JP2011094202A - Resin-coated aluminum alloy sheet for beverage can barrel, and method for producing the same - Google Patents
Resin-coated aluminum alloy sheet for beverage can barrel, and method for producing the same Download PDFInfo
- Publication number
- JP2011094202A JP2011094202A JP2009250680A JP2009250680A JP2011094202A JP 2011094202 A JP2011094202 A JP 2011094202A JP 2009250680 A JP2009250680 A JP 2009250680A JP 2009250680 A JP2009250680 A JP 2009250680A JP 2011094202 A JP2011094202 A JP 2011094202A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mass
- strength
- less
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本願発明は、飲料缶胴用などとして好適な樹脂被覆アルミニウム合金板およびその製造方法に関するものである。 The present invention relates to a resin-coated aluminum alloy plate suitable for beverage can bodies and the like, and a method for producing the same.
飲料缶等には、アルミニウム合金板に塗油を施し、カッピング、DI(Drawing and Ironing:深絞りとしごき)成形を施して缶胴とし、トリミング、洗浄、乾燥、外面および内面塗装焼付処理、ネッキングおよびフランジ加工を行い、これに飲料充填、缶蓋の巻き締めを行った2ピ−ス缶が多く用いられている。また、最近では生産性向上および作業環境改善を目的に、DI成形前のアルミニウム合金板に樹脂フィルムを被覆し、DI成形後の洗浄、乾燥、外面および内面塗装焼付の工程を省略する方法がとられるようになっている。前記のアルミニウム合金板はアルミニウム合金鋳塊を均質化処理後に熱間圧延を行い、必要に応じて焼鈍を施し、次いで冷間圧延を行うことで製造される。(以下、最終板厚まで冷間圧延したアルミニウム合金板を素板という。) For beverage cans, etc., oil is applied to an aluminum alloy plate, cupping and DI (Drawing and Ironing) molding is performed to form a can body, trimming, washing, drying, outer and inner surface baking treatment, necking In addition, two-piece cans that have been subjected to flange processing, beverage filling, and can lid tightening are often used. Recently, for the purpose of improving productivity and working environment, a method of coating an aluminum alloy plate before DI molding with a resin film and omitting the steps of cleaning, drying, outer surface and inner surface coating baking after DI molding, and so on. It is supposed to be. The aluminum alloy plate is manufactured by subjecting an aluminum alloy ingot to homogenization, hot rolling, annealing as necessary, and then cold rolling. (Hereinafter, an aluminum alloy plate cold-rolled to the final thickness is referred to as a base plate.)
近年、飲料缶のコストダウンの必要性から、飲料缶胴用アルミニウム合金板は薄肉化と高強度化が進んでいる。加えて、成形加工時には成形加工性が良く、さらに塗装焼付処理時の加熱による強度低下がない等の特性が要求されている。 In recent years, aluminum alloy plates for beverage can bodies have been made thinner and higher in strength because of the need for cost reduction of beverage cans. In addition, characteristics such as good moldability at the time of molding, and no reduction in strength due to heating at the time of paint baking are required.
従来、上記用途にはAl−Mn−Mg系のJIS3004合金等の非熱処理型アルミニウム合金が用いられていた。しかし、JIS3004合金の場合には塗装焼付処理による加熱により強度低下が生じ、また塗装焼付処理後の強度を確保するために素板の強度を上げれば成形加工時の成形性に問題を生じるというような欠点があった。 Conventionally, non-heat-treatable aluminum alloys such as Al-Mn-Mg-based JIS3004 alloy have been used for the above applications. However, in the case of JIS3004 alloy, the strength is reduced by heating due to the coating baking process, and if the strength of the base plate is increased in order to ensure the strength after the coating baking process, there will be a problem in the formability during the molding process. There were some disadvantages.
一方、特許文献1〜4に示されるように時効硬化により塗装焼付処理後の強度向上を図ることができるAl−Mg−Si系合金を使用した缶胴用のアルミニウム合金板の提案もなされている。 On the other hand, as shown in Patent Documents 1 to 4, proposals have been made on aluminum alloy plates for can bodies using Al-Mg-Si alloys that can improve the strength after baking treatment by age hardening. .
特許文献2ではMg、Siに加え、Mn、Zn、Fe、Ti、Cu、Bなどの成形性あるいは強度の向上に寄与する合金元素の含有量を規定し、さらに溶体化処理温度、最終圧延率を規定したアルミニウム合金板およびその製造方法が示されている。また、特許文献3では、成形性を向上させるため、溶体化処理後の析出処理条件を規定したアルミニウム合金板の製造方法が示されており、特許文献4では、成形性を向上させるため、中間焼鈍後の冷間圧延条件を規定したアルミニウム合金板の製造方法が示されている。 In Patent Document 2, in addition to Mg and Si, the content of alloy elements that contribute to the improvement of formability or strength such as Mn, Zn, Fe, Ti, Cu, and B is specified, and further, the solution treatment temperature and the final rolling rate The aluminum alloy plate which prescribes | regulates and the manufacturing method are shown. Further, Patent Document 3 discloses a method for producing an aluminum alloy plate in which conditions for precipitation treatment after solution treatment are defined in order to improve formability, and Patent Document 4 describes an intermediate method for improving formability. A method for producing an aluminum alloy sheet in which the cold rolling conditions after annealing are defined is shown.
しかし、特許文献1〜4の方法は、いずれもアルミニウム合金板中の合金元素の固溶および析出状態は厳密に規定されてはおらず、特許文献3、特許文献4の方法でも、素板の固溶析出状態を示す具体的な指標が開示されていないため、強度および成形性がともに優れるアルミニウム合金板を得る点では未だ不充分であり改善の余地があった。 However, none of the methods of Patent Literatures 1 to 4 strictly defines the solid solution and precipitation state of the alloy elements in the aluminum alloy plate. Even the methods of Patent Literature 3 and Patent Literature 4 do not fix the solid plate. Since a specific index indicating the precipitation state is not disclosed, there is still room for improvement because it is still insufficient for obtaining an aluminum alloy sheet excellent in both strength and formability.
本願発明は、以上の従来技術における問題に鑑み、DI成形後に塗装焼付処理を施す飲料缶胴用に好適な、強度および成形性の優れた樹脂被覆アルミニウム合金板およびその製造方法を提供することを目的とする。 In view of the above problems in the prior art, the present invention provides a resin-coated aluminum alloy plate excellent in strength and formability suitable for a beverage can body subjected to paint baking after DI molding and a method for producing the same. Objective.
発明者らは、上記目的を達成するため鋭意研究を行った結果、Al−Mg−Si系の熱処理型アルミニウム合金を用いることにより、強度および成形性に優れ、さらに従来の合金よりも塗装焼付処理後の強度に優れる樹脂被覆アルミニウム合金板とその製造方法を見出し、本願発明に至ったものである。 As a result of intensive research to achieve the above object, the inventors have achieved excellent strength and formability by using an Al—Mg—Si heat-treatable aluminum alloy, and further have a paint baking treatment compared to conventional alloys. The present inventors have found a resin-coated aluminum alloy plate excellent in strength later and a method for producing the same, and have arrived at the present invention.
すなわち、請求項1の発明は、樹脂被覆アルミニウム合金板において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下、Mnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなり、最終板厚での引張強さが270MPa以上380MPa以下、かつ導電率が40%IACS以上50%IACS以下であることを特徴とする樹脂被覆アルミニウム合金板である。 That is, the invention of claim 1 is a resin-coated aluminum alloy plate, wherein Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, and Cu is 0.01 mass% or more. 0.4 mass% or less, Mn 0.01 mass% or more and less than 0.4 mass%, consisting of the balance Al and unavoidable impurities, tensile strength at the final plate thickness of 270 MPa or more and 380 MPa or less, and electrical conductivity of 40 It is a resin-coated aluminum alloy plate characterized by being from% IACS to 50% IACS.
また、請求項2に記載の発明は、請求項1記載のアルミニウム合金板の製造方法において、前記合金組成を有する鋳塊に500℃以上560℃以下の温度で1時間以上48時間以内の均質化処理を行った後、熱間粗圧延を行い、続いて圧延終了温度を280℃未満とした熱間仕上圧延を施した後、冷間圧延を行い、かつ前記熱間仕上圧延後の冷間圧延前、もしくは冷間圧延の途中で、450℃以上580℃以下の温度で2分間以内に保持する溶体化処理を施し、さらに最終板厚としたアルミニウム合金板に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法である。 The invention according to claim 2 is the method for producing an aluminum alloy plate according to claim 1, wherein the ingot having the alloy composition is homogenized at a temperature of 500 ° C. to 560 ° C. for 1 hour to 48 hours. After the treatment, hot rough rolling is performed, followed by hot finish rolling with a rolling end temperature of less than 280 ° C., cold rolling, and cold rolling after the hot finish rolling. It is characterized in that a solution treatment is performed for 2 minutes or less at a temperature of 450 ° C. or more and 580 ° C. or less in the middle of cold rolling, and a resin film is coated on an aluminum alloy plate having a final thickness. This is a method for producing a resin-coated aluminum alloy plate.
本願発明におけるアルミニウム合金は、Mg、SiおよびCuを適量含有することにより、DI成形後の塗装焼付処理によりMg−Si系化合物あるいはMg−Cu系化合物をアルミニウム合金板中に微細析出させ、塗装焼付処理後に強度の優れた缶胴を得ることができる。また、本願発明では素板での引張強さおよび導電率を規定することにより、強度および成形性のバランスに優れた樹脂被覆アルミニウム合金板が得られる。 The aluminum alloy in the present invention contains Mg, Si, and Cu in appropriate amounts, so that the Mg-Si compound or Mg-Cu compound is finely precipitated in the aluminum alloy plate by the coating baking process after DI molding, and the coating baking is performed. A can body having excellent strength can be obtained after the treatment. Moreover, in this invention, the resin-coated aluminum alloy plate excellent in the balance of intensity | strength and a moldability is obtained by prescribing | regulating the tensile strength and electrical conductivity in a base plate.
まず本願発明におけるアルミニウム合金の成分組成の限定理由について説明する。 First, the reasons for limiting the component composition of the aluminum alloy in the present invention will be described.
MgはAlマトリックス中に固溶し、素板の強度を高めるとともに、SiおよびCuとの共存によりMg−Si系化合物あるいはMg−Cu系化合物を析出させて素板の強度を向上させる効果がある。本願発明のように塗装焼付処理を施す用途においては、塗装焼付処理前の成形時には軟らかく、成形後の塗装焼付処理による加熱によりMg−Si系化合物あるいはMg−Cu系化合物が微細に析出し強度を高める。Mgの含有量が0.4mass%未満では強化するには効果が少なく、0.8mass%を超えると素板の強度が高くなりすぎるとともに、加工硬化が強くなりすぎて成形性が低下する。 Mg is dissolved in the Al matrix to increase the strength of the base plate, and has the effect of improving the strength of the base plate by precipitating Mg-Si compounds or Mg-Cu compounds in the presence of Si and Cu. . In applications where the coating baking treatment is performed as in the present invention, it is soft at the time of molding before the coating baking treatment, and the Mg-Si compound or Mg-Cu compound is finely precipitated by heating due to the coating baking treatment after molding, and the strength is increased. Increase. If the Mg content is less than 0.4 mass%, there is little effect for strengthening, and if it exceeds 0.8 mass%, the strength of the base plate becomes too high, and the work hardening becomes too strong and the formability is lowered.
SiはMgとともにMg−Si系化合物を析出させて素板の強度を向上させる効果がある。Siの含有量が0.5mass%以下では強化するには効果が少なく、1.5mass%を超えるとMg−Si系化合物に加えて、化合物を形成しない単体のSiが析出するため、素板の強度が高くなりすぎて成形性が低下する。 Si has an effect of improving the strength of the base plate by precipitating Mg—Si based compounds together with Mg. When the Si content is 0.5 mass% or less, there is little effect for strengthening, and when it exceeds 1.5 mass%, in addition to the Mg-Si-based compound, single Si that does not form a compound precipitates. The strength becomes too high and the moldability is lowered.
CuはMgとの共存によりMg−Cu系化合物を析出させて素板の強度を向上させる効果がある。Cuの含有量が0.01mass%未満では充分な効果が得られず、0.4mass%を超えると、素板の強度が高くなりすぎて成形性を阻害するとともに、耐食性が劣化する。 Cu has the effect of improving the strength of the base plate by precipitating a Mg—Cu compound by coexistence with Mg. If the Cu content is less than 0.01 mass%, a sufficient effect cannot be obtained. If the Cu content exceeds 0.4 mass%, the strength of the base plate becomes too high to inhibit the formability and the corrosion resistance deteriorates.
Mnは強度向上に寄与するとともに、再結晶粒の微細化により成形性を向上させるのに有効な元素である。Mnの含有量が0.01mass%未満では充分な効果が得られず、0.4mass%以上では、晶析出物が多くなりすぎて成形性を阻害するとともに、晶析出物を形成するためにSiが消費され、マトリックス中に固溶するSi量が減少するため時効硬化による強度の向上が望めなくなる。 Mn contributes to strength improvement and is an effective element for improving moldability by recrystallized grain refinement. If the Mn content is less than 0.01 mass%, a sufficient effect cannot be obtained. If the Mn content is 0.4 mass% or more, the amount of crystal precipitates increases so as to inhibit the formability and Si precipitates to form crystal precipitates. Is consumed, and the amount of Si dissolved in the matrix decreases, so that it is not possible to improve the strength by age hardening.
また、一般のアルミニウム合金では、鋳造組織を微細化するためにTi、あるいはTiおよびBを微量添加することがあり、本願発明においても微量のTi、あるいはTiおよびBを含有してもよい。ただし、Tiの含有量が0.0001mass%未満ではその効果が得られず、0.2mass%を超えると粗大なTiAl3晶出物が生じ、成形性を阻害するため、Tiの含有量は0.0001mass%以上0.2mass%以下の範囲内とすることが好ましい。また、結晶粒微細化効果向上のためにTiとともにBを添加する場合、Bの含有量が0.0001mass%未満ではその効果が得られず、0.05mass%を超えるとTiB2の粗大粒子が混入して成形性を阻害する。従って、Bの含有量は0.0001mass%以上0.05mass%以下の範囲内とすることが好ましい。 Further, in a general aluminum alloy, a small amount of Ti or Ti and B may be added in order to refine the cast structure. In the present invention, a small amount of Ti or Ti and B may be contained. However, when the Ti content is less than 0.0001 mass%, the effect cannot be obtained. When the Ti content exceeds 0.2 mass%, a coarse TiAl 3 crystallized product is formed and the formability is inhibited, so the Ti content is 0. It is preferable to be within the range of .0001 mass% to 0.2 mass%. Also, when adding B with Ti for grain refining effect improved, the content of B can not be obtained, the effect is less than 0.0001Mass%, coarse particles exceeds 0.05 mass% TiB 2 is Impairs moldability by mixing. Accordingly, the B content is preferably in the range of 0.0001 mass% to 0.05 mass%.
なお、本願発明において、Feが含有される場合は0.01mass%〜0.5mass%とする。また、その他不純物元素もそれぞれ0.1mass%以下でかつ合計で0.5mass%以下なら含まれていても差し支えない。 In addition, in this invention, when Fe contains, it is set as 0.01 mass%-0.5 mass%. Further, other impurity elements may be included if they are each 0.1 mass% or less and a total of 0.5 mass% or less.
本願発明の樹脂被覆アルミニウム合金板は、前記成分組成のみならず、素板の引張強さおよび導電率を規定している。引張強さおよび導電率の規定理由について説明する。 The resin-coated aluminum alloy plate of the present invention defines not only the above component composition but also the tensile strength and conductivity of the base plate. The reasons for defining the tensile strength and conductivity will be described.
素板の引張強さは、DI成形時の成形性および塗装焼付処理後の缶胴材の耐圧強度に影響する。引張強さが270MPa未満では缶胴材の耐圧強度が確保できず、380MPaを超えるとDI成形時の成形性が低下する。従って、素板の引張強さは、270MPa以上380MPa以下とする。更に好ましくは、270MPa以上380MPaである。 The tensile strength of the base plate affects the moldability at the time of DI molding and the pressure resistance strength of the can body after the coating baking process. If the tensile strength is less than 270 MPa, the pressure resistance strength of the can body material cannot be ensured, and if it exceeds 380 MPa, the moldability during DI molding is lowered. Therefore, the tensile strength of the base plate is set to 270 MPa or more and 380 MPa or less. More preferably, it is 270 MPa or more and 380 MPa.
素板の導電率は、DI成形時の成形性および塗装焼付処理後の缶胴材の耐圧強度に影響する。導電率は、合金元素のAlマトリックス中への固溶量あるいは析出量に関係し、固溶量が多いほど、あるいは析出量が少ないほど導電率は低くなる。本願発明においては、溶体化処理によりMg、SiおよびCuをAlマトリックス中に固溶させるが、これらの固溶量が多ければ塗装焼付処理時の加熱により前記元素の化合物が析出物として析出し、塗装焼付処理後の強度が向上する。すなわち高い時効硬化性を得ることができる。導電率が50%IACSを越える場合には、前記元素の固溶量が少ないために塗装焼付処理後の強度上昇が少なく、時効硬化性が劣る。また、前記元素の化合物からなる析出物量が多いためにDI成形時の成形性が低下する。一方、導電率が40%IACS未満の場合には、前記元素の固溶量が多くなるため、素板の強度が高すぎるとともに、加工硬化により成形性が低下する。 The conductivity of the base plate affects the moldability during DI molding and the pressure resistance of the can body after the paint baking process. The electrical conductivity is related to the solid solution amount or precipitation amount of the alloy element in the Al matrix. The greater the solid solution amount or the smaller the precipitation amount, the lower the conductivity. In the present invention, Mg, Si and Cu are dissolved in the Al matrix by solution treatment. If the amount of these solid solutions is large, the compound of the element is deposited as a precipitate by heating during the coating baking process, Strength after paint baking is improved. That is, high age-hardening property can be obtained. When the electrical conductivity exceeds 50% IACS, the solid solution amount of the element is small, so that the strength increase after the baking treatment is small, and the age hardening is inferior. Moreover, since the amount of precipitates composed of the compound of the element is large, the moldability during DI molding is lowered. On the other hand, when the electrical conductivity is less than 40% IACS, the solid solution amount of the element increases, so that the strength of the base plate is too high and the formability is lowered by work hardening.
次に本願発明合金板の製造方法について説明する。 Next, the manufacturing method of this invention alloy plate is demonstrated.
まず、上記の合金組成を有するアルミニウム合金溶湯を常法に従ってDC鋳造(半連続鋳造)する。 First, DC casting (semi-continuous casting) of a molten aluminum alloy having the above alloy composition is performed according to a conventional method.
均質化処理は鋳塊の偏析を均質化する目的を有する。特に本発明ではMg、Si、Cuの固溶を促進させ、溶体化処理時における溶体化効果を容易にならしめる効果を有する。均質化処理温度が500℃未満では、前記元素の固溶が不充分であるとともに、前記元素からなる化合物が粗大に析出するため、後工程での溶体化処理において固溶が進まず充分な溶体化効果が得られない。560℃を超えると鋳塊内部に局部的な共晶溶融が生じてしまい好ましくない。また、均質化処理の保持時間が1時間未満では前記目的が達成されず、48時間を越えると経済性が悪化する。したがって、均質化処理条件は500℃以上560℃以下の温度範囲で1時間以上48時間以内の保持時間が望ましい。さらに好ましくは3時間以上6時間以内である。 The homogenization treatment has the purpose of homogenizing the segregation of the ingot. In particular, the present invention has an effect of promoting solid solution of Mg, Si, and Cu and facilitating the solution effect during the solution treatment. When the homogenization treatment temperature is less than 500 ° C., the solid solution of the element is insufficient and the compound composed of the element precipitates coarsely, so that the solid solution does not progress in the solution treatment in the subsequent step and the solution is sufficient. The effect cannot be obtained. If it exceeds 560 ° C., local eutectic melting occurs in the ingot, which is not preferable. Moreover, the said objective will not be achieved if the retention time of a homogenization process is less than 1 hour, and economical efficiency will deteriorate when it exceeds 48 hours. Therefore, the homogenization conditions are preferably a holding time of not less than 1 hour and not more than 48 hours in a temperature range of 500 ° C. to 560 ° C. More preferably, it is 3 hours or more and 6 hours or less.
上記均質化処理の後に引き続き熱間粗圧延及び熱間仕上圧延を行う。熱間仕上圧延の終了温度が280℃以上では、熱間圧延終了時にその余熱によりMg−Si系化合物あるいはMg−Cu系化合物が粗大に析出するため、後工程での溶体化処理において固溶させきれず充分な溶体化効果が得られない。従って、熱間仕上圧延終了温度は280℃未満が望ましい。但し、熱延性を考慮すると200℃以上とすることが好ましい。なお、前記温度範囲にするためには、潤滑油の使用量、クーラント及び各圧下率の配分、圧延速度等が調整される。
また、熱間仕上圧延上がりの板厚は、巻取性を考慮すると10mm以下が好ましい。
After the homogenization treatment, hot rough rolling and hot finish rolling are performed. When the finish temperature of hot finish rolling is 280 ° C. or higher, the Mg—Si compound or Mg—Cu compound is coarsely precipitated by the residual heat at the end of hot rolling, so that it is dissolved in the solution treatment in the subsequent process. A sufficient solution effect cannot be obtained. Therefore, the finish temperature for hot finish rolling is preferably less than 280 ° C. However, considering the hot ductility, it is preferably 200 ° C. or higher. In addition, in order to make it into the said temperature range, the usage-amount of lubricating oil, distribution of a coolant and each rolling reduction, a rolling speed, etc. are adjusted.
Further, the plate thickness after hot finish rolling is preferably 10 mm or less in consideration of the winding property.
熱間仕上圧延後冷間圧延前あるいは冷間圧延の途中で溶体化処理を施す。溶体化処理は合金中へのMg、SiおよびCuの固溶促進のため、加熱温度を450℃以上580℃以下が好ましい。450℃未満ではMg、SiおよびCuの固溶が充分に行われず強度向上に寄与しなくなるともに、塗装焼付処理時の加熱により時効硬化性が低下する。一方、580℃を超える温度ではバ−ニングによるMgの局部的な溶融が起こるとともに、塗装焼付処理後の強度が高くなり過ぎ、成形性が低下してしまう。加熱保持時間は2分間以内が好ましい。2分間を越える保持を行っても溶体化処理の効果が飽和してしまうため不経済である。また、過度に長い時間の保持を行うと結晶粒の粗大化によって最終板の外観劣化、あるいは成形性が低下する等の不具合が発生する場合がある。溶体化処理方法は急速加熱、急速冷却する連続焼鈍が結晶粒微細化による成形性の向上、および生産性向上の点から望ましい。また溶体化加熱後の冷却過程でのMg−Si系化合物あるいはMg−Cu系化合物の析出を防ぎ最終板の強度を確保する見地から1℃/sec以上の冷却速度で100℃以下まで冷却することが好ましい。 Solution treatment is performed after hot finish rolling and before cold rolling or during cold rolling. In the solution treatment, the heating temperature is preferably 450 ° C. or higher and 580 ° C. or lower in order to promote solid solution of Mg, Si and Cu in the alloy. If it is less than 450 ° C., Mg, Si and Cu are not sufficiently dissolved and do not contribute to improvement of strength, and age hardening is reduced by heating during the coating baking process. On the other hand, when the temperature exceeds 580 ° C., local melting of Mg due to burning occurs, and the strength after the coating baking process becomes too high, and the moldability is lowered. The heating and holding time is preferably within 2 minutes. Even if holding for more than 2 minutes, the effect of the solution treatment is saturated, which is uneconomical. Further, if the holding time is excessively long, problems such as deterioration of the appearance of the final plate or deterioration of formability may occur due to the coarsening of crystal grains. As the solution treatment method, rapid heating and rapid cooling and continuous annealing are desirable from the viewpoint of improving formability and improving productivity by refining crystal grains. Also, cooling to 100 ° C. or less at a cooling rate of 1 ° C./sec or more from the standpoint of preventing the precipitation of Mg—Si compound or Mg—Cu compound in the cooling process after solution heating and ensuring the strength of the final plate. Is preferred.
溶体化処理後の冷間圧延は、最終板厚までの圧延率を30%以上とするのが好ましい。30%未満では充分な加工硬化が得られず強度を確保できない。 In the cold rolling after the solution treatment, the rolling rate up to the final thickness is preferably 30% or more. If it is less than 30%, sufficient work hardening cannot be obtained and the strength cannot be ensured.
最終板厚まで冷間圧延を行ったアルミニウム合金板に対して、樹脂フィルムを被覆する。本願発明において、樹脂フィルムには、ビスフェノールAなどの有害な環境ホルモンの放出の少ない、ポリエステル系、ポリオレフィン系、またはポリアミド系が好適である。一般に樹脂フィルムは優れた加工性を有しているため、缶胴成形前のアルミニウム合金板に予め施すことが可能であり、DI成形性の向上も期待できる。缶胴成形後に防食性の保護塗装を施す場合に比して、塗装工程の能率化及び簡略化が可能となり、生産性の向上の点からも望ましい。 A resin film is coated on the aluminum alloy plate that has been cold-rolled to the final thickness. In the present invention, the resin film is preferably a polyester, polyolefin, or polyamide system that releases less harmful environmental hormones such as bisphenol A. In general, since a resin film has excellent workability, it can be applied in advance to an aluminum alloy plate before can body molding, and improvement in DI moldability can also be expected. Compared with the case where anticorrosive protective coating is applied after can body molding, the efficiency and simplification of the coating process can be achieved, which is desirable from the viewpoint of improving productivity.
樹脂被覆の前処理として、化成皮膜または陽極酸化皮膜を被覆すると樹脂フィルムとの密着性が向上する。特に化成皮膜は、簡略な設備で形成でき、コスト的にも有利なため、工業上特に望ましいと言える。化成皮膜はリン酸亜鉛法、ベーマイト法、MBV法、またはEW法(アルカリークロム酸塩系)、アロヂン法(クロム酸塩系、リン酸―クロム酸塩系)などの化成処理により形成される。陽極酸化皮膜は硫酸、しゅう酸、クロム酸、有機酸などの電解液を用いた陽極酸化処理により形成される。 As a pretreatment for resin coating, coating with a chemical conversion film or an anodized film improves the adhesion to the resin film. In particular, the chemical conversion film can be formed with simple equipment and is advantageous in terms of cost. The chemical conversion film is formed by chemical conversion treatment such as zinc phosphate method, boehmite method, MBV method, EW method (alkali-chromate system), allodyne method (chromate system, phosphate-chromate system), etc. . The anodized film is formed by anodizing using an electrolytic solution such as sulfuric acid, oxalic acid, chromic acid, or organic acid.
被覆方法は樹脂フィルムの融点以上に加熱して熱圧着する方法が好ましい。熱圧着温度が200℃未満では充分な密着性が得られず、DI成形時に剥離が生じるおそれがある。一方、300℃を超える温度では、樹脂フィルムが変質してしまう。したがって、樹脂フィルムを熱圧着する温度は、200℃以上300℃以下が好ましい。 The coating method is preferably a method in which the resin film is heated to the melting point or higher and thermocompression bonded. If the thermocompression bonding temperature is less than 200 ° C., sufficient adhesion cannot be obtained, and peeling may occur during DI molding. On the other hand, at a temperature exceeding 300 ° C., the resin film is altered. Therefore, the temperature for thermocompression bonding the resin film is preferably 200 ° C. or higher and 300 ° C. or lower.
本願発明においては、樹脂フィルムを熱圧着する際の加熱により、Mg−Si系化合物あるいはMg−Cu系化合物の微細析出が起こり、時効硬化による強度の向上が期待できる。なお、前記時効硬化により、DI成形前の強度が多少高くなっても、上記のとおり樹脂フィルムを被覆することによって、DI成形時の成形性が向上するため、樹脂被覆アルミニウム合金板をDI成形する際に成形性は損なわれない。したがって、樹脂フィルムを被覆することによって、より高強度で薄肉化した缶胴を実現できる。 In the present invention, fine precipitation of the Mg—Si-based compound or Mg—Cu-based compound occurs by heating at the time of thermocompression bonding of the resin film, and an improvement in strength due to age hardening can be expected. In addition, even if the strength before DI molding is somewhat increased due to the age hardening, the resin-coated aluminum alloy plate is DI molded because the moldability during DI molding is improved by coating the resin film as described above. In this case, the moldability is not impaired. Therefore, by coating the resin film, it is possible to realize a can barrel having a higher strength and a thinner wall.
樹脂フィルムの厚さが10μm未満では膜厚が薄すぎて成形加工時に破れるおそれがあり、30μmを超えるとコスト高になる。このため樹脂フィルムの厚さは10〜30μmが望ましい。 If the thickness of the resin film is less than 10 μm, the film thickness is too thin and may be broken during the molding process, and if it exceeds 30 μm, the cost increases. For this reason, as for the thickness of a resin film, 10-30 micrometers is desirable.
本願発明においては素板に樹脂被覆する前100℃以上250℃以下で1時間以上24時間未満の熱処理を施してもよい。この熱処理はMg−Si系化合物あるいはMg−Cu系化合物の微細析出を図るためであり、最終板の強度をさらに向上させ、塗装焼付処理後に所望の強度を得ることができる。100℃未満あるいは1時間未満では強度の向上効果が充分に得られない。一方、250℃を越えると前記化合物が粗大化して成形性を阻害する可能性がある。また、24時間を越えると上記効果が飽和してしまうため、不経済である。なお、前記熱処理による時効硬化により強度が向上しても、その後樹脂被覆されるため、DI成形する際に成形性は損なわれない。 In the present invention, the base plate may be subjected to heat treatment at 100 ° C. or more and 250 ° C. or less for 1 hour or more and less than 24 hours before resin coating. This heat treatment is for fine precipitation of the Mg—Si based compound or the Mg—Cu based compound, and can further improve the strength of the final plate and obtain a desired strength after the coating baking treatment. If it is less than 100 ° C. or less than 1 hour, the effect of improving the strength cannot be sufficiently obtained. On the other hand, if it exceeds 250 ° C., the compound may be coarsened to impair moldability. Moreover, since the said effect will be saturated when it exceeds 24 hours, it is uneconomical. In addition, even if the strength is improved by age hardening by the heat treatment, since the resin is then coated, the moldability is not impaired during DI molding.
また、飲料缶等では、DI成形後に150℃以上250℃以下で3〜10分間程度加熱する塗装焼付処理を行うのが通常である。前記溶体化処理によりMg、SiおよびCuが充分に固溶されているため、塗装焼付処理により、Mg−Si系化合物あるいはMg−Cu系化合物の微細析出が起こり、時効硬化による強度の向上が期待できる。 In addition, in beverage cans and the like, it is usual to perform a paint baking process of heating at 150 ° C. or higher and 250 ° C. or lower for about 3 to 10 minutes after DI molding. Since Mg, Si, and Cu are sufficiently dissolved by the solution treatment, fine precipitation of Mg-Si compounds or Mg-Cu compounds occurs due to the coating baking process, and an improvement in strength due to age hardening is expected. it can.
表1に示す組成のアルミニウム合金をDC鋳造法により厚さ500mmの鋳塊とした。次いでそれらを表2に示す工程に従ってアルミニウム合金板とした。なお、表1に示す組成において、成分の含有量が0.001mass%未満の場合は「−」と表記した。 An aluminum alloy having a composition shown in Table 1 was formed into an ingot having a thickness of 500 mm by a DC casting method. Then, they were made into aluminum alloy plates according to the steps shown in Table 2. In addition, in the composition shown in Table 1, when the content of the component was less than 0.001 mass%, it was described as “−”.
表2に示す製造工程aは、本願発明の第2発明であり、上記合金鋳塊に560℃で6時間の均質化処理を施したのち熱間仕上圧延の終了温度を270℃とし、厚さ2mmの板に圧延し、次いで冷間圧延により厚さ0.6mmの板に圧延したのち連続焼鈍炉により550℃で2分間の溶体化処理を施し、空冷後冷間圧延により厚さ0.3mmの板に圧延する。その後、両面に前処理としてアルカリエッチング後リン酸クロメート処理を施してCrを15mg/cm2の厚さに形成し、次いで厚さ15μmの樹脂フィルムを270℃で熱圧着し、樹脂被覆アルミニウム合金板を製造した。 The manufacturing process a shown in Table 2 is the second invention of the present invention, and after the homogenization treatment is performed at 560 ° C. for 6 hours on the alloy ingot, the finish temperature of hot finish rolling is 270 ° C. Rolled to a 2 mm plate, then rolled to a 0.6 mm thick plate by cold rolling, then subjected to a solution treatment at 550 ° C. for 2 minutes in a continuous annealing furnace, then cooled to 0.3 mm thick by air rolling and cold rolling. Roll to plate. Thereafter, both surfaces are subjected to alkali etching and phosphoric acid chromate treatment as a pretreatment to form Cr to a thickness of 15 mg / cm 2 , and then a thermocompression bonding of a 15 μm thick resin film at 270 ° C. Manufactured.
また、製造工程bは、熱間圧延後冷間圧延に先立って溶体化処理を施す工程である。連続焼鈍炉により520℃の溶体化処理を施したのち空冷後冷間圧延により厚さ0.3mmの板に圧延し、前記製造工程aと同様に樹脂被覆アルミニウム合金板を製造した。 Moreover, the manufacturing process b is a process which performs a solution treatment prior to cold rolling after hot rolling. A solution treatment at 520 ° C. was performed in a continuous annealing furnace, and then air-cooled and then rolled into a 0.3 mm thick plate by cold rolling to produce a resin-coated aluminum alloy plate in the same manner as in the production step a.
また、製造工程cは、本願発明の実施の一態様として、厚さ0.3mmに圧延したアルミニウム合金板に120℃×2hrの熱処理を施す工程である。熱処理を施したのち前記製造工程aと同様に樹脂被覆アルミニウム合金板を製造した。 Moreover, the manufacturing process c is a process which heat-processes 120 degreeC x 2 hours to the aluminum alloy plate rolled to thickness 0.3mm as one aspect | mode of implementation of this invention. After the heat treatment, a resin-coated aluminum alloy plate was produced in the same manner as in production step a.
製造工程d〜gは、本願発明の比較例としての製造工程である。製造工程dは、均質化処理温度が480℃と低い。製造工程eは、熱間仕上圧延の終了温度が300℃と高い。製造工程fは、溶体化処理温度が590℃と高い。製造工程gは、最終板厚に冷間圧延を行うまでは製造工程aと同様であるが、その後樹脂フィルムを被覆しない工程である。 Manufacturing steps d to g are manufacturing steps as comparative examples of the present invention. In the manufacturing process d, the homogenization temperature is as low as 480 ° C. In the manufacturing process e, the finishing temperature of hot finish rolling is as high as 300 ° C. In the manufacturing process f, the solution treatment temperature is as high as 590 ° C. The manufacturing process g is the same as the manufacturing process a until cold rolling is performed to the final plate thickness, but is a process that does not cover the resin film thereafter.
以上の製造工程からなるアルミニウム合金板について強度、導電率、DI成形性の代替評価として、しごき成形性及び耐圧強度を評価した。結果を表3に示す。なお、前記の各特性値は次の方法により測定した。 As an alternative evaluation of the strength, electrical conductivity, and DI formability, the iron formability and the pressure strength were evaluated for the aluminum alloy plate composed of the above manufacturing process. The results are shown in Table 3. Each characteristic value was measured by the following method.
強度:JIS5号試験片を用いて引張試験を行い、素板(樹脂被覆前の厚さ0.3mmアルミニウム合金板)の引張強度を測定した。 Strength: A tensile test was performed using a JIS No. 5 test piece, and the tensile strength of the base plate (thickness 0.3 mm aluminum alloy plate before resin coating) was measured.
導電率:素板について渦電流導電率測定装置を用いて、銅を基準試料として測定した。 Conductivity: The base plate was measured using an eddy current conductivity measuring apparatus with copper as a reference sample.
しごき成形性:樹脂被覆アルミニウム合金板について、第一しごきおよび第二しごきのダイス内径を変化させることで、第三しごきのしごき率を変化させていき、成形できる最大のしごき率を限界しごき率とした。具体的には、しごき率(%)={1−(第三しごき後の缶胴側壁厚さ)/(第二しごき後の缶胴側壁厚さ)}×100で求め、限界しごき率が46.5%以上を「○」、46.5%未満を「×」とした。 Ironing formability: For resin-coated aluminum alloy plates, changing the inner diameter of the first ironing iron and the second ironing iron changes the ironing ratio of the third ironing iron, and limits the maximum ironing ratio that can be formed to the ironing ratio. did. Specifically, the ironing rate (%) = {1- (can barrel side wall thickness after third ironing) / (can barrel side wall thickness after second ironing)} × 100, and the limit ironing rate is 46. .5% or more is “◯”, and less than 46.5% is “x”.
耐圧強度:樹脂被覆アルミニウム合金板をDI成形した缶に対し、200℃で10分間の塗装焼付処理相当の熱処理(以下、空焼きという。)を施し、エアー式の耐圧試験機にてドーム成形したボトムがバックリングする圧力を測定した。圧力が6.8kgf/cm2以上のものを「○」、6.8kgf/cm2未満のものを「×」とした。 Pressure strength: A can formed by DI-molding a resin-coated aluminum alloy plate was subjected to a heat treatment equivalent to a coating baking process at 200 ° C. for 10 minutes (hereinafter referred to as “air baking”), and then formed into a dome using an air pressure tester. The pressure at which the bottom buckles was measured. Pressure "○" and 6.8kgf / cm 2 or more of, and those less than 6.8kgf / cm 2 as "×".
表3から明らかなように合金組成が本願発明の範囲にあるNo.1〜10の合金板は、引張強さと導電率が規定範囲内にあるため、DI成形時のしごき成形性および耐圧強度の全てが良好であった。 As apparent from Table 3, the alloy composition falls within the scope of the present invention. Since the tensile strength and electrical conductivity of the alloy plates 1 to 10 were within the specified ranges, all of the iron formability and the pressure strength during DI molding were good.
これに対して、No.11〜21の比較例については以下に示す問題が発生した。
No.11はMg量が0.4%未満で過小のため空焼き後の耐力が低く、耐圧強度が劣る。
No.12はMg量が0.8%を超えて過多のため素板の引張強さが高く、しごき成形性が劣る。
No.13はSi量が0.5%未満で過小のため空焼き後の耐力が低く、耐圧強度が劣る。
No.14はSi量が1.5%を超えて過多のため素板の引張強さが高く、またSi単体が析出してしごき成形性が劣る。
No.15はCu量が0.4%を超えて過多のため素板の引張強さが高く、しごき成形性が劣る。
No.16はMn量が0.4%を超えて過多のため素板の引張強さが高く、しごき成形性が劣る。
No.17はTi量が0.2%を超えて過多のため粗大な晶出物が生じ、しごき成形性が劣る。
No.18は均質化処理温度が500℃未満と低く、導電率が50%IACSを超えている。そのために時効硬化性が劣り、空焼き後の耐力は低くなるために、耐圧強度が劣ってしまう。また、析出物が多いため、しごき成形性も劣っている。
No.19は熱間仕上圧延の上がり温度が280℃より高く、導電率が50%IACSを超えている。そのために時効硬化性が劣り、空焼き後の耐力が低くなるため、耐圧強度が劣ってしまう。また、析出物が多いため、しごき成形性も劣っている。
No.20は溶体化処理温度が580℃より高く導電率が40%IACS未満で過小となり、素板の引張強さが高く、また加工硬化性が強すぎてしごき成形性が劣る。
No.21は素板の引張強度および導電率は本願発明の規定範囲内であるが、樹脂フィルムを被覆していないためしごき成形性が劣る。
In contrast, no. About the comparative examples of 11-21, the problem shown below generate | occur | produced.
No. No. 11 has a Mg content of less than 0.4% and is too small, so the yield strength after baking is low and the pressure strength is inferior.
No. In No. 12, the Mg content exceeds 0.8%, so that the tensile strength of the base plate is high and the ironing formability is inferior.
No. No. 13 has a Si content of less than 0.5% and is too small, so the yield strength after baking is low and the pressure strength is inferior.
No. No. 14 has an excess of Si exceeding 1.5%, so that the tensile strength of the base plate is high, and Si simple substance is precipitated, resulting in poor ironing formability.
No. No. 15 has an excessive Cu content exceeding 0.4%, so that the tensile strength of the base plate is high and the ironing formability is inferior.
No. In No. 16, the Mn content exceeds 0.4%, so that the tensile strength of the base plate is high and the ironing formability is inferior.
No. In No. 17, the Ti amount exceeds 0.2%, so that a coarse crystallized product is generated and the ironing formability is inferior.
No. No. 18 has a homogenization treatment temperature as low as less than 500 ° C., and a conductivity exceeding 50% IACS. For this reason, the age hardening is inferior and the yield strength after baking is reduced, so that the pressure strength is inferior. Moreover, since there are many precipitates, iron moldability is also inferior.
No. No. 19 has a hot finish rolling temperature higher than 280 ° C. and a conductivity exceeding 50% IACS. For this reason, the age-hardening property is inferior and the yield strength after baking is reduced, so that the pressure resistance is inferior. Moreover, since there are many precipitates, iron moldability is also inferior.
No. No. 20 has a solution treatment temperature of higher than 580 ° C. and an electrical conductivity of less than 40% IACS, which is too low.
No. No. 21 has the tensile strength and electrical conductivity of the base plate within the specified range of the present invention, but the iron film is inferior in formability because it does not cover the resin film.
本願発明のアルミニウム合金を飲料缶胴に用いることにより、強度および成形性のバランスに優れ、塗装焼付処理後に強度の優れた缶胴を得ることができ、産業上顕著な効果を奏するものである。 By using the aluminum alloy of the present invention for a beverage can body, it is possible to obtain a can body having an excellent balance between strength and formability and having an excellent strength after a paint baking process, and has a remarkable industrial effect.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009250680A JP5421067B2 (en) | 2009-10-30 | 2009-10-30 | Resin-coated aluminum alloy plate for beverage can body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009250680A JP5421067B2 (en) | 2009-10-30 | 2009-10-30 | Resin-coated aluminum alloy plate for beverage can body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011094202A true JP2011094202A (en) | 2011-05-12 |
JP5421067B2 JP5421067B2 (en) | 2014-02-19 |
Family
ID=44111436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009250680A Active JP5421067B2 (en) | 2009-10-30 | 2009-10-30 | Resin-coated aluminum alloy plate for beverage can body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5421067B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036089A (en) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same |
JP2017512260A (en) * | 2014-03-11 | 2017-05-18 | サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. | High strength aluminum alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139646A (en) * | 1980-04-03 | 1981-10-31 | Sukai Alum Kk | Aging aluminum alloy for ironing |
JPS60187656A (en) * | 1984-03-05 | 1985-09-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet for packaging having excellent corrosion resistance and its production |
JPH1191773A (en) * | 1997-09-18 | 1999-04-06 | Kishimoto Akira | Coated aluminum seamless can, and its manufacture |
-
2009
- 2009-10-30 JP JP2009250680A patent/JP5421067B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139646A (en) * | 1980-04-03 | 1981-10-31 | Sukai Alum Kk | Aging aluminum alloy for ironing |
JPS60187656A (en) * | 1984-03-05 | 1985-09-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet for packaging having excellent corrosion resistance and its production |
JPH1191773A (en) * | 1997-09-18 | 1999-04-06 | Kishimoto Akira | Coated aluminum seamless can, and its manufacture |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036089A (en) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same |
JP2017512260A (en) * | 2014-03-11 | 2017-05-18 | サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. | High strength aluminum alloy |
Also Published As
Publication number | Publication date |
---|---|
JP5421067B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6054658B2 (en) | Aluminum alloy plate for can body and manufacturing method thereof | |
WO2012176345A1 (en) | High-strength aluminum alloy material and method for producing same | |
US10704128B2 (en) | High-strength corrosion-resistant aluminum alloys and methods of making the same | |
US20210292878A1 (en) | Aluminum alloy sheet for can body, and process for producing the same | |
JP2006265701A (en) | Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can | |
CN105316545A (en) | Rolled aluminum alloy material | |
JP5568031B2 (en) | Aluminum alloy cold rolled sheet for bottle cans | |
JP2010189730A (en) | Method of producing aluminum alloy sheet for beverage can barrel | |
JP2006241548A (en) | Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET | |
JP5421067B2 (en) | Resin-coated aluminum alloy plate for beverage can body and method for producing the same | |
JP5745364B2 (en) | Aluminum can plate for can body and method for manufacturing the same, and resin-coated aluminum alloy plate for can body and method for manufacturing the same | |
JP2006283113A (en) | Aluminum alloy sheet for drink can barrel, and method for producing the same | |
JP2004124175A (en) | Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic | |
JP4386393B2 (en) | Aluminum alloy sheet for transport aircraft with excellent corrosion resistance | |
JP4482483B2 (en) | Aluminum alloy plate for printing plate and method for producing aluminum alloy plate for printing plate | |
JPH10237576A (en) | Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production | |
JP4771726B2 (en) | Aluminum alloy plate for beverage can body and manufacturing method thereof | |
WO2020172046A1 (en) | Improved aluminum-magnesium-zinc aluminum alloys | |
JP4019084B2 (en) | Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics | |
EP3652356B1 (en) | High-strength corrosion-resistant aluminum alloy and method of making the same | |
JP5697895B2 (en) | Resin-coated aluminum alloy plate and method for producing the same | |
JP2004010941A (en) | Aluminum alloy sheet for bottle-type beverage can | |
JP2017048452A (en) | Aluminum alloy sheet for automobile body panel excellent in filiform rust resistance, coating galling curability and processability and manufacturing method therefor, automobile body panel using the same and manufacturing method therefor | |
US12123078B2 (en) | Aluminum-magnesium-zinc aluminum alloys | |
JP4942524B2 (en) | Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5421067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |