JP6067028B2 - Method for producing zinc oxide based sputtering target - Google Patents

Method for producing zinc oxide based sputtering target Download PDF

Info

Publication number
JP6067028B2
JP6067028B2 JP2014550057A JP2014550057A JP6067028B2 JP 6067028 B2 JP6067028 B2 JP 6067028B2 JP 2014550057 A JP2014550057 A JP 2014550057A JP 2014550057 A JP2014550057 A JP 2014550057A JP 6067028 B2 JP6067028 B2 JP 6067028B2
Authority
JP
Japan
Prior art keywords
alumina
zinc oxide
boehmite
sputtering target
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014550057A
Other languages
Japanese (ja)
Other versions
JPWO2014083909A1 (en
Inventor
吉川 潤
潤 吉川
浩一 近藤
浩一 近藤
公貴 菅野
公貴 菅野
克宏 今井
克宏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2014083909A1 publication Critical patent/JPWO2014083909A1/en
Application granted granted Critical
Publication of JP6067028B2 publication Critical patent/JP6067028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化亜鉛系スパッタリングターゲットの製造方法に関する。   The present invention relates to a method for producing a zinc oxide based sputtering target.

電子デバイス等に用いられる透明導電膜として、ITO(インジウム錫酸化物)等が長年にわたって広く用いられている。また、透明導電膜の作製はスパッタリングによって行われるのが工業的に主流である。   ITO (indium tin oxide) or the like has been widely used for many years as a transparent conductive film used for electronic devices and the like. Moreover, it is industrially mainstream that the production of the transparent conductive film is performed by sputtering.

しかしながら、近年のインジウム等のレアメタルの価格高騰といった背景もあり、ITOを代替する透明導電材料が強く望まれている。そのような透明導電材料の有望な候補として、高い透明性及び導電性を有する酸化亜鉛膜が注目されている。酸化亜鉛膜の導電率を向上させるためには、スパッタリング中のアーキングを抑制することが重要であり、そのためにはターゲットの密度及び導電率を向上させることが必要である。   However, in light of the recent increase in the price of rare metals such as indium, a transparent conductive material that substitutes for ITO is strongly desired. As a promising candidate for such a transparent conductive material, a zinc oxide film having high transparency and conductivity has attracted attention. In order to improve the electrical conductivity of the zinc oxide film, it is important to suppress arcing during sputtering. For this purpose, it is necessary to improve the density and electrical conductivity of the target.

特許文献1(特許第4661948号公報)には、ドーパント材料としてγ−アルミナを用いて酸化亜鉛系スパッタリングターゲットを製造する方法が開示されており、ホットプレス装置における加圧焼結を経て高い密度と低い比抵抗を有する酸化亜鉛系スパッタリングターゲットを得たことが報告されている。   Patent Document 1 (Patent No. 4661948) discloses a method for producing a zinc oxide-based sputtering target using γ-alumina as a dopant material, and has a high density through pressure sintering in a hot press apparatus. It has been reported that a zinc oxide-based sputtering target having a low specific resistance has been obtained.

特許第4661948号公報Japanese Patent No. 4661948

本発明者らは、今般、ドーパント材料として比表面積が大きいアルミナ及び/又はベーマイトを用い、かつ、所定温度以上で焼結を行うことにより、高密度かつ低抵抗の酸化亜鉛系スパッタリングターゲットを製造できるとの知見を得た。   The present inventors can manufacture a high-density and low-resistance zinc oxide-based sputtering target by using alumina and / or boehmite having a large specific surface area as a dopant material and sintering at a predetermined temperature or higher. And gained knowledge.

したがって、本発明の目的は、高密度かつ低抵抗の酸化亜鉛系スパッタリングターゲットを製造することにある。   Accordingly, an object of the present invention is to produce a high density and low resistance zinc oxide based sputtering target.

本発明の一態様によれば、酸化亜鉛粉末に、比表面積が40〜200m/gのアルミナ及び/又はベーマイトを含むドーパント材料を添加して混合粉末を得る工程と、
前記混合粉末を成形して成形体を得る工程と、
前記成形体を1300℃以上の温度で焼結させて酸化亜鉛系スパッタリングターゲットを得る工程と、
を含んでなる、酸化亜鉛系スパッタリングターゲットの製造方法が提供される。
According to one aspect of the present invention, a step of adding a dopant material containing alumina and / or boehmite having a specific surface area of 40 to 200 m 2 / g to zinc oxide powder to obtain a mixed powder;
Molding the mixed powder to obtain a molded body;
Sintering the molded body at a temperature of 1300 ° C. or higher to obtain a zinc oxide-based sputtering target;
The manufacturing method of the zinc oxide type | system | group sputtering target which comprises this is provided.

例1で用いたθ−アルミナのSEM写真である。2 is a SEM photograph of θ-alumina used in Example 1. 例2で用いたベーマイトのSEM写真である。2 is a SEM photograph of boehmite used in Example 2. 例3で用いたγ−アルミナのSEM写真である。4 is a SEM photograph of γ-alumina used in Example 3. 例11で用いたα−アルミナのSEM写真である。2 is a SEM photograph of α-alumina used in Example 11.

酸化亜鉛系スパッタリングターゲットの製造方法
本発明は、酸化亜鉛系スパッタリングターゲットの製造方法である。酸化亜鉛系スパッタリングターゲットは、酸化亜鉛結晶粒子を含んで構成される酸化亜鉛焼結体からなる。すなわち、酸化亜鉛焼結体は無数の酸化亜鉛結晶粒子が焼結により互いに結合されてなる固体である。酸化亜鉛結晶粒子は酸化亜鉛を含んで構成される粒子であり、他の元素として、Al等のドーパント及び不可避不純物を含みうる。そのような他の元素は六方晶ウルツ鉱型構造のZnサイトやOサイトに置換されていてもよいし、結晶構造を構成しない添加元素として含まれていてもよいし、あるいは粒界に存在するものであってもよい。また、酸化亜鉛焼結体も、酸化亜鉛結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくは酸化亜鉛結晶粒子及び不可避不純物からなる。
TECHNICAL FIELD The present invention zinc oxide-based sputtering target is the production method of the zinc oxide-based sputtering target. The zinc oxide-based sputtering target is composed of a zinc oxide sintered body that includes zinc oxide crystal particles. That is, the zinc oxide sintered body is a solid in which countless zinc oxide crystal particles are bonded to each other by sintering. Zinc oxide crystal particles are particles composed of zinc oxide, and may contain a dopant such as Al and inevitable impurities as other elements. Such other elements may be substituted with hexagonal wurtzite structure Zn sites or O sites, may be included as additive elements that do not constitute a crystal structure, or exist at grain boundaries. It may be a thing. The zinc oxide sintered body may also contain other phases or other elements as described above in addition to the zinc oxide crystal particles, but preferably comprises zinc oxide crystal particles and inevitable impurities.

本発明による方法においては、まず、酸化亜鉛粉末に、比表面積が40〜200m/gのアルミナ及び/又はベーマイトを含むドーパント材料を添加して混合粉末を成形して成形体を得る。アルミナ及び/又はベーマイトは、酸化亜鉛中にAlをドーパントとして導入するためのAl源である。そして、成形体を1300℃以上の温度で焼結させて酸化亜鉛系スパッタリングターゲットを得る。このように、比表面積が大きいアルミナ及び/又はベーマイトをドーパント材料として用い、かつ、所定温度以上で焼結を行うことにより、高密度かつ低抵抗の酸化亜鉛系スパッタリングターゲットが得られる。この手法で低抵抗が得られる理由は定かではないが、比表面積が大きく活性なAl源の使用と、高温(1300℃以上)での焼成との組み合わせにより、酸化亜鉛結晶粒子が粗大化し、酸素の偏析に起因して抵抗率が高くなりがちな粒界の数を低減できるためではないかと推察される。いずれにせよ、このような本発明により得られる高密度かつ低抵抗の酸化亜鉛系スパッタリングターゲットを用いてスパッタリングを行うことで、スパッタリング中のアーキングを抑制しながら、低抵抗なスパッタ膜を作製することが可能となる。In the method according to the present invention, first, a mixed material is formed by adding a dopant material containing alumina and / or boehmite having a specific surface area of 40 to 200 m 2 / g to zinc oxide powder to obtain a compact. Alumina and / or boehmite is an Al source for introducing Al as a dopant into zinc oxide. And a molded object is sintered at the temperature of 1300 degreeC or more, and a zinc oxide type | system | group sputtering target is obtained. Thus, by using alumina and / or boehmite with a large specific surface area as a dopant material and sintering at a predetermined temperature or higher, a high-density and low-resistance zinc oxide-based sputtering target can be obtained. The reason why low resistance can be obtained by this method is not clear, but the combination of the use of an active Al source with a large specific surface area and firing at a high temperature (1300 ° C. or higher) causes the zinc oxide crystal particles to become coarse and oxygen It is presumed that this is because the number of grain boundaries, which tend to be high in resistivity due to segregation, can be reduced. In any case, by performing sputtering using such a high-density and low-resistance zinc oxide-based sputtering target obtained by the present invention, a low-resistance sputtered film can be produced while suppressing arcing during sputtering. Is possible.

以下、本発明の方法の各工程について具体的に説明する。   Hereafter, each process of the method of this invention is demonstrated concretely.

(1)混合粉末の準備
酸化亜鉛粉末に所定のドーパント材料を添加して混合粉末を得る。酸化亜鉛粉末とドーパント材料の混合手法は特に限定されないが、ボールミル処理により行われるのが好ましい。好ましいボールミル処理は、エタノール等の溶媒を用いて行われる湿式ボールミル処理である。湿式ボールミル処理を経て得られるスラリーは、エバポレーター等による乾燥、及びメッシュの通過を経て、所望の粒度分布の混合粉末とされるのが好ましい。
(1) Preparation of mixed powder A predetermined dopant material is added to zinc oxide powder to obtain mixed powder. The mixing method of the zinc oxide powder and the dopant material is not particularly limited, but is preferably performed by ball milling. A preferred ball mill treatment is a wet ball mill treatment performed using a solvent such as ethanol. The slurry obtained through the wet ball mill treatment is preferably mixed powder having a desired particle size distribution through drying with an evaporator or the like and passing through a mesh.

酸化亜鉛粉末は商業的に入手可能な各種の酸化亜鉛粉末を使用することができ特に限定されないが、比表面積が1〜50m/gのものが好ましく、より好ましくは2〜40m/gであり、さらに好ましくは3〜30m/gである。Zinc oxide powder is can be not particularly limited the use of zinc oxide powders of commercially available various, specific surface area preferably has 1 to 50 m 2 / g, more preferably at 2~40m 2 / g Yes, more preferably 3 to 30 m 2 / g.

ドーパント材料は、比表面積が40〜200m/g、好ましくは50〜180m/g、更に好ましくは70〜150m/gのアルミナ及び/又はベーマイトを含んでなる。アルミナ及び/又はベーマイトは、θ−アルミナ、γ−アルミナ及びベーマイトからなる群から選択される少なくとも一種であるのが上記範囲内の比表面積を確保しやすい点で好ましく、より好ましくはθ−アルミナである。上記範囲内の比表面積を有するアルミナ及び/又はベーマイトは、典型的には、粒径100nm以下の微細粒子を主として含んでなり、例えばアルミナ及び/又はベーマイトの全粒子の90質量%以上が100nm以下の粒径を有する。アルミナ及び/又はベーマイトの添加量は、酸化亜鉛系スパッタリングターゲットとしての所望の特性が得られるかぎり特に限定されないが、混合粉末の合計量に対して0.1〜5質量%であるのが好ましく、より好ましくは1〜3質量%である。Dopant material has a specific surface area of 40 to 200 m 2 / g, made preferably 50~180m 2 / g, more preferably comprises alumina and / or boehmite 70~150m 2 / g. Alumina and / or boehmite is preferably at least one selected from the group consisting of θ-alumina, γ-alumina and boehmite from the viewpoint of ensuring a specific surface area within the above range, more preferably θ-alumina. is there. Alumina and / or boehmite having a specific surface area within the above range typically comprises mainly fine particles having a particle size of 100 nm or less. For example, 90% by mass or more of all particles of alumina and / or boehmite is 100 nm or less. Having a particle size of The amount of alumina and / or boehmite added is not particularly limited as long as the desired characteristics as a zinc oxide-based sputtering target are obtained, but is preferably 0.1 to 5% by mass with respect to the total amount of the mixed powder, More preferably, it is 1-3 mass%.

ドーパント材料は、上記アルミナ及びベーマイト以外に、酸化ガリウム、酸化インジウム、酸化スズ、酸化チタン等の他のドーパント成分を更に含むものであってもよく、その含有量は酸化亜鉛系スパッタリングターゲットとしての所望の特性が得られるかぎり特に限定されない。   The dopant material may further contain other dopant components such as gallium oxide, indium oxide, tin oxide, and titanium oxide in addition to the alumina and boehmite, and the content thereof is desired as a zinc oxide based sputtering target. As long as the above characteristics are obtained, there is no particular limitation.

(2)成形工程
混合粉末は成形されて成形体とされる。この成形工程はプレス成型を含むのが好ましく、より好ましくはプレス成型及びそれに続く静水圧プレスにより行われる。このようなプレスを伴うことで高密度かつ低抵抗の酸化亜鉛系スパッタリングターゲットを得やすくなる。静水圧プレスの圧力は0.5t/cm以上が好ましく、より好ましくは1〜10t/cmである。
(2) Molding step The mixed powder is molded into a molded body. This molding step preferably includes press molding, and more preferably is performed by press molding and subsequent isostatic pressing. By accompanying such a press, it becomes easy to obtain a high density and low resistance zinc oxide-based sputtering target. Pressure isostatic pressing is preferably 0.5 t / cm 2 or more, more preferably 1~10t / cm 2.

(3)焼結工程
成形体を1300℃以上の温度で焼結して酸化亜鉛系スパッタリングターゲットを得ることができる。この焼結工程は、成形体を1300℃以上の温度で2時間以上、望ましくは3〜10時間保持することにより行われるのが好ましい。好ましい焼結温度は1300℃よりも高く1500℃以下であり、より好ましくは1320℃以上1480℃以下、更に好ましくは1350℃以上1450℃以下である。室温から上記焼結温度(例えば1300℃)に到達させるまでの昇温速度は10〜500℃/hが好ましく、より好ましくは50〜300℃/hである。
(3) Sintering process A molded object can be sintered at the temperature of 1300 degreeC or more, and a zinc oxide type | system | group sputtering target can be obtained. This sintering step is preferably performed by holding the compact at a temperature of 1300 ° C. or higher for 2 hours or longer, desirably 3 to 10 hours. A preferable sintering temperature is higher than 1300 ° C. and 1500 ° C. or lower, more preferably 1320 ° C. or higher and 1480 ° C. or lower, and further preferably 1350 ° C. or higher and 1450 ° C. or lower. 10-500 degreeC / h is preferable and, as for the temperature increase rate until it makes it reach the said sintering temperature (for example, 1300 degreeC) from room temperature, More preferably, it is 50-300 degreeC / h.

本発明の焼結工程は、常圧で及び/又は加重をかけることなく行うことができるので、特許文献1で採用されるようなホットプレスによる加圧焼結を使用せずに、より簡便かつ量産に適した手法で焼結を行うことができる。特に、ホットプレスで焼結を行う場合には、黒鉛製の型が使用されるのが一般的なところ、1300℃以上の焼成温度では、黒鉛が形成する還元雰囲気によってZnOの揮発が激しくなりターゲットの緻密化が阻害されてしまう。この点、本発明の焼結工程ではこのような欠点を有するホットプレスを回避して、常圧で及び/又は加重をかけることなく行うことができる。このため、ターゲットの高密度化及び低抵抗化を効率的に実現することができる。また、ホットプレスによる加圧焼結はホットプレス型を用いて1個ずつ焼結するバッチ処理によって行われる必要があり生産性に劣る上、ホットプレス鋳型に依存して形状とサイズの制約が大きく、典型的には焼結体の形状は円板状に限定されがちである。これに対して、常圧で及び/又は加重をかけることなく行われる焼結工程によれば、所望の形状及びサイズの板状に焼結体を得ることができるので量産性に優れており、例えば大きなサイズの板状の焼結体を製造してスパッタリングターゲットとして汎用される矩形状の板に加工するのに適し、さらには円筒状等の特殊形状のスパッタリングターゲットを製造することも可能となる。   Since the sintering process of the present invention can be performed at normal pressure and / or without applying a load, it is simpler and easier without using pressure sintering by a hot press as employed in Patent Document 1. Sintering can be performed by a method suitable for mass production. In particular, when sintering is performed by hot pressing, a graphite mold is generally used. However, at a firing temperature of 1300 ° C. or higher, volatilization of ZnO becomes intense due to the reducing atmosphere formed by graphite. Densification is hindered. In this regard, the sintering process of the present invention can be performed at normal pressure and / or without applying a load, avoiding hot pressing having such disadvantages. For this reason, high density and low resistance of the target can be efficiently realized. In addition, pressure sintering by hot pressing must be performed by batch processing that uses a hot pressing mold to sinter one by one, resulting in poor productivity and large restrictions on the shape and size depending on the hot pressing mold. Typically, the shape of the sintered body tends to be limited to a disk shape. On the other hand, according to the sintering process performed at normal pressure and / or without applying a load, since a sintered body can be obtained in a plate shape having a desired shape and size, it is excellent in mass productivity. For example, it is suitable for manufacturing a large-sized plate-like sintered body and processing it into a rectangular plate widely used as a sputtering target, and it is also possible to manufacture a sputtering target having a special shape such as a cylindrical shape. .

本発明の好ましい態様によれば、焼結工程の前に、成形体を900〜1200℃の温度で2時間以上、望ましくは3〜10時間保持する予備焼成工程を行うことで、その後の1300℃以上の焼結工程と併せて2段階の焼成工程を行う構成としてもよい。これにより、ターゲットの密度を更に高くし、かつ、抵抗率を更に低減することができる。   According to a preferred embodiment of the present invention, prior to the sintering step, by performing a pre-baking step of holding the molded body at a temperature of 900 to 1200 ° C. for 2 hours or more, desirably 3 to 10 hours, the subsequent 1300 ° C. It is good also as a structure which performs a two-step baking process with the above sintering process. Thereby, the density of the target can be further increased and the resistivity can be further reduced.

焼結工程及び予備焼成工程は、窒素、アルゴン等の不活性ガス雰囲気下で行われるのが抵抗率を下げる上で好ましい。   The sintering step and the preliminary firing step are preferably performed in an atmosphere of an inert gas such as nitrogen or argon in order to reduce the resistivity.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1
Al源としてθ−アルミナ粉末(比表面積72.9m/g、住友化学製)を用意した。θ−アルミナ粉末のSEM写真を図1に示す。このθ−アルミナ粉末とZnO粉末(高純度化学研究所製、純度5N、比表面積3.9m/g)を、ZnOが98重量部及びθ−アルミナが2重量部の配合比率となるように秤量した。これらの粉末にボールミル処理を3時間施してスラリーを得た。このボールミル処理は、エタノールを溶媒とし、直径2mmのZrO製ボールを用いて行った。得られたスラリーをエバポレーターで乾燥し、#100のメッシュを通すことにより、ZnO及びθ−アルミナの混合粉末を得た。この混合粉末を金型を用いてプレス成型し、さらに2t/cmの圧力にて静水圧プレスを行って成形体を得た。この成型体を焼成炉中に配置し、N雰囲気にて、室温から1300℃まで200℃/hの昇温速度で昇温させた後、1300℃で5時間保持し、その後炉冷して焼結体を得た。得られた焼結体から3mm×4mm×40mmのサイズの試料を切り出し、アルキメデス法によって嵩密度を測定した。また、焼結体の抵抗率もAg線を電極とした四端子法により測定した。
Example 1
Θ-alumina powder (specific surface area 72.9 m 2 / g, manufactured by Sumitomo Chemical Co., Ltd.) was prepared as an Al source. An SEM photograph of the θ-alumina powder is shown in FIG. This θ-alumina powder and ZnO powder (manufactured by High-Purity Chemical Laboratory, purity 5N, specific surface area 3.9 m 2 / g) were mixed so that ZnO was 98 parts by weight and θ-alumina was 2 parts by weight. Weighed. These powders were ball milled for 3 hours to obtain a slurry. This ball mill treatment was performed using ZrO 2 balls having a diameter of 2 mm using ethanol as a solvent. The obtained slurry was dried with an evaporator and passed through a # 100 mesh to obtain a mixed powder of ZnO and θ-alumina. This mixed powder was press-molded using a mold and further subjected to isostatic pressing at a pressure of 2 t / cm 2 to obtain a molded body. The molded body was placed in a firing furnace, heated in a N 2 atmosphere from room temperature to 1300 ° C. at a rate of 200 ° C./h, held at 1300 ° C. for 5 hours, and then cooled in the furnace. A sintered body was obtained. A sample having a size of 3 mm × 4 mm × 40 mm was cut out from the obtained sintered body, and the bulk density was measured by Archimedes method. The resistivity of the sintered body was also measured by a four-terminal method using an Ag wire as an electrode.

例2
アルミナ原料としてベーマイト(AlOOH)(比表面積137.4m/g、Sasol製)をアルミナ換算量で2重量部(ベーマイトで2.34重量部)用いたこと以外は例1と同様にして、焼結体の作製及び評価を行った。ベーマイトのSEM写真を図2に、評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 2
In the same manner as in Example 1 except that boehmite (AlOOH) (specific surface area 137.4 m 2 / g, manufactured by Sasol) was used as an alumina raw material in an amount of 2 parts by weight (2.34 parts by weight of boehmite) in terms of alumina. Production and evaluation of the ligature were performed. An SEM photograph of boehmite is shown in FIG. The resistivity was calculated as a relative value to the value obtained in Example 1.

例3
アルミナ原料としてγ−アルミナ(比表面積148.1m/g、住友化学製)を用いたこと以外は例1と同様にして、焼結体の作製及び評価を行った。γ−アルミナのSEM写真を図3に、評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 3
A sintered body was prepared and evaluated in the same manner as in Example 1 except that γ-alumina (specific surface area 148.1 m 2 / g, manufactured by Sumitomo Chemical Co., Ltd.) was used as the alumina raw material. FIG. 3 shows an SEM photograph of γ-alumina, and Table 1 shows the evaluation results. The resistivity was calculated as a relative value to the value obtained in Example 1.

例4
焼成時に1400℃まで昇温させて、1400℃で5時間保持したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 4
A sintered body was produced and evaluated in the same manner as in Example 1 except that the temperature was raised to 1400 ° C. during firing and the temperature was maintained at 1400 ° C. for 5 hours. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例5
アルミナ原料としてベーマイト(AlOOH)(比表面積137.4m/g、Sasol製)をアルミナ換算量で2重量部(ベーマイトで2.34重量部)用いたこと、及び焼成時に1400℃まで昇温させて、1400℃で5時間保持したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 5
Boehmite (AlOOH) (specific surface area 137.4 m 2 / g, manufactured by Sasol) was used as an alumina raw material by 2 parts by weight (2.34 parts by weight boehmite) in terms of alumina, and the temperature was raised to 1400 ° C. during firing. A sintered body was prepared and evaluated in the same manner as in Example 1 except that the temperature was maintained at 1400 ° C. for 5 hours. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例6
アルミナ原料としてγ−アルミナ(比表面積148.1m/g、住友化学製)を用いたこと、及び焼成時に1400℃まで昇温させて、1400℃で5時間保持したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 6
Same as Example 1 except that γ-alumina (specific surface area 148.1 m 2 / g, manufactured by Sumitomo Chemical Co., Ltd.) was used as the alumina raw material, and the temperature was raised to 1400 ° C. during firing and held at 1400 ° C. for 5 hours. Thus, the sintered body was produced and evaluated. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例7
昇温時に900℃で5時間保持して予備加熱を行った後、1400℃まで昇温して1400℃で5時間常圧焼成したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 7
Preparation and sintering of the sintered body were performed in the same manner as in Example 1 except that preheating was performed by holding at 900 ° C. for 5 hours at the time of temperature rise, and then heated to 1400 ° C. and fired at 1400 ° C. for 5 hours at normal pressure. Evaluation was performed. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例8
アルミナ原料としてベーマイト(AlOOH)(比表面積137.4m/g、Sasol製)をアルミナ換算量で2重量部(ベーマイトで2.34重量部)用いたこと、及び昇温時に900℃で5時間途中保持して予備加熱を行った後、1400℃まで昇温して1400℃で5時間常圧焼成したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 8
Boehmite (AlOOH) (specific surface area 137.4 m 2 / g, manufactured by Sasol) was used as an alumina raw material in an amount in terms of alumina of 2 parts by weight (2.34 parts by weight of boehmite) and at 900 ° C. for 5 hours when the temperature was raised. The sintered body was produced and evaluated in the same manner as in Example 1 except that the preheating was carried out while maintaining the temperature, and the temperature was raised to 1400 ° C. and firing was performed at 1400 ° C. for 5 hours under normal pressure. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例9
アルミナ原料としてγ−アルミナ(比表面積148.1m/g、住友化学製)を用いたこと、及び昇温時に900℃で5時間途中保持して予備加熱を行った後、1400℃まで昇温して1400℃で5時間常圧焼成したこと以外は例1と同様にして、焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 9
Γ-alumina (specific surface area 148.1 m 2 / g, manufactured by Sumitomo Chemical Co., Ltd.) was used as an alumina raw material, and preheating was performed while maintaining the temperature at 900 ° C. for 5 hours during the temperature increase, and then the temperature was increased to 1400 ° C. Then, a sintered body was prepared and evaluated in the same manner as in Example 1 except that firing was performed at 1400 ° C. for 5 hours under normal pressure. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例10
昇温時に、1100℃で5時間保持して予備焼成を行った後、1400℃まで昇温して1400℃で5時間常圧焼成したこと以外は、例1と同様にして焼結体の作製及び評価を行った。評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 10
Preparation of sintered body in the same manner as in Example 1 except that preliminary firing was performed by holding at 1100 ° C. for 5 hours at the time of raising the temperature, then raising the temperature to 1400 ° C. and firing at normal pressure at 1400 ° C. for 5 hours. And evaluated. The evaluation results are shown in Table 1. The resistivity was calculated as a relative value to the value obtained in Example 1.

例11(比較)
アルミナ原料としてα−アルミナ(比表面積12.6m/g、大明化学工業製)を用いたこと以外は例1と同様にして、焼結体の作製及び評価を行った。α−アルミナのSEM写真を図4に、評価結果を表1に示す。抵抗率は例1で得られた値との相対値として算出した。
Example 11 (Comparison)
A sintered body was prepared and evaluated in the same manner as in Example 1 except that α-alumina (specific surface area 12.6 m 2 / g, manufactured by Daimei Chemical Industries) was used as the alumina raw material. FIG. 4 shows the SEM photograph of α-alumina, and Table 1 shows the evaluation results. The resistivity was calculated as a relative value to the value obtained in Example 1.

表1に示されるように、比表面積が大きいアルミナ又はベーマイトをドーパント材料として用いた例1〜10においては、1300℃以上の高温で焼結を行った場合に、比表面積が小さいアルミナを用いた例11と比較して、高密度かつ低抵抗率のターゲットが得られた。   As shown in Table 1, in Examples 1 to 10 using alumina or boehmite having a large specific surface area as a dopant material, alumina having a small specific surface area was used when sintering was performed at a high temperature of 1300 ° C. or higher. Compared to Example 11, a high density and low resistivity target was obtained.

Claims (9)

酸化亜鉛粉末に、比表面積が40〜200m/gのアルミナ及び/又はベーマイトを含むドーパント材料を添加して混合粉末を得る工程と、
前記混合粉末を成形して成形体を得る工程と、
前記成形体を1300℃以上の温度で焼結させて酸化亜鉛系スパッタリングターゲットを得る工程と、を含んでなり、
前記焼結工程が、前記成形体を1300℃以上の温度で2時間以上保持することを含む、酸化亜鉛系スパッタリングターゲットの製造方法。
A step of adding a dopant material containing alumina and / or boehmite having a specific surface area of 40 to 200 m 2 / g to zinc oxide powder to obtain a mixed powder;
Molding the mixed powder to obtain a molded body;
Ri Na comprise the steps of obtaining a zinc oxide-based sputtering target by sintering the green body at 1300 ° C. or higher,
The method for producing a zinc oxide-based sputtering target , wherein the sintering step includes holding the compact at a temperature of 1300 ° C. or more for 2 hours or more .
前記アルミナ及び/又はベーマイトが、θ−アルミナ、γ−アルミナ及びベーマイトからなる群から選択される少なくとも一種である、請求項1に記載の方法。   The method according to claim 1, wherein the alumina and / or boehmite is at least one selected from the group consisting of θ-alumina, γ-alumina and boehmite. 前記成形工程が、プレス成型を含む、請求項1又は2に記載の方法。   The method according to claim 1, wherein the molding step includes press molding. 前記成形工程が、プレス成型及びそれに続く静水圧プレスにより行われる、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the molding step is performed by press molding and subsequent isostatic pressing. 前記焼結工程が、常圧で及び/又は加重をかけることなく行われる、請求項1〜4のいずれか一項に記載の方法。   The method according to claim 1, wherein the sintering step is performed at normal pressure and / or without applying a load. 前記焼結工程の前に、前記成形体を900〜1200℃の温度で2時間以上保持する予備焼成工程をさらに含む、請求項1〜5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5 , further comprising a pre-baking step of holding the compact at a temperature of 900 to 1200 ° C for 2 hours or more before the sintering step. 前記焼結工程、又は前記予備焼成及び前記焼結工程が、不活性ガス雰囲気下で行われる、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6 , wherein the sintering step, or the preliminary firing and the sintering step are performed in an inert gas atmosphere. 前記アルミナ及び/又はベーマイトの添加量が、前記混合粉末の合計量に対して1〜3質量%である、請求項1〜のいずれか一項に記載の方法。 The amount of the alumina and / or boehmite, 1 to 3% by weight relative to the total amount of the mixed powder, method according to any one of claims 1-7. アルミナ及び/又はベーマイトが、粒径100nm以下の微細粒子を主として含んでなる、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8 , wherein the alumina and / or boehmite mainly comprises fine particles having a particle size of 100 nm or less.
JP2014550057A 2012-11-30 2013-09-06 Method for producing zinc oxide based sputtering target Active JP6067028B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012263149 2012-11-30
JP2012263149 2012-11-30
PCT/JP2013/074106 WO2014083909A1 (en) 2012-11-30 2013-09-06 Method for manufacturing zinc oxide-based sputtering target

Publications (2)

Publication Number Publication Date
JPWO2014083909A1 JPWO2014083909A1 (en) 2017-01-05
JP6067028B2 true JP6067028B2 (en) 2017-01-25

Family

ID=50827559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014550057A Active JP6067028B2 (en) 2012-11-30 2013-09-06 Method for producing zinc oxide based sputtering target

Country Status (2)

Country Link
JP (1) JP6067028B2 (en)
WO (1) WO2014083909A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068535A1 (en) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 Sputtering target and method for producing same
CN104987060B (en) * 2015-06-18 2017-06-23 桂林电子科技大学 Zinc oxide with back bone network structure is deposited with the preparation method of target

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797712B2 (en) * 2006-03-08 2011-10-19 東ソー株式会社 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
JP5376117B2 (en) * 2007-10-30 2013-12-25 三菱マテリアル株式会社 ZnO sputtering target and manufacturing method thereof
JP5682112B2 (en) * 2007-12-19 2015-03-11 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, and electrode formed using this sputtering target

Also Published As

Publication number Publication date
JPWO2014083909A1 (en) 2017-01-05
WO2014083909A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5349587B2 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film
CN107614741B (en) IZO sintered sputtering target and method for producing same
JP2016056065A (en) Oxide sintered compact, sputtering target, thin film and method for producing oxide sintered compact
JP2010047829A (en) Sputtering target and manufacturing method thereof
TWI580663B (en) Zinc oxide-based sintered body and method for manufacturing the same, and sputtering target and transparent conductive film
JP6067028B2 (en) Method for producing zinc oxide based sputtering target
TWI669283B (en) Oxide sintered body and sputtering target material and their manufacturing method
WO2014024986A1 (en) Composite oxide sintered body and transparent conductive oxide film
JP6267297B1 (en) Sintered body, sputtering target and manufacturing method thereof
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
TWI640493B (en) Oxide sintered body, sputtering target and manufacturing method thereof
JPWO2019031105A1 (en) Oxide sintered body and sputtering target
JP2011111642A (en) ZnO TARGET AND METHOD FOR MANUFACTURING THE SAME
JP5081960B2 (en) Oxide sintered body and oxide semiconductor thin film
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
JP6146773B2 (en) Oxide sintered body and manufacturing method thereof
JP6722736B2 (en) Sintered body and sputtering target
JP2009102698A (en) Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
TWI619818B (en) Sputtering target and method for producing the same
JP2017014535A (en) Sputtering target and production method thereof
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JP2023124649A (en) Sputtering target member and method for producing sputtering target member
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
JP6356290B2 (en) Oxide sintered body and manufacturing method thereof
JP5287669B2 (en) Method for producing zinc oxide-based oxide pellets for vacuum deposition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6067028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150