length direction of the upper chord members 2, 2 and lower chord member 3 to constitute a space truss. Tie members 5 are laid between the two upper chord members 2, and the length direction end of the lower chord member 3 is directly or indirectly connected to the length direction ends of the upper chord members 2, 2 to complete the trussed string beam 1 as a beam. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は上弦材と下弦材、及び両弦材間に架設される束材を基本的な構成要素とするトラス張弦梁に関するものである。   The present invention relates to a truss tension string beam having an upper chord member, a lower chord member, and a bundle member constructed between both chord members as basic constituent elements.

上弦材と下弦材を斜材(ラチス材)や束材によって繋いだ形態のトラス型の張弦梁(トラス梁)は構造物の桁行方向に間隔を置いて複数、配列し、互いに連結されることで、屋根架構を構成する。張弦梁は自重で下弦材がスパン方向に受ける張力をスパン方向に張架される緊張材が負担することによって形態を維持した状態で安定する。   A truss-type string string beam (truss beam) in which upper chord material and lower chord material are connected by diagonal material (lattice material) or bundle material is arranged in multiple rows at intervals in the direction of the structure. Construct a roof frame. The tension string beam is stabilized in a state in which the tension is maintained by the tension material that is stretched in the span direction bearing the weight of the lower string material in the span direction due to its own weight.

屋根架構全体では自重(鉛直荷重)によって張弦梁の長さ方向両端間に作用する、両端間距離を増大させようとする張力に張弦梁の両端間に張架される緊張材が抵抗し、張力を負担することで、緊張材の張力とトラス梁の自重(鉛直荷重)が平衡した状態で安定する(特許文献1参照)。緊張材には張弦梁の自重による張力を相殺させるために予め緊張されることもある。   In the whole roof frame, the tension material stretched between both ends of the stringed beam resists the tension that acts on both ends of the stringed beam by its own weight (vertical load) and tries to increase the distance between both ends, and bears the tension. By doing so, the tension of the tendon and the self-weight (vertical load) of the truss beam are balanced (see Patent Document 1). The tension material may be pre-tensioned in order to cancel the tension due to the weight of the string string.

但し、屋根架構が下部構造に架設された状態で屋根架構の自重と緊張材の張力とが平衡したとしても、平衡状態は屋根架構の自重と緊張材の張力のいずれかが勝ったときに失われ易いため、屋根架構は上下方向(鉛直方向)に振動し易い状態にある。このことから、屋根架構の振動の発生を抑制する上で、トラス梁自体に元々、緊張材の緊張力によって容易に変形しない程度の剛性を持たせておくことが必要になる(特許文献2参照)。   However, even if the weight of the roof frame and the tension of the tension material are balanced when the roof frame is installed in the lower structure, the equilibrium state is lost when either the weight of the roof frame or the tension of the tension material is won. Since it is easy to break, the roof frame is likely to vibrate in the vertical direction (vertical direction). For this reason, in order to suppress the vibration of the roof frame, it is necessary to provide the truss beam itself with a rigidity that is not easily deformed by the tension of the tension member (see Patent Document 2). ).

特許文献2では上弦材と下弦材、及び両弦材間に架設される斜材からなる平面トラスのトラス梁を桁行方向に並列させ、この桁行方向に隣接するトラス梁をつなぎ材で互いにつなぐことによって桁行方向の一体性を確保している。スパン方向に張架される緊張材に導入される張力に対しては、トラス梁の山部(頂部)の下に、四角錐形状の立体トラスを構成する4本の束材4を配置することで、トラス梁山部付近の剛性を確保し、緊張力によるトラス梁山部のスパン方向の変形を防止している。   In Patent Document 2, the truss beams of the upper truss material, the lower chord material, and the diagonal truss constructed between the two chord materials are juxtaposed in the row direction, and the adjacent truss beams in the direction of the row line are connected to each other by a connecting material. This ensures the integrity in the column direction. For the tension introduced into the tension member stretched in the span direction, four bundle members 4 constituting a three-dimensional truss having a quadrangular pyramid shape are arranged under the peak portion (top portion) of the truss beam. Therefore, the rigidity in the vicinity of the truss beam crest is secured, and deformation of the truss beam crest in the span direction due to tension is prevented.

特開昭61−78934号公報(請求項1、第1図〜第3図)JP-A-61-78934 (Claim 1, FIGS. 1 to 3) 特開平3−279536号公報(請求項1、公報第2頁右下欄第7行〜第3頁左上欄第3行、第2図〜第4図)JP-A-3-279536 (Claim 1, page 2, lower right column, line 7 to page 3, upper left column, line 3, FIGS. 2 to 4)

特許文献2ではトラス梁山部とスパン方向両端部との間の中間部にもトラスを構成する束材5を配置しているが、このトラスは桁行方向に配列する2本の束材5のみから構成される平面トラスであり、立体トラスを構成してはいないため、束材5の配置位置付近におけるスパン方向の剛性を確保する手段にはなっていない。   In Patent Document 2, a bundle member 5 constituting a truss is also arranged at an intermediate portion between the truss beam crest and both ends in the span direction, but this truss is composed of only two bundle members 5 arranged in the direction of the beam. Since it is a configured flat truss and does not constitute a three-dimensional truss, it is not a means for ensuring the rigidity in the span direction in the vicinity of the arrangement position of the bundle 5.

山部以外のスパン方向中間部に位置する束材5はトラス梁山部における束材4の下端を通り、スパン方向両端部間に張架される緊張材に張力を与えるためにスパン方向中間部に配置され、緊張材を押し下げているに過ぎない。   The bundle member 5 located at the intermediate portion in the span direction other than the peak portion passes through the lower end of the bundle member 4 at the truss beam peak portion, and is applied to the intermediate portion in the span direction in order to apply tension to the tension member stretched between the two end portions in the span direction. It is only placed and pushing down the tendon.

このことから、緊張材がトラス梁に対してスパン方向に相対移動した(ずれた)ときにはトラス梁に対して転倒しようとし、曲げ変形に対する抵抗要素になることがないため、トラス梁に曲げ剛性を付与することに貢献する余地がない。よって束材5(平面トラス)は屋根架構を下部構造に支持させたときに、下部構造から反力を受けるための支点として機能することがない。   From this, when the tension material moves relative to the truss beam in the span direction (displaces), it tries to fall over the truss beam and does not become a resistance element against bending deformation. There is no room to contribute to granting. Therefore, the bundle 5 (planar truss) does not function as a fulcrum for receiving a reaction force from the lower structure when the roof frame is supported by the lower structure.

トラス梁は2種類の束材4、5の位置に、下部構造に直接、支持される両端部を合わせ、見かけ上は5点で支持されるが、結局のところ、上記のように平面トラスの位置では実質的に下部構造に支持されたことにはならないため、スパン方向の支点は緊張材の上に山部における立体トラス(束材4)と両端部と中央部の3点になる。   The truss beams are directly supported by the lower structure at the positions of the two kinds of bundles 4 and 5, and are supported at five points in appearance. Since it is not substantially supported by the lower structure at the position, the fulcrum in the span direction is the three-dimensional truss (bundle material 4) in the mountain portion on the tension material, and the three points of both ends and the center.

従って特許文献2の場合、トラス梁が自重及び上載荷重(鉛直荷重)を負担したときの反力はスパン方向両端部と中央部の3点で受けるだけであるから、この3点以外の区間に曲げモーメントが発生し、その最大値が両端部と中央部の中間位置に表れる。トラス梁の両端部と中央部との間の中間部に曲げモーメントが発生することで、トラス梁自体がこの曲げモーメントに抵抗するのに十分な曲げ強度を有している必要があるため、トラス梁の構成材の断面が増大し、質量が増加する結果となる。   Therefore, in the case of Patent Document 2, the reaction force when the truss beam bears its own weight and an overload (vertical load) is only received at the three points of the span direction both ends and the center part. A bending moment is generated, and the maximum value appears at an intermediate position between both ends and the center. Since a bending moment is generated in the middle part between the ends and the center of the truss beam, the truss beam itself must have sufficient bending strength to resist this bending moment. As a result, the cross-section of the structural member of the beam increases, resulting in an increase in mass.

本発明は上記背景より、上弦材と下弦材からなるトラス梁の曲げ剛性を向上させながら、鉛直荷重を負担することによる曲げモーメントを低減し、構成材の断面と質量を低減させることが可能なトラス張弦梁を提案するものである。   From the above background, the present invention improves the bending rigidity of the truss beam composed of the upper chord material and the lower chord material, reduces the bending moment due to bearing a vertical load, and can reduce the cross section and mass of the constituent material. A truss tension string beam is proposed.

請求項1に記載の発明のトラス張弦梁は、幅方向に並列する2本の上弦材と、両上弦材に対向する1本の下弦材と、前記上弦材と前記下弦材の長さ方向に間隔を置いて前記2本の上弦材と前記下弦材との間に架設され、立体トラスを構成する複数本の束材とを備え、
前記2本の上弦材間につなぎ材が架設されると共に、前記下弦材の長さ方向の端部が前記上弦材の長さ方向の端部に直接、もしくは間接的に連結されて梁として完結していることを構成要件とする。
The truss string beam according to the first aspect of the present invention includes two upper chord members arranged in parallel in the width direction, one lower chord member facing both upper chord members, and a distance in the length direction of the upper chord member and the lower chord member. Is provided between the two upper chord members and the lower chord member, and a plurality of bundle members constituting a three-dimensional truss,
A bridging member is laid between the two upper chord members, and the end portion in the length direction of the lower chord member is directly or indirectly connected to the end portion in the length direction of the upper chord member to complete the beam. Is a constituent requirement.

トラス張弦梁は少なくとも使用状態で下弦材に張力が与えられる(下弦材が張弦になる)ことで、「張弦梁」としての形態を維持し、この自ら形態を維持する能力を保有することが「トラス張弦梁が梁として完結する」ことを意味する。「少なくとも」とは、トラス張弦梁が自重(鉛直荷重)を負担した結果として張力が導入される場合の他に、予め(事前に)張力が与えられている場合がある趣旨である。下弦材に張力が与えられることから、下弦材には張力に対する抵抗能力の高い形鋼のような鉄骨部材、PC鋼材等の鋼材の他、繊維強化プラスチックが使用される。   The truss string beam is tensioned to the lower string material at least in use (the lower string material becomes a string string), so that it maintains its form as a “string string” and possesses the ability to maintain its own form. This means that the string string is completed as a beam. “At least” means that in addition to the case where tension is introduced as a result of the truss tension string beam bearing its own weight (vertical load), tension may be applied in advance (in advance). Since tension is applied to the lower chord material, a steel reinforced member such as a shape steel having a high resistance to tension, a steel material such as PC steel, and fiber reinforced plastic are used for the lower chord material.

下弦材の長さ方向の端部が上弦材の長さ方向の端部に直接、連結されるとは、例えば並列する上弦材の端部が互いに接近して連結(接合)され、その連結部分に下弦材の端部が連結(接合)されることを言う(図1−(b))。間接的に連結されるとは、例えば並列する上弦材の端部間に架設され、双方に連結(接合)されるつなぎ材に下弦材の端部が連結(接合)されることを言う(図1−(a))。   The fact that the end portion of the lower chord material in the length direction is directly connected to the end portion of the upper chord material in the length direction means, for example, that the end portions of the upper chord material arranged in parallel approach each other and are connected (joined). The end portion of the lower chord material is connected (joined) to (Fig. 1- (b)). Indirectly connected means that, for example, the end portion of the lower chord material is connected (joined) to the connecting material that is installed between the end portions of the upper chord material that are juxtaposed and connected (joined) to both sides (see FIG. 1- (a)).

トラス張弦梁の使用状態での下弦材への張力は上記のように予め与えられる(プレテンションの)場合と、長さ方向(スパン方向)両端において下部構造に支持され、自重(鉛直荷重)を負担したときに、その自重で下弦材が長さ方向に伸長しようとすることで、自然に与えられる場合がある。いずれの場合も、トラス張弦梁は使用状態で下弦材に張力が導入されることで、自重を含む鉛直荷重の負担能力と、鉛直荷重を負担したときに曲げ変形を起こさない形態維持能力を発揮する。   When the truss tension string beam is in use, the tension to the lower chord material is preliminarily applied (pre-tension) and is supported by the lower structure at both ends in the length direction (span direction) and bears its own weight (vertical load) When this occurs, the lower chord material tends to extend in the length direction by its own weight, and may be given naturally. In either case, the truss string beam will show the ability to bear the vertical load including its own weight and the ability to maintain the form that does not cause bending deformation when the vertical load is loaded, by introducing tension into the lower chord material in the state of use. .

トラス張弦梁が自重を含め、鉛直荷重を負担したときには、トラス張弦梁の下端側において長さ方向両端間距離が拡大する向きに拡張しようとし、下弦材に引張力が作用する。下弦材に引張力が作用したときには、上弦材の長さ方向両端間が断面上の下端側において互いに内側(長さ方向中央部側)へ引き寄せられようとするため、結果的にトラス張弦梁が受ける鉛直荷重と下弦材が受ける引張力が相殺され、トラス張弦梁が鉛直荷重に対する抵抗力を保有する。   When the truss string beam bears a vertical load including its own weight, the truss string beam tries to expand in the direction in which the distance between both ends in the length direction increases on the lower end side of the truss string beam, and a tensile force acts on the lower string material. When a tensile force is applied to the lower chord material, the length of the upper chord material in the lengthwise direction tends to be pulled toward the inside (longitudinal center side) on the lower end side of the cross section. The vertical load and the tensile force applied to the lower chord material are offset, and the truss string beam retains the resistance against the vertical load.

トラス張弦梁はその幅方向に並列する2本の上弦材と、トラス張弦梁の架設状態で両上弦材の下方に対向する1本の下弦材の3本の弦材が基本の構成要素になり、並列する2本の上弦材はその両上弦材間に架設され、両上弦材に接続されるつなぎ材によって一体化(一本化)する。2本の上弦材と1本の下弦材は両上弦材と下弦材間に架設され、双方に接続される束材によって一体化する。   Truss string beams consist of two upper chord members that are parallel in the width direction, and one lower chord member that faces the lower side of both upper chord members when the truss string beam is installed. The two upper chord members are constructed between the upper chord members and are integrated (unified) by a connecting member connected to the upper chord members. Two upper chord members and one lower chord member are installed between the upper chord members and the lower chord member, and are integrated by a bundle member connected to both.

束材はトラス張弦梁の長さ方向に間隔を置いて複数箇所、配置され、各配置箇所に付き、複数本の束材が立体トラスを構成する形に組み合わせられて上弦材と下弦材との間に架設される。複数本の束材の一端(上端)はそれぞれ上弦材とつなぎ材との接続(連結)点に接続され、他端(下端)は集合して下弦材に接続される。   Bundling materials are arranged in multiple locations at intervals in the length direction of the truss tension string beam, attached to each placement location, and a plurality of bundling materials are combined to form a three-dimensional truss between the upper chord material and the lower chord material It will be erected. One end (upper end) of the plurality of bundle members is connected to a connection (connection) point between the upper chord member and the connecting member, and the other end (lower end) is gathered and connected to the lower chord member.

つなぎ材は2本の上弦材間に跨るように架設されるから、束材はトラス張弦梁の幅方向には2本配置される。束材はまた、各配置箇所に付き、立体トラスを構成するように組み合わせられるから、トラス張弦梁の長さ方向に複数本配置される。束材の各配置箇所に付き、つなぎ材がトラス張弦梁の長さ方向に間隔を置き、複数本配置されることで、束材はトラス張弦梁の幅方向の2本×長さ方向の複数本分で立体トラスを構成することになる。   Since the connecting material is constructed so as to straddle between the two upper chord members, two bundle members are arranged in the width direction of the truss tension chord beam. Also, since the bundle members are attached to each arrangement place and combined so as to form a three-dimensional truss, a plurality of bundle members are arranged in the length direction of the truss tension string beam. A number of tie members are attached to each location of the bundle material, spaced apart in the length direction of the truss tension string beam, and multiple bundle materials are arranged in the width direction of the truss string beam × multiple pieces in the length direction. A three-dimensional truss will be constructed.

例えば束材(立体トラス)の各配置箇所に付き、つなぎ材がトラス張弦梁の長さ方向に間隔を置いて2本配置される場合には、立体トラスは2本×2本の4本の束材から構成されることになる。この場合、立体トラスが構成される立体トラスの各形成位置(上記束材の配置箇所)に付き、並列する上弦材間に、上弦材の長さ方向に間隔を置いて2本のつなぎ材が架設されると共に、その各つなぎ材と上弦材との接続点に束材の一端(上端)が接続され、その複数本の束材の他端(下端)が集合して下弦材に接続され、この4本の束材から立体トラスが構成される(請求項2)。   For example, in the case where two connecting members are arranged at intervals in the length direction of the truss tension string beam at each arrangement position of a bundle member (three-dimensional truss), the three-dimensional truss has four bundles of 2 × 2. It will be composed of materials. In this case, two connecting members are attached to each forming position of the three-dimensional truss constituting the three-dimensional truss (arrangement position of the bundle material) and spaced in the longitudinal direction of the upper chord member between the upper chord members arranged in parallel. In addition to being installed, one end (upper end) of the bundle material is connected to the connection point between each connecting material and the upper chord material, and the other end (lower end) of the plurality of bundle materials is gathered and connected to the lower chord material, A solid truss is constituted by these four bundle members (claim 2).

トラス張弦梁の長さ方向の端部は図1−(a)に示すように上弦材が並列したまま、両上弦材間につなぎ材が架設され、そのつなぎ材に下弦材が連結(接続)される形になる(下弦材が上弦材に間接的に連結される)場合と、(b)に示すように並列する上弦材が端部側へかけて互いに接近して接続(連結)され、この接続部分に下弦材の端部が接続(連結)される形になる(下弦材が上弦材に直接、連結される)場合がある。いずれの場合も、上弦材の端部に下弦材の端部が連結されることによりトラス張弦梁は完結し、完成状態での取り扱い(運搬)、吊り上げ、下部構造への架設はトラス張弦梁単位で行われる。   As shown in Fig. 1- (a), the end part of the truss string beam is connected to the upper chord material with the upper chord material in parallel, and the lower chord material is connected (connected) to the joint material. When the lower chord material is indirectly connected to the upper chord material, the upper chord members arranged in parallel are connected to each other toward the end side as shown in FIG. In some cases, the end portion of the lower chord material is connected (connected) to the connecting portion (the lower chord material is directly connected to the upper chord material). In either case, the end of the lower chord material is connected to the end of the upper chord material, so that the truss tension string beam is completed, and handling (transportation), lifting, and installation to the lower structure in the completed state are performed in units of the truss string beam. Is called.

立体トラスを構成する複数本の束材の組がトラス張弦梁の長さ方向に間隔を置いて複数箇所、配置されることで、自重を含む鉛直荷重に対する支点数が増える結果、鉛直荷重による曲げモーメントがトラス張弦梁の全長に分散して発生するため、図5、図4−(b)に示すように支点間に生ずる曲げモーメントの最大値を小さくすることが可能になる。   As a result of increasing the number of fulcrum points for vertical loads including its own weight, a set of bundles that make up a three-dimensional truss are arranged at multiple locations at intervals in the length direction of the truss string beam. Are distributed over the entire length of the truss chord beam, so that the maximum value of the bending moment generated between the fulcrums can be reduced as shown in FIGS.

図6に直線状の上弦材と下弦材、及び両弦材の長さ方向に間隔を置いて両弦材間に架設される束材からなる従来の張弦梁と、その張弦梁が鉛直荷重(自重)を受けたときの曲げモーメント分布を示す。この張弦梁では束材が立体トラスを構成しない状態で上弦材と下弦材に間に6箇所、配置され、両弦材に垂直に架設されている。   Fig. 6 shows a conventional stringed beam composed of a straight upper chord material and lower chord material, and a bundle material laid between the two chord members at an interval in the length direction, and the stringed beam has a vertical load (self-weight). Bending moment distribution when receiving In this tension string beam, six bundle members are arranged between the upper chord member and the lower chord member in a state where a three-dimensional truss is not formed, and is erected vertically on both chord members.

ここに示すように上弦材に生ずる曲げモーメントは長さ方向(スパン方向)中央部と、端部寄りの束材位置の3箇所に極大値が表れ、束材位置の曲げモーメントが最大値になっていることが分かる。極大値が表れる箇所数が少ない関係で、1箇所当たりの極大値が大きくなる傾向がある。   As shown here, the bending moment generated in the upper chord material has maximum values at three locations in the center in the length direction (span direction) and the bundle material position near the end, and the bending moment at the bundle material position becomes the maximum value. I understand that There is a tendency for the maximum value per location to increase due to the small number of locations where the maximum value appears.

これに対し、図6と同様に直線状の上弦材と下弦材からなり、長さ方向に間隔を置いた6箇所に立体トラスを構成する束材が配置された図5に示す本発明のトラス張弦梁では、曲げモーメントの極大値の数が図6の場合より多く表れ、曲げモーメントの最大値が図6の場合より小さくなっていることが分かる。   On the other hand, the truss of the present invention shown in FIG. 5 is composed of straight upper chord material and lower chord material as in FIG. 6, and bundle members constituting a three-dimensional truss are arranged at six positions spaced in the length direction. In the stringed beam, it can be seen that the number of maximum values of the bending moment appears more than in the case of FIG. 6, and the maximum value of the bending moment is smaller than in the case of FIG.

具体的に図6との対比で言えば、図5において曲げモーメントの最大値が表れる長さ方向端部寄りの束材の位置(立体トラスの形成位置)における曲げモーメントは、図6において長さ方向端部寄りの束材位置に表れる曲げモーメントの最大値の半分以下、約40%になっている。また図5におけるトラス張弦梁中央部の曲げモーメントは図6における同一位置の曲げモーメントの約2〜3%になっている。   Specifically, in comparison with FIG. 6, the bending moment at the position of the bundle member near the end in the length direction where the maximum value of the bending moment appears in FIG. It is about 40% or less of half the maximum value of the bending moment appearing at the bundle material position near the direction end. In addition, the bending moment at the central portion of the truss string beam in FIG. 5 is about 2-3% of the bending moment at the same position in FIG.

図4−(b)は(a)に示すように上に凸に湾曲したトラス張弦梁における曲げモーメントの分布を示すが、図5に示す直線状の場合と異なり、上に凸に湾曲した形態的な効果として、曲げモーメントの低減効果が表れていることが分かる。   FIG. 4- (b) shows the distribution of the bending moment in the truss chord beam that curves upward as shown in FIG. 4 (a), but unlike the linear case shown in FIG. As a significant effect, it can be seen that the bending moment reduction effect appears.

トラス張弦梁の長さ方向に生ずる曲げモーメントの最大値の低減が図られることで、トラス張弦梁の基本の構成要素である上弦材と下弦材の断面を小さくし、それぞれの質量を低下させることが可能になり、トラス張弦梁全体の軽量化を図ることも可能になる。   By reducing the maximum value of the bending moment generated in the length direction of the truss tension string beam, it is possible to reduce the cross section of the upper chord material and the lower chord material, which are the basic components of the truss string beam, and to reduce the mass of each. Thus, it becomes possible to reduce the weight of the entire truss string beam.

また立体トラスを構成する束材の組がトラス張弦梁の長さ方向の複数、分散して配置されることで、曲げモーメントに対する抵抗要素が増加するため、トラス張弦梁の曲げ剛性が上昇し、曲げモーメントによる曲げ変形低減の効果も向上する。   In addition, since multiple pairs of bundle members that make up a three-dimensional truss are distributed in the longitudinal direction of the truss tension string beam, the resistance to bending moment increases, so the bending rigidity of the truss tension string beam increases and the bending moment increases. The effect of reducing bending deformation due to is also improved.

立体トラスは4本以上の束材と並列する上弦材をつなぐつなぎ材に加え、上弦材の長さ方向に区分された一部の区間から構成され、上弦材の一部が立体トラスの一部を構成するため、上弦材自体の曲げ剛性が向上する効果も得られる。   A three-dimensional truss is composed of part of the upper chord that is divided in the length direction of the upper chord in addition to the connecting material that connects the upper chord in parallel with four or more bundle members. Therefore, the effect of improving the bending rigidity of the upper chord material itself can also be obtained.

具体的には立体トラスの各形成位置に配置される複数本の束材の上端間に、上弦材の長さ方向に間隔が確保されることで、トラス張弦梁を幅方向に(側面から)見たときに、上弦材の一部と2本の束材は図2−(a)に示すように三角形(トラス)を形成する。この三角形は束材の下端に作用するスパン方向の水平力によって2本の束材が上弦材に曲げモーメントを作用させる関係になるため、トラス張弦梁の曲げ剛性を向上させることに寄与する。   Specifically, a space in the length direction of the upper chord material is secured between the upper ends of a plurality of bundle members arranged at each formation position of the three-dimensional truss, so that the truss tension chord beam can be viewed in the width direction (from the side). When this occurs, a part of the upper chord member and the two bundle members form a triangle (truss) as shown in FIG. This triangle contributes to improving the bending rigidity of the truss tension string beam, because the two bundle members have a bending moment acting on the upper chord member due to the horizontal force in the span direction acting on the lower end of the bundle member.

立体トラスを構成する複数本の束材の組がトラス張弦梁の長さ方向に間隔を置いて複数箇所、配置されることで、自重を含む鉛直荷重に対する支点数が増える結果、鉛直荷重による曲げモーメントがトラス張弦梁の全長に分散して発生するため、支点間に生ずる曲げモーメントの最大値を小さくすることができる。   As a result of increasing the number of fulcrum points for vertical loads including its own weight, a set of bundles that make up a three-dimensional truss are arranged at multiple locations at intervals in the length direction of the truss string beam. However, the maximum value of the bending moment generated between the fulcrums can be reduced.

トラス張弦梁の長さ方向に生ずる曲げモーメントの最大値が低減されることで、トラス張弦梁の基本の構成要素である上弦材と下弦材の断面を小さくし、質量を低下させることができるため、トラス張弦梁全体の軽量化を図ることができる。   By reducing the maximum value of the bending moment generated in the length direction of the truss tension string beam, it is possible to reduce the cross section of the upper chord material and the lower chord material, which are the basic components of the truss string beam, and to reduce the mass. The overall weight of the string string can be reduced.

(a)は本発明のトラス張弦梁の構成例を示した斜視図、(b)は(a)に示すトラス張弦梁の端部部分の変形例を示した斜視図である。(A) is the perspective view which showed the structural example of the truss tension string beam of this invention, (b) is the perspective view which showed the modification of the edge part part of the truss tension string beam shown to (a). (a)は図1−(a)の側面図、(b)は図1−(a)の平面図である。FIG. 1A is a side view of FIG. 1A, and FIG. 1B is a plan view of FIG. 図1−(a)における立体トラスの形成位置部分の拡大図である。It is an enlarged view of the formation position part of the solid truss in FIG. (a)は図1−(a)に示すトラス張弦梁をモデル化して示した側面図、(b)は(a)のトラス張弦梁が鉛直荷重を負担したときに上弦材に生ずる曲げモーメント分布を示した曲げモーメント図である。(A) is a side view showing the truss string beam shown in FIG. 1-a as a model, and (b) is a distribution of bending moment generated in the upper chord material when the truss string beam of (a) bears a vertical load. FIG. 上弦材と下弦材が上に凸に湾曲していない直線状の本発明のトラス張弦梁が鉛直荷重を負担したときの上弦材に生ずる曲げモーメント分布を示した曲げモーメント図である。It is a bending moment diagram showing a bending moment distribution generated in the upper chord material when a straight truss string beam of the present invention in which the upper chord material and the lower chord material are not convexly curved upward bears a vertical load. 直線状の従来のトラス張弦梁が鉛直荷重を負担したときの上弦材に生ずる曲げモーメント分布を示した曲げモーメント図である。It is a bending moment figure which showed the bending moment distribution which arises in the upper chord material when a linear conventional truss tension string beam bears a vertical load. (a)は本発明のトラス張弦梁を使用した構造物の例を示した立面図、(b)は(a)のトラス張弦梁部分を抜き出した平面図である。(A) is the elevation which showed the example of the structure using the truss tension string beam of this invention, (b) is the top view which extracted the truss tension string beam part of (a). (a)は図7−(b)のx−x線断面図、(b)は(a)の見上図で、z−z線断面図、(c)は(a)のy−y線断面図、(d)は4本の束材の下端部を接合するための下部接合プレートと下弦材の関係を示した斜視図である。7A is a sectional view taken along the line xx of FIG. 7B, FIG. 7B is a top view of FIG. 7A, a sectional view taken along the line zz, and FIG. 7C is a sectional view taken along the line yy of FIG. Sectional drawing, (d) is a perspective view showing the relationship between the lower joining plate and the lower chord material for joining the lower ends of the four bundle members.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1−(a)、(b)は幅方向に並列する2本の上弦材2、2と、両上弦材2、2に対向する1本の下弦材3と、上弦材2、2と下弦材3の長さ方向に間隔を置いて2本の上弦材2、2と下弦材3との間に架設され、立体トラスを構成する複数本の束材4とを備え、2本の上弦材2、2間につなぎ材5が架設され、下弦材3の長さ方向の端部が上弦材2、2の長さ方向の端部に直接、もしくは間接的に連結されて梁として完結しているトラス張弦梁1の構成例を示している。   1- (a) and (b) show two upper chord members 2 and 2 arranged in parallel in the width direction, one lower chord member 3 facing both upper chord members 2 and 2, upper chord members 2, 2 and lower chord Two upper chord members are provided between the two upper chord members 2, 2 and the lower chord member 3 at intervals in the length direction of the member 3, and a plurality of bundle members 4 constituting a three-dimensional truss. A connecting member 5 is erected between two and two, and the end of the lower chord member 3 in the length direction is directly or indirectly connected to the end of the upper chord member 2 and 2 in the length direction to complete the beam. The example of a structure of the truss tension string beam 1 is shown.

図1−(a)に示すように「立体トラスの形成位置」はトラス張弦梁1の長さ方向に間隔を置いて複数、配置され、「立体トラスの形成位置」単位で複数本の束材4が配置される。「立体トラスの形成位置」の上弦材2、2間にはトラス張弦梁1の長さ方向に少なくとも2本のつなぎ材5、5が架設され、つなぎ材5、5の両端位置である上弦材2との接続点に束材4の上端部が接続(連結)され、立体トラスは少なくとも4本の束材4から構成される。   As shown in FIG. 1- (a), a plurality of “three-dimensional truss formation positions” are arranged at intervals in the length direction of the truss stringed beam 1, and a plurality of bundles 4 are formed in units of “three-dimensional truss formation positions”. Is placed. Between the upper chord members 2 and 2 of the “three-dimensional truss formation position”, at least two connecting members 5 and 5 are laid in the length direction of the truss tension string beam 1, and the upper chord member 2 is located at both ends of the connecting members 5 and 5. The upper end of the bundle member 4 is connected (connected) to the connection point between the three-dimensional truss and at least four bundle members 4.

図1−(a)ではつなぎ材5にH形鋼を使用した場合に、その強軸方向を鉛直方向、もしくは上弦材2が全体的に形成する、後述する曲線の法線方向に向けているが、つなぎ材5は並列する2本の上弦材2、2間の軸方向の相対移動を拘束する(ずれを防止する)役目も果たすため、上弦材2、2間に相対移動を生ずる方向、あるいは水平方向に強軸方向を向け、弱軸方向を鉛直方向等に向けることが適切な場合もある。   In FIG. 1- (a), when the H-shaped steel is used for the connecting material 5, the strong axis direction is directed to the vertical direction or the normal direction of the curve described later, which is formed entirely by the upper chord material 2. However, the connecting material 5 also serves to constrain the relative movement in the axial direction between the two upper chord members 2, 2 in parallel (to prevent displacement), so that the direction in which the relative movement occurs between the upper chord members 2, 2, Alternatively, it may be appropriate to orient the strong axis direction in the horizontal direction and the weak axis direction in the vertical direction or the like.

立体トラスを構成する4本以上の束材4の組は図1〜図3に示すようにトラス張弦梁1(上弦材2)の長さ方向に間隔を置き、複数箇所、配置される。図面では長さ方向に並列する2本のつなぎ材5、5を一組とする立体トラスをトラス張弦梁1の長さ方向に6箇所、配置した場合を示しているが、2箇所以上あれば、立体トラスの配置数は任意である。   As shown in FIGS. 1 to 3, a set of four or more bundle members 4 constituting the three-dimensional truss is arranged at a plurality of positions at intervals in the length direction of the truss tension string beam 1 (upper chord material 2). In the drawing, a case where three solid trusses having two connecting members 5 and 5 arranged in parallel in the length direction are arranged in six places in the length direction of the truss tension string 1 is shown. The number of three-dimensional trusses is arbitrary.

2本の上弦材2、2は基本的には複数本の束材4からなる複数の立体トラスの形成位置を含む区間では互いに平行に配置され、「立体トラスの形成位置」において上弦材2、2の長さ方向に並列するつなぎ材5、5が上弦材2、2間に架設され、双方に接続される。つなぎ材5、5が「立体トラスの形成位置」単位で並列して架設されることによって2本の上弦材2、2が一体化(一本化)し、全長に亘って間隔を保持する。   The two upper chord members 2 and 2 are basically arranged in parallel with each other in a section including a plurality of three-dimensional truss formation positions formed of a plurality of bundle members 4. The connecting members 5, 5 parallel to each other in the length direction of 2 are installed between the upper chord members 2, 2 and connected to both. When the connecting members 5 and 5 are installed in parallel in units of “formation position of the three-dimensional truss”, the two upper chord members 2 and 2 are integrated (unified), and the interval is maintained over the entire length.

「立体トラスの形成位置」に配置される複数本の束材4の下端部は一点に集合した状態で、下弦材3に接続(連結、あるいは接合)される。複数本の束材4の下端部が下弦材3に接続(連結)されることで、2本の上弦材2、2と下弦材3が一体化(一本化)し、トラス張弦梁1が構成される。   The lower ends of the plurality of bundle members 4 arranged at the “formation position of the three-dimensional truss” are connected (coupled or joined) to the lower chord member 3 in a state of being gathered at one point. By connecting (connecting) the lower ends of the plurality of bundle members 4 to the lower chord member 3, the two upper chord members 2, 2 and the lower chord member 3 are integrated (unified), and the truss tension string beam 1 is configured. Is done.

「立体トラスの形成位置」に付き、トラス張弦梁1の長さ方向に並列する2本以上のつなぎ材5、5が配置され、各つなぎ材5と上弦材2との接続点(連結点)に束材4の上端部が接続(連結)されるため、立体トラスは図3に示すように少なくとも4本の束材4と、上弦材2の長さ方向に並列する少なくとも2本のつなぎ材5、5と、この2本のつなぎ材5、5によって区画される上弦材2、2の一部から四角錐形状に形成される。四角形を形成する2本のつなぎ材5、5と2本の上弦材2、2の一部からなる平面内には一体化(一本化)している2本の上弦材2、2の一体性(せん断剛性)を確保するためにブレースが架設されることもある。   Two or more connecting members 5, 5 arranged in parallel in the length direction of the truss tension string beam 1 are arranged at the “formation position of the three-dimensional truss”, and are connected to connection points (connection points) between the connecting members 5 and the upper chord material 2. Since the upper ends of the bundle members 4 are connected (linked), the three-dimensional truss has at least four bundle members 4 and at least two connecting members 5 arranged in parallel in the length direction of the upper chord member 2 as shown in FIG. 5 and a part of the upper chord material 2, 2 defined by the two connecting members 5, 5, are formed in a quadrangular pyramid shape. The two upper chord members 2, 2 that are integrated (unified) in a plane composed of a part of the two connecting members 5, 5 and two upper chord members 2, 2 forming a quadrangle. A brace may be installed to ensure the property (shear rigidity).

束材4は立体トラスを構成することから、その両端部は上弦材2、あるいは上弦材2とつなぎ材5との接続部分と、下弦材3にそれぞれピン接合されるが、束材4と上弦材2との間、及び束材4と下弦材3との間で曲げモーメントが伝達されないように接続(ピン接合)されていれば足りる。   Since the bundle member 4 constitutes a three-dimensional truss, both ends thereof are pin-joined to the upper chord member 2 or the connecting portion of the upper chord member 2 and the connecting member 5 and the lower chord member 3, respectively. It is sufficient to connect (pin joint) between the material 2 and between the bundle material 4 and the lower chord material 3 so that a bending moment is not transmitted.

2本の上弦材2、2は図5に示すように全長に亘って直線状の場合と、図1、図2−(a)に示すように全体的に上に凸に湾曲、もしくは屈曲した形状に形成される場合があり、同様に下弦材3も全長に亘って直線状の場合と全体的に上に凸に湾曲、もしくは屈曲する場合がある。   The two upper chord members 2, 2 are linearly formed over the entire length as shown in FIG. 5, and are curved or bent upwardly as shown in FIGS. 1 and 2- (a). In some cases, the lower chord material 3 may be linearly formed over the entire length, or may be curved or bent upwardly as a whole.

上弦材2が全体的に上に凸の形状をする場合には、上弦材2が一様に湾曲する場合と、図示するように立体トラスの形成位置に架設される少なくとも2本のつなぎ材5、5で区画される区間と、それ以外の区間とで上弦材2の軸線間に角度が付き、多角形状の形状をする場合がある。2本のつなぎ材5、5で区画される立体トラスの区間と、それ以外の区間とで上弦材2の軸線に角度が付く場合、下弦材3も同様に「立体トラスの形成位置」、すなわち複数本の束材4の下端部が接続される点の位置を挟んで下弦材3の軸線間に角度が付く。   When the upper chord material 2 has a generally convex shape, the upper chord material 2 is uniformly curved, and at least two connecting members 5 installed at the formation position of the three-dimensional truss as shown in the figure. In some cases, an angle is given between the axes of the upper chord material 2 in the section divided by 5 and the other sections, resulting in a polygonal shape. When the angle of the axis of the upper chord member 2 is angled between the section of the three-dimensional truss divided by the two connecting members 5 and 5 and the other sections, the lower chord member 3 is similarly “the formation position of the three-dimensional truss”, that is, An angle is formed between the axes of the lower chord members 3 across the position of the point where the lower ends of the bundles 4 are connected.

束材4との接続点を挟んだ上弦材2の軸線間と下弦材3の軸線間に角度が付く場合、上弦材2と下弦材3はそれぞれの角度が付く区間単位、すなわち束材4の上端部間、及び下端部間単位で上弦材構成材と下弦材構成材が架設され、束材4の上端部と下端部に接続されることもあるが、上弦材2と下弦材3が連続した1本の部材でありながら、束材4位置で屈曲した形状に予め形成されていることもある。   When there is an angle between the axis of the upper chord material 2 and the axis of the lower chord material 3 across the connection point with the bundle material 4, the upper chord material 2 and the lower chord material 3 are section units in which the respective angles are attached, that is, the bundle material 4 Although the upper chord material constituting material and the lower chord material constituting material are constructed between the upper end portions and the lower end portion units, they may be connected to the upper end portion and the lower end portion of the bundle material 4, but the upper chord material 2 and the lower chord material 3 are continuous. Although it is a single member, it may be formed in advance in a shape bent at the position of the bundle 4.

図4−(a)は上弦材2が束材4の上端部位置(立体トラスの形成位置)で部分的に屈曲しながら全体的に湾曲した1本の部材からなり、下弦材3が束材4の下端部(立体トラスの形成位置)間単位で下弦材構成材に区分され、この区分された下弦材構成材が束材4の下端部間に架設され、その端部が複数本の束材4の下端部にピン接合された場合を示している。   FIG. 4- (a) shows that the upper chord member 2 is composed of a single member that is bent while being partially bent at the upper end position of the bundle member 4 (the position where the three-dimensional truss is formed), and the lower chord member 3 is the bundle member. 4 is divided into lower chord material constituting materials in units between lower end portions (three-dimensional truss formation positions), and the divided lower chord material constituting materials are installed between the lower end portions of the bundle material 4, and the end portions thereof are bundles of a plurality of bundles. The case where it pin-joins to the lower end part of the material 4 is shown.

2本の上弦材2、2が図1−(a)、図2に示すように全長に亘って互いに平行な状態にある場合には、上弦材2、2の長さ方向両端間にもつなぎ材5が架設され、双方に接続される。この場合、下弦材3の長さ方向の両端部は上弦材2、2の長さ方向の両端部間に架設されているつなぎ材5、5の中間部に接続(接合)されることにより下弦材3が上弦材2に間接的に連結された状態になる。下弦材3はつなぎ材5、5への接続によって2本の上弦材2、2と1本の下弦材3は閉じた形状になり、トラス張弦梁1の曲げ剛性と捩じり剛性を確保する。   When the two upper chord members 2 and 2 are parallel to each other over the entire length as shown in FIGS. A material 5 is installed and connected to both sides. In this case, both ends in the length direction of the lower chord material 3 are connected (joined) to intermediate portions of the connecting members 5 and 5 that are spanned between both ends in the length direction of the upper chord material 2, 2, thereby lower string The material 3 is indirectly connected to the upper chord material 2. The lower chord member 3 is connected to the connecting members 5 and 5 so that the two upper chord members 2, 2 and one lower chord member 3 are closed, and the bending rigidity and torsional rigidity of the truss tension string beam 1 are ensured.

並列する上弦材2、2の長さ方向の端部は図1−(b)に示すように互いに接近させられて接続(接合)されることもある。この場合、上弦材2、2はトラス張弦梁1の長さ方向の端部寄りに位置する立体トラスの形成位置から端部へかけて次第に接近して互いに連結(接合)される。この互いに連結された2本の上弦材2、2の端部に下弦材3が接続(接合)されることにより下弦材3が上弦材2に直接、連結された状態になる。2本の上弦材2、2と1本の下弦材3が一点に集合して連結(接合)されることで、トラス張弦梁1の端部が閉じた形になる。   The end portions in the length direction of the upper chord members 2 and 2 that are juxtaposed may be connected (joined) to each other as shown in FIG. 1- (b). In this case, the upper chord members 2, 2 are connected (joined) to each other by gradually approaching from the forming position of the solid truss located near the end of the truss tensioned string beam 1 to the end. The lower chord material 3 is directly connected to the upper chord material 2 by connecting (joining) the lower chord material 3 to the ends of the two upper chord materials 2 and 2 connected to each other. The two upper chord members 2, 2 and one lower chord member 3 are assembled and connected (joined) at one point, so that the end portion of the truss tension chord beam 1 is closed.

図7にトラス張弦梁1の架設例(使用例)を示す。トラス張弦梁1は図7に示すように幅方向に複数、配列し、互いに直接、あるいは母屋材等、桁行方向に架設される水平材10を介して連結されることにより上部構造としての屋根架構を形成し、使用状態のときには長さ方向(スパン方向)の両端部において下部構造20の壁や桁等に支持されることにより構造物を構成する。   FIG. 7 shows a construction example (use example) of the truss string string 1. As shown in FIG. 7, a plurality of truss string beams 1 are arranged in the width direction and connected to each other directly or via a horizontal member 10 erected in the direction of the row such as a purlin, thereby forming a roof structure as an upper structure. When formed and used, the structure is configured by being supported by the walls and girders of the lower structure 20 at both ends in the length direction (span direction).

トラス張弦梁1が図7に示すような使用状態に置かれているときには、上弦材2が鉛直荷重を負担したときに下弦材3が引張力を負担することにより、トラス張弦梁1全体の鉛直下方への垂れ下がりを拘束する。トラス張弦梁1が鉛直荷重を受けたとき、下弦材3は主に引張力を負担するため、下弦材3には引張力に対する抵抗能力を有する鋼材等の材料が使用される。下弦材3は少なくとも使用状態で引張力を負担するため、張弦として機能する。下弦材3には予め緊張力が与えられた状態で、上弦材2の両端間に架設されている場合もある。   When the truss chord beam 1 is placed in a use state as shown in FIG. 7, when the upper chord member 2 bears a vertical load, the lower chord member 3 bears a tensile force, so that the entire truss chord beam 1 moves downward vertically. Restrains the drooping. When the truss string beam 1 receives a vertical load, the lower chord member 3 mainly bears a tensile force, and therefore, the lower chord member 3 is made of a material such as a steel material having resistance to the tensile force. Since the lower chord material 3 bears a tensile force at least in use, it functions as a string. In some cases, the lower chord member 3 is installed between both ends of the upper chord member 2 in a state in which tension is applied in advance.

上弦材2は長さ方向の両端部と立体トラス(複数本の束材4)の位置で反力を受けることで、圧縮力と引張力(曲げモーメント)を負担するため、引張力と圧縮力に対する抵抗能力を有する鋼材等の材料、あるいは鋼材とその他との複合材料が使用される。   Since the upper chord material 2 receives a reaction force at both ends in the length direction and the position of the solid truss (a plurality of bundle members 4), it bears a compressive force and a tensile force (bending moment). A material such as a steel material having a resistance capability against the above, or a composite material of a steel material and others is used.

束材4と上弦材2、及び下弦材3との具体的な接合例を図8−(a)〜(d)に示す。ここでは上弦材2として長さ方向に連続するH形鋼を使用し、下弦材3として長さ方向に連続する2枚のプレートを使用した場合を示しているが、上弦材2と下弦材3に形鋼を使用する場合のそれぞれの断面形状は任意であり、取り合う束材4との関係で自由に決められる。   Specific examples of joining the bundle material 4 with the upper chord material 2 and the lower chord material 3 are shown in FIGS. 8- (a) to (d). Here, the case where an H-shaped steel continuous in the length direction is used as the upper chord material 2 and two plates which are continuous in the length direction are used as the lower chord material 3 is shown, but the upper chord material 2 and the lower chord material 3 are shown. Each of the cross-sectional shapes in the case of using the shape steel is arbitrary, and can be freely determined in relation to the bundle 4 to be joined.

上弦材2と下弦材3の形鋼は全体として長さ方向(スパン方向)の一方側から中央部側へかけて上方を向く上に凸の曲線を描くように湾曲している。図8−(a)は図7−(b)のx−xの断面を、(b)は(a)の見上面(z−z線断面)を、(c)は(a)のy−y線の側面を示している。(d)は4本の束材4の下端部を下弦材3に接合するための下部接合プレート7と下弦材3の関係を示している。   The overall shape of the upper chord member 2 and the lower chord member 3 is curved so as to draw an upwardly convex curve from one side in the length direction (span direction) to the center side. 8A is a cross-sectional view taken along line xx of FIG. 7B, FIG. 8B is a top view of FIG. 7A (cross section taken along the line zz), and FIG. The side surface of the y-line is shown. (D) shows the relationship between the lower chord member 3 and the lower joining plate 7 for joining the lower ends of the four bundle members 4 to the lower chord member 3.

束材4の上端部と上弦材2は両者間で曲げモーメントが伝達されない程度に接合されればよく、接合方法は任意であるが、図8−(a)では立体トラスの形成位置に付き、それぞれ異なる位置に接合される4本の束材4の上端を上弦材2の下部フランジの面に平行に切断してその端面に上部接合プレート6を溶接し、この上部接合プレート6を上弦材2の下部フランジに重ねてボルト接合、または溶接している。上部接合プレート6には1枚の平坦なプレートが使用されている。   The upper end portion of the bundle material 4 and the upper chord material 2 may be joined to such an extent that no bending moment is transmitted between them, and the joining method is arbitrary, but in FIG. The upper ends of the four bundle members 4 to be joined at different positions are cut in parallel to the surface of the lower flange of the upper chord member 2 and the upper joining plate 6 is welded to the end face. It is bolted or welded over the lower flange. One flat plate is used for the upper bonding plate 6.

束材4の下端と下弦材3との接合方法も両者間で曲げモーメントが伝達されなければ任意であるが、図8−(a)〜(d)では1箇所に集合して下弦材3に接合される4本の束材4の下端位置に平面上、十字形に下部接合プレート7を組み合わせて配置し、その4枚の下部接合プレート7の下端に、下弦材3のガセットプレート9の上面に重なる受けプレート8を溶接している。受けプレート8の下面には下弦材3に直接、ボルト接合や溶接により接合されるためのガセットプレート9を溶接している。図8では受けプレート8を円板状に形成しているが、受けプレート8の平面形状は任意である。   The joining method of the lower end of the bundle material 4 and the lower chord material 3 is arbitrary as long as the bending moment is not transmitted between the two, but in FIGS. A lower joining plate 7 is arranged in a plane and cross shape at the lower end position of the four bundle members 4 to be joined, and the upper surface of the gusset plate 9 of the lower chord member 3 is arranged at the lower end of the four lower joining plates 7. The receiving plate 8 is welded to the top. The lower surface of the receiving plate 8 is welded with a gusset plate 9 for being directly joined to the lower chord member 3 by bolt joining or welding. Although the receiving plate 8 is formed in a disc shape in FIG. 8, the planar shape of the receiving plate 8 is arbitrary.

4本の束材4の下端位置に4枚の下部接合プレート7が平面上、十字形に組み合わせられている関係で、4本の束材4の下端部は下部接合プレート7の面に平行に切断され、その切断面が、隣接する2枚の下部接合プレート7、7に跨った状態で双方に溶接されている。   Since the four lower joining plates 7 are combined in a plane and cross shape at the lower end position of the four bundle members 4, the lower ends of the four bundle members 4 are parallel to the surface of the lower joining plate 7. It cut | disconnects and the cut surface is welded to both in the state which straddled two adjacent lower joining plates 7 and 7. FIG.

図8ではまた、下部接合プレート7の下端が溶接された受けプレート8の下面に溶接されたガセットプレート9を下弦材3が挟み込んだ状態でガセットプレート9に接合されるよう、(d)に示すように2本の、下弦材構成材31としてのプレートから下弦材3を構成している。図8に示すように十字形に組まれた下部接合プレート7の下面に受けプレート8を介してガセットプレート9を接合した場合、下弦材構成材31には山形鋼や溝形鋼、鋼棒等も使用可能であるが、図8では下弦材3の軽量化のために下弦材構成材31としてプレートを使用している。   FIG. 8 also shows (d) that the gusset plate 9 welded to the lower surface of the receiving plate 8 to which the lower end of the lower joining plate 7 is welded is joined to the gusset plate 9 with the lower chord material 3 sandwiched therebetween. Thus, the lower chord material 3 is composed of two plates as the lower chord material constituting material 31. As shown in FIG. 8, when the gusset plate 9 is joined to the lower surface of the lower joining plate 7 assembled in a cross shape via the receiving plate 8, the lower chord material constituting member 31 is an angle steel, a channel steel, a steel bar, etc. In FIG. 8, a plate is used as the lower chord material constituting material 31 in order to reduce the weight of the lower chord material 3.

図面では前記のように2本のつなぎ材5、5を一組とする立体トラスを2本のつなぎ材5、5と、各つなぎ材5の両端に接続される計4本の束材4と、つなぎ材5、5の両端で区画される2本の上弦材2の一部によって四角錐状に形成している。「立体トラスの形成位置」単位で、トラス張弦梁1の長さ方向と幅方向のそれぞれに並列する2本の束材4、4から四角錐状の立体トラスが構成されることで、下弦材3から束材4の下端に作用する、下弦材3長さ方向の水平方向の荷重に対してはその方向に並列する2本の束材4、4が上弦材2、2に曲げモーメントを作用させるため、立体トラスはトラス張弦梁1に曲げ剛性を付与するように機能する。   In the drawing, as described above, a three-dimensional truss comprising two connecting members 5 and 5 as a set is connected to two connecting members 5 and 5, and a total of four bundle members 4 connected to both ends of each connecting member 5. The two upper chord members 2 defined at both ends of the connecting members 5 and 5 are formed in a quadrangular pyramid shape. By forming a three-dimensional truss in the form of a quadrangular pyramid from two bundle members 4 and 4 arranged in parallel in the length direction and the width direction of the truss tension string beam 1 in units of “three-dimensional truss formation position”, the lower chord material 3 For the horizontal chord in the length direction of the lower chord member 3 acting on the lower end of the bundle member 4, the two bundle members 4, 4 juxtaposed in that direction exert a bending moment on the upper chord member 2, 2. Therefore, the three-dimensional truss functions to impart bending rigidity to the truss tension string beam 1.

下弦材3から束材4の下端に作用する、下弦材3幅方向の水平方向の荷重に対してはその方向に並列する2本の束材4、4が上弦材2、2に捩じりモーメントを作用させるため、立体トラスはトラス張弦梁1に捩じり剛性を付与するように機能する。   For the horizontal load in the width direction of the lower chord 3 acting on the lower end of the bundle 4 from the lower chord 3, the two bundles 4, 4 juxtaposed in the direction twist to the upper chords 2, 2. In order to apply a moment, the three-dimensional truss functions to impart torsional rigidity to the truss tension string beam 1.

図7は複数のトラス張弦梁1の組み合わせを体育館等、大空間を覆う屋根架構として使用した場合の例を示す。屋根架構は桁行方向に並列する複数のトラス張弦梁1、1間の上弦材2位置に前記した母屋材等の水平材10を架設し、水平材10によってトラス張弦梁1、1を互いに連結することにより構成される。複数のトラス張弦梁1の上弦材2上には図8に示すようにデッキプレート等の屋根葺き材11が敷設され、屋根架構が構成される。図示しないが、場合により下弦材3位置に水平材10に平行な下部つなぎ材を架設し、下部つなぎ材によってもトラス張弦梁1、1が連結されることもある。   FIG. 7 shows an example in which a combination of a plurality of trussed string beams 1 is used as a roof frame covering a large space such as a gymnasium. The roof frame is constructed by laying a horizontal member 10 such as a purlin member at the position of the upper chord member 2 between a plurality of truss string members 1 and 1 arranged in parallel in the direction of the beam and connecting the truss string members 1 and 1 to each other by the horizontal member 10. Composed. As shown in FIG. 8, a roofing material 11 such as a deck plate is laid on the upper chord material 2 of the plurality of trussed string beams 1 to constitute a roof frame. Although not shown, in some cases, a lower connecting material parallel to the horizontal material 10 is installed at the position of the lower chord material 3, and the truss tension string beams 1 and 1 may be connected also by the lower connecting material.

幅方向に並列するトラス張弦梁1、1間には屋根架構の水平剛性(面内剛性)を確保するために、図7−(b)に示すように水平ブレース12が架設され、この水平ブレース12によってもトラス張弦梁1、1は互いに連結される。   In order to ensure the horizontal rigidity (in-plane rigidity) of the roof frame between the truss tension string beams 1 and 1 arranged in parallel in the width direction, a horizontal brace 12 is installed as shown in FIG. The truss tension string beams 1 and 1 are also connected to each other.

1……トラス張弦梁、
2……上弦材、3……下弦材、31……下弦材構成材、
4……束材、5……つなぎ材、
6……上部接合プレート、7……下部接合プレート、
8……受けプレート、9……ガセットプレート、
10……水平材、
11……屋根葺き材、
12……水平ブレース、
20……下部構造。
1 ... Truss string beam,
2 ... Upper chord material, 3 ... Lower chord material, 31 ... Lower chord material component,
4 ... Bundles, 5 ... Binders,
6 ... Upper joining plate, 7 ... Lower joining plate,
8 ... receiving plate, 9 ... gusset plate,
10 …… Horizontal material,
11 …… Roofing material,
12 …… Horizontal brace,
20: Substructure.

Claims (2)

幅方向に並列する2本の上弦材と、両上弦材に対向する1本の下弦材と、前記上弦材と前記下弦材の長さ方向に間隔を置いて前記2本の上弦材と前記下弦材との間に架設され、立体トラスを構成する複数本の束材とを備え、
前記2本の上弦材間につなぎ材が架設されると共に、前記下弦材の長さ方向の端部が前記上弦材の長さ方向の端部に直接、もしくは間接的に連結されて梁として完結していることを特徴とするトラス張弦梁。
Two upper chord members arranged in parallel in the width direction, one lower chord member facing both upper chord members, and the two upper chord members and the lower chord spaced apart in the length direction of the upper chord member and the lower chord member A plurality of bundles that are erected between the materials and constitute a three-dimensional truss,
A bridging member is laid between the two upper chord members, and the end portion in the length direction of the lower chord member is directly or indirectly connected to the end portion in the length direction of the upper chord member to complete the beam. Truss string beam, which is characterized by
前記立体トラスの各形成位置に付き、並列する前記上弦材間に、前記上弦材の長さ方向に間隔を置いて2本のつなぎ材が架設されると共に、その各つなぎ材と前記上弦材との接続点に前記束材の一端が接続され、その複数本の束材の他端が集合して前記下弦材に接続され、この4本の束材から立体トラスが構成されていることを特徴とする請求項1に記載のトラス張弦梁。
Two connecting members are installed between the upper chord members arranged in parallel at the respective formation positions of the three-dimensional truss and spaced in the longitudinal direction of the upper chord member, and each connecting member and the upper chord member One end of the bundle material is connected to the connection point, and the other ends of the plurality of bundle materials are gathered and connected to the lower chord material, and a solid truss is constituted by the four bundle materials. The truss tension string beam according to claim 1.
JP2009258066A 2009-11-11 2009-11-11 Truss string beam Active JP5468878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258066A JP5468878B2 (en) 2009-11-11 2009-11-11 Truss string beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258066A JP5468878B2 (en) 2009-11-11 2009-11-11 Truss string beam

Publications (2)

Publication Number Publication Date
JP2011102500A true JP2011102500A (en) 2011-05-26
JP5468878B2 JP5468878B2 (en) 2014-04-09

Family

ID=44192937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258066A Active JP5468878B2 (en) 2009-11-11 2009-11-11 Truss string beam

Country Status (1)

Country Link
JP (1) JP5468878B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759861A (en) * 2016-11-11 2017-05-31 天津大学 The computational methods of welded hollow spherical jointses spatial mesh structure beam element rod member moment of flexure
CN113718958A (en) * 2021-10-13 2021-11-30 成都东南钢结构有限公司 Steel-wood combined truss structure and construction method thereof
CN114892809A (en) * 2022-06-28 2022-08-12 中国建筑西南设计研究院有限公司 Bidirectional structure stress system based on wood folded plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436836A (en) * 1987-07-31 1989-02-07 Shimizu Construction Co Ltd Skeletal structure of structure
JPH02178456A (en) * 1988-12-28 1990-07-11 Kajima Corp Triangular space truss, its structure, its constructing method and its structure supporting method
JPH09302841A (en) * 1996-05-10 1997-11-25 Nippon Light Metal Co Ltd Lattice, its manufacture, and trussed structure using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436836A (en) * 1987-07-31 1989-02-07 Shimizu Construction Co Ltd Skeletal structure of structure
JPH02178456A (en) * 1988-12-28 1990-07-11 Kajima Corp Triangular space truss, its structure, its constructing method and its structure supporting method
JPH09302841A (en) * 1996-05-10 1997-11-25 Nippon Light Metal Co Ltd Lattice, its manufacture, and trussed structure using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759861A (en) * 2016-11-11 2017-05-31 天津大学 The computational methods of welded hollow spherical jointses spatial mesh structure beam element rod member moment of flexure
CN106759861B (en) * 2016-11-11 2019-01-08 天津大学 The calculation method of welded hollow spherical joints spatial mesh structure beam element rod piece moment of flexure
CN113718958A (en) * 2021-10-13 2021-11-30 成都东南钢结构有限公司 Steel-wood combined truss structure and construction method thereof
CN114892809A (en) * 2022-06-28 2022-08-12 中国建筑西南设计研究院有限公司 Bidirectional structure stress system based on wood folded plate
CN114892809B (en) * 2022-06-28 2023-09-26 中国建筑西南设计研究院有限公司 Bidirectional structure stress system based on wood folded plate

Also Published As

Publication number Publication date
JP5468878B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN101936054B (en) Steel truss web combined PC beam and construction method thereof
KR101642420B1 (en) A steel frame structure
KR101065633B1 (en) Prestressed steel tubular truss beam by external prestressing method
KR101125917B1 (en) Prestressed steel concrete composite beam
KR101870269B1 (en) Strengthening apparatus of lightweight steel truss members by external prestressing
KR101448161B1 (en) Truss type hybrid beam structure
KR101814754B1 (en) Built-Up Beam
KR102027813B1 (en) Built-Up Beam
JP5468878B2 (en) Truss string beam
CN102776829A (en) Steel pipe concrete combined truss bridge
KR101347939B1 (en) Composite structure of corrugated steel plate web-PSC composite beam structure which combined corrugated steel plate and concrete plate with L shape steel
CN201778436U (en) Hybrid polycarbonate (PC) girder with steel truss webs
KR101709209B1 (en) PC Concrete Structure of Variable section Reinforce for Increse Stiffness with Projecting Cable and Truss Structure
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
KR101912376B1 (en) Plate truss girder and composite girder bridge using the same
JP2010024775A (en) Reinforcement cage lifting method, reinforcement cage, and reinforcement cage assembling method
KR101177316B1 (en) Shear reinforcement device for junctional region of column-slab
JP7219569B2 (en) composite deck slabs
KR101355147B1 (en) Shear reinforcement device for junctional region of column-slab
CA2509410C (en) Wood arch frame system
JP3931635B2 (en) Composite box girder and its construction method
JP6162479B2 (en) Concrete beam
KR102294174B1 (en) Temporary structure and construction method for formwork
KR200400185Y1 (en) Wooden trussed roof by fastener in opposition to a disaster
KR101187965B1 (en) A lattice girder for tunnel construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5468878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250