JP2011095718A - Proximity exposure apparatus and proximity exposure method of the same - Google Patents

Proximity exposure apparatus and proximity exposure method of the same Download PDF

Info

Publication number
JP2011095718A
JP2011095718A JP2010166007A JP2010166007A JP2011095718A JP 2011095718 A JP2011095718 A JP 2011095718A JP 2010166007 A JP2010166007 A JP 2010166007A JP 2010166007 A JP2010166007 A JP 2010166007A JP 2011095718 A JP2011095718 A JP 2011095718A
Authority
JP
Japan
Prior art keywords
exposure
illuminance
light
light source
proximity exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010166007A
Other languages
Japanese (ja)
Inventor
Yudai Hoshi
雄大 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010166007A priority Critical patent/JP2011095718A/en
Publication of JP2011095718A publication Critical patent/JP2011095718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proximity exposure apparatus and a proximity exposure method in which a light source prior to exposure is stabilized, thereby, preventing exposure unevenness and achieving exposure with high accuracy in an exposure apparatus and an exposure method. <P>SOLUTION: The exposure apparatus includes a light source control unit 15a, which has a correcting function 15b correcting a power in such a manner that when a prescribed voltage is applied to a light source 6 in an irradiation unit 14 while a light-shielding plate 8 is closed, an illuminance detected by an illuminometer 50 reaches a target illuminance. Thereby, exposure unevenness is eliminated and exposure with high accuracy can be achieved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、近接露光装置及びその近接露光方法に関し、より詳細には、複数の光源にて基板を露光する際に、その露光むらを防止する近接露光装置及びその近接露光方法に関する。   The present invention relates to a proximity exposure apparatus and a proximity exposure method thereof, and more particularly to a proximity exposure apparatus and a proximity exposure method thereof that prevent uneven exposure when a substrate is exposed with a plurality of light sources.

近接露光は、表面に感光剤を塗布した透光性の基板(被露光材)を基板ステージ上に保持すると共に、基板をマスクステージのマスク保持枠に保持されたマスクに接近させ、両者の所定のギャップを例えば、数10μm〜数100μmにした状態で両者を静止させ、次いで、マスクの基板から離間する側から照明光学系によって露光用の光をマスクに向けて照射することにより、基板上にマスクに描かれた露光パターンを転写するようにしている。   In the proximity exposure, a translucent substrate (material to be exposed) coated with a photosensitive agent on the surface is held on the substrate stage, and the substrate is brought close to the mask held on the mask holding frame of the mask stage, so that both of them are predetermined. For example, the gap is set to several tens of μm to several hundreds of μm, and both are made to stand still, and then the exposure light is irradiated to the mask by the illumination optical system from the side away from the substrate of the mask. The exposure pattern drawn on the mask is transferred.

このような露光装置に使用される照明光学系では、光源として一般に高圧水銀ランプが使用されている。そして、基板を露光する際に高圧水銀ランプの前方に配設されたシャッターを開閉することにより基板に照射されるパターン露光用の積算露光量(光の照度と照射時間との積)が制御されている。
ここで、高圧水銀ランプの照度は、点灯時間に比例して次第に低下する特性を有しているので、積算露光量を一定に維持するためには高圧水銀ランプの点灯時間に伴って露光時間を長くする必要がある。
In an illumination optical system used for such an exposure apparatus, a high-pressure mercury lamp is generally used as a light source. When the substrate is exposed, an integrated exposure amount (product of light illuminance and irradiation time) irradiated to the substrate is controlled by opening and closing a shutter disposed in front of the high-pressure mercury lamp. ing.
Here, since the illuminance of the high-pressure mercury lamp has a characteristic that it gradually decreases in proportion to the lighting time, in order to keep the integrated exposure amount constant, the exposure time is set along with the lighting time of the high-pressure mercury lamp. It needs to be long.

例えば、特許文献1に記載の露光装置では、照度センサによって高圧水銀ランプにより発光される光の照度を計測し、照度の低下分に対して供給電圧を調整してマスクに対する照度を常に所定値に保持している。 For example, in the exposure apparatus described in Patent Document 1, the illuminance of light emitted from a high-pressure mercury lamp is measured by an illuminance sensor, and the supply voltage is adjusted with respect to the decrease in illuminance, so that the illuminance on the mask is always set to a predetermined value. keeping.

また、特許文献2に記載の露光装置では、一定速度で搬送される基板に対して搬送方向と交差する方向に沿って近接配置された複数の露光用光を用いて露光を行う近接スキャン露光装置が知られている。   Further, in the exposure apparatus described in Patent Document 2, a proximity scan exposure apparatus that performs exposure using a plurality of exposure light beams arranged close to each other along a direction intersecting the transport direction with respect to a substrate transported at a constant speed. It has been known.

特開平9−246352号公報JP-A-9-246352 特開2006−292955号公報JP 2006-292955 A

ところで、特許文献2に記載された近接スキャン露光装置では、常に一定速度で搬送される基板に対して複数の露光用光を用いて露光を行うものであるため、露光開始時から常に各露光用光間の照度が一定となるように制御する必要が有る。この為、各露光用光源に特許文献1に記載の露光装置のように、照度センサによって計測された照度に応じて高圧水銀ランプの供給電圧を制御することも考えられ、こうすることで露光開始時の光源間の照度のバラツキがある程度緩和される。
しかしながら、高圧水銀ランプは立ち上がり時に照度が安定しにくい特性がある為、高圧水銀ランプの供給電圧を制御するだけでは光源間の照度のバラツキを押さえることは難しい。この対策として、露光開始前に予め高圧水銀ランプを点灯しておくことも考えられるが、このようにした場合には、その直下にある基板が露光してしまい、積算露光時間が長くなり、結果として、露光むらの原因となる。また、基板を高圧水銀ランプの直下に配置しておかないことも考えられるが、そうした場合には、高圧水銀ランプが安定した時に直ぐに露光開始できずに、タクトが長くなる原因となる。
By the way, in the proximity scanning exposure apparatus described in Patent Document 2, since exposure is performed using a plurality of exposure lights on a substrate that is always transported at a constant speed, each exposure is always performed from the start of exposure. It is necessary to control so that the illuminance between lights is constant. For this reason, it is also conceivable to control the supply voltage of the high-pressure mercury lamp according to the illuminance measured by the illuminance sensor as in the exposure apparatus described in Patent Document 1 for each exposure light source. The variation in illuminance between the light sources is alleviated to some extent.
However, since the high-pressure mercury lamp has a characteristic that the illuminance is difficult to stabilize at the start-up, it is difficult to suppress the illuminance variation between the light sources only by controlling the supply voltage of the high-pressure mercury lamp. As a countermeasure, it may be possible to turn on the high-pressure mercury lamp in advance before the start of exposure. However, if this is done, the substrate directly underneath will be exposed, resulting in a longer cumulative exposure time. Cause uneven exposure. Although it is conceivable that the substrate is not arranged directly under the high-pressure mercury lamp, in such a case, when the high-pressure mercury lamp is stabilized, the exposure cannot be started immediately, and the tact becomes long.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、露光直前の光源を安定させることにより、露光むらを無くし、高精度に露光を行うことができる近接露光装置及びその近接露光方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a proximity exposure apparatus capable of eliminating exposure unevenness and performing exposure with high accuracy by stabilizing a light source immediately before exposure, and its proximity. It is to provide an exposure method.

本発明の上記目的は、下記の構成により達成される。
(1) 所定方向に搬送される基板に対して前記所定方向と交差する方向に沿って近接配置される複数のマスクを介して露光用光を照射し、前記基板に前記複数のマスクのパターンを露光する近接露光装置であって、前記複数のマスクの上部にそれぞれ配置され、前記露光用光を照射する複数の照射部と、前記照射部に設けられてその光の照度を検出する照度計と、前記照射部の電力を前記照度計からの照度信号に応じて制御する光源制御部と、前記照射部から照射される照射光路を開閉制御する遮光板と、を備え、前記光源制御部は、前記遮光板を閉じた状態で、前記照射部の光源に所定の電圧を印加した際に前記照度計によって検出される照度が目標照度になるように補正する補正機能を有することを特徴とする近接露光装置。
(2)(1)に記載の近接露光装置を用いた近接露光方法であって、前記遮光板を閉じた状態で、前記照射部の光源に所定の電圧を印加した際に前記照度計によって検出される照度が目標照度になるように補正する工程を備えることを特徴とする近接露光方法。
(3)(1)または(2)に記載された近接露光装置または近接露光方法であって、前記目標照度の目標電力になるように、前記光源の消費電力を目標電力に補正することができることを特徴とする近接露光装置または近接露光方法。
The above object of the present invention can be achieved by the following constitution.
(1) Irradiating exposure light to a substrate conveyed in a predetermined direction through a plurality of masks arranged close to each other along a direction intersecting the predetermined direction, and patterning the plurality of masks on the substrate A proximity exposure apparatus that performs exposure, the plurality of irradiation units that are respectively disposed above the plurality of masks and that irradiates the exposure light, and an illuminance meter that is provided in the irradiation unit and detects the illuminance of the light. A light source control unit that controls the power of the irradiation unit according to an illuminance signal from the illuminance meter, and a light shielding plate that controls opening and closing of an irradiation optical path irradiated from the irradiation unit, the light source control unit, Proximity characterized by having a correction function for correcting the illuminance detected by the illuminance meter to a target illuminance when a predetermined voltage is applied to the light source of the irradiating unit with the light shielding plate closed. Exposure device.
(2) A proximity exposure method using the proximity exposure apparatus according to (1), which is detected by the illuminometer when a predetermined voltage is applied to the light source of the irradiation unit with the light shielding plate closed. A proximity exposure method comprising a step of correcting the illuminance to be a target illuminance.
(3) The proximity exposure apparatus or the proximity exposure method described in (1) or (2), wherein the power consumption of the light source can be corrected to the target power so as to be the target power of the target illuminance. A proximity exposure apparatus or a proximity exposure method characterized by the above.

本発明の近接露光装置及びその近接露光方法によれば、近接露光装置の動作開始時に露光用光を照射し、目標照度となる迄電力制御することで、露光直前の照度を安定させることができ、露光むらを無くし、高精度に露光を行うことができる。また、遮光板を閉じた状態で露光用光を照射するため、光源直下に基板を配置した状態とすることができるため、遮光板を開けば直に露光をスタートできるため、タクトが長くなることがなくなる。 According to the proximity exposure apparatus and the proximity exposure method of the present invention, it is possible to stabilize the illuminance immediately before exposure by irradiating the exposure light at the start of the operation of the proximity exposure apparatus and controlling the power until the target illuminance is reached. The exposure unevenness can be eliminated and the exposure can be performed with high accuracy. In addition, since the exposure light is irradiated with the light shielding plate closed, the substrate can be placed directly under the light source, so that exposure can be started directly by opening the light shielding plate, resulting in a longer tact. Disappears.

本発明の実施形態である近接露光装置の平面図である。It is a top view of the proximity exposure apparatus which is embodiment of this invention. 図1における近接露光装置の正面図である。It is a front view of the proximity exposure apparatus in FIG. 本発明に係る近接露光装置の光源制御部及び照射部の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control part and irradiation part of the proximity exposure apparatus which concerns on this invention. 本発明に係る近接露光装置の近接露光方法を説明するためのフローチャートである。It is a flowchart for demonstrating the proximity exposure method of the proximity exposure apparatus which concerns on this invention.

以下、本発明に係る近接露光装置及び露光方法の実施形態を図面に基づいて詳細に説明する。   Embodiments of a proximity exposure apparatus and an exposure method according to the present invention will be described below in detail with reference to the drawings.

先ず、本実施形態の近接露光装置1の構成について概略説明する。図1及び図2に示すように、本実施形態の近接露光装置1は、基板Wを浮上させて支持すると共に、所定方向(図1のX方向)に搬送する基板搬送機能10と、複数のマスクMをそれぞれ保持し、所定方向と交差する方向(図1のY方向)に沿って千鳥状に二列配置された複数(図1に示す実施形態において、左右それぞれ6個)のマスク保持部11と、マスク保持部11を駆動するマスク駆動部12と、複数のマスク保持部11の上部にそれぞれ配置されて露光用光を照射する複数の照射部14と、近接露光装置1の各作動部分の動きを制御する制御部
15と、を主に備える。
First, an outline of the configuration of the proximity exposure apparatus 1 of the present embodiment will be described. As shown in FIGS. 1 and 2, the proximity exposure apparatus 1 of the present embodiment floats and supports the substrate W, and transports the substrate W in a predetermined direction (X direction in FIG. 1), and a plurality of A plurality of mask holding portions (six on the left and right sides in the embodiment shown in FIG. 1) that hold the masks M and are arranged in two rows in a staggered manner along a direction (Y direction in FIG. 1) that intersects a predetermined direction. 11, a mask driving unit 12 that drives the mask holding unit 11, a plurality of irradiation units 14 that are respectively disposed on top of the plurality of mask holding units 11 and irradiate exposure light, and each operating part of the proximity exposure apparatus 1 And a control unit 15 for controlling the movement of the camera.

基板搬送機能10は、基板WをX方向に搬送する領域、即ち、複数のマスク保持部11の下方領域、及びその下方領域からX方向両側に亘る領域に設けられた浮上ユニット16と、基板WのY方向一側(図1において上辺)を保持してX方向に搬送する基板駆動ユニット17とを備える。浮上ユニット16は、複数のフレーム19上にそれぞれ設けられた複数の排気エアパッド20及び吸排気エアパッド21を備え、ポンプ(図示せず)やソレノイドバルブ(図示せず)を介して排気エアパッド20や吸排気エアパッド21からエアを排気或いは、吸排気する。基板駆動ユニット17は、図1に示すように、浮上ユニット16によって浮上、支持された基板Wの一端を保持する吸着パッド22を備え、モータ23、ボールねじ24、及びナット(図示せず)からなるボールねじ機能25によって、ガイドレール26に沿って基板WをX方向に搬送する。なお、図2に示すように、複数のフレーム19は、地面にレベルブロック18を介して設置された装置ベース27上に他のレベルブロック28を介して配置されている。また、基板Wは、ボールねじ機能25の代わりに、リニアサーボアクチュエータによって搬送されてもよい。   The substrate transport function 10 includes a floating unit 16 provided in a region for transporting the substrate W in the X direction, that is, a region below the plurality of mask holding units 11 and a region extending from the bottom region to both sides in the X direction. And a substrate driving unit 17 that holds the one side in the Y direction (the upper side in FIG. 1) and conveys it in the X direction. The levitation unit 16 includes a plurality of exhaust air pads 20 and intake / exhaust air pads 21 respectively provided on a plurality of frames 19, and the exhaust air pads 20 and the intake / exhaust air pads 21 are provided via pumps (not shown) and solenoid valves (not shown). Air is exhausted or sucked and exhausted from the exhaust air pad 21. As shown in FIG. 1, the substrate driving unit 17 includes a suction pad 22 that holds one end of the substrate W that is levitated and supported by the levitating unit 16, and includes a motor 23, a ball screw 24, and a nut (not shown). The substrate W is transported in the X direction along the guide rail 26 by the ball screw function 25. As shown in FIG. 2, the plurality of frames 19 are arranged via another level block 28 on the apparatus base 27 installed on the ground via the level block 18. Further, the substrate W may be transported by a linear servo actuator instead of the ball screw function 25.

マスク駆動部12は、フレーム(図示せず)に取り付けられ、マスク保持部11をX方向に沿って駆動するX方向駆動部31と、X方向駆動部31の先端に取り付けられ、マスク保持部11をY方向に沿って駆動するY方向駆動部32と、Y方向駆動部32の先端に取り付けられ、マスク保持部11をθ方向(X,Y方向からなる水平面の法線回り)に回転駆動するθ方向駆動部33と、θ方向駆動部33の先端に取り付けられ、マスク保持部11をZ方向(X,Y方向からなる水平面の鉛直方向)に駆動するZ方向駆動部34と、を有する。これにより、Z方向駆動部34の先端に取り付けられたマスク保持部11は、マスク駆動部12によってX,Y,Z,θ方向に駆動可能である。なお、X,Y,θ,Z方向駆動部31,32,33,34の配置の順序は、適宜変更可能である。   The mask drive unit 12 is attached to a frame (not shown), and is attached to the X direction drive unit 31 that drives the mask holding unit 11 along the X direction, and the tip of the X direction drive unit 31. Is attached to the tip of the Y direction drive unit 32, and the mask holding unit 11 is rotationally driven in the θ direction (around the horizontal plane of the X and Y directions). A θ-direction drive unit 33 and a Z-direction drive unit 34 that is attached to the tip of the θ-direction drive unit 33 and drives the mask holding unit 11 in the Z direction (vertical direction of the horizontal plane composed of the X and Y directions). Accordingly, the mask holding unit 11 attached to the tip of the Z direction driving unit 34 can be driven in the X, Y, Z, and θ directions by the mask driving unit 12. Note that the order of arrangement of the X, Y, θ, and Z direction drive units 31, 32, 33, and 34 can be changed as appropriate.

また、図1に示すように、千鳥状に二列配置された搬入側及び搬出側マスク保持部11a,11b間には、各マスク保持部11a,11bのマスクMを同時に交換可能なマスクチェンジャ2が配設されている。マスクチェンジャ2により搬送される使用済み或いは未使用のマスクMは、マスクストッカ3,4との間でローダー5により受け渡しが行われる。なお、マスクストッカ3,4とマスクチェンジャ2とで受け渡しが行われる間にマスクプリアライメント機能(図示せず)によってマスクMのプリアライメントが行われる。   Further, as shown in FIG. 1, a mask changer 2 in which the masks M of the mask holding portions 11a and 11b can be simultaneously exchanged between the carry-in side and carry-out side mask holding portions 11a and 11b arranged in two rows in a staggered manner. Is arranged. The used or unused mask M transported by the mask changer 2 is transferred to and from the mask stockers 3 and 4 by the loader 5. The mask M is pre-aligned by a mask pre-alignment function (not shown) during the transfer between the mask stockers 3 and 4 and the mask changer 2.

図2に示すように、各マスク保持部11の上部に配置される複数の照射部14は、図3に示すように光源6から照射された光を集光する凹面鏡6aと、光路の向きを変える平面ミラー6bと、照射光路を開閉制御する遮光板8と、遮光板8の下流側に配置され、光源6からの光をマスクMに向けて平行光として照射するコリメーションミラー9cと光源6とコリメーションミラー9cとの間にそれぞれ選択的に配置されるように設けられた複数のオプチカルインテグレータ9a及びフィルタ9bと、を備える。光源6としては、紫外線を含んだ露光用光ELを照射する、例えば超高圧水銀ランプ、キセノンランプ又は紫外線発光レーザが使用される。
また、前記ミラー6bの露光用光ELが照射されない面側には照度計50が設けられており、ミラー6bの略中央部に設けられピンホールより漏れる光で照度の計測が行われる。
As shown in FIG. 2, the plurality of irradiation units 14 arranged on the top of each mask holding unit 11 includes a concave mirror 6 a that collects the light emitted from the light source 6 and the direction of the optical path as shown in FIG. 3. A plane mirror 6b to be changed, a light shielding plate 8 that controls the opening and closing of the irradiation light path, a collimation mirror 9c that is arranged downstream of the light shielding plate 8 and emits light from the light source 6 toward the mask M as parallel light, and a light source 6. A plurality of optical integrators 9a and filters 9b provided to be selectively disposed between the collimation mirror 9c. As the light source 6, for example, an ultrahigh pressure mercury lamp, a xenon lamp, or an ultraviolet light emitting laser that irradiates exposure light EL including ultraviolet light is used.
Also, an illuminance meter 50 is provided on the surface side of the mirror 6b where the exposure light EL is not irradiated, and the illuminance is measured by light leaking from a pinhole provided at a substantially central portion of the mirror 6b.

このような近接露光装置1は、浮上ユニット16の排気エアパッド20及び吸排気エアパッド21の空気流によって基板Wを浮上させて保持し、基板Wの一端を基板駆動ユニット17で吸着してX方向に搬送する。そして、マスク保持部11の下方に位置する基板Wに対して、照射部14からの露光用光ELがマスクMを介して照射され、マスクMのパターンを感光剤が塗布された基板Wに転写する。   Such a proximity exposure apparatus 1 levitates and holds the substrate W by the air flow of the exhaust air pad 20 and the intake / exhaust air pad 21 of the levitation unit 16, and adsorbs one end of the substrate W by the substrate drive unit 17 in the X direction. Transport. Then, the exposure light EL from the irradiation unit 14 is irradiated to the substrate W positioned below the mask holding unit 11 through the mask M, and the pattern of the mask M is transferred to the substrate W coated with the photosensitive agent. To do.

図3に示すように、制御部15には、各照射部14の光源6の照度を一定に保つようにその電力を制御する光源制御部15aが設けられている。この光源制御部15aは各照度計50から出力される照度信号に応じて光源6の電力、主には電圧を制御することによりその照度を一定に保つ。
より詳細には、光源制御部15aには、補正機能15bが設けられている。この補正機能15bは前記各照度計50からの照度信号と予め設定された基準照度との比較を行い、その値が異なる場合には目標照度となるように露光電力を算出し、電力指令を光源6に対して出力する。
As shown in FIG. 3, the control unit 15 is provided with a light source control unit 15 a that controls the power so that the illuminance of the light source 6 of each irradiation unit 14 is kept constant. The light source controller 15a keeps the illuminance constant by controlling the power, mainly voltage, of the light source 6 in accordance with the illuminance signal output from each illuminometer 50.
More specifically, the light source control unit 15a is provided with a correction function 15b. The correction function 15b compares the illuminance signal from each of the illuminance meters 50 with a preset reference illuminance. If the value is different, the exposure power is calculated so that the target illuminance is obtained, and the power command is set as the light source. 6 is output.

また、光源制御部15aには遮光板制御機能15cが設けられており、この遮光板制御機能15cは必要に応じて遮光板8の開閉制御を行う。遮光板8が閉の時は照射光路が閉じた状態、すなわち、露光用光ELが基板Mに照射されない状態となり、遮光板8が開の時は照射光路が開いた状態、すなわち、露光用光ELが基板Mに照射される状態となる。
そして、露光開始から光源6の照度が安定する迄は、遮光板8は閉状態に制御される。こうすることで基板Mが光源6の直下に搬送されている場合でも露光用光ELを基板Mに照射しないことが可能となる。また、このようにすることで、光源6の照度が安定後、直に露光開始が可能となる。
The light source control unit 15a is provided with a light shielding plate control function 15c. The light shielding plate control function 15c performs opening / closing control of the light shielding plate 8 as necessary. When the light shielding plate 8 is closed, the irradiation light path is closed, that is, the exposure light EL is not irradiated onto the substrate M. When the light shielding plate 8 is opened, the irradiation light path is opened, that is, the exposure light. The substrate M is irradiated with EL.
From the start of exposure until the illuminance of the light source 6 is stabilized, the light shielding plate 8 is controlled to be closed. By doing so, it is possible to prevent the exposure light EL from being irradiated onto the substrate M even when the substrate M is transported directly under the light source 6. In addition, by doing so, the exposure can be started immediately after the illuminance of the light source 6 is stabilized.

以下、照度補正の具体的な処理について、図4のフローチャートを参照して説明する。   Hereinafter, specific processing of illuminance correction will be described with reference to the flowchart of FIG.

まず、露光スタート信号により、光源制御部15aの遮光板制御機能15cからの信号で遮光板8が閉の状態とされ(ステップ1)、露光用光ELが基板Mに照射されない状態となる。続いて光源制御部15aにて所定出力設定が行われ、光源6に出力される。そして、各光源6から露光用光ELが照射されると、各照度計50により照度計測が行われ(ステップ4)、照度信号が光源制御部15aの補正機能15bに送られ、目標照度との比較が行われる。   First, the light shielding plate 8 is closed by a signal from the light shielding plate control function 15c of the light source controller 15a by the exposure start signal (step 1), and the substrate M is not irradiated with the exposure light EL. Subsequently, a predetermined output setting is performed by the light source control unit 15 a and output to the light source 6. Then, when the exposure light EL is irradiated from each light source 6, the illuminance measurement is performed by each illuminometer 50 (step 4), and the illuminance signal is sent to the correction function 15b of the light source control unit 15a to obtain the target illuminance. A comparison is made.

そして、各光源6が目標照度であれば、遮光板制御機能15cからの信号で遮光板8が開状態とされ(ステップ6)、露光用光ELが基板Mに照射される状態となり、露光動作がスタートする(ステップ7)。つまり、光源6の直下から基板Mがエア浮上しながら順次搬送され、露光される。段落[0018]参照。   If each light source 6 has the target illuminance, the light shielding plate 8 is opened by a signal from the light shielding plate control function 15c (step 6), and the exposure light EL is irradiated onto the substrate M, so that the exposure operation is performed. Starts (step 7). In other words, the substrate M is sequentially transported and exposed from the position immediately below the light source 6 while flying air. See paragraph [0018].

また、光源6が目標照度で無い場合には補正機能15bにより照度が目標値となる露光電力が算出され(ステップ8)、光源制御部15aより光源6に出力され、各光源6から露光用光ELが照射されると、各照度計50で再度照度計測が行われ、ステップ4からの動作が繰り返し行われる。これは、各照度計50が目標値となる迄、繰り返し行われる。
さらに、各光源6が目標照度となる電力を目標電力とし、各光源6の目標照度における実際の消費電力と目標照度となる目標電力の偏差を算出する。その偏差に応じて各光源6における消費電力を目標電力に補正する。これにより、露光むらを無くし、高精度に露光を行うこともできるようにしてもよい。具体的な電力値計算手段としては、各光源6、または、光源を構成する回路に接続された積分器(図示せず)によって電力を算出する。
If the light source 6 is not the target illuminance, the exposure power at which the illuminance becomes the target value is calculated by the correction function 15b (step 8), and is output to the light source 6 from the light source controller 15a. When EL is irradiated, the illuminance measurement is performed again by each illuminometer 50, and the operation from step 4 is repeated. This is repeated until each illuminometer 50 reaches the target value.
Further, the power at which each light source 6 becomes the target illuminance is set as the target power, and the deviation between the actual power consumption at the target illuminance of each light source 6 and the target power at which the target illuminance is obtained is calculated. The power consumption in each light source 6 is corrected to the target power according to the deviation. Thereby, exposure unevenness may be eliminated and exposure may be performed with high accuracy. As specific power value calculation means, power is calculated by each light source 6 or an integrator (not shown) connected to a circuit constituting the light source.

以上の様に、本実施形態の近接露光装置1及びその近接露光方法によれば、近接露光装置1の動作開始時に露光用光ELを照射し、目標照度となる迄電力制御することで、露光直前の照度を安定させることができ、露光むらを無くし、高精度に露光を行うことができる。
また、遮光板8を閉じた状態で露光用光ELを照射するため、光源6の直下に基板Mを配置した状態とすることができるため、遮光板8を開けば直に露光をスタートできるため、タクトが長くなることが無い。
As described above, according to the proximity exposure apparatus 1 and the proximity exposure method of the present embodiment, exposure is performed by irradiating the exposure light EL at the start of the operation of the proximity exposure apparatus 1 and controlling the power until the target illuminance is reached. The illuminance immediately before can be stabilized, exposure unevenness can be eliminated, and exposure can be performed with high accuracy.
In addition, since the exposure light EL is irradiated with the light shielding plate 8 closed, the substrate M can be disposed immediately below the light source 6, so that the exposure can be started directly by opening the light shielding plate 8. , Tact does not become long.

本発明は、上記実施形態に限定されるものでなく、適宜、変更、改良等が可能である。
本発明では、平面ミラー6bとオプチカルインテグレータ9aとの間に、遮光板8を設けたが、凹面鏡6a内部又はその近傍に遮光板8を設けることも可能である。
また、本発明では、所定方向に一定速度で搬送される基板に対してスキャンを行いながら露光を続ける、所謂スキャン式近接露光装置にも適用可能であるし、所定方向にステップ移動される基板に対してステップ毎に繰り返し露光を行う、所謂ステップ式近接露光装置にも適用可能であり、露光方法を限定するものではない。
The present invention is not limited to the above-described embodiment, and can be appropriately changed and improved.
In the present invention, the light shielding plate 8 is provided between the flat mirror 6b and the optical integrator 9a. However, the light shielding plate 8 may be provided inside or near the concave mirror 6a.
The present invention can also be applied to a so-called scanning proximity exposure apparatus in which exposure is performed while scanning a substrate transported at a constant speed in a predetermined direction. On the other hand, the present invention can be applied to a so-called stepwise proximity exposure apparatus that repeatedly performs exposure for each step, and does not limit the exposure method.

1 近接露光装置
8 遮光板
10 基板搬送機能
11 マスク保持部
12 マスク駆動部
14 照射部
15 制御部
15a 光源制御部
15b補正機能
15c遮光板制御機能
50 照度計
EL 露光用光
M マスク
W カラーフィルタ基板(基板)
DESCRIPTION OF SYMBOLS 1 Proximity exposure apparatus 8 Light-shielding plate 10 Substrate conveyance function 11 Mask holding part 12 Mask drive part 14 Irradiation part 15 Control part 15a Light source control part 15b Correction function 15c Light-shielding board control function 50 Illuminance meter EL Exposure light M Mask W Color filter substrate (substrate)

Claims (3)

所定方向に搬送される基板に対して前記所定方向と交差する方向に沿って近接配置される複数のマスクを介して露光用光を照射し、前記基板に前記複数のマスクのパターンを露光する近接露光装置であって、前記複数のマスクの上部にそれぞれ配置され、前記露光用光を照射する複数の照射部と、前記照射部に設けられてその光の照度を検出する照度計と、前記照射部の電力を前記照度計からの照度信号に応じて制御する光源制御部と、前記照射部から照射される照射光路を開閉制御する遮光板と、を備え、前記光源制御部は、前記遮光板を閉じた状態で、前記照射部の光源に所定の電圧を印加した際に前記照度計によって検出される照度が目標照度になるように補正する補正機能を有することを特徴とする近接露光装置。 Proximity for irradiating exposure light through a plurality of masks arranged close to a substrate transported in a predetermined direction along a direction intersecting the predetermined direction to expose the patterns of the plurality of masks on the substrate An exposure apparatus, which is disposed on each of the plurality of masks and irradiates the exposure light, an illuminometer provided in the irradiator to detect the illuminance of the light, and the irradiation A light source control unit that controls the power of the unit according to an illuminance signal from the illuminance meter, and a light shielding plate that controls opening and closing of an irradiation light path emitted from the irradiation unit, the light source control unit comprising the light shielding plate A proximity exposure apparatus having a correction function for correcting so that the illuminance detected by the illuminometer becomes a target illuminance when a predetermined voltage is applied to the light source of the irradiating unit in a closed state. 請求項1に記載の近接露光装置を用いた近接露光方法であって、前記遮光板を閉じた状態で、前記照射部の光源に所定の電圧を印加した際に前記照度計によって検出される照度が目標照度になるように補正する工程を備えることを特徴とする近接露光方法。 The proximity exposure method using the proximity exposure apparatus according to claim 1, wherein the illuminance detected by the illuminometer when a predetermined voltage is applied to the light source of the irradiation unit with the light shielding plate closed. A proximity exposure method comprising a step of correcting so as to achieve a target illuminance. 請求項1または請求項2に記載された近接露光装置または近接露光方法であって、前記目標照度の目標電力になるように、前記光源の消費電力を目標電力に補正することができることを特徴とする近接露光装置または近接露光方法。 The proximity exposure apparatus or the proximity exposure method according to claim 1, wherein the power consumption of the light source can be corrected to the target power so as to be the target power of the target illuminance. Proximity exposure apparatus or proximity exposure method.
JP2010166007A 2009-09-30 2010-07-23 Proximity exposure apparatus and proximity exposure method of the same Pending JP2011095718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166007A JP2011095718A (en) 2009-09-30 2010-07-23 Proximity exposure apparatus and proximity exposure method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009226266 2009-09-30
JP2010166007A JP2011095718A (en) 2009-09-30 2010-07-23 Proximity exposure apparatus and proximity exposure method of the same

Publications (1)

Publication Number Publication Date
JP2011095718A true JP2011095718A (en) 2011-05-12

Family

ID=44112627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166007A Pending JP2011095718A (en) 2009-09-30 2010-07-23 Proximity exposure apparatus and proximity exposure method of the same

Country Status (1)

Country Link
JP (1) JP2011095718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089082A1 (en) * 2011-12-14 2013-06-20 シャープ株式会社 Substrate exposure device and substrate exposure method
EP3355117A1 (en) * 2016-12-13 2018-08-01 Tokyo Electron Limited Optical processing apparatus and substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089082A1 (en) * 2011-12-14 2013-06-20 シャープ株式会社 Substrate exposure device and substrate exposure method
EP3355117A1 (en) * 2016-12-13 2018-08-01 Tokyo Electron Limited Optical processing apparatus and substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP5150949B2 (en) Proximity scan exposure apparatus and control method thereof
TWI394014B (en) Peripheral exposure device
TWI603163B (en) Exposure apparatus, method of forming resist pattern, and storage medium
JP2016183990A (en) Exposure apparatus, substrate processing apparatus, exposure method of substrate, and substrate processing method
KR101408521B1 (en) Pre-alignment apparatus and pre-alignment method
JP7124277B2 (en) Optical processing device and substrate processing device
JP2011095718A (en) Proximity exposure apparatus and proximity exposure method of the same
JP2012173512A (en) Proximity exposure apparatus and proximity exposure method therefor
JP2018146616A (en) Exposure apparatus, substrate processing apparatus, substrate exposure method and substrate processing method
JP2006350315A (en) Exposure apparatus
JP2012155239A (en) Proximity scan exposure device and exposure method thereof
WO2015115166A1 (en) Substrate processing system, substrate processing method, and computer storage medium
JP2012093616A (en) Proximity-scanning exposure device and control method thereof
JP2011054608A (en) Proximity scan aligner and method of controlling the same
JP5057370B2 (en) Proximity scan exposure apparatus and illuminance control method thereof
JP2018147918A (en) Exposure equipment, substrate processing apparatus, exposure method of substrate, and substrate processing method
JP2009265313A (en) Scanning exposure device and scanning exposure method
JP2013097310A (en) Proximity exposure apparatus and proximity exposure method
JP5105152B2 (en) Proximity scan exposure apparatus and control method thereof
JP6809188B2 (en) Light irradiation device
JP2009003365A (en) Proximity scanning exposure apparatus and method for controlling the same
JP5084230B2 (en) Proximity exposure apparatus and proximity exposure method
JP2019076817A (en) Ultraviolet irradiation apparatus and ultraviolet irradiation method
JP2011134937A (en) Proximity-scanning exposure apparatus and method of controlling the same
JP2011175026A (en) Exposure apparatus, exposure method and method for manufacturing substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110815