JP2011099131A - Method for manufacturing zinc oxide-based oxide pellet - Google Patents

Method for manufacturing zinc oxide-based oxide pellet Download PDF

Info

Publication number
JP2011099131A
JP2011099131A JP2009252726A JP2009252726A JP2011099131A JP 2011099131 A JP2011099131 A JP 2011099131A JP 2009252726 A JP2009252726 A JP 2009252726A JP 2009252726 A JP2009252726 A JP 2009252726A JP 2011099131 A JP2011099131 A JP 2011099131A
Authority
JP
Japan
Prior art keywords
powder
molded body
zinc oxide
mpa
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252726A
Other languages
Japanese (ja)
Other versions
JP5287669B2 (en
Inventor
Yasuyuki Maeno
泰行 前野
Kentaro Sogabe
健太郎 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009252726A priority Critical patent/JP5287669B2/en
Publication of JP2011099131A publication Critical patent/JP2011099131A/en
Application granted granted Critical
Publication of JP5287669B2 publication Critical patent/JP5287669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing zinc oxide-based oxide pellets in which the height is relatively large, and relative density is suppressed, with good yield and in a mass-production manner. <P>SOLUTION: The method for manufacturing zinc oxide-based oxide pellets by baking a compact includes: a first step of manufacturing first pelletized powder by executing the wet mixing and spray drying of raw material powder; a second step of manufacturing calcinated powder by calcinating the first pelletized powder; a third step of manufacturing second pelletized powder by executing the wet mixing and spray drying of the calcinated powder and non-calcinated raw material powder; a fourth step of manufacturing a green compact by pressurizing the second pelletized powder; a fifth step of manufacturing powder for the compact by pulverizing the green compact; and a sixth step of manufacturing the compact by executing the pressure-forming of the powder for the compact. The pressurization condition for the second pelletized powder in the fourth step is set to ≥50 MPa and ≤150 MPa. The powder density of the powder for the compact manufactured in the fifth step is set to ≥1.4g/cm<SP>3</SP>and ≤2.0g/cm<SP>3</SP>. The pressurization condition for the powder for the compact in the sixth step is set to ≥100 MPa and ≤200 MPa. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池や液晶表面素子等に用いられる低抵抗の酸化物透明導電膜を、電子ビーム蒸着法やイオンプレーティング法等の真空蒸着法で製造する際に原料として使用される酸化物ペレットに係り、特に、高さ寸法が比較的高くかつ相対密度が抑制された酸化亜鉛系酸化物ペレットを歩留まりよく量産できる製造方法に関するものである。   The present invention relates to an oxide used as a raw material when producing a low resistance oxide transparent conductive film used for solar cells, liquid crystal surface elements and the like by a vacuum deposition method such as an electron beam deposition method or an ion plating method. The present invention relates to pellets, and more particularly to a manufacturing method capable of mass-producing zinc oxide-based oxide pellets having a relatively high height dimension and a suppressed relative density with a high yield.

この種の酸化物透明導電膜は高い導電性と可視光領域での高い透過率を有するため、近年、太陽電池、発光ダイオード等の光半導体装置、液晶表示装置(LCD)、有機電界発光(EL)表示装置等に幅広く用いられており、特に、透明電極としては、インジウム−錫酸化物(ITO)が主に用いられてきた。しかし、インジウム資源の枯渇が懸念される昨今、高価なインジウムを必須成分として含むITO膜に代わる次世代導電膜の期待が高まっている。そして、上記酸化物透明導電膜として、インジウム−錫酸化物(ITO)の他に、酸化錫(SnO)系や酸化亜鉛(ZnO)系が広く用いられている。中でも酸化亜鉛系導電膜の性能改善は著しく進んでおり、ガリウムをドーパントとして含む酸化亜鉛膜、すなわちZnO−GaはGZO膜と称され、ITO膜に近い低抵抗の酸化亜鉛系導電膜が得られるようになってきている。 Since this type of transparent oxide conductive film has high conductivity and high transmittance in the visible light region, in recent years, it has been used for photo semiconductor devices such as solar cells and light emitting diodes, liquid crystal display devices (LCD), and organic electroluminescence (EL). ) Widely used in display devices, etc. In particular, indium-tin oxide (ITO) has been mainly used as the transparent electrode. However, in recent years when there is concern about the depletion of indium resources, there is an increasing expectation for a next-generation conductive film that replaces an ITO film containing expensive indium as an essential component. In addition to indium-tin oxide (ITO), tin oxide (SnO 2 ) and zinc oxide (ZnO) are widely used as the oxide transparent conductive film. Among them, the performance improvement of the zinc oxide-based conductive film is remarkably advanced, and a zinc oxide film containing gallium as a dopant, that is, ZnO-Ga 2 O 3 is called a GZO film, and has a low resistance close to that of an ITO film. Has come to be obtained.

ところで、上記酸化物透明導電膜を製造するにはスパッタリング法や真空蒸着法が利用される。そして、スパッタリング法により酸化物透明導電膜を製造する場合には、板状の蒸発材(ターゲットとも称される)が用いられ、電子ビーム蒸着法やイオンプレーティング法等の真空蒸着法でGZOのような酸化物透明導電膜を製造する場合には、蒸着源としてGZOの蒸発材(GZOタブレット若しくはGZOペレットとも称される)が用いられる。   By the way, in order to manufacture the oxide transparent conductive film, a sputtering method or a vacuum deposition method is used. When manufacturing an oxide transparent conductive film by a sputtering method, a plate-like evaporation material (also called a target) is used, and GZO is formed by a vacuum evaporation method such as an electron beam evaporation method or an ion plating method. When manufacturing such an oxide transparent conductive film, a GZO evaporation material (also referred to as a GZO tablet or GZO pellet) is used as an evaporation source.

そして、高密度を必要とするスパッタリング用ターゲット材と異なり、電子ビーム蒸着法やイオンプレーティング法等の真空蒸着法では、電子ビームやプラズマビームをペレットに照射してペレットを局所的に加熱する方法のため、高密度では熱衝撃に伴うペレットの割れが発生する。このため、電子ビーム蒸着法やイオンプレーティング法等の真空蒸着法で用いる場合にはペレットの相対密度を下げる必要がある。   And unlike sputtering target materials that require high density, vacuum deposition methods such as electron beam deposition and ion plating methods irradiate the pellet with an electron beam or plasma beam to locally heat the pellet. For this reason, at high density, cracking of the pellet due to thermal shock occurs. For this reason, it is necessary to lower the relative density of the pellets when used in a vacuum deposition method such as an electron beam deposition method or an ion plating method.

ここで、「相対密度」とは、原料粉の真密度から求めた理論密度に対する酸化物ペレットの密度の比率のことで、相対密度=(酸化物ペレットの密度/原料真密度)×100という式から求められる。   Here, the “relative density” is the ratio of the density of the oxide pellets to the theoretical density obtained from the true density of the raw material powder, and the relative density = (density of oxide pellets / true density of raw material) × 100 It is requested from.

このようなペレットの製造方法として、例えば、特許文献1(特開2006−117462号公報)や特許文献2(特開2007−56351号公報)には、仮焼した原料粉末と未仮焼の原料粉末とを混合して混合粉末を調製し、得られた混合粉末を加圧成形した後、焼結することにより、相対密度が抑制された酸化亜鉛系酸化物ペレットを製造する方法が開示されている。   As a method for producing such pellets, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2006-117462) and Patent Document 2 (Japanese Patent Laid-Open No. 2007-56351) describe a raw material powder that has been calcined and a raw material that has not been calcined. A method is disclosed in which a mixed powder is prepared by mixing with powder, and the resulting mixed powder is pressure-molded and then sintered to produce zinc oxide-based oxide pellets with reduced relative density. Yes.

特開2006−117462号公報(請求項8、段落0040)JP 2006-117462 A (Claim 8, paragraph 0040) 特開2007−56351号公報(請求項5、段落0037)JP 2007-56351 (Claim 5, paragraph 0037)

ところで、イオンプレーティング法等で用いられるGZOペレットの高さ(厚さ)は、特許文献2に記載されているように20mm程度である。そして、ペレットの高さが高いほど長時間蒸着に使用できるため高さの高いペレットが望まれているが、特許文献1〜2に開示されている仮焼粉末と未仮焼粉末を混合して酸化亜鉛系酸化物ペレットを製造する公知の方法ではせいぜい40mmが限界であった。   By the way, as described in Patent Document 2, the height (thickness) of the GZO pellet used in the ion plating method or the like is about 20 mm. And as the height of the pellet is higher, it can be used for vapor deposition for a longer time, so a high-height pellet is desired, but the calcined powder and uncalcined powder disclosed in Patent Documents 1 and 2 are mixed. In the known method for producing zinc oxide-based oxide pellets, the limit is 40 mm at most.

そして、特許文献1〜2に開示された方法で、例えば高さ60mm以上で相対密度が抑制されたGZOペレットを製造しようとすると、仮焼粉末と未仮焼粉末の混合粉末を機械プレス等で加圧成形したときに成形体にクラックやカケが生じ易く、目視でクラック等が確認できない場合も、焼結後においてクラックやカケが確認される問題が存在した。   And if it is going to manufacture the GZO pellet by which the relative density was suppressed by the method disclosed by patent documents 1-2, for example, the mixed powder of calcined powder and uncalcined powder with a mechanical press etc. There was a problem that cracks and chips were easily observed after sintering even when cracks and cracks were likely to occur in the molded body when pressure molding was performed, and cracks and the like could not be confirmed visually.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、高さ寸法が比較的高くかつ相対密度が抑制された酸化亜鉛系酸化物ペレットを歩留まりよく量産可能な製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that a zinc oxide-based oxide pellet having a relatively high height dimension and a suppressed relative density can be mass-produced with a high yield. It is to provide a manufacturing method.

そこで、上記課題を解決するため本発明者等が鋭意研究を行なった結果、特許文献1〜2に記載された方法とは異なる酸化亜鉛系酸化物ペレットの製造方法を見出すと共に、その製造条件を調整することにより、例えば高さ60mm以上で相対密度が抑制されかつクラックやカケの無い酸化亜鉛系酸化物ペレットを製造できる方法を完成するに至った。   Therefore, as a result of intensive studies conducted by the present inventors in order to solve the above-mentioned problems, a method for producing zinc oxide-based oxide pellets different from the methods described in Patent Documents 1 and 2 was found, and the production conditions thereof were determined. By adjusting, for example, the present inventors have completed a method capable of producing zinc oxide-based oxide pellets having a relative density suppressed at a height of 60 mm or more and having no cracks or chips.

すなわち、請求項1に係る発明は、
原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して第一造粒粉を製造する第一工程と、得られた第一造粒粉を仮焼して仮焼粉を製造する第二工程と、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して第二造粒粉を製造する第三工程と、得られた第二造粒粉を加圧して圧粉体を製造する第四工程と、得られた圧粉体を破砕して成形体用粉末を製造する第五工程と、得られた成形体用粉末を金型内で加圧成形して所定形状の成形体を製造する第六工程と、得られた成形体を焼成して酸化亜鉛系酸化物ペレットを製造する方法において、
第四工程において第二造粒粉に対する単位面積当りの加圧条件を50MPa以上150MPa以下に設定して圧粉体を製造し、かつ、第五工程において上記圧粉体を破砕して製造される成形体用粉末の嵩密度が1.4g/cm3以上2.0g/cm3以下となるようにすると共に、第六工程において金型内での上記成形体用粉末に対する単位面積当りの加圧条件が100MPa以上200MPa以下となるようにして所定形状の成形体を製造することを特徴とする。
That is, the invention according to claim 1
Disperse the raw material powder in a liquid medium to make a slurry, and spray-dry this slurry to produce the first granulated powder, and calcine the resulting first granulated powder to produce a calcined powder And the second calcined powder obtained and the above-mentioned calcined powder and the above-mentioned calcined raw material powder (uncalcined raw material powder) are mixed and dispersed in a liquid medium to form a slurry, and this slurry is spray-dried to obtain the second granulated powder A fourth step of producing a green compact by pressurizing the obtained second granulated powder, and a fifth step of producing a powder for a compact by crushing the obtained green compact. A step, a sixth step of producing a molded body of a predetermined shape by pressure-molding the obtained powder for a molded body in a mold, and producing the zinc oxide-based oxide pellets by firing the obtained molded body In the way to
In the fourth step, the pressing condition per unit area for the second granulated powder is set to 50 MPa or more and 150 MPa or less to produce a green compact, and in the fifth step, the green compact is crushed and manufactured. The bulk density of the compact powder is 1.4 g / cm 3 or more and 2.0 g / cm 3 or less, and the pressure per unit area against the compact powder in the mold in the sixth step A molded body having a predetermined shape is manufactured such that the conditions are 100 MPa or more and 200 MPa or less.

また、請求項2に係る発明は、
請求項1に記載の発明に係る酸化亜鉛系酸化物ペレットの製造方法において、
上記成形体用粉末が充填される筒形状のキャビティを具備するダイと、筒形状を有するキャビティ内に上下方向からそれぞれ嵌入されると共にキャビティ内に充填された成形体用粉末を上下方向から加圧圧縮する上パンチ並びに下パンチとで第六工程における上記金型の主要部が構成され、かつ、加圧成形により製造されたキャビティ内の成形体を上パンチ並びに下パンチとで挟持した状態で上記ダイを下降させ、その後上パンチを上昇させてから上記成形体を取り出すことを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係る酸化亜鉛系酸化物ペレットの製造方法において、
上記酸化亜鉛系酸化物ペレットの高さが60mm以上であることを特徴とする。
The invention according to claim 2
In the method for producing zinc oxide-based oxide pellets according to the invention of claim 1,
A die having a cylindrical cavity filled with the above-mentioned powder for a molded body, and a powder for the molded body filled in the cavity are pressed from above and below, respectively, in the cavity having a cylindrical shape. The main part of the mold in the sixth step is constituted by the upper punch and the lower punch to be compressed, and the molded body in the cavity manufactured by pressure molding is sandwiched between the upper punch and the lower punch. The die is lowered, and then the upper punch is raised, and then the molded body is taken out,
The invention according to claim 3
In the method for producing a zinc oxide-based oxide pellet according to the invention of claim 1 or 2,
The zinc oxide-based oxide pellet has a height of 60 mm or more.

本発明に係る酸化亜鉛系酸化物ペレットの製造方法によれば、
原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して第一造粒粉を製造する第一工程と、得られた第一造粒粉を仮焼して仮焼粉を製造する第二工程と、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して第二造粒粉を製造する第三工程と、得られた第二造粒粉を加圧して圧粉体を製造する第四工程と、得られた圧粉体を破砕して成形体用粉末を製造する第五工程と、得られた成形体用粉末を金型内で加圧成形して所定形状の成形体を製造する第六工程と、得られた成形体を焼成して酸化亜鉛系酸化物ペレットを製造する各工程を具備し、かつ、上記第四工程において第二造粒粉に対する単位面積当りの加圧条件を50MPa以上150MPa以下に設定して圧粉体を製造し、第五工程において上記圧粉体を破砕して製造される成形体用粉末の嵩密度が1.4g/cm3以上2.0g/cm3以下となるようにすると共に、第六工程において金型内での上記成形体用粉末に対する単位面積当りの加圧条件が100MPa以上200MPa以下となるようにして所定形状の成形体を製造してため、得られる成形体に不具合(クラックやカケの発生等)が起こり難く、高さ寸法が比較的高くかつ相対密度が抑制された酸化亜鉛系酸化物ペレットを歩留まりよく安定して量産することが可能となる。
According to the method for producing zinc oxide-based oxide pellets according to the present invention,
Disperse the raw material powder in a liquid medium to make a slurry, and spray-dry this slurry to produce the first granulated powder, and calcine the resulting first granulated powder to produce a calcined powder And the second calcined powder obtained and the above-mentioned calcined powder and the above-mentioned calcined raw material powder (uncalcined raw material powder) are mixed and dispersed in a liquid medium to form a slurry, and this slurry is spray-dried to obtain the second granulated powder A fourth step of producing a green compact by pressurizing the obtained second granulated powder, and a fifth step of producing a powder for a compact by crushing the obtained green compact. A step, a sixth step of producing a molded body of a predetermined shape by pressure-molding the obtained powder for a molded body in a mold, and producing the zinc oxide-based oxide pellets by firing the obtained molded body And the pressing condition per unit area for the second granulated powder in the fourth step is 50 MPa or more and 150M. to produce a green compact is set to below a, the bulk density of the molded body powders produced by crushing the green compact in the fifth step is 1.4 g / cm 3 or more 2.0 g / cm 3 or less In order to produce a molded body having a predetermined shape such that the pressing condition per unit area with respect to the powder for the molded body in the mold is 100 MPa or more and 200 MPa or less in the sixth step, It is possible to stably mass-produce zinc oxide-based oxide pellets that are less likely to cause defects (such as cracks and chipping) in the resulting molded body, have a relatively high height dimension, and have a suppressed relative density. Become.

酸化亜鉛系酸化物ペレットの製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of a zinc oxide series oxide pellet. 金型内での成形体用粉末の成形方法と得られた成形体を金型から取り出す方法を示す第六工程の説明図。Explanatory drawing of the 6th process which shows the shaping | molding method of the powder for molded objects in a metal mold | die, and the method of taking out the obtained molded object from a metal mold | die.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、図1は、本発明に係る酸化亜鉛系酸化物ペレットの製造工程を示し、原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して第一造粒粉を製造する第一工程と、得られた第一造粒粉を仮焼して仮焼粉を製造する第二工程と、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して第二造粒粉を製造する第三工程と、得られた第二造粒粉を加圧して圧粉体を製造する第四工程と、得られた圧粉体を破砕して成形体用粉末を製造する第五工程と、得られた成形体用粉末を金型内で加圧成形して所定形状の成形体を製造する第六工程と、得られた成形体を焼成(焼結)して酸化亜鉛系酸化物ペレットを製造する工程を示している。   First, FIG. 1 shows a production process of zinc oxide-based oxide pellets according to the present invention, in which raw material powder is dispersed in a liquid medium to form a slurry, and this slurry is spray-dried to produce a first granulated powder. A first step, a second step of calcining the obtained first granulated powder to produce a calcined powder, and the obtained calcined powder and the uncalcined raw material powder (uncalcined raw material powder) A third step of mixing and dispersing in a liquid medium to form a slurry and spray-drying this slurry to produce a second granulated powder; and a fourth step of producing a green compact by pressing the obtained second granulated powder. A fifth step of crushing the obtained green compact to produce a powder for a molded body, and press-molding the obtained powder for a molded body in a mold to produce a molded body of a predetermined shape The sixth step and the step of firing (sintering) the obtained molded body to produce zinc oxide-based oxide pellets are shown.

そして、図1に示された工程により製造され、かつ、電子ビーム蒸着法やイオンプレーティング法等の各種真空蒸着法に用いられる上記酸化亜鉛系酸化物ペレットについては、酸化物ペレットの密度が原料真密度に対し相対密度で50%以上70%以下であることが好ましい。ここで、上記酸化物ペレットの密度とは、製造された酸化亜鉛系酸化物ペレットの質量、高さ、直径といった外形寸法の計測から計算された密度をいう。   And about the said zinc oxide type oxide pellet manufactured by the process shown by FIG. 1 and used for various vacuum evaporation methods, such as an electron beam evaporation method and an ion plating method, the density of an oxide pellet is a raw material. The relative density is preferably 50% or more and 70% or less with respect to the true density. Here, the density of the oxide pellets means a density calculated from measurement of external dimensions such as mass, height, and diameter of the manufactured zinc oxide-based oxide pellets.

そして、電子ビーム蒸着法やイオンプレーティング法等の各種真空蒸着法においては、酸化亜鉛系酸化物ペレット表面の一部分に電子ビームが照射され、局所的に加熱されて蒸発物が発生し成膜が行われる。このとき、酸化亜鉛系酸化物ペレットの相対密度が50%未満であると、異常放電や強度不足のためクラックや割れが起こり易くなる。反対に、酸化亜鉛系酸化物ペレットの相対密度が70%を越えると、電子ビームの投入時に、上記酸化亜鉛系酸化物ペレットの局部に発生した応力や歪みを吸収することができず、クラックが生じ易くなる。従って、酸化亜鉛系酸化物ペレットの相対密度は、50%以上70%以下であることが好ましい。   In various vacuum deposition methods such as an electron beam deposition method and an ion plating method, a part of the surface of the zinc oxide-based oxide pellet is irradiated with an electron beam, and heated locally to generate an evaporant to form a film. Done. At this time, if the relative density of the zinc oxide-based oxide pellets is less than 50%, cracks and cracks are likely to occur due to abnormal discharge and insufficient strength. On the other hand, if the relative density of the zinc oxide-based oxide pellets exceeds 70%, the stress and strain generated in the local area of the zinc oxide-based oxide pellets cannot be absorbed when an electron beam is applied, and cracks are not generated. It tends to occur. Therefore, the relative density of the zinc oxide-based oxide pellets is preferably 50% or more and 70% or less.

そして、例えばペレットの高さ60mm以上でかつ相対密度が50%以上70%以下の酸化亜鉛系酸化物ペレットを本発明に係る製造方法により製造する場合、上述した焼結前における成形体の不具合(クラックやカケの発生等)を減少させるためには、本発明者等の実験から、適用する成形体用粉末の嵩密度が1.4g/cm3以上2.0g/cm3以下とし、金型中での上記成形体用粉末に対する単位面積当りの加圧条件が100MPa以上200MPa以下となるようにして成形体を製造することが効果的であることを見出した。より具体的に説明すると、この種の酸化亜鉛系酸化物ペレットを製造する場合、相対密度が所望の範囲(50%以上70%以下)に収まっていることに加えて、酸化亜鉛系酸化物ペレットの寸法が規格に収まっている必要がある。このため、金型中での成形体用粉末に対する成形圧が一定となるような制御ではなく、プレス機のストローク制御により成形体を作っている(規格により同一寸法の成形体とするため)。そして、プレス機のストローク制御で成形体を得、この成形体を焼結して酸化亜鉛系酸化物ペレットとする製法において、上記ストローク制御に伴う成形圧が100MPa以上200MPa以下にならないと後述する理由から歩留まりの向上が図れないため、金型中での成形体用粉末に対する成形圧が200MPaを超えてしまうような嵩密度が1.4g/cm3未満の成形体用粉末の適用は好ましくなく(嵩密度が1.4g/cm3未満の成形体用粉末を所定量金型内に充填すると、金型内における成形体用粉末の容積が嵩張るため、ストローク制御で成形体を得る場合に成形圧が200MPaを超えてしまう)、また、金型中での成形体用粉末に対する成形圧が100MPa未満となるような嵩密度が2.0g/cm3を越える成形体用粉末の適用も好ましくない(嵩密度が2.0g/cm3を越える成形体用粉末を所定量金型内に充填すると、金型内における成形体用粉末の容積が小さいため、ストローク制御で成形体を得る場合に成形圧が100MPa未満となる)ことを見出すに至った。ここで、成形体用粉末の嵩密度とは、150mlのメスシリンダーに成形体用粉末を100g入れ、タッピングせずに容積を読み取りかつ成形体用粉末の重量を割った値である。すなわち、嵩密度=(成形体用粉末の重量/メスシリンダーにおける容積)からなる値である。 For example, when the zinc oxide-based oxide pellets having a pellet height of 60 mm or more and a relative density of 50% or more and 70% or less are manufactured by the manufacturing method according to the present invention, the above-described defects of the molded body before sintering ( In order to reduce the occurrence of cracks and cracks, etc., from the experiments of the present inventors, the bulk density of the applied powder for molded bodies is set to 1.4 g / cm 3 or more and 2.0 g / cm 3 or less. It has been found that it is effective to produce a molded product in such a manner that the pressing conditions per unit area with respect to the powder for molded product in the above are 100 MPa or more and 200 MPa or less. More specifically, when manufacturing this kind of zinc oxide-based oxide pellets, in addition to the relative density being within a desired range (50% to 70%), zinc oxide-based oxide pellets The dimensions must be within the standards. For this reason, the molded body is made not by controlling the molding pressure for the molded body powder in the mold to be constant, but by controlling the stroke of the press machine (to make the molded body of the same size according to the standard). And in the manufacturing method which obtains a molded object by stroke control of a press machine and sinters this molded object to make a zinc oxide-based oxide pellet, the reason why the molding pressure accompanying the stroke control does not become 100 MPa or more and 200 MPa or less will be described later Therefore, it is not preferable to apply a powder for a molded body having a bulk density of less than 1.4 g / cm 3 so that the molding pressure on the powder for a molded body in a mold exceeds 200 MPa. When a predetermined amount of powder for a molded body having a bulk density of less than 1.4 g / cm 3 is filled in the mold, the volume of the powder for the molded body in the mold is bulky. There exceeds 200 MPa), also molded body powder bulk density, as molding pressure for molded body powder in the mold is less than 100MPa exceeds 2.0 g / cm 3 If not preferable (bulk density apply fills the molded body powder exceeding 2.0 g / cm 3 within a predetermined amount molds, because the volume of the molded body powder in the mold is small, the molded body in stroke control In this case, it has been found that the molding pressure is less than 100 MPa. Here, the bulk density of the powder for a molded body is a value obtained by putting 100 g of the powder for a molded body into a 150 ml measuring cylinder, reading the volume without tapping, and dividing the weight of the powder for the molded body. That is, bulk density = (weight of compact powder / volume in graduated cylinder).

そして、図1に示す本発明に係る酸化亜鉛系酸化物ペレットの製造方法では、原料粉の主成分である酸化亜鉛粉末に酸化ガリウム粉末を湿式混合した(すなわち、これ等原料粉を液体媒体に混合分散させてスラリーとした)後、噴霧乾燥して第一造粒粉を製造し、得られた第一造粒粉を仮焼して仮焼粉を製造すると共に、得られた仮焼粉と未仮焼の上記原料粉(酸化亜鉛粉末と酸化ガリウム粉末)を液体媒体に一定の割合で混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して第二造粒粉を製造する。次に、得られた第二造粒粉に対し、単位面積当り50MPa以上150MPa以下の圧力を掛けて圧粉体とし、更にこの圧粉体を粉砕し、篩で粒径を調整して成形体用粉末を得る。   And in the manufacturing method of the zinc oxide type oxide pellet which concerns on this invention shown in FIG. 1, the gallium oxide powder was wet-mixed with the zinc oxide powder which is the main component of raw material powder (that is, these raw material powders were made into the liquid medium. After mixing and dispersing into a slurry), spray drying is performed to produce a first granulated powder, and the obtained first granulated powder is calcined to produce a calcined powder, and the obtained calcined powder And the above-mentioned raw powder (zinc oxide powder and gallium oxide powder) are mixed and dispersed in a liquid medium at a certain ratio to form a slurry, and this slurry is spray-dried to produce a second granulated powder. Next, a pressure of 50 MPa to 150 MPa per unit area is applied to the obtained second granulated powder to form a green compact, and the green compact is further pulverized and the particle size is adjusted with a sieve to form a compact. A powder is obtained.

このとき、50MPa未満の圧力で圧粉体とすると、粉砕を行い成形体用粉末としたとき、嵩密度が1.4g/cm3未満となり、金型内における成形体用粉末の容積が嵩張るため、任意の寸法に加圧成形し、成形体を得る際の圧力が200MPaを越える必要となる。そして、200MPaを越える成形圧で成形し、圧力を解除した場合、スプリングバックにより成形体にクラックやカケが発生し易くなるため、歩留まりの向上が図れない。 At this time, if a green compact is used at a pressure of less than 50 MPa, when pulverized into a compact powder, the bulk density is less than 1.4 g / cm 3, and the volume of the compact powder in the mold is bulky. In addition, it is necessary to perform pressure molding to an arbitrary size, and a pressure when obtaining a molded body exceeds 200 MPa. When molding is performed at a molding pressure exceeding 200 MPa and the pressure is released, cracks and chips are easily generated in the molded body due to the spring back, and thus the yield cannot be improved.

他方、150MPaを超える圧力で圧粉体とすると、粉砕を行い成形体用粉末としたとき、嵩密度が2.0g/cm3を越えてしまう結果、金型内における成形体用粉末の容積が小さくなるため、任意の寸法に加圧成形し、成形体を得る際の圧力が100MPa未満となる。そして、100MPa未満の成形圧で成形した場合、成形した成形体の強度が低く、ハンドリング中の成形体の破損や焼結中のクラックやカケが発生し易くなるため、歩留まりの向上が図れない。 On the other hand, when a green compact is used at a pressure exceeding 150 MPa, when the powder is formed into a powder for a molded body, the bulk density exceeds 2.0 g / cm 3. Since it becomes small, the pressure at the time of obtaining a molded body by pressure molding to an arbitrary size is less than 100 MPa. And when it shape | molds with the shaping | molding pressure of less than 100 MPa, since the intensity | strength of the shape | molded molded object is low and it becomes easy to generate | occur | produce the damage of the molded object during handling, and the crack and chipping during sintering, improvement in a yield cannot be aimed at.

次に、本発明に係る製造方法をより具体的に説明すると、上述した原料粉(酸化亜鉛粉末と酸化ガリウム粉末)に、純水、有機バインダーとしてポリビニルアルコール、分散剤としてアクリル酸系アミン塩を混合してスラリーを得、このスラリーを、例えば、スプレードライヤー等により、噴霧し、乾燥させることにより第一造粒粉を製造し、得られた第一造粒粉を仮焼して仮焼粉を製造すると共に、得られた仮焼粉と未仮焼の上記原料粉(酸化亜鉛粉末と酸化ガリウム粉末)を液体媒体に一定の割合で混合分散させてスラリーとし、同様の方法によりスラリーを噴霧乾燥して第二造粒粉を製造する。   Next, the production method according to the present invention will be described more specifically. Pure water, polyvinyl alcohol as an organic binder, and acrylic acid-based amine salt as a dispersant are added to the above-described raw material powder (zinc oxide powder and gallium oxide powder). A slurry is obtained by mixing, and the slurry is sprayed with, for example, a spray dryer, and dried to produce a first granulated powder. The obtained first granulated powder is calcined and calcined. In addition, the obtained calcined powder and the uncalcined raw material powder (zinc oxide powder and gallium oxide powder) are mixed and dispersed in a liquid medium at a certain ratio to form a slurry, and the slurry is sprayed by the same method. Dry to produce second granulated powder.

そして、得られた第二造粒粉に対し、単位面積当り50MPa〜150MPaの圧力を掛けて圧粉体とし、この圧粉体を粉砕し、篩で粒径を調整して嵩密度が1.4g/cm3以上2.0g/cm3以下の成形体用粉末を得る。更に、嵩密度が1.4g/cm3以上2.0g/cm3以下の成形体用粉末を金型内に充填し、機械プレス法等により金型中の上記成形体用粉末に対し単位面積当り100MPa以上200MPa以下の圧力で加圧成形して所定形状の成形体を得、得られた成形体を焼成することにより酸化亜鉛系酸化物ペレットを得ることができる。尚、本発明に係る酸化亜鉛系酸化物ペレットにおいて、その焼結体密度(酸化亜鉛系酸化物ペレットの密度)が原料真密度に対し相対密度で50%以上70%以下であることが好ましい。かかる相対密度を達成するためには、上記成形体を焼成する工程において、焼成温度を1100℃以上とし、焼結保持時間を10〜20時間とすることが好ましい。 The obtained second granulated powder is subjected to a pressure of 50 MPa to 150 MPa per unit area to obtain a green compact, the green compact is pulverized, the particle size is adjusted with a sieve, and the bulk density is 1. 4 g / cm 3 or more and 2.0 g / cm 3 or less of powder for a molded body is obtained. Furthermore, a powder for a molded body having a bulk density of 1.4 g / cm 3 or more and 2.0 g / cm 3 or less is filled in the mold, and a unit area with respect to the powder for the molded body in the mold by a mechanical press method or the like. A molded body having a predetermined shape is obtained by pressure molding at a pressure of 100 MPa or more and 200 MPa or less, and the obtained molded body is fired to obtain zinc oxide-based oxide pellets. In the zinc oxide-based oxide pellets according to the present invention, the sintered body density (density of the zinc oxide-based oxide pellets) is preferably 50% or more and 70% or less relative to the true raw material density. In order to achieve such a relative density, it is preferable that the firing temperature is 1100 ° C. or higher and the sintering holding time is 10 to 20 hours in the step of firing the molded body.

尚、第六工程における上記金型の主要部が、図2(A)〜(D)に示すように成形体用粉末4が充填される筒形状のキャビティ6を具備するダイ3と、筒形状を有するキャビティ6内に上下方向からそれぞれ嵌入されると共にキャビティ6内に充填された成形体用粉末4を上下方向から加圧圧縮する上パンチ1並びに下パンチ2とで構成される場合、加圧成形により製造されたキャビティ6内の成形体5を上パンチ1並びに下パンチ2とで挟持した状態で上記ダイ3を下降させ、その後上パンチ1を上昇させてから上記成形体5を取り出すこともクラックやカケの減少に大きく影響する。例えば、上パンチ1を上昇させた後にダイ3を下降させて成形体5の取り出すと、スプリングバックの影響でクラックやカケが発生し易くなる。   The main part of the mold in the sixth step includes a die 3 having a cylindrical cavity 6 filled with powder 4 for a molded body as shown in FIGS. 2A to 2D, and a cylindrical shape. In the case of being composed of an upper punch 1 and a lower punch 2 which are respectively inserted into the cavity 6 having a vertical direction and pressurize and compress the powder 4 for the molded body filled in the cavity 6 from the vertical direction. It is also possible to lower the die 3 in a state where the molded body 5 in the cavity 6 manufactured by molding is sandwiched between the upper punch 1 and the lower punch 2 and then lift the upper punch 1 and take out the molded body 5. It greatly affects the reduction of cracks and cracks. For example, when the die 3 is lowered and the molded body 5 is taken out after raising the upper punch 1, cracks and chipping easily occur due to the influence of the spring back.

以下、本発明の実施例について具体的に説明する。
[実施例1]
酸化ガリウムが1質量分含まれるように、平均粒径が1μm以下の酸化亜鉛粉末99質量分と平均粒径が1μm以下の酸化ガリウム粉末1質量分を秤量した。
Examples of the present invention will be specifically described below.
[Example 1]
99 parts by weight of zinc oxide powder having an average particle diameter of 1 μm or less and 1 part by weight of gallium oxide powder having an average particle diameter of 1 μm or less were weighed so that 1 part by weight of gallium oxide was contained.

次いで、上記酸化亜鉛粉末と酸化ガリウム粉末に、純水、ポリビニルアルコール、アクリル酸系アミン塩を、原料粉(酸化亜鉛粉末と酸化ガリウム粉末)濃度が60質量%になるよう調合し、ボールミル攪拌機で攪拌混合してスラリーを得た。   Next, pure water, polyvinyl alcohol, and an acrylic amine salt are prepared in the zinc oxide powder and gallium oxide powder so that the concentration of the raw material powder (zinc oxide powder and gallium oxide powder) is 60% by mass, and a ball mill agitator is used. A slurry was obtained by stirring and mixing.

そして、得られたスラリーを、スプレードライヤー装置を用いて噴霧および乾燥し、平均粒径が約50μmである仮焼用GZO第一造粒粉を得た。   And the obtained slurry was sprayed and dried using the spray dryer apparatus, and the GZO 1st granulated powder for calcining whose average particle diameter is about 50 micrometers was obtained.

次に、得られたGZO第一造粒粉を、焼結炉において焼結温度1200℃、焼結保持時間を20時間として焼結を行い、GZO仮焼粉を得た。更に、GZO仮焼粉60質量%および未仮焼の上記原料粉(酸化亜鉛粉末99質量分と酸化ガリウム粉末1質量分から成る)40質量%となるよう湿式混合し、上述した方法と同様にして、スプレードライヤー装置を用いてスラリーを噴霧および乾燥し、平均粒径が約50μmである圧粉体用GZO第二造粒粉を得た。   Next, the obtained GZO first granulated powder was sintered in a sintering furnace at a sintering temperature of 1200 ° C. and a sintering holding time of 20 hours to obtain a GZO calcined powder. Further, 60 wt% of the GZO calcined powder and 40 wt% of the uncalcined raw material powder (consisting of 99 wt% of zinc oxide powder and 1 wt% of gallium oxide powder) were wet-mixed in the same manner as described above. Then, the slurry was sprayed and dried using a spray dryer device to obtain a GZO second granulated powder for green compact having an average particle size of about 50 μm.

次に、得られたGZO第二造粒粉を、CIP(冷間静水圧プレス)装置を用いて、常温にて147.1MPaの圧力で圧粉体を作製し、手粉砕にて粉砕を行い、かつ、目開き300μmの篩いを用いて成形体用粉末を得た。得られた成形体用粉末の嵩密度は1.52g/cm3であった。 Next, the obtained GZO second granulated powder is made into a green compact at a normal pressure of 147.1 MPa at a normal temperature using a CIP (cold isostatic press) apparatus, and pulverized by hand pulverization. And the powder for molded objects was obtained using the sieve of 300 micrometers of mesh openings. The bulk density of the obtained powder for molded bodies was 1.52 g / cm 3 .

そして、得られた成形体用粉末を、図2(A)〜 (D)に示す金型成型機を用いて加圧成形し、直径20mm、高さ60mmの円柱形状の成形体を10個得た。尚、成形体5の取り出しは、ダイ3のキャビティ6に充填された成形体用粉末4を上パンチ1と下パンチ2で加圧圧縮し、加圧が完了した成形体5を上パンチ1と下パンチ2によって挟んだ状態でダイ3を下降させ、その後上パンチ1を上昇させてから行った。また、このときの成形圧力は132〜155MPaでありクラック、カケは見られなかった。   Then, the obtained powder for a molded body is pressure-molded by using a mold molding machine shown in FIGS. 2A to 2D to obtain 10 cylindrical shaped bodies having a diameter of 20 mm and a height of 60 mm. It was. The molded body 5 is taken out by compressing and compressing the molded body powder 4 filled in the cavity 6 of the die 3 with the upper punch 1 and the lower punch 2, and then pressing the molded body 5 with the upper punch 1. The die 3 was lowered while sandwiched by the lower punch 2, and then the upper punch 1 was raised. Further, the molding pressure at this time was 132 to 155 MPa, and no cracks or chips were observed.

次いで、得られた成形体を、1100℃、20時間で焼結してGZOペレットを得た。焼結したペレットの密度は3.39g/cm3で、相対密度は58.60%であった。また、得られたGZOペレットにクラック、カケは見られなかった。 Subsequently, the obtained molded body was sintered at 1100 ° C. for 20 hours to obtain GZO pellets. The density of the sintered pellet was 3.39 g / cm 3 and the relative density was 58.60%. In addition, no cracks or chips were observed in the obtained GZO pellets.

尚、各実施例と比較例1に係る「酸化ガリウム含有量(wt%)」「仮焼粉含有量(wt%)」「仮焼温度(℃)」「圧粉体作製時圧力(MPa)」「成形体用粉末の嵩密度(g/cm3)「成形時圧力(MPa)」「焼結温度(℃)」「成形の可否」「成形時割れ不良」および「焼結後割れ不良」については、以下の表1にまとめて示す。
[実施例2]
酸化ガリウムが2質量分含まれるように、平均粒径が1μm以下の酸化亜鉛粉末98質量分と平均粒径が1μm以下の酸化ガリウム粉末2質量分を秤量した以外は実施例1と同様に行なって成形体用GZO粉末を得た。尚、得られた成形体用粉末の嵩密度は1.55g/cm3であった。
In addition, “gallium oxide content (wt%)”, “calcined powder content (wt%)”, “calcining temperature (° C.)”, “pressure during green compact production (MPa)” according to each example and comparative example 1 ”“ Bulk density (g / cm 3 ) of the powder for the molded body ”“ Pressure at molding (MPa) ”“ Sintering temperature (° C.) ”“ Moldability ”,“ Bad defect during molding ”and“ Bad defect after sintering ” Are summarized in Table 1 below.
[Example 2]
The same procedure as in Example 1 was performed except that 98 parts by mass of zinc oxide powder having an average particle diameter of 1 μm or less and 2 parts by mass of gallium oxide powder having an average particle diameter of 1 μm or less were weighed so that 2 parts by mass of gallium oxide was contained. Thus, a GZO powder for a molded body was obtained. In addition, the bulk density of the obtained powder for molded bodies was 1.55 g / cm 3 .

次いで、得られた成形体用GZO粉末を、図2(A)〜(D)に示す金型成型機を用いて実施例1と同様に加圧成形し、直径20mm、高さ60mmの円柱形状の成形体を10個得た。尚、このときの成形圧力は130〜160MPaであり、成形体にクラック、カケは見られなかった。   Next, the obtained GZO powder for a molded body was subjected to pressure molding in the same manner as in Example 1 using a mold molding machine shown in FIGS. 2 (A) to (D), and a cylindrical shape having a diameter of 20 mm and a height of 60 mm. Ten compacts were obtained. The molding pressure at this time was 130 to 160 MPa, and no cracks or chips were seen in the molded body.

そして、得られた成形体を、1100℃、20時間で焼結してGZOペレットを得た。焼結したペレットの密度は3.40g/cm3で、相対密度は58.75%であった。また、得られたGZOペレットにクラック、カケは見られなかった。
[実施例3]
酸化ガリウムが3質量分含まれるように、平均粒径が1μm以下の酸化亜鉛粉末97質量分と平均粒径が1μm以下の酸化ガリウム粉末3質量分を秤量した以外は実施例1と同様に行なって成形体用GZO粉末を得た。尚、得られた成形体用粉末の嵩密度は1.66g/cm3であった。
And the obtained molded object was sintered at 1100 degreeC for 20 hours, and the GZO pellet was obtained. The density of the sintered pellet was 3.40 g / cm 3 and the relative density was 58.75%. In addition, no cracks or chips were observed in the obtained GZO pellets.
[Example 3]
The same procedure as in Example 1 was performed except that 97 mass parts of zinc oxide powder having an average particle diameter of 1 μm or less and 3 mass parts of gallium oxide powder having an average particle diameter of 1 μm or less were weighed so that 3 mass parts of gallium oxide were contained. Thus, a GZO powder for a molded body was obtained. The bulk powder obtained had a bulk density of 1.66 g / cm 3 .

次いで、得られた成形体用GZO粉末を、図2(A)〜(D)に示す金型成型機を用いて実施例1と同様に加圧成形し、直径20mm、高さ60mmの円柱形状の成形体を10個得た。尚、このときの成形圧力は127〜159MPaであり、成形体にクラック、カケは見られなかった。   Next, the obtained GZO powder for a molded body was subjected to pressure molding in the same manner as in Example 1 using a mold molding machine shown in FIGS. 2 (A) to (D), and a cylindrical shape having a diameter of 20 mm and a height of 60 mm. Ten compacts were obtained. The molding pressure at this time was 127 to 159 MPa, and no cracks or chips were found in the molded body.

そして、得られた成形体を、1100℃、20時間で焼結してGZOペレットを得た。焼結したペレットの密度は3.40g/cm3で、相対密度は58.70%であった。また、得られたGZOペレットにクラック、カケは見られなかった。
[実施例4]
酸化ガリウムが3質量分含まれるように、平均粒径が1μm以下の酸化亜鉛粉末97質量分と平均粒径が1μm以下の酸化ガリウム粉末3質量分を秤量した以外は実施例1と同様に行なって成形体用GZO粉末を得た。尚、得られた成形体用粉末の嵩密度は1.50g/cm3であった。
And the obtained molded object was sintered at 1100 degreeC for 20 hours, and the GZO pellet was obtained. The density of the sintered pellet was 3.40 g / cm 3 and the relative density was 58.70%. In addition, no cracks or chips were observed in the obtained GZO pellets.
[Example 4]
The same procedure as in Example 1 was performed except that 97 mass parts of zinc oxide powder having an average particle diameter of 1 μm or less and 3 mass parts of gallium oxide powder having an average particle diameter of 1 μm or less were weighed so that 3 mass parts of gallium oxide were contained. Thus, a GZO powder for a molded body was obtained. In addition, the bulk density of the obtained powder for molded bodies was 1.50 g / cm 3 .

次いで、得られた成形体用GZO粉末を、図2(A)〜(D)に示す金型成型機を用いて実施例1と同様に加圧成形し、直径20mm、高さ60mmの円柱形状の成形体を10個得た。尚、成形体5の取り出しは、実施例1〜3で実施した方法と相違し、ダイ3のキャビティ6に充填された成形体用粉末4を上パンチ1と下パンチ2で加圧圧縮し、加圧が完了した後、上パンチ1と下パンチ2によって成形体5を挟持することなく上パンチ1を最初に上昇させ、次いでダイ3を下降させてから行った。また、このときの成形圧力は185〜191MPaであり、成形体5にクラック、カケは見られなかった。   Next, the obtained GZO powder for a molded body was subjected to pressure molding in the same manner as in Example 1 using a mold molding machine shown in FIGS. 2 (A) to (D), and a cylindrical shape having a diameter of 20 mm and a height of 60 mm. Ten compacts were obtained. The removal of the molded body 5 is different from the method performed in Examples 1 to 3, and the molded body powder 4 filled in the cavity 6 of the die 3 is pressed and compressed by the upper punch 1 and the lower punch 2. After the pressurization was completed, the upper punch 1 was first raised without sandwiching the molded body 5 between the upper punch 1 and the lower punch 2 and then the die 3 was lowered. Further, the molding pressure at this time was 185 to 191 MPa, and no cracks or chips were observed in the molded body 5.

そして、得られた成形体を、1100℃、20時間で焼結してGZOペレットを得た。焼結したペレットの密度は3.41g/cm3で、相対密度は58.81%であった。また、得られたGZOペレットのクラックやカケに関しては、10個中1個で発生していた。この原因は、加圧が完了した後の成形体5の取り出し方法について、実施例1〜3で実施した方法と異なり、上パンチ1を最初に上昇させ、次いでダイ3を下降させてから行ったためと思われる。
[比較例1]
酸化ガリウムが3質量分含まれるように、平均粒径が1μm以下の酸化亜鉛粉末97質量分と平均粒径が1μm以下の酸化ガリウム粉末3質量分を秤量した以外は実施例1と同様に行なって、仮焼用GZO造粒粉を得た。
And the obtained molded object was sintered at 1100 degreeC for 20 hours, and the GZO pellet was obtained. The density of the sintered pellet was 3.41 g / cm 3 and the relative density was 58.81%. Moreover, about the crack and chip of the obtained GZO pellet, it generate | occur | produced in 1 piece. This is because the upper punch 1 was first raised and then the die 3 was lowered with respect to the method of taking out the molded body 5 after the pressurization was completed, unlike the methods carried out in Examples 1-3. I think that the.
[Comparative Example 1]
The same procedure as in Example 1 was performed except that 97 mass parts of zinc oxide powder having an average particle diameter of 1 μm or less and 3 mass parts of gallium oxide powder having an average particle diameter of 1 μm or less were weighed so that 3 mass parts of gallium oxide were contained. Thus, GZO granulated powder for calcining was obtained.

次いで、得られた仮焼用GZO造粒粉を焼結炉において、焼結温度1200℃、焼結保持時間を20時間として焼結を行い、GZO仮焼粉を得た。更に、GZO仮焼粉60質量%および未仮焼の上記原料粉(酸化亜鉛粉末97質量分と酸化ガリウム粉末3質量分から成る)40質量%となるよう湿式混合し、実施例1と同様に、スプレードライヤー装置を用いてスラリーを噴霧および乾燥し、仮焼粉と未仮焼粉とで構成されるGZO造粒粉を得た。尚、得られたGZO造粒粉の嵩密度は1.36g/cm3であった。 Subsequently, the obtained GZO granulated powder for calcination was sintered in a sintering furnace at a sintering temperature of 1200 ° C. and a sintering holding time of 20 hours to obtain a GZO calcination powder. Further, 60% by mass of the GZO calcined powder and 40% by mass of the uncalcined raw material powder (consisting of 97% by mass of zinc oxide powder and 3% by mass of gallium oxide powder) were mixed in the same manner as in Example 1. The slurry was sprayed and dried using a spray dryer to obtain a GZO granulated powder composed of calcined powder and non-calcined powder. The bulk density of the obtained GZO granulated powder was 1.36 g / cm 3 .

次に、得られたGZO造粒粉を用いて、一旦圧粉することなしに、実施例1と同様に金型成型機で加圧成形し、直径20mm、高さ60mmの円柱形状の成形体を10個得た。このときの成形圧力は541〜605MPaであり、10個の成形体中10個にクラック、カケが発生していた。   Next, using the obtained GZO granulated powder, it is pressure-molded with a mold molding machine in the same manner as in Example 1 without being compacted once, and a cylindrical molded body having a diameter of 20 mm and a height of 60 mm. 10 were obtained. The molding pressure at this time was 541 to 605 MPa, and cracks and chips were generated in 10 of 10 molded bodies.

Figure 2011099131
Figure 2011099131

本発明の製造方法によれば、高さ寸法が比較的高くかつ相対密度が抑制された酸化亜鉛系酸化物ペレットを歩留まりよく安定して量産できるため、太陽電池や液晶表示素子等に用いられる酸化亜鉛系酸化物透明導電膜を真空蒸着法により製造する際の酸化亜鉛系酸化物ペレットとして利用される産業上の利用可能性を有している。   According to the production method of the present invention, zinc oxide-based oxide pellets having a relatively high height dimension and a suppressed relative density can be stably mass-produced with a high yield, so that the oxides used for solar cells, liquid crystal display elements, etc. The present invention has industrial applicability to be used as zinc oxide-based oxide pellets when a zinc-based oxide transparent conductive film is produced by a vacuum deposition method.

1 上パンチ
2 下パンチ
3 ダイ
4 成形体用粉末
5 成形体
6 キャビティ
1 Upper punch 2 Lower punch 3 Die 4 Powder for molded body 5 Molded body 6 Cavity

Claims (3)

原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して第一造粒粉を製造する第一工程と、得られた第一造粒粉を仮焼して仮焼粉を製造する第二工程と、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して第二造粒粉を製造する第三工程と、得られた第二造粒粉を加圧して圧粉体を製造する第四工程と、得られた圧粉体を破砕して成形体用粉末を製造する第五工程と、得られた成形体用粉末を金型内で加圧成形して所定形状の成形体を製造する第六工程と、得られた成形体を焼成して酸化亜鉛系酸化物ペレットを製造する方法において、
第四工程において第二造粒粉に対する単位面積当りの加圧条件を50MPa以上150MPa以下に設定して圧粉体を製造し、かつ、第五工程において上記圧粉体を破砕して製造される成形体用粉末の嵩密度が1.4g/cm3以上2.0g/cm3以下となるようにすると共に、第六工程において金型内での上記成形体用粉末に対する単位面積当りの加圧条件が100MPa以上200MPa以下となるようにして所定形状の成形体を製造することを特徴とする酸化亜鉛系酸化物ペレットの製造方法。
Disperse the raw material powder in a liquid medium to make a slurry, and spray-dry this slurry to produce the first granulated powder, and calcine the resulting first granulated powder to produce a calcined powder And the second calcined powder obtained and the above-mentioned calcined powder and the above-mentioned calcined raw material powder (uncalcined raw material powder) are mixed and dispersed in a liquid medium to form a slurry, and this slurry is spray-dried to obtain the second granulated powder A fourth step of producing a green compact by pressurizing the obtained second granulated powder, and a fifth step of producing a powder for a compact by crushing the obtained green compact. A step, a sixth step of producing a molded body of a predetermined shape by pressure-molding the obtained powder for a molded body in a mold, and producing the zinc oxide-based oxide pellets by firing the obtained molded body In the way to
In the fourth step, the pressing condition per unit area for the second granulated powder is set to 50 MPa or more and 150 MPa or less to produce a green compact, and in the fifth step, the green compact is crushed and manufactured. The bulk density of the compact powder is 1.4 g / cm 3 or more and 2.0 g / cm 3 or less, and the pressure per unit area against the compact powder in the mold in the sixth step A method for producing a zinc oxide-based oxide pellet, characterized in that a molded body having a predetermined shape is produced such that the conditions are 100 MPa or more and 200 MPa or less.
上記成形体用粉末が充填される筒形状のキャビティを具備するダイと、筒形状を有するキャビティ内に上下方向からそれぞれ嵌入されると共にキャビティ内に充填された成形体用粉末を上下方向から加圧圧縮する上パンチ並びに下パンチとで第六工程における上記金型の主要部が構成され、かつ、加圧成形により製造されたキャビティ内の成形体を上パンチ並びに下パンチとで挟持した状態で上記ダイを下降させ、その後上パンチを上昇させてから上記成形体を取り出すことを特徴とする請求項1に記載の酸化亜鉛系酸化物ペレットの製造方法。   A die having a cylindrical cavity filled with the above-mentioned powder for a molded body, and a powder for the molded body filled in the cavity are pressed from above and below, respectively, in the cavity having a cylindrical shape. The main part of the mold in the sixth step is constituted by the upper punch and the lower punch to be compressed, and the molded body in the cavity manufactured by pressure molding is sandwiched between the upper punch and the lower punch. 2. The method for producing zinc oxide-based oxide pellets according to claim 1, wherein the die is lowered and then the upper punch is raised, and then the molded body is taken out. 上記酸化亜鉛系酸化物ペレットの高さが60mm以上であることを特徴とする請求項1または2に記載の酸化亜鉛系酸化物ペレットの製造方法。   The height of the said zinc oxide type oxide pellet is 60 mm or more, The manufacturing method of the zinc oxide type oxide pellet of Claim 1 or 2 characterized by the above-mentioned.
JP2009252726A 2009-11-04 2009-11-04 Method for producing zinc oxide-based oxide pellets for vacuum deposition Expired - Fee Related JP5287669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252726A JP5287669B2 (en) 2009-11-04 2009-11-04 Method for producing zinc oxide-based oxide pellets for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252726A JP5287669B2 (en) 2009-11-04 2009-11-04 Method for producing zinc oxide-based oxide pellets for vacuum deposition

Publications (2)

Publication Number Publication Date
JP2011099131A true JP2011099131A (en) 2011-05-19
JP5287669B2 JP5287669B2 (en) 2013-09-11

Family

ID=44190542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252726A Expired - Fee Related JP5287669B2 (en) 2009-11-04 2009-11-04 Method for producing zinc oxide-based oxide pellets for vacuum deposition

Country Status (1)

Country Link
JP (1) JP5287669B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182732A (en) * 1992-12-21 1994-07-05 Tosoh Corp Manufacture of ceramic target
JPH11209175A (en) * 1998-01-23 1999-08-03 Tosoh Corp Vapor deposition material
JP2005290409A (en) * 2004-03-31 2005-10-20 Hitachi Metals Ltd Sputtering target material and its production method
JP2006022373A (en) * 2004-07-07 2006-01-26 Sumitomo Metal Mining Co Ltd Method for manufacturing sputtering target for preparing transparent conductive thin film
WO2007058318A1 (en) * 2005-11-21 2007-05-24 Idemitsu Kosan Co., Ltd. Fired material and process for producing the same
JP2009184877A (en) * 2008-02-06 2009-08-20 Sumitomo Metal Mining Co Ltd Zinc oxide-based sintered body tablet and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182732A (en) * 1992-12-21 1994-07-05 Tosoh Corp Manufacture of ceramic target
JPH11209175A (en) * 1998-01-23 1999-08-03 Tosoh Corp Vapor deposition material
JP2005290409A (en) * 2004-03-31 2005-10-20 Hitachi Metals Ltd Sputtering target material and its production method
JP2006022373A (en) * 2004-07-07 2006-01-26 Sumitomo Metal Mining Co Ltd Method for manufacturing sputtering target for preparing transparent conductive thin film
WO2007058318A1 (en) * 2005-11-21 2007-05-24 Idemitsu Kosan Co., Ltd. Fired material and process for producing the same
JP2009184877A (en) * 2008-02-06 2009-08-20 Sumitomo Metal Mining Co Ltd Zinc oxide-based sintered body tablet and its manufacturing method

Also Published As

Publication number Publication date
JP5287669B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR101956506B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
CN107419226B (en) Ceramic cylindrical sputtering target material and its manufacturing method
KR102045661B1 (en) Izo sintered compact sputtering target and method for producing same
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
JP5149262B2 (en) Indium oxide-zinc oxide sintered target and method for producing the same
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP2006022373A (en) Method for manufacturing sputtering target for preparing transparent conductive thin film
JP4508079B2 (en) Manufacturing method of sputtering target
JP2008260660A (en) Method for manufacturing high concentration tin oxide ito sintered article
JP2013001919A (en) In2O3-ZnO-BASED SPUTTERING TARGET AND OXIDE CONDUCTIVE FILM
JP5287669B2 (en) Method for producing zinc oxide-based oxide pellets for vacuum deposition
JP5263063B2 (en) Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6067028B2 (en) Method for producing zinc oxide based sputtering target
JP5772667B2 (en) Vapor deposition tablet and manufacturing method thereof
JP2010285321A (en) Method for manufacturing zinc oxide-based sintered compact for sputtering target
JP2005324987A (en) Ito molded product, ito sputtering target using the same and its manufacturing method
JP2002274956A (en) Method for manufacturing ceramic sintered compact
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP2014091635A (en) Production method of oxide sintered body
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
JP4483470B2 (en) Method for producing sputtering target containing indium oxide
JP2008255481A (en) Vapor deposition material
JP4665526B2 (en) Method for producing sputtering target containing indium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees