JP2011095022A - Particle sensor - Google Patents

Particle sensor Download PDF

Info

Publication number
JP2011095022A
JP2011095022A JP2009247289A JP2009247289A JP2011095022A JP 2011095022 A JP2011095022 A JP 2011095022A JP 2009247289 A JP2009247289 A JP 2009247289A JP 2009247289 A JP2009247289 A JP 2009247289A JP 2011095022 A JP2011095022 A JP 2011095022A
Authority
JP
Japan
Prior art keywords
light
particle
channel
particles
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009247289A
Other languages
Japanese (ja)
Inventor
Masataka Kumeta
賢孝 粂田
Kazuyoshi Miyazawa
和義 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2009247289A priority Critical patent/JP2011095022A/en
Publication of JP2011095022A publication Critical patent/JP2011095022A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle sensor which discriminates the particle sizes of fine particles, using an inexpensive device, regardless of the concentration of particles. <P>SOLUTION: The particle sensor is equipped with an emitter A and first and second light detectors S1 and S2, producing light detection output signals corresponding to the scattered light of the particles in a measuring area B, based on the LED light emitted from the emitter. The first light detector S1 is arranged behind the measuring area B, positioned in front of the irradiation direction of the LED light from the emitter, and the second light detector S2 is arranged in front of the measuring area B, positioned in front of the irradiation direction of the LED light from the emitter, and the particle sensor is also equipped with a means 1 for calculating the ratio of the light detection output signals by the first and second light detectors and means 2 and 3 for calculating the particle size of the particles from the ratio of the light detection output signals. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細粒子を検知する粒子センサに係り、特に粒子のサイズが識別可能な粒子センサに関する。   The present invention relates to a particle sensor that detects fine particles, and more particularly to a particle sensor that can identify the size of particles.

従来から、大気中や液中に浮遊する粒子に光を照射し、照射光が粒子に当たって周囲に散乱する光(散乱光)の強度を受光素子で電圧に変換して出力することにより、その出力値から浮遊粒子を検知したり、大きさを識別する粒子センサが広く知られている。これら従来の粒子センサとしては、例えば一般家庭用のダストを検知し作動する空気クリーナのダスト検知装置(特許文献1)や、花粉症の原因となる空気中に浮遊する花粉粒子の検出に用いられる花粉センサ(特許文献2)等が知られている。また、クリーンルームの無菌無塵環境を管理するパーティクルカウンタ、粉体などの粒径を測定する粒度分布測定装置などにも上記原理に基づく粒子センサが用いられている。   Conventionally, light is emitted to particles floating in the atmosphere or liquid, and the intensity of the light (scattered light) scattered by the irradiated light hitting the particles is converted into voltage by the light receiving element and output. Particle sensors that detect suspended particles from their values and identify their sizes are widely known. As these conventional particle sensors, for example, a dust detection device (Patent Document 1) of an air cleaner that detects and operates dust for general household use, or detection of pollen particles floating in the air causing hay fever is used. A pollen sensor (Patent Document 2) and the like are known. In addition, a particle sensor based on the above principle is also used in a particle counter for managing an aseptic and dust-free environment in a clean room, a particle size distribution measuring device for measuring the particle size of powder, and the like.

しかしながら、浮遊粒子の粒径を測定する従来の粒子センサは、検出した散乱光強度から1粒子の粒径を計測しようとするものである。この手法では測定エリア内に一定以上の複数個の粒子が同時に通過する粒子濃度が大の場合、計数損失が発生してしまうことになる。これによって計数オーバーとなり、正確な検知ではなくなるという問題がある。この原因としては、粒子相互の多重散乱が起こることが挙げられる。正確に粒子の大きさを判別しようとするために、フィルタや複雑な装置を用いるなど、多様な手段が用いられてきている。このように粒子濃度が高い場合の測定には、従来から知られた手法は計数損失をおこしやすく、大変な手間がかかるという問題が有る。   However, the conventional particle sensor for measuring the particle size of suspended particles is intended to measure the particle size of one particle from the detected scattered light intensity. In this method, a count loss occurs when the particle concentration at which a certain number of particles simultaneously pass through the measurement area is large. As a result, there is a problem that the counting is over and the detection is not accurate. As this cause, multiple scattering between particles occurs. In order to accurately determine the size of the particles, various means such as using a filter and a complicated device have been used. Thus, in the measurement when the particle concentration is high, there is a problem that the conventionally known method easily causes counting loss and takes a lot of time and effort.

特開平5−126717号公報Japanese Patent Laid-Open No. 5-126717 特開2005−283152号公報JP-A-2005-283152

本発明は、上述の事情に基づいてなされたもので、粒子濃度の大小(濃淡)に関係なく、計数損失を発生することのない安価な装置で簡易に微細粒子の粒径を識別することができる粒子センサを提供することを目的とする。   The present invention has been made on the basis of the above-described circumstances, and it is possible to easily identify the particle size of fine particles with an inexpensive apparatus that does not cause a count loss regardless of the particle concentration (darkness). An object of the present invention is to provide a particle sensor that can be used.

本発明の粒子センサは、発光部と、該発光部から照射したLED光に基づく測定エリアにおける粒子の散乱光に応じて、受光出力信号を発生する第1受光部と第2受光部とを備え、第1受光部は発光部からのLED光の照射方向の前方に位置する測定エリアの後方に、第2受光部は発光部からのLED光の照射方向の前方に位置する測定エリアよりも前方に配置され、第1受光部と第2受光部による受光出力信号の比を算出する手段と、前記受光出力信号の比から前記粒子の粒径を算出する手段とを備えたことを特徴とする。   The particle sensor of the present invention includes a light emitting unit, and a first light receiving unit and a second light receiving unit that generate a light reception output signal in accordance with scattered light of particles in a measurement area based on LED light emitted from the light emitting unit. The first light receiving part is behind the measurement area located in front of the irradiation direction of the LED light from the light emitting part, and the second light receiving part is ahead of the measurement area located in front of the irradiation direction of the LED light from the light emitting part. And a means for calculating a ratio of light reception output signals by the first light receiving section and the second light receiving section, and a means for calculating the particle diameter of the particles from the ratio of the light reception output signals. .

第1受光部と第2受光部の出力電圧比から、LED光の照射方向の前方に位置する測定エリアから、後方に向かって散乱する後方散乱光と前方に散乱する前方散乱光との比を検知する。この値から、粒子濃度に関わらず、計数損失を生じずに、粒子の粒径(大きさ)を識別することが可能であり、安価な装置で粒子径の識別が可能となる。また、第1受光部と第2受光部は、LED発光部からのLED光の照射方向に対し、測定エリアの中心から45°と135°の角度の方向に配置することが好ましく、これにより上記出力電圧比を効率的に且つ安定に取得することができる。また、識別対象の粒径は0.5〜5μm程度であることが好ましく、特に1μm以下の微細粒子の粒径識別に青色光を用いることが好ましい。   From the output voltage ratio of the first light receiving part and the second light receiving part, the ratio of the back scattered light scattered backward and the forward scattered light scattered forward from the measurement area located in front of the irradiation direction of the LED light is calculated. Detect. From this value, it is possible to identify the particle size (size) of the particle without causing a count loss regardless of the particle concentration, and the particle size can be identified with an inexpensive apparatus. In addition, the first light receiving unit and the second light receiving unit are preferably arranged in directions of 45 ° and 135 ° from the center of the measurement area with respect to the irradiation direction of the LED light from the LED light emitting unit. The output voltage ratio can be acquired efficiently and stably. The particle size to be identified is preferably about 0.5 to 5 μm, and it is particularly preferable to use blue light for particle size identification of fine particles of 1 μm or less.

本発明の基礎となる実験装置の構成例を示す平面図である。It is a top view which shows the structural example of the experimental apparatus used as the foundation of this invention. 濃度大/中/小の粒径0.5μmの粒子群に赤外光を照射し、各受光部チャンネルの受光割合を表したグラフである。It is a graph showing the light-receiving ratio of each light-receiving part channel by irradiating infrared light to a particle group having a large / medium / small particle diameter of 0.5 μm. 濃度大/中/小の粒径5μmの粒子群に赤外光を照射し、各受光部チャンネルの受光割合を表したグラフである。It is a graph showing the light-receiving ratio of each light-receiving part channel by irradiating infrared light to a particle group having a particle size of 5 μm of high / medium / small concentration. 横軸に受光部チャンネル1−19を取り、0.5、5、30μmの3種類の粒子群に青色光を照射した場合の各受光部チャンネルの出力電圧を示すグラフである。It is a graph which shows the output voltage of each light-receiving part channel at the time of taking light-receiving part channel 1-19 on a horizontal axis and irradiating blue light to three types of particle groups of 0.5, 5, and 30 micrometers. (a)は30μmの粒子群に、(b)は5μmの粒子群に、(c)は0.5μmの粒子群に、それぞれ、赤外光、緑色光、青色光を照射した場合の各チャンネルの出力電圧を示すグラフである。(A) is a 30 μm particle group, (b) is a 5 μm particle group, (c) is a 0.5 μm particle group when irradiated with infrared light, green light, and blue light, respectively. It is a graph which shows the output voltage of. チャンネル6〜8について、それぞれのチャンネルの感度を示すグラフである。It is a graph which shows the sensitivity of each channel about channels 6-8. チャンネル1とチャンネル7との出力電圧および電圧比の関係を示すグラフである。It is a graph which shows the relationship of the output voltage and voltage ratio of channel 1 and channel 7. 0.5μmの粒子群および5μmの粒子群に、赤外光、緑色光、青色光を照射した場合のチャンネル1とチャンネル7との出力電圧比を示すグラフである。It is a graph which shows the output voltage ratio of the channel 1 at the time of irradiating a 0.5 micrometer particle group and a 5 micrometer particle group with infrared light, green light, and blue light. 本発明の一実施例の粒子センサの構成例を示す平面図である。It is a top view which shows the structural example of the particle | grain sensor of one Example of this invention.

以下、本発明の実施形態について、図1乃至図9を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.

本件発明者は、図1に示すように、LED発光部AとそこからLED光が照射する方向xの前方に位置する測定エリアBと、その測定エリアBの中心点である中心Cを円の中心として15°間隔で測定エリアB周囲に19ヶ所の受光部であるチャンネル1−19を配置した装置を準備した。測定エリアBに配置したサンプル粒子群にLED光を照射し、チャンネル1−19にてほぼ全周囲の散乱光強度を測定した。サンプル粒子群は透明な粘着テープに特定サイズの多数の粒子を貼付し、中心C付近に固定したものである。   As shown in FIG. 1, the inventor of the present invention has an LED light emitting part A and a measurement area B positioned in front of the direction x irradiated with LED light and a center C that is the center point of the measurement area B in a circle. An apparatus was prepared in which channels 1-19, which are 19 light receiving portions, were arranged around measurement area B at intervals of 15 ° as the center. The sample particle group arranged in the measurement area B was irradiated with LED light, and the scattered light intensity of almost the entire circumference was measured by the channel 1-19. In the sample particle group, a large number of particles of a specific size are attached to a transparent adhesive tape and fixed in the vicinity of the center C.

具体的には、各種同一粒径の多数の粒子を濃度を異ならせた(濃度大/中/小)環境で、LED光の種類(波長)を変えて、赤外光、緑色光、青色光について測定し、各チャンネル1−19の受光量を計測した。この実験例では、一例として、濃度大は粒子密度336個/0.30mmであり、濃度中は粒子密度296個/0.30mmであり、濃度小は粒子密度192個/0.30mmである。 Specifically, in an environment where a large number of particles having the same particle size are different (high density / medium / small), the type (wavelength) of LED light is changed, and infrared light, green light, blue light is changed. The amount of light received by each channel 1-19 was measured. In this experimental example, as an example, the high concentration is 336 particles / 0.30 mm 2 , the particle density is 296 particles / 0.30 mm 2 , and the low concentration is 192 particles / 0.30 mm 2. It is.

図2は濃度大/中/小の粒径0.5μmの粒子群に赤外光を照射し、図3は濃度大/中/小の粒径5μmの粒子群に赤外光を照射し、それぞれチャンネル1−19による総電圧値を100とし、各チャンネルの受光割合を表したグラフである。なお、チャンネル8−11については、この後に記載する理由により、この受光割合の計測対象から外している。   FIG. 2 irradiates a group of particles having a large / medium / small particle size of 0.5 μm with infrared light, and FIG. 3 irradiates a group of particles having a large / medium / small particle size of 5 μm with infrared light. It is a graph showing the light reception ratio of each channel, where the total voltage value of each channel 1-19 is 100. The channel 8-11 is excluded from the measurement target of the light reception ratio for the reason described later.

これらのグラフから、LED光の照射方向xに対してLED発光部Aと測定エリアBの中心Cからの角度が45°から90°であるチャンネル1からチャンネル4において受光割合が低下し、角度が105°から150°であるチャンネル5からチャンネル8において受光割合が増加することを示している。これら図2と図3のグラフから、受光割合は粒子濃度の大小に無関係であるが、各チャンネル1−19において略一定値であること、粒径により大幅に変動することが分かる。この2つの現象は、図2と図3に示したLED光が赤外光に限るものではなく、ここには図示しないがLED光の種類(波長)に関わらず、共通に見られるものであることを、本件発明者は実験により確認することができた。   From these graphs, the light receiving ratio decreases in the channel 1 to the channel 4 where the angle from the center C of the LED light emitting part A and the measurement area B is 45 ° to 90 ° with respect to the irradiation direction x of the LED light, and the angle is It shows that the light reception ratio increases in channel 5 to channel 8 which is 105 ° to 150 °. From these graphs of FIGS. 2 and 3, it can be seen that the light reception ratio is independent of the particle concentration, but is substantially constant in each channel 1-19, and varies greatly depending on the particle diameter. These two phenomena are not limited to the infrared light of the LED light shown in FIGS. 2 and 3, but are not shown here, but are commonly seen regardless of the type (wavelength) of the LED light. This inventor was able to confirm by experiment.

図4は、横軸に受光部の各チャンネル、縦軸に各チャンネルの出力電圧を取ったグラフである。発光部に青色LEDを用い、粒子の粒径は0.5、5、30μmの3種類であり、それぞれ濃度大である。青色光のような波長の短いLEDを用いた時の後方散乱光(LED照射光が粒子に当たり、中心C付近から照射方向の後方に散乱する光)が大きくなり、それは径の小さな粒子で顕著になる結果が得られた。チャンネル1の出力電圧は粒径が小さくなるにつれて、顕著に大きくなっていることが分かる。   FIG. 4 is a graph in which the horizontal axis represents each channel of the light receiving unit and the vertical axis represents the output voltage of each channel. A blue LED is used for the light emitting part, and the particle diameters of the particles are three types of 0.5, 5, and 30 μm, each having a large concentration. When using a short wavelength LED such as blue light, the backscattered light (light irradiated by the LED hits the particle and scatters back from the vicinity of the center C in the irradiation direction) becomes large, which is noticeable with small diameter particles. The result was obtained. It can be seen that the output voltage of channel 1 increases significantly as the particle size decreases.

図5(a)(b)(c)は、それぞれ横軸に受光部1−8チャンネル、縦軸に各チャンネルの出力電圧を取ったグラフである。粒径は(a)30μm、(b)5μm、(c)0.5μmであり、それぞれ濃度大であり、LED光は赤外光、緑色光、青色光の3種類についてデータを取得した。粒径が小さくなるにつれて後方散乱光(中心Cから後方に散乱する光、すなわち、チャンネル1−3の出力電圧)が増大し、前方散乱光(中心Cから前方に散乱する光、すなわち、チャンネル5−8の出力電圧)が減少する傾向があることが分かる。粒径が小さくなるほどに出力電力は大きくなり、波長の短い青色では殊にその傾向が強く出ている。特に、この関係は粒径(b)5μm−(c)0.5μmにおいて顕著である。粒子の濃度に関係はないことは、これまでに述べたとおりである。   5A, 5B, and 5C are graphs in which the horizontal axis represents the light receiving unit 1-8 channel and the vertical axis represents the output voltage of each channel. The particle diameters were (a) 30 μm, (b) 5 μm, and (c) 0.5 μm, each having a large concentration, and the LED light was acquired for three types of infrared light, green light, and blue light. As the particle size decreases, the backscattered light (light scattered backward from the center C, that is, the output voltage of the channel 1-3) increases, and the forward scattered light (light scattered forward from the center C, that is, the channel 5). It can be seen that the output voltage (−8) tends to decrease. The output power increases as the particle size decreases, and this tendency is particularly strong in blue with a short wavelength. In particular, this relationship is significant when the particle size (b) is 5 μm- (c) 0.5 μm. As described above, there is no relation to the concentration of the particles.

また、LED光の種類としては、波長の短い青色光(約430nm)で、上記傾向が最も顕著となり、次いで緑色光(約525nm)、最後に赤外光(約850nm)の波長の短い順番となることが分かる。なお、チャンネル9−11は粒子に光を遮られる位置であるとともに、LED照射光が直接入射する影響が最も大きい位置であることから、散乱光のデータ取得には適していないと判断し、データ取得を省略している。また、チャンネル8についても、前方散乱光に加え発光部LEDの照射光の影響が加わり、その取得データが不安定になると考えられる。   Moreover, as the type of LED light, the above-mentioned tendency becomes most remarkable with blue light having a short wavelength (about 430 nm), followed by green light (about 525 nm), and finally the order of short wavelength of infrared light (about 850 nm). I understand that Note that the channel 9-11 is a position where the light is blocked by the particles, and the position where the influence of the direct irradiation of the LED irradiation light is the largest, so it is determined that the channel 9-11 is not suitable for acquiring scattered light data. Acquisition is omitted. In addition, the channel 8 is also considered to be unstable due to the influence of the light emitted from the light emitting unit LED in addition to the forward scattered light.

従って、後方散乱光を受けるチャンネル1−3においては、チャンネル1が、前方散乱光を受けるチャンネル5−8においては、チャンネル7が、上記傾向を最も安定に且つ顕著に検知可能である。また、同じ環境で異なる波長のLEDを用いて出力電圧を測定した場合、LEDの種類で出力電圧の値が異なることがわかる。   Therefore, the above-mentioned tendency can be detected most stably and remarkably in the channel 1-3 receiving the backscattered light, and the channel 1 in the channel 5-8 receiving the forward scattered light. Moreover, when measuring output voltage using LED of a different wavelength in the same environment, it turns out that the value of output voltage differs with the kind of LED.

チャンネル1に対し、チャンネル5〜8の4チャンネルのうち、どのチャンネルが最も受光に適しているかを調べたのが図6である。この図での発光部LEDは青色であり、図の縦軸の「感度」を以下のように定義している。
計測対象粒子の粒径がDである時のチャンネルXの出力電圧をVcX(D)とし、チャンネル1の出力電圧をVc1(D)とすると、
感度=(Vc1(0.5μm)/VcX(0.5μm))/(Vc1(5μm)/VcX(5μm))
但し、チャンネルXは5〜8である。
FIG. 6 shows which channel among channels 4 to 8 is most suitable for light reception with respect to channel 1. The light emitting unit LED in this figure is blue, and the “sensitivity” on the vertical axis in the figure is defined as follows.
When the output voltage of channel X when the particle size of the measurement target particle is D is VcX (D) and the output voltage of channel 1 is Vc1 (D),
Sensitivity = (Vc1 (0.5μm) / VcX (0.5μm)) / (Vc1 (5μm) / VcX (5μm))
However, channel X is 5-8.

この値が大きいと0.5m〜5μmの粒径の識別が容易になる。図6からチャンネル7が最良であることがわかる。チャンネル8の感度が負になっているのは、粒径が小さい場合や波長の短いLEDを発光部として使用した場合は、前方散乱光が少なくなり出力電圧が負になることがあるためである。これらからLED光の種類としては、0.5μm程度の微少粒径の検出には青色LEDが有効であることが分かる。これにより、チャンネル7が最もチャンネル1との組合せに望ましい。   When this value is large, it becomes easy to identify a particle diameter of 0.5 to 5 μm. It can be seen from FIG. 6 that channel 7 is the best. The sensitivity of channel 8 is negative because when the particle size is small or when an LED with a short wavelength is used as the light emitting part, the forward scattered light decreases and the output voltage may become negative. . From these, it can be seen that a blue LED is effective in detecting a minute particle size of about 0.5 μm as the type of LED light. Thus, channel 7 is most desirable for combination with channel 1.

図7は、チャンネル7とチャンネル1の出力電圧の関係を示すグラフである。LEDは青色光で、粒径は×印が0.5μmで、△印が5μmである。2種類の粒径における3ヶ所の測定データは濃度の違いを表しているが、濃度大で、粒径0.5μmにおいて、チャンネル1/チャンネル7の電圧比は3.40であり、これに対して、粒径5μmにおいて、チャンネル1/チャンネル7の電圧比は0.35である。   FIG. 7 is a graph showing the relationship between the output voltages of channel 7 and channel 1. The LED is blue light, and the particle size is 0.5 μm for the x mark and 5 μm for the Δ mark. The measurement data at the three locations for the two types of particle sizes show the difference in concentration, but when the concentration is large and the particle size is 0.5 μm, the voltage ratio of channel 1 / channel 7 is 3.40. When the particle diameter is 5 μm, the voltage ratio of channel 1 / channel 7 is 0.35.

このことは、粒径0.5μmにおいては、粒径5μmに対して、後方散乱光(チャンネル1の出力電圧)が多く、前方散乱光(チャンネル7の出力電圧)が少ないことを意味する。よって、後方散乱光と前方散乱光の出力電圧比から粒径の識別が可能である。   This means that when the particle size is 0.5 μm, the backscattered light (output voltage of channel 1) is larger and the forward scattered light (output voltage of channel 7) is smaller than the particle size of 5 μm. Therefore, the particle diameter can be identified from the output voltage ratio between the back scattered light and the forward scattered light.

そして、図7に示すように、濃度大、中、小において、チャンネル1およびチャンネル7の出力電圧絶対値は異なるが、その比である電圧比は変わらず、ほぼ一定の傾きとなる。よって、出力電圧比(Ch1/Ch7)を計算することで、濃度には無関係に、計数損失の影響を受けずに粒径の識別が可能である。   As shown in FIG. 7, the absolute values of the output voltages of the channel 1 and the channel 7 are different between the large, medium, and small concentrations, but the voltage ratio that is the ratio does not change and has a substantially constant slope. Therefore, by calculating the output voltage ratio (Ch1 / Ch7), it is possible to identify the particle size without being affected by the counting loss regardless of the concentration.

図8は、LEDの種類とチャンネル1/チャンネル7の電圧比の関係を示すグラフである。すなわち、赤外光、緑色光、青色光について、粒径0.5μmと粒径5μmのチャンネル1/チャンネル7のそれぞれの電圧比を示したものである。従って、LEDの種類とチャンネル1/チャンネル7の電圧比の関係から、この図8のグラフをデータテーブルとして参照することで、粒径の識別が可能となる。   FIG. 8 is a graph showing the relationship between the LED type and the channel 1 / channel 7 voltage ratio. That is, for the infrared light, green light, and blue light, the respective voltage ratios of channel 1 / channel 7 having a particle size of 0.5 μm and a particle size of 5 μm are shown. Therefore, the particle size can be identified by referring to the graph of FIG. 8 as a data table from the relationship between the LED type and the voltage ratio of channel 1 / channel 7.

図9は、本発明の一実施例の粒子センサの要部を示す。例えば円筒状の容器D内に空気等の流体が紙面に対して垂直方向に流れ、この容器Dの中央部分を測定エリアBとし、該測定エリアBに浮遊する粒子Pの粒径を識別対象とする。   FIG. 9 shows the main part of the particle sensor of one embodiment of the present invention. For example, a fluid such as air flows in a cylindrical container D in a direction perpendicular to the paper surface. The central portion of the container D is set as a measurement area B, and the particle size of particles P floating in the measurement area B is set as an identification target. To do.

この粒子センサは、LED発光素子からなる発光部Aと、該発光部Aから照射したLED光に基づく測定エリアBにおける粒子の散乱光に応じて、受光出力信号を発生するPD(フォトダイオード)からなる第1受光部S1と第2受光部S2とを備える。第1受光部S1は後方散乱光(LED光が浮遊粒子を照射して後方に散乱する光)を検知できる位置にあり、測定エリアBからLED光の照射方向に対して後方に(y線より発光部A側に)配置し、第2受光部S2は前方散乱光(LED光が浮遊粒子を照射して前方に散乱する光)を検知できる位置で、測定エリアBよりもLED光の照射方向の前方に(y線よりも図中で右側に)配置する。   This particle sensor is composed of a light emitting unit A composed of LED light emitting elements and a PD (photodiode) that generates a light reception output signal in accordance with scattered light of particles in a measurement area B based on LED light emitted from the light emitting unit A. The first light receiving unit S1 and the second light receiving unit S2 are provided. The first light receiving unit S1 is in a position where it can detect backscattered light (light that the LED light scatters backward by irradiating the suspended particles), and is backward from the measurement area B in the LED light irradiation direction (from the y-line). The second light receiving unit S2 is disposed at the light emitting unit A side, and the second light receiving unit S2 is a position where the forward scattered light (light that the LED light irradiates the suspended particles and scatters forward) can be detected. (In the drawing, on the right side of the figure) in front of the.

このため、第1受光部S1は後方散乱光による出力電圧を生じ、第2受光部S2は前方散乱光による出力電圧を生じる。ここで、第1受光部S1と第2受光部S2は、発光部AからのLED光の照射方向(x方向)に対し、測定エリアBの中心Cから45°と135°の角度の方向に配置することが好ましい。   For this reason, the first light receiving unit S1 generates an output voltage due to the backscattered light, and the second light receiving unit S2 generates an output voltage due to the forward scattered light. Here, the first light receiving unit S1 and the second light receiving unit S2 are in directions of 45 ° and 135 ° from the center C of the measurement area B with respect to the irradiation direction (x direction) of the LED light from the light emitting unit A. It is preferable to arrange.

その理由は、測定エリアBの中心Cから45°の方向に第1受光部S1を配置することで、後方散乱光が大きくなる場所でこれを出力することができるからであり、測定エリアBの中心Cから135°の方向に第2受光部S2を配置することで、前方散乱光が大きくなり、散乱光全体と良い比例関係があり、安定にデータを取得できる場所だからである。これらは実験結果から明らかに見て取ることができる。   The reason is that by arranging the first light receiving part S1 in the direction of 45 ° from the center C of the measurement area B, it can be output at a place where the backscattered light becomes large. This is because by arranging the second light receiving unit S2 in the direction of 135 ° from the center C, the forward scattered light becomes large, and there is a good proportional relationship with the entire scattered light, so that data can be stably acquired. These can be clearly seen from the experimental results.

そして、本発明の粒子センサは、このようにして配置位置を特定された第1受光部S1と第2受光部S2による受光出力信号の比を計算する手段1を備える。すなわち、2個の受光部S1,S2における後方散乱光と前方散乱光の出力値が用いられ、下記受光出力信号の比Lを得る。そして、受光出力信号の比(後方/前方散乱光の比率)からデータテーブル2を参照し、測定エリアBの粒子Pの粒径を識別する手段3を備える。
L(電圧比)=Vs1(S1出力値(後方散乱光))/Vs2(S2出力値(前方散乱光))
The particle sensor of the present invention includes means 1 for calculating the ratio of the light reception output signals from the first light receiving unit S1 and the second light receiving unit S2 whose arrangement positions are specified in this way. That is, the output values of the back scattered light and the forward scattered light in the two light receiving units S1 and S2 are used to obtain the ratio L of the following received light output signal. Then, a means 3 for identifying the particle size of the particles P in the measurement area B is provided by referring to the data table 2 from the ratio of the received light output signals (ratio of back / forward scattered light).
L (voltage ratio) = Vs1 (S1 output value (backscattered light)) / Vs2 (S2 output value (forward scattered light))

発光部Aに用いるLEDに関して、図8を参照すると、粒径5μmでの電圧比はLEDの種類では殆ど変わらない。しかし、粒径0.5μmのように微細な粒子だと、図8に示すように、青色光のように波長の短いLEDで電圧比が大きくなり、その識別が容易となり、好ましい。   Regarding the LED used in the light emitting section A, referring to FIG. 8, the voltage ratio at a particle size of 5 μm hardly changes depending on the type of LED. However, a fine particle having a particle diameter of 0.5 μm is preferable because, as shown in FIG. 8, an LED having a short wavelength such as blue light has a large voltage ratio and is easily identified.

粒径が0.5〜5μmである粒子群の電圧比は、図8のグラフに示す電圧比の間に入ってくるものと考えられる。そのため波長の短いLEDの方が粒径の識別が有利になると考えられ、チャンネル1/チャンネル7の出力電圧比から、図8に示すデータテーブルを参照することで、0.5〜5μmの粒径の識別が可能となる。   The voltage ratio of the particle group having a particle diameter of 0.5 to 5 μm is considered to fall between the voltage ratios shown in the graph of FIG. Therefore, it is considered that the identification of the particle diameter is more advantageous for the LED having a short wavelength, and the particle diameter of 0.5 to 5 μm is obtained by referring to the data table shown in FIG. Can be identified.

従って、受光部S1と受光部S2の出力電圧比から、濃度に関わらず、計数損失を生じずに、大気または液中の浮遊粒子の粒径(大きさ)を識別することが可能であり、安価な装置で粒子径の識別が可能となる。また、計測可能な粒子サイズは約0.5〜5μm程度(煙など)が好適であるが、例えば、花粉の粒径約30μm、ハウスダストの粒径約5μm以上に対して、1μm以下のナノサイズの微細粒子の粒径検知に特に好適と考えられる。   Therefore, it is possible to identify the particle size (size) of suspended particles in the atmosphere or liquid from the output voltage ratio of the light receiving unit S1 and the light receiving unit S2, regardless of the concentration, without causing a count loss. The particle size can be identified with an inexpensive device. The particle size that can be measured is preferably about 0.5 to 5 μm (such as smoke). For example, the particle size of pollen is about 30 μm, and the particle size of house dust is about 5 μm or more. It is considered particularly suitable for detecting the particle size of fine particles having a size.

なお、上記実施例において、円筒形の容器を用いる例について説明したが、その他の形状でも勿論よい。また、大気または液中の浮遊粒子の粒径識別の例について説明したが、実験例で説明したようにサンプル粒子を透明テープに貼り付けて行っても良い。   In addition, although the example using a cylindrical container was demonstrated in the said Example, of course, other shapes may be sufficient. Moreover, although the example of particle diameter identification of the floating particle | grains in air | atmosphere or a liquid was demonstrated, you may affix by attaching a sample particle | grain to a transparent tape as demonstrated in the experiment example.

また、第1受光部S1と第2受光部S2は、発光部AからのLED光の照射方向(x方向)に対し、測定エリアBの中心Cから45°と135°の角度の方向に配置する例について説明したが、S1とS2の対角にあるチャンネル13とチャンネル19でも同様の効果が得られる。また、チャンネル7とチャンネル19の組合せも可能である。上述したように、後方散乱光と前方散乱光とによる出力電圧を効率的に且つ安定に生じる場所に配置すれば良いことは勿論である。   Further, the first light receiving unit S1 and the second light receiving unit S2 are arranged in directions of 45 ° and 135 ° from the center C of the measurement area B with respect to the irradiation direction (x direction) of the LED light from the light emitting unit A. However, the same effect can be obtained with the channel 13 and the channel 19 that are diagonally opposite to the S1 and S2. A combination of channel 7 and channel 19 is also possible. As described above, it is needless to say that the output voltage generated by the back scattered light and the forward scattered light may be disposed at a place where the output voltage is generated efficiently and stably.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明は、粒子濃度の大小に関わらず、計数損失を生じずに、多数の粒子の粒径(大きさ)を識別することが可能であり、安価な装置で約0.5〜5μm程度の微細粒径の識別が可能となる。従って、微細粒子の粒径識別に好適に利用可能である。   The present invention can discriminate the particle size (size) of a large number of particles without causing counting loss regardless of the particle concentration, and is about 0.5 to 5 μm with an inexpensive apparatus. The fine particle size can be identified. Therefore, it can be suitably used for identifying the particle diameter of fine particles.

Claims (4)

発光部と、該発光部から照射したLED光に基づく測定エリアにおける粒子の散乱光に応じて、受光出力信号を発生する第1受光部と第2受光部とを備え、
第1受光部は発光部からのLED光の照射方向の前方に位置する測定エリアの後方に、第2受光部は発光部からのLED光の照射方向の前方に位置する測定エリアよりも前方に配置され、
第1受光部と第2受光部による受光出力信号の比を算出する手段と、前記受光出力信号の比から前記粒子の粒径を算出する手段とを備えた、粒子センサ。
A light-emitting unit, and a first light-receiving unit and a second light-receiving unit that generate a light-receiving output signal according to the scattered light of the particles in the measurement area based on the LED light emitted from the light-emitting unit,
The first light receiving unit is behind the measurement area positioned in front of the irradiation direction of the LED light from the light emitting unit, and the second light receiving unit is ahead of the measurement area positioned in front of the irradiation direction of the LED light from the light emitting unit. Arranged,
A particle sensor comprising: means for calculating a ratio of light reception output signals by the first light receiving part and the second light receiving part; and means for calculating the particle diameter of the particles from the ratio of the light reception output signals.
第1受光部と第2受光部は、LED発光部からのLED光の照射方向に対し、測定エリアの中心から45°と135°の角度の方向に配置している、請求項1に記載の粒子センサ。   The first light receiving part and the second light receiving part are arranged in directions of 45 ° and 135 ° from the center of the measurement area with respect to the irradiation direction of the LED light from the LED light emitting part. Particle sensor. 前記LED発光部に、青色光を用いた、請求項1に記載の粒子センサ。   The particle sensor according to claim 1, wherein blue light is used for the LED light emitting unit. 前記粒子の粒径は、0.5〜5μm程度である、請求項1に記載の粒子センサ。   The particle sensor according to claim 1, wherein the particle diameter is about 0.5 to 5 μm.
JP2009247289A 2009-10-28 2009-10-28 Particle sensor Pending JP2011095022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247289A JP2011095022A (en) 2009-10-28 2009-10-28 Particle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247289A JP2011095022A (en) 2009-10-28 2009-10-28 Particle sensor

Publications (1)

Publication Number Publication Date
JP2011095022A true JP2011095022A (en) 2011-05-12

Family

ID=44112111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247289A Pending JP2011095022A (en) 2009-10-28 2009-10-28 Particle sensor

Country Status (1)

Country Link
JP (1) JP2011095022A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364317A (en) * 2013-07-22 2013-10-23 南通大学 Optical system for detecting size and shape of micro-particles
CN104390897A (en) * 2013-07-22 2015-03-04 南通大学 Beam homogeneity improved optical system for detecting size and shape of microparticle
CN104458510A (en) * 2013-07-22 2015-03-25 南通大学 Particle size and shape detection optical system capable of improving detection accuracy
JP2015138002A (en) * 2014-01-24 2015-07-30 株式会社島津製作所 Particle size measuring device, particle size measuring method, and particle size measuring program
KR20190084691A (en) * 2018-01-09 2019-07-17 채규욱 Optical fine dust sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178830A (en) * 1994-12-26 1996-07-12 Sanyo Electric Co Ltd Detector
JP2004117155A (en) * 2002-09-26 2004-04-15 Toshihiko Yoshino Gas and particulate density measuring apparatus
JP2008008911A (en) * 2003-10-23 2008-01-17 Martin Terence Cole Chamber constitution for detecting particle, particle detector, smoke detector, and method of making fluid flow in detection zone of particle detector
WO2008042199A2 (en) * 2006-09-29 2008-04-10 Cyberoptics Semiconductor, Inc. Particles sensor integrated with substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178830A (en) * 1994-12-26 1996-07-12 Sanyo Electric Co Ltd Detector
JP2004117155A (en) * 2002-09-26 2004-04-15 Toshihiko Yoshino Gas and particulate density measuring apparatus
JP2008008911A (en) * 2003-10-23 2008-01-17 Martin Terence Cole Chamber constitution for detecting particle, particle detector, smoke detector, and method of making fluid flow in detection zone of particle detector
WO2008042199A2 (en) * 2006-09-29 2008-04-10 Cyberoptics Semiconductor, Inc. Particles sensor integrated with substrate
JP2010505118A (en) * 2006-09-29 2010-02-18 サイバーオプティクス セミコンダクタ インコーポレイテッド Particle sensor integrated with substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364317A (en) * 2013-07-22 2013-10-23 南通大学 Optical system for detecting size and shape of micro-particles
CN104390897A (en) * 2013-07-22 2015-03-04 南通大学 Beam homogeneity improved optical system for detecting size and shape of microparticle
CN104458510A (en) * 2013-07-22 2015-03-25 南通大学 Particle size and shape detection optical system capable of improving detection accuracy
JP2015138002A (en) * 2014-01-24 2015-07-30 株式会社島津製作所 Particle size measuring device, particle size measuring method, and particle size measuring program
KR20190084691A (en) * 2018-01-09 2019-07-17 채규욱 Optical fine dust sensor
KR102153640B1 (en) 2018-01-09 2020-09-08 채규욱 Optical fine dust sensor

Similar Documents

Publication Publication Date Title
US10481070B2 (en) Systems, devices, and methods for flow control and sample monitoring control
US20170322123A1 (en) System and method of conducting particle monitoring using low cost particle sensors
DK2706515T3 (en) Apparatus and method for detecting light scattering signals
CN108205867A (en) A kind of incipient fire smoke detection method for having interference particle identification ability
JP2786187B2 (en) Particle size detector
US7973929B2 (en) System and method for calibration verification of an optical particle counter
JP2007057360A (en) Particle detector and particle detecting method used therein
CN104345018B (en) A kind of streaming particulate matter measuring instrument based on detector array
JP2011095022A (en) Particle sensor
JP2001330486A (en) Optical flow sensor and method for measuring flow velocity of gas in predetermined flow direction of gas
JP6126400B2 (en) Biological particle counting system and biological particle counting method
CN106950162B (en) Particle counting method and system
AU2014372312B2 (en) Radiation detection apparatus and method
JP2023086777A (en) Chamberless smoke detector with indoor air quality detection and monitoring
JP3532274B2 (en) Particle detector
JPH05506503A (en) Diversion for uniform multi-sensor detection
CN102323193A (en) Measurement method for air particle distribution through laser light scattering method, and apparatus thereof
WO2017060164A1 (en) Optical sensor for particle detection
JP2010151811A (en) Particle counter
CN205103129U (en) Novel particulate matter sensor
KR20160109120A (en) Transmission-Type Optical Dust Detecting Device
JP2007278858A (en) Fog particle sensor and fog sensor
CN108120659A (en) A kind of particle concentration detecting system and method having from zero calibration
CN110095390A (en) Measuring device, environment measurement equipment and measurement method
KR20200084143A (en) Fine particle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224