JP2011092875A - Method for manufacturing nanofiltration membrane - Google Patents

Method for manufacturing nanofiltration membrane Download PDF

Info

Publication number
JP2011092875A
JP2011092875A JP2009250020A JP2009250020A JP2011092875A JP 2011092875 A JP2011092875 A JP 2011092875A JP 2009250020 A JP2009250020 A JP 2009250020A JP 2009250020 A JP2009250020 A JP 2009250020A JP 2011092875 A JP2011092875 A JP 2011092875A
Authority
JP
Japan
Prior art keywords
film
membrane
nanofiltration membrane
nanofiltration
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009250020A
Other languages
Japanese (ja)
Other versions
JP5075186B2 (en
Inventor
Naoki Kobayashi
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009250020A priority Critical patent/JP5075186B2/en
Publication of JP2011092875A publication Critical patent/JP2011092875A/en
Application granted granted Critical
Publication of JP5075186B2 publication Critical patent/JP5075186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic membrane, with a segment molecular weight of 400 to 800 g/mol, which is best suited for effectively separating a photoresist from a photoresist-containing waste liquor. <P>SOLUTION: The method for manufacturing a nanofiltration membrane is to form a nanofiltration membrane by laminating a nanofiltration membrane layer on a ceramic filter with an ultrafiltration membrane layer. The nanofiltration membrane formed by the lamination process comprises a first nanofiltration membrane forming process consisting of a membrane making process nanofiltration by a dip membrane manufacturing method, a drying process and a calcining process, and a second membrane forming process made up of a membrane making process by gravity-flowing down membrane manufacturing method, a drying process and a calcining process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナノ濾過膜の製造方法に関するものである。   The present invention relates to a method for producing a nanofiltration membrane.

電子部品等を製造するには、基板上にフォトレジストの皮膜を形成し、パターンマスクを通して光等を照射し、次いで現像液により不要のフォトレジストを溶解して現像し、更にエッチング等の処理を行った後、基板上の不溶性のフォトレジスト膜を剥離する。また、基板の端(エッジ)には、端までレジストが塗布されており、この端部のレジストがカセット、装置内で剥がれてダストになるため、エッジリンスで端のレジスト除去を行う。   To manufacture electronic parts, etc., a photoresist film is formed on a substrate, light is irradiated through a pattern mask, unnecessary photoresist is then dissolved and developed with a developer, and further processing such as etching is performed. After that, the insoluble photoresist film on the substrate is peeled off. Further, resist is applied to the end (edge) of the substrate to the end, and the resist at the end is peeled off in the cassette and the apparatus to become dust, and therefore the end resist is removed by edge rinse.

フォトレジスト膜の剥離には、例えば、DMSO(ジメチルスルホキシド)、MEA(モノエタノールアミン)等で構成される剥離液を用い、エッジリンスには、例えばPGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)等で構成されるシンナー液を用いる。   For removal of the photoresist film, for example, a stripping solution composed of DMSO (dimethyl sulfoxide), MEA (monoethanolamine) or the like is used, and for edge rinse, for example, PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene) A thinner solution composed of glycol monomethyl ether) or the like is used.

該フォトレジスト膜の処理に用いた後の、剥離液やシンナー液からフォトレジストを除去して、各々剥離液やシンナー液として再利用することへの需要があり、フォトレジスト含有廃水の再生処理のための様々な技術が検討されている(例えば、特許文献1)。   There is a demand for removing the photoresist from the stripping solution or thinner solution after being used for the processing of the photoresist film and reusing it as a stripping solution or a thinner solution, respectively. Various techniques for this purpose have been studied (for example, Patent Document 1).

フォトレジスト含有廃液の再生方法として、従来より現実に採用されている技術としては、蒸留塔に該フォトレジスト含有処理液を導き、蒸留により廃液を分離する方法があった。しかし、当該蒸留法では、蒸留塔内でレジストが固着する問題や、蒸留塔の設置面積が大きくなる等の問題があった。また、当該蒸留法では、蒸留工程で相変化(液体⇒気体⇒液体)を伴い、そのエネルギーコストが嵩むという問題もあった。   As a method for regenerating a photoresist-containing waste liquid, as a technique that has been practically used in the past, there has been a method of introducing the photoresist-containing treatment liquid into a distillation column and separating the waste liquid by distillation. However, the distillation method has problems such as resist sticking in the distillation column and an increase in the installation area of the distillation column. In addition, the distillation method involves a phase change (liquid → gas → liquid) in the distillation process, which increases the energy cost.

前記の蒸留法に伴う各種問題を解決するために、分離膜を用いる技術への需要がある。しかし、有機膜は膜形成工程で接着材が使用されており、該接着成分がフォトレジスト膜の剥離液を構成するDMSOやMEAによって分解されてしまうため、有機膜を採用することはできないという問題があった。   In order to solve various problems associated with the distillation method, there is a demand for a technique using a separation membrane. However, the organic film uses an adhesive in the film forming process, and the adhesive component is decomposed by DMSO or MEA that constitutes the stripping solution for the photoresist film, so the organic film cannot be used. was there.

また、フォトレジスト含有廃液からフォトレジストを分離除去するためには、膜の分離性能が分子量標準物質としてポリエチレングリコール(PEG)を用いた分画分子量で800以下であることが好ましいが、現在実用化されている無機膜のうち、最も高い分離性能を備えるUF膜であっても、その分画分子量の下限は4000g/mol程度に留まり、フォトレジストを分離除去するための十分な分離性能が得られないという問題があった。   Further, in order to separate and remove the photoresist from the photoresist-containing waste liquid, it is preferable that the separation performance of the membrane is 800 or less in terms of a molecular weight cutoff using polyethylene glycol (PEG) as a molecular weight standard substance. Among the inorganic membranes used, even the UF membrane with the highest separation performance has a lower limit of the molecular weight cut off of about 4000 g / mol, and sufficient separation performance for separating and removing the photoresist can be obtained. There was no problem.

特開2007−213074号公報JP 2007-213074 A

本発明の目的は前記問題を解決し、フォトレジスト含有廃液からフォトレジストを効果的に分離するのに好適な、分画分子量が400〜800g/molのナノ濾過膜の製造方法を提供することである。   The object of the present invention is to solve the above problems and to provide a method for producing a nanofiltration membrane having a molecular weight cut-off of 400 to 800 g / mol, which is suitable for effectively separating a photoresist from a photoresist-containing waste liquid. is there.

上記課題を解決するためになされた本発明のナノ濾過膜の製造方法は、限外ろ過膜層を有するセラミックフィルタに、更にナノろ過膜層を積層して形成するナノ濾過膜の製造方法であって、該積層して形成されるナノろ過膜は、ディップ法による製膜工程と乾燥工程と焼成工程からなる第一の膜形成工程と、自然流下製膜法による製膜工程と乾燥工程と焼成工程からなる第二の膜形成工程からなることを特徴とするものである。ここで、ディップ法とは、成膜チャンバーに基材を配置し、該チャンバーの下部からコート液を流し込み、コート液が基材の上部に達した段階で、コート液の流し込みを停止してコート液をチャンバーの下部から排出量を制御しながら排出させることにより、基材の表面にコート層をコーティングすることを特徴とする製膜法をいう。また、自然流下製膜法とは、基材上部から全てのセルにコート液が行き渡るように下部にかけて、一気に流し、基材表面にコート層をコーティングすることを特徴とする製膜法をいう。   The method for producing a nanofiltration membrane of the present invention made to solve the above problems is a method for producing a nanofiltration membrane in which a nanofiltration membrane layer is further laminated on a ceramic filter having an ultrafiltration membrane layer. The nanofiltration membrane formed by laminating is formed by a first film forming step comprising a film forming step by a dip method, a drying step and a baking step, and a film forming step by a natural flow forming method, a drying step and a baking. It consists of the 2nd film formation process which consists of a process, It is characterized by the above-mentioned. Here, the dip method is a method in which a substrate is placed in a film formation chamber, a coating solution is poured from the lower part of the chamber, and when the coating solution reaches the upper part of the substrate, the coating solution is stopped from being poured. It refers to a film forming method characterized in that a coating layer is coated on the surface of a substrate by discharging the liquid from the lower part of the chamber while controlling the discharge amount. In addition, the spontaneously falling film forming method refers to a film forming method characterized in that the coating liquid is flowed from the upper part of the base material to the lower part so as to spread all the cells, and then the surface of the base material is coated.

請求項2記載の発明は、請求項1記載のナノ濾過膜の製造方法において、セラミックフィルタが、柱状形状をなすセラミックフィルタの内部で、前記柱状形状の両端面間を軸方向に貫通するように設けられた複数の流路のそれぞれの内壁に限外ろ過膜層を有するセラミックフィルタであることを特徴とする。   The invention according to claim 2 is the method for producing a nanofiltration membrane according to claim 1, wherein the ceramic filter penetrates between both end faces of the columnar shape in the axial direction inside the ceramic filter having the columnar shape. It is a ceramic filter which has an ultrafiltration membrane layer in each inner wall of the provided several flow path.

本発明に係るナノ濾過膜の製造方法によれば、限外ろ過膜層を有するセラミックフィルタに、更にナノろ過膜層を積層して形成するナノ濾過膜の製造方法において、該積層して形成されるナノろ過膜を、ディップ法による製膜工程と乾燥工程と焼成工程からなる第一の膜形成工程と、自然流下製膜法による製膜工程と乾燥工程と焼成工程からなる第二の膜形成工程から形成する構成により、フォトレジスト含有廃液からフォトレジストを効果的に分離するのに好適な分画分子量(400〜800g/mol)の分離膜を提供することを可能とした。   According to the method for producing a nanofiltration membrane according to the present invention, in the method for producing a nanofiltration membrane in which a nanofiltration membrane layer is further laminated on a ceramic filter having an ultrafiltration membrane layer, the layer is formed by laminating. The first membrane formation process consisting of a film formation process by a dip method, a drying process, and a firing process, and the second film formation comprising a film formation process, a drying process, and a firing process by a natural flow film formation method The structure formed from the process makes it possible to provide a separation membrane having a molecular weight cut-off (400 to 800 g / mol) suitable for effectively separating the photoresist from the photoresist-containing waste liquid.

ディップ製膜に用いるディッピング装置の説明図である。It is explanatory drawing of the dipping apparatus used for dip film forming. ディッピング装置にエレメントを収納した状態の説明図である。It is explanatory drawing of the state which accommodated the element in the dipping apparatus. 自然流下製膜法による製膜工程の説明図である。It is explanatory drawing of the film forming process by the natural falling film forming method. 自然流下製膜法によるナノ乾燥工程の説明図である。It is explanatory drawing of the nano drying process by the natural falling film forming method. 各分子量標準物質の阻止率を測定して得られた分画曲線である。It is a fraction curve obtained by measuring the blocking rate of each molecular weight standard substance.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

本実施形態は、柱状形状のセラミックフィルタの内部に成膜されたUF膜上(細孔径5〜10nm)に、分画分子量600〜800のNF膜を形成することを目的として、ディップ製膜を繰り返し行うものである。   In this embodiment, dip film formation is performed for the purpose of forming an NF film having a fractional molecular weight of 600 to 800 on a UF film (pore diameter 5 to 10 nm) formed inside a columnar ceramic filter. Repeatedly.

該UF膜は、MF膜上に形成されている。該MF膜は、モノリス形状の多孔質基材の各流路の内壁表面に形成されている。なお、全ての膜形成工程は、所定の粒径を有するコート液を付着させる成膜工程と、成膜後の乾燥工程と、乾燥後の焼成工程を基本工程とするものである。該コート液とは、製膜時に用いる液であり、UF膜およびNF膜用は、ゾル液を原料として2段階で作成する。なお、MF膜用はゾル液を原料とはせず、アルミナの粒子を調合して直接コート液を作成する。以下、本発明に用いるNF膜の形成工程を説明する。MF膜およびUF膜は、従来手法に従ってクロスフロー循環法で作成したものを用いる。   The UF film is formed on the MF film. The MF membrane is formed on the inner wall surface of each flow path of the monolithic porous substrate. In addition, all the film formation processes are based on a film formation process for attaching a coating liquid having a predetermined particle size, a drying process after film formation, and a baking process after drying. The coating liquid is a liquid used at the time of film formation, and the UF film and NF film are prepared in two stages using a sol liquid as a raw material. For the MF film, the sol solution is not used as a raw material, and alumina particles are prepared to directly form a coating solution. Hereinafter, the process for forming the NF film used in the present invention will be described. As the MF membrane and the UF membrane, those prepared by a cross flow circulation method according to a conventional method are used.

<ディッピング装置>
図1には、ディップ製膜に用いるディッピング装置を示している。該ディッピング装置は、図1に示すように、エレメント11eを収納する成膜チャンバー12と、成膜チャンバー12の上流側となる底部フランジ123bに接続されたフランジ接続配管21aと、フランジ接続配管21aに接続されたT分岐22と、T分岐22を介してしてフランジ接続配管21aに接続されるドレイン配管21d及び供給配管21bと、ドレイン配管21dに接続されたドレインバルブ(排液弁)13と、供給配管21bに接続された供給ポンプ14と、供給ポンプ14に接続されたタンク配管21cと、タンク配管21cに接続された供給タンク15とを備える。供給タンク15は、NF膜を形成するためのセラミックコート液(以下、単に「コート液」ともいう。)を収納するタンクである。供給ポンプ14により供給タンク15に収納されたコート液は、タンク配管21c、供給配管21b及びランジ接続配管21aを介して成膜チャンバー12に送液される。成膜チャンバー12は、図2に示すようにアクリル樹脂等の透明な材料で内部が見える構造になっており、垂直に立てられたエレメント11eの下部よりコート液が供給ポンプ14によって供給され、エレメント11eの上部から余剰なゾル液が出たら、供給ポンプ14による送液を止め、ドレインバルブ(排液弁)13を開け、成膜チャンバー12内のコート液を排出できるようになっている。
<Dipping device>
FIG. 1 shows a dipping apparatus used for dip film formation. As shown in FIG. 1, the dipping apparatus includes a film formation chamber 12 that houses the element 11e, a flange connection pipe 21a connected to a bottom flange 123b on the upstream side of the film formation chamber 12, and a flange connection pipe 21a. A connected T branch 22, a drain pipe 21 d and a supply pipe 21 b connected to the flange connection pipe 21 a via the T branch 22, a drain valve (drainage valve) 13 connected to the drain pipe 21 d, A supply pump 14 connected to the supply pipe 21b, a tank pipe 21c connected to the supply pump 14, and a supply tank 15 connected to the tank pipe 21c are provided. The supply tank 15 is a tank for storing a ceramic coating liquid (hereinafter also simply referred to as “coating liquid”) for forming an NF film. The coating liquid stored in the supply tank 15 by the supply pump 14 is sent to the film forming chamber 12 through the tank pipe 21c, the supply pipe 21b, and the lung connection pipe 21a. As shown in FIG. 2, the film forming chamber 12 has a structure in which the inside can be seen with a transparent material such as an acrylic resin. When excessive sol liquid comes out from the upper part of 11e, liquid supply by the supply pump 14 is stopped, the drain valve (drain valve) 13 is opened, and the coating liquid in the film forming chamber 12 can be discharged.

成膜チャンバー12はエレメント11eを収納する円筒型の収納ケースであり、成膜チャンバー12の上部には円筒型の上部エレメント保持リング122aが、成膜チャンバー12の下部には円筒型の下部エレメント保持リング122bが設けられている。エレメント11eの釉薬部112aは、O−リング121aにより上部エレメント保持リング122aにより固定され、エレメント11eの釉薬部112bは、O−リング121bにより下部エレメント保持リング122bに固定される。   The film forming chamber 12 is a cylindrical storage case for storing the element 11e. A cylindrical upper element holding ring 122a is provided above the film forming chamber 12, and a cylindrical lower element is held below the film forming chamber 12. A ring 122b is provided. The glaze part 112a of the element 11e is fixed by the upper element holding ring 122a by the O-ring 121a, and the glaze part 112b of the element 11e is fixed to the lower element holding ring 122b by the O-ring 121b.

<ディップ製膜法によるナノ濾過膜形成方法>
以下に、ディップ製膜法によるNF膜の形成方法の一例として、チタニア膜を形成する方法を説明する。
<Nanofiltration membrane formation method by dip membrane method>
Hereinafter, a method for forming a titania film will be described as an example of a method for forming an NF film by a dip film forming method.

(イ)先ず、UF膜を表層に形成したレンコン形状(外径30mm,セル内径3mm×37セル,長さ65〜1000mm)のエレメント11eを用意する。そして、エレメント11eの外周を厚さ1〜10μmのフィルムテープ118でシールする。エレメント11eの外周から、コート液がUF膜を介して透過しないようにするためであるので、フィルムテープ118は、両側の釉薬部112a,112bにそれぞれ2〜3mm程度被る幅を選んで巻く。 (A) First, an element 11e having a lotus shape (outer diameter 30 mm, cell inner diameter 3 mm × 37 cells, length 65 to 1000 mm) having a UF membrane formed on the surface layer is prepared. Then, the outer periphery of the element 11e is sealed with a film tape 118 having a thickness of 1 to 10 μm. In order to prevent the coating liquid from permeating through the UF membrane from the outer periphery of the element 11e, the film tape 118 is wound around the glaze portions 112a and 112b on both sides with a width of about 2 to 3 mm.

(ロ)ディップ製膜法によるナノ濾過膜形成に用いるコート液は、先ず、セラミックゾル原液(以下、単に「ゾル原液」ともいう。)をイソプロピルアルコール(IPA)又はその水溶液で希釈して得る。ゾル原液は金属アルコキシド(例えば、チタンテトライソプロポキシド)とIPAとの混合液を2〜10℃に保持しながら硝酸、又は塩酸、若しくは硫酸を添加し、更に保持温度を2〜10℃にし、予め硝酸、又は塩酸、若しくは硫酸と混合しておいた水と混合して得られる。なお、ゾル原液は、0.10質量%〜1.2質量%、好ましくは、0.2質量%〜0.5質量%のチタニア(TiO)を含むゾル液である。 (B) The coating liquid used for forming the nanofiltration membrane by the dip film forming method is obtained by first diluting a ceramic sol stock solution (hereinafter also simply referred to as “sol stock solution”) with isopropyl alcohol (IPA) or an aqueous solution thereof. The stock solution of sol was added with nitric acid, hydrochloric acid or sulfuric acid while maintaining a mixed liquid of metal alkoxide (for example, titanium tetraisopropoxide) and IPA at 2 to 10 ° C., and further the holding temperature was set at 2 to 10 ° C. It is obtained by mixing with water previously mixed with nitric acid, hydrochloric acid or sulfuric acid. The sol stock solution is a sol solution containing 0.10% by mass to 1.2% by mass, preferably 0.2% by mass to 0.5% by mass of titania (TiO 2 ).

(ハ)そして、得られたゾル原液をIPAで希釈し、希釈後のコート液中のIPA濃度が70質量%以上、できれば75質量%以上となるように調整し、コート液を得る。具体的には、IPAを攪拌しながら、そこにゾル原液を少しずつ加えて、コート液を得る。コート液を得るために、約5分間程度攪拌する。希釈後のチタニア濃度は0.02〜0.2質量%が特に好ましい。濃度が0.02質量%以下の場合、膜が薄膜化しすぎるために目的の膜厚を得るまでの成膜回数が増え生産性が悪くなり、更に下地の影響を受けやすくなるために不均質となりクラック等の欠陥が発生しやすくなる。濃度が0.2質量%以上の場合、一度の成膜で得られる膜厚が大きくなり、クラックが発生しやすくなる。更に、IPAは水に比べて、乾燥速度が大きく、表面張力が小さいので、密で欠陥の少ない膜を得るのに非常に有効である。又、ここではセラミックゾルの成分としてチタニアを用いているが、チタニアの変わりにシリカ、ジルコニアの成分のゾルを用いることもできる。コート液には、PVA(ポリビニルアルコール)等バインダーは用いない。本発明におけるコート液の作製方法は、セラミックゾル原液を先に作製し、それをIPAで希釈するという2段プロセスであり、このようにゾル原液を作製後IPAで希釈してコート液を得ることにより、細孔径の小さいNF膜を作製することが可能となる。これに対し、セラミックゾル原液作製時に希釈溶媒として予めIPAを混合して所望の濃度のコート液を得る1段プロセスでは、凝集したゾル粒子が多くなり、粗大細孔の数が増えてしまうので好ましくない。攪拌終了後、2段プロセスで調合したコート液を例えばナイロン製で孔径10〜100μmの濾布で濾す。濾布は、直前に蒸留水で洗浄しておく。 (C) Then, the obtained sol stock solution is diluted with IPA and adjusted so that the IPA concentration in the diluted coating solution is 70% by mass or more, preferably 75% by mass or more, to obtain a coating solution. Specifically, the sol stock solution is added little by little while stirring IPA to obtain a coating solution. In order to obtain a coating solution, the mixture is stirred for about 5 minutes. The titania concentration after dilution is particularly preferably 0.02 to 0.2% by mass. If the concentration is 0.02% by mass or less, the film becomes too thin, the number of film formations to obtain the desired film thickness increases, and the productivity is deteriorated. Defects such as cracks are likely to occur. When the concentration is 0.2% by mass or more, the film thickness obtained by a single film formation becomes large and cracks are likely to occur. Furthermore, since IPA has a higher drying speed and lower surface tension than water, it is very effective in obtaining a dense film with few defects. Here, titania is used as a component of the ceramic sol. However, a sol of silica or zirconia can be used instead of titania. A binder such as PVA (polyvinyl alcohol) is not used for the coating liquid. The method for preparing the coating liquid in the present invention is a two-stage process in which a ceramic sol stock solution is first prepared and diluted with IPA. Thus, the sol stock solution is prepared and then diluted with IPA to obtain a coating solution. Thus, an NF film having a small pore diameter can be produced. On the other hand, in a one-stage process in which IPA is mixed in advance as a diluent solvent when preparing a ceramic sol stock solution to obtain a coating solution having a desired concentration, agglomerated sol particles increase and the number of coarse pores increases. Absent. After the stirring, the coating solution prepared by the two-stage process is filtered through a filter cloth made of nylon and having a pore diameter of 10 to 100 μm, for example. The filter cloth is washed with distilled water immediately before.

(ニ)次に2段プロセスで調合したコート液をディップ法によりエレメント11eの流路(セル)の内壁の表面上に付着させるために、エレメント11eを図1に示すディッピング装置の成膜チャンバー12内に立てて設置する。次に、エレメント11e下部よりコート液を500mL/minの送液速度で供給ポンプ14によって供給し、エレメント11e上部から余剰なゾル液が出たら、送液を止め、ドレインバルブ(排液弁)13を開け、径内のコート液を排出させた。コート液の排出速度を5〜10分で行う。10分以上の時間で排出を行うと膜厚が厚くなりすぎ、乾燥、焼成時にクラックが入り易くなる。排出させる時間は、セラミック膜の長さ、膜面積に関係なく、10分以内に行う。その後、成膜チャンバー12からエレメント11eを取り出し、手でエレメント11eを振るように動かし、余剰なゾル液を除去する。 (D) Next, in order to adhere the coating solution prepared by the two-stage process onto the inner wall surface of the flow path (cell) of the element 11e by the dipping method, the element 11e is deposited in the film forming chamber 12 of the dipping apparatus shown in FIG. Install in an upright position. Next, the coating liquid is supplied from the lower part of the element 11e by the supply pump 14 at a liquid supply speed of 500 mL / min. When an excessive sol liquid comes out from the upper part of the element 11e, the liquid supply is stopped, and the drain valve (drain valve) 13 Was opened, and the coating solution within the diameter was discharged. The coating liquid is discharged at a rate of 5 to 10 minutes. If the discharge is performed for 10 minutes or more, the film thickness becomes too thick, and cracks are likely to occur during drying and firing. The discharge time is within 10 minutes regardless of the length of the ceramic film and the film area. Thereafter, the element 11e is taken out from the film forming chamber 12, and the element 11e is moved so as to be shaken by hand, so that excess sol solution is removed.

(ホ)コート液のコート後、エレメント11e内に残存するコート液を拭い取り、第1乾燥処理として、例えば、送風機等により流路(セル)内に風を膜表面上に沿うように接触させつつ送って乾燥させる。風の温度は、好ましくは、10〜40℃程度、より好ましくは、20〜30℃の室温である。湿度は、70%以下が好ましい。10℃よりも低い温度の風を通過させると、流路(セル)表面に付着したチタニアゾルの乾燥が進展しないため、密な膜が得られず細孔径が大きい膜となってしまう。又、40℃よりも高い温度で温風を通過させると膜面にクラックが発生しやすく好ましくない。乾燥のための風が流路(セル)内を通過する速度は、1〜300m/秒、より好ましくは、50〜200m/秒で行うと良い。風が流路(セル)内を通過する速度が1m/秒以下だと密な膜が得られず細孔径が大きくなり、又、風が流路(セル)内を通過する速度が300m/秒以上だと膜面にクラックが発生しやすく、好ましくない。送風乾燥は、6〜20時間程度、好ましくは12〜18時間程度、行うと良い。以上のような条件で、流路(セル)内に風を膜表面上に沿うように接触させつつ送ることにより流路(セル)内側から、つまり膜の表面側から溶媒が蒸発する。このような送風を行うことにより乾燥させると、UF膜へNF膜が密に膜化する構造とすることができる。又、送風乾燥は均一乾燥が困難なレンコン形状には非常に有効である。膜表面から溶媒が乾燥することが膜の緻密化に重要と考えられるため、外周面をマスクすることにより、チタニアゾルの含まれる溶媒が外周面から蒸発することを防止でき、より良好な膜を形成することができる。 (E) After coating of the coating liquid, wipe off the coating liquid remaining in the element 11e, and as a first drying process, for example, the air is brought into contact with the flow path (cell) along the film surface by a blower or the like. Send while drying. The temperature of the wind is preferably about 10 to 40 ° C, more preferably 20 to 30 ° C. The humidity is preferably 70% or less. When air having a temperature lower than 10 ° C. is passed, drying of the titania sol adhering to the flow path (cell) surface does not progress, so that a dense film cannot be obtained and the film has a large pore diameter. Moreover, if warm air is passed at a temperature higher than 40 ° C., cracks are likely to occur on the film surface, which is not preferable. The speed at which the wind for drying passes through the flow path (cell) is 1 to 300 m / second, more preferably 50 to 200 m / second. If the speed of the wind passing through the flow path (cell) is 1 m / second or less, a dense film cannot be obtained and the pore diameter increases, and the speed of the wind passing through the flow path (cell) is 300 m / second. If it is above, cracks are likely to occur on the film surface, which is not preferable. Blow drying may be performed for about 6 to 20 hours, preferably for about 12 to 18 hours. Under the conditions as described above, the solvent evaporates from the inside of the channel (cell), that is, from the surface side of the membrane, by sending the air into the channel (cell) while being in contact with the membrane surface. When dried by performing such blowing, the NF film can be densely formed on the UF film. In addition, blow drying is very effective for a lotus root shape which is difficult to dry uniformly. Since it is thought that drying of the solvent from the film surface is important for the densification of the film, masking the outer peripheral surface prevents the solvent containing titania sol from evaporating from the outer peripheral surface, and forms a better film. can do.

(ヘ)送風による第1乾燥処理の後、乾燥機(恒温槽)を用いた第2乾燥処理を実施する。第2乾燥処理は、28〜75℃、湿度成り行き(湿度制御無し)に制御された乾燥機内で4〜12時間を行う。 (F) After the 1st drying process by ventilation, the 2nd drying process using a dryer (constant temperature bath) is implemented. The second drying treatment is performed for 4 to 12 hours in a dryer controlled at 28 to 75 ° C. and humidity (no humidity control).

(ト)第2乾燥処理の終了後、外周に巻き付けたフィルムテープ118を取り外し、1〜50℃/h、好ましくは、8〜30℃/h、例えば25℃/hの速度で400〜500℃の焼成温度まで昇温し、焼成温度を1時間保持した後、1〜50℃/h、好ましくは、8〜30℃/h、例えば25℃/hで冷却してNF膜を得る。 (G) After completion of the second drying treatment, the film tape 118 wound around the outer periphery is removed, and 1 to 50 ° C./h, preferably 8 to 30 ° C./h, for example, 400 to 500 ° C. at a rate of 25 ° C./h. The temperature is raised to the firing temperature, and the firing temperature is maintained for 1 hour, and then cooled at 1 to 50 ° C./h, preferably 8 to 30 ° C./h, for example, 25 ° C./h to obtain an NF film.

前記(二)〜(ト)の工程で得られたNF膜は、分画分子量1000〜1500g/molの分離性能を有する。ここで、分画分子量とは、特定の分子量を持つ物質を90%以上阻止可能な細孔膜サイズを表わすものであり、例えば、分画分子量1000〜1500g/molの膜とは、分子量1000〜1500g/molのポリエチレングリコール(PEG)を90%以上阻止可能な細孔膜サイズを有する膜をいう。   The NF membrane obtained in the steps (2) to (g) has a separation performance of a molecular weight cutoff of 1000 to 1500 g / mol. Here, the fractional molecular weight represents a pore membrane size capable of blocking a substance having a specific molecular weight by 90% or more. For example, a membrane having a fractional molecular weight of 1000 to 1500 g / mol is a molecular weight of 1000 to 1000 A membrane having a pore membrane size capable of blocking 90% or more of 1500 g / mol polyethylene glycol (PEG).

<自然流下製膜法によるナノ濾過膜形成方法>
本実施形態では、分画分子量1000〜1500g/molのNF膜(以下、第一のNF膜、という)の表面に更に、自然流下製膜処理を施すことにより、分画分子量1000〜1500g/molのNF膜(以下、第二のNF膜、という)を形成して、膜の分離性能を高めている。以下に、自然流下製膜法による第二のNF膜の形成方法の一例として、チタニア膜を形成する方法を説明する。
<Nanofiltration membrane formation method by natural flow membrane formation>
In the present embodiment, the surface of an NF membrane having a fractional molecular weight of 1000 to 1500 g / mol (hereinafter referred to as a first NF membrane) is further subjected to film formation treatment under natural flow, whereby a fractional molecular weight of 1000 to 1500 g / mol. The NF membrane (hereinafter referred to as the second NF membrane) is formed to improve the membrane separation performance. Hereinafter, a method for forming a titania film will be described as an example of a method for forming a second NF film by a natural flow film forming method.

(イ´)先ず、前記(二)〜(ト)の工程で得られたNF膜を表層に形成したレンコン形状(外径30mm,セル内径3mm×37セル,長さ65〜1000mm)のエレメント11eを用意する。そして、エレメント11eの外周を厚さ1〜10μmのフィルムテープ118でシールする。エレメント11eの外周から、コート液が膜を介して透過しないようにするためであるので、フィルムテープ118は、両側の釉薬部112a,112bにそれぞれ2〜3mm程度被る幅を選んで巻く。 (A ') First, an element 11e having a lotus shape (outer diameter 30 mm, cell inner diameter 3 mm × 37 cell, length 65 to 1000 mm) formed by forming the NF film obtained in the steps (2) to (g) on the surface layer. Prepare. Then, the outer periphery of the element 11e is sealed with a film tape 118 having a thickness of 1 to 10 μm. In order to prevent the coating liquid from permeating through the membrane from the outer periphery of the element 11e, the film tape 118 is wound around the glaze portions 112a and 112b on both sides with a width of about 2 to 3 mm.

(ロ´)自然流下製膜法によるナノ濾過膜形成に用いるコート液は、先ず、セラミックゾル原液(以下、単に「ゾル原液」ともいう。)をイソプロピルアルコール(IPA)で希釈して得る。ゾル原液は金属アルコキシド(例えば、チタンテトライソプロポキシド)とIPAの混合液を2〜10℃に保持しながら硝酸、又は、塩酸、若しくは硫酸を添加し、更に保持温度を2〜10℃にし、予め硝酸と混合しておいたIPAと混合して得られる。なお、ゾル原液は、0.10質量%〜1.2質量%、好ましくは、0.2質量%〜0.5質量%のチタニア(TiO)を含むゾル液である。 (B) A coating solution used for forming a nanofiltration membrane by a natural flow membrane formation method is obtained by first diluting a ceramic sol stock solution (hereinafter also simply referred to as “sol stock solution”) with isopropyl alcohol (IPA). The stock solution of sol was added with nitric acid, hydrochloric acid or sulfuric acid while maintaining a mixed liquid of metal alkoxide (for example, titanium tetraisopropoxide) and IPA at 2 to 10 ° C., and further the holding temperature was set to 2 to 10 ° C. It is obtained by mixing with IPA previously mixed with nitric acid. The sol stock solution is a sol solution containing 0.10% by mass to 1.2% by mass, preferably 0.2% by mass to 0.5% by mass of titania (TiO 2 ).

(ハ´)そして、得られたゾル原液をIPAで希釈し、希釈後のコート液中のIPA濃度が70質量%以上、できれば75質量%以上となるように調整し、コート液を得る。具体的には、IPAを攪拌しながら、そこにゾル原液を少しずつ加えて、コート液を得る。コート液を得るために、約5分間程度攪拌する。希釈後のチタニア濃度は0.02〜0.2質量%が特に好ましい。濃度が0.02質量%以下の場合、膜が薄膜化しすぎるために目的の膜厚を得るまでの成膜回数が増え生産性が悪くなり、更に下地の影響を受けやすくなるために不均質となりクラック等の欠陥が発生しやすくなる。濃度が0.2質量%以上の場合、一度の成膜で得られる膜厚が大きくなり、クラックが発生しやすくなる。更に、IPAは水に比べて、乾燥速度が大きく、表面張力が小さいので、密で欠陥の少ない膜を得るのに非常に有効である。又、ここではセラミックゾルの成分としてチタニアを用いているが、チタニアの変わりにシリカ、ジルコニアの成分のゾルを用いることもできる。コート液には、PVA(ポリビニルアルコール)等バインダーは用いない。本発明におけるコート液の作製方法は、セラミックゾル原液を先に作製し、それをIPAで希釈するという2段プロセスであり、このようにゾル原液を作製後IPAで希釈してコート液を得ることにより、細孔径の小さいNF膜を作製することが可能となる。これに対し、セラミックゾル原液作製時に希釈溶媒として予めIPAを混合して所望の濃度のコート液を得る1段プロセスでは、凝集したゾル粒子が多くなり、粗大細孔の数が増えてしまうので好ましくない。攪拌終了後、2段プロセスで調合したコート液を例えばナイロン製で孔径10〜100μmの濾布で濾す。濾布は、直前に蒸留水で洗浄しておく。 (C ') Then, the obtained sol stock solution is diluted with IPA, and adjusted so that the IPA concentration in the diluted coating solution is 70% by mass or more, preferably 75% by mass or more, to obtain a coating solution. Specifically, the sol stock solution is added little by little while stirring IPA to obtain a coating solution. In order to obtain a coating solution, the mixture is stirred for about 5 minutes. The titania concentration after dilution is particularly preferably 0.02 to 0.2% by mass. If the concentration is 0.02% by mass or less, the film becomes too thin, the number of film formations to obtain the desired film thickness increases, and the productivity is deteriorated. Defects such as cracks are likely to occur. When the concentration is 0.2% by mass or more, the film thickness obtained by a single film formation becomes large and cracks are likely to occur. Furthermore, since IPA has a higher drying speed and lower surface tension than water, it is very effective in obtaining a dense film with few defects. Here, titania is used as a component of the ceramic sol. However, a sol of silica or zirconia can be used instead of titania. A binder such as PVA (polyvinyl alcohol) is not used for the coating liquid. The method for preparing the coating liquid in the present invention is a two-stage process in which a ceramic sol stock solution is first prepared and diluted with IPA. Thus, the sol stock solution is prepared and then diluted with IPA to obtain a coating solution. Thus, an NF film having a small pore diameter can be produced. On the other hand, in a one-stage process in which IPA is mixed in advance as a diluent solvent when preparing a ceramic sol stock solution to obtain a coating solution having a desired concentration, agglomerated sol particles increase and the number of coarse pores increases. Absent. After the stirring, the coating solution prepared by the two-stage process is filtered through a filter cloth made of nylon and having a pore diameter of 10 to 100 μm, for example. The filter cloth is washed with distilled water immediately before.

(ニ´)次に2段プロセスで調合したコート液を自然流下製膜法によりエレメント11eの流路(セル)の内壁の表面上に付着させるために、エレメント11eを図3に示すように立てて設置する。次に、エレメント11e上部よりコート液を流し込み、自然に流下させる。流し込みが終了後、手でエレメント11eを振るように動かし、余剰なゾル液を除去する。 (D ') Next, in order to adhere the coating liquid prepared by the two-stage process onto the inner wall surface of the flow path (cell) of the element 11e by the natural flow film forming method, the element 11e is set up as shown in FIG. Install. Next, the coating liquid is poured from the upper part of the element 11e and allowed to flow down naturally. After pouring is completed, the element 11e is moved by hand to remove the excess sol solution.

(ホ´)コート液のコート後、エレメント11e内に残存するコート液を拭い取り、第1乾燥処理として、例えば図4に示すように、送風機等により流路(セル)内に風を膜表面上に沿うように接触させつつ送って乾燥させる。風の温度は、好ましくは、10〜40℃程度、より好ましくは、20〜30℃の室温である。10℃よりも低い温度の風を通過させると、流路(セル)表面に付着したチタニアゾルの乾燥が進展しないため、密な膜が得られず細孔径が大きい膜となってしまう。又、40℃よりも高い温度で温風を通過させると膜面にクラックが発生しやすく好ましくない。乾燥のための風が流路(セル)内を通過する速度は、1〜300m/秒、より好ましくは、50〜200m/秒で行うと良い。風が流路(セル)内を通過する速度が1m/秒以下だと密な膜が得られず細孔径が大きくなり、又、風が流路(セル)内を通過する速度が300m/秒以上だと膜面にクラックが発生しやすく、好ましくない。送風乾燥は、10〜60分間程度、好ましくは10〜20分間程度、行うと良い。以上のような条件で、流路(セル)内に風を膜表面上に沿うように接触させつつ送ることにより流路(セル)内側から、つまり膜の表面側から溶媒が蒸発する。このような送風を行うことにより乾燥させると、第一のNF膜と、が密に膜化する構造とすることができる。又、送風乾燥は均一乾燥が困難なレンコン形状には非常に有効である。膜表面から溶媒が乾燥することが膜の緻密化に重要と考えられるため、外周面をマスクすることにより、チタニアゾルの含まれる溶媒が外周面から蒸発することを防止でき、より良好な膜を形成することができる。 (E ') After coating of the coating liquid, the coating liquid remaining in the element 11e is wiped off, and as a first drying process, for example, as shown in FIG. Send it in contact with the top and dry it. The temperature of the wind is preferably about 10 to 40 ° C, more preferably 20 to 30 ° C. When air having a temperature lower than 10 ° C. is passed, drying of the titania sol adhering to the flow path (cell) surface does not progress, so that a dense film cannot be obtained and the film has a large pore diameter. Moreover, if warm air is passed at a temperature higher than 40 ° C., cracks are likely to occur on the film surface, which is not preferable. The speed at which the wind for drying passes through the flow path (cell) is 1 to 300 m / second, more preferably 50 to 200 m / second. If the speed of the wind passing through the flow path (cell) is 1 m / second or less, a dense film cannot be obtained and the pore diameter increases, and the speed of the wind passing through the flow path (cell) is 300 m / second. If it is above, cracks are likely to occur on the film surface, which is not preferable. Blow drying may be performed for about 10 to 60 minutes, preferably for about 10 to 20 minutes. Under the conditions as described above, the solvent evaporates from the inside of the channel (cell), that is, from the surface side of the membrane, by sending the air into the channel (cell) while being in contact with the membrane surface. When dried by performing such blowing, a structure in which the first NF film is densely formed can be obtained. In addition, blow drying is very effective for a lotus root shape which is difficult to dry uniformly. Since it is thought that drying of the solvent from the film surface is important for the densification of the film, masking the outer peripheral surface prevents the solvent containing titania sol from evaporating from the outer peripheral surface, and forms a better film. can do.

(ヘ´)送風による第1乾燥処理の後、乾燥機(恒温槽)を用いた第2乾燥処理を実施する。第2乾燥処理は、28〜75℃、湿度成り行き(湿度制御無し)に制御された乾燥機内で4〜12時間を行う。 (F ') After the 1st drying process by ventilation, the 2nd drying process using a drier (constant temperature bath) is carried out. The second drying treatment is performed for 4 to 12 hours in a dryer controlled at 28 to 75 ° C. and humidity (no humidity control).

(ト´)第2乾燥処理の終了後、外周に巻き付けたフィルムテープ118を取り外し、1〜50℃/h、好ましくは、8〜30℃/h、例えば25℃/hの速度で450℃の焼成温度まで昇温し、焼成温度を1時間保持した後、1〜50℃/h、好ましくは、8〜30℃/h、例えば25℃/hで冷却してNF膜を得る。 (G ') After the completion of the second drying treatment, the film tape 118 wound around the outer periphery is removed, and 1-50 ° C./h, preferably 8-30 ° C./h, for example, 450 ° C. at a rate of 25 ° C./h. After raising the temperature to the firing temperature and maintaining the firing temperature for 1 hour, cooling is performed at 1 to 50 ° C./h, preferably 8 to 30 ° C./h, for example, 25 ° C./h to obtain an NF film.

前記(二´)〜(ト´)の工程で得られたNF膜は、分画分子量600〜800g/molの分離性能を有する。   The NF membrane obtained in the steps (2 ′) to (g ′) has a separation performance of a molecular weight cut off of 600 to 800 g / mol.

図4には、4種類の膜について、各分子量標準物質の阻止率を測定して得られた分画曲線を示している。(分子量標準物質としては、PEG200、PEG1000、PEG4000、PEG6000を用いている。それぞれの平均分子量は、200、1000、4000、6000である)図2に示すように、基材(UF膜)の分画分子量は4000g/mol程度である。当該基材に、ディップ製膜法による第一のNF膜形成を行い、焼成を450℃として形成した膜の分画分子量は1000g/molである。なお、ディップ製膜法によるNF膜形成を2回繰り返して行った場合の膜の分画分子量は900g/molである。これに対し、該第一のNF膜形成後に、自然流下製膜法による第二のNF膜形成を重ねて行い、焼成を450℃として形成した膜の分画分子量は800g/molにまで向上させることができる。発明者の推測によれば、自然流下製膜法によればディップ製膜2回では、膜厚が厚すぎ、クラックが入り易い。一方、自然流下製膜法のみでは、膜厚が薄すぎて、下地である基材が露出してしまう。その為、その中間的な製法であるディップ製膜後その上に自然流下製膜を行う事で、下地にクラック等のダメージを与える事も無い。又、既に下地にディップ製膜を行っている為、十分に小さくなった細孔径を得ているので、その上に自然流下製膜を行って下地が露出してしまってもその影響は少なく済む。この事により上記効果が得られる。   FIG. 4 shows fraction curves obtained by measuring the blocking rate of each molecular weight standard substance for four types of membranes. (PEG200, PEG1000, PEG4000, and PEG6000 are used as molecular weight standard substances. The average molecular weights are 200, 1000, 4000, and 6000, respectively) As shown in FIG. The molecular weight is about 4000 g / mol. A first NF film was formed on the substrate by a dip film forming method, and the molecular weight cut off of the film formed by baking at 450 ° C. is 1000 g / mol. When the NF film formation by the dip film forming method is repeated twice, the molecular weight cutoff of the film is 900 g / mol. On the other hand, after the first NF film is formed, the second NF film is formed by the natural flow casting method, and the molecular weight cut off of the film formed at 450 ° C. is increased to 800 g / mol. be able to. According to the inventor's guess, according to the natural falling film forming method, the film thickness is too thick and cracks are likely to occur in the dip film forming twice. On the other hand, with the natural flow film formation method alone, the film thickness is too thin and the base material that is the base is exposed. Therefore, after the dip film forming, which is an intermediate manufacturing method, the film is naturally flowed on the dip film to prevent damage such as cracks on the base. In addition, since the dip film formation has already been performed on the base, a sufficiently small pore diameter has been obtained, so even if the natural flow film formation is performed thereon and the base is exposed, the effect is small. . As a result, the above effect can be obtained.

11e…エレメント
12…成膜チャンバー
14…供給ポンプ
15…供給タンク
21a…フランジ接続配管
21a…ランジ接続配管
21b…供給配管
21c…タンク配管
21d…ドレイン配管
22…T分岐
112a,112b…釉薬部
118…フィルムテープ
121a…リング
121b…リング
122a…上部エレメント保持リング
122b…下部エレメント保持リング
123b…底部フランジ
11e ... Element 12 ... Deposition chamber 14 ... Supply pump 15 ... Supply tank 21a ... Flange connection piping 21a ... Lung connection piping 21b ... Supply piping 21c ... Tank piping 21d ... Drain piping 22 ... T branch 112a, 112b ... Glaze part 118 ... Film tape 121a ... Ring 121b ... Ring 122a ... Upper element holding ring 122b ... Lower element holding ring 123b ... Bottom flange

Claims (2)

限外ろ過膜層を有するセラミックフィルタに、更にナノろ過膜層を積層して形成するナノ濾過膜の製造方法であって、
該積層して形成されるナノろ過膜は、ディップ製膜法による製膜工程と乾燥工程と焼成工程からなる第一のナノ濾過膜形成工程と、自然流下製膜法による製膜工程と乾燥工程と焼成工程からなる第二のナノ濾過膜形成工程からなることを特徴とするナノ濾過膜の製造方法。
A method for producing a nanofiltration membrane, which is formed by further laminating a nanofiltration membrane layer on a ceramic filter having an ultrafiltration membrane layer,
The nanofiltration membrane formed by laminating is composed of a first nanofiltration membrane formation step comprising a film formation step by a dip film formation method, a drying step and a firing step, and a film formation step and a drying step by a natural flow film formation method. And a second nanofiltration membrane forming step comprising a firing step.
セラミックフィルタが、柱状形状をなすセラミックフィルタの内部で、前記柱状形状の両端面間を軸方向に貫通するように設けられた複数の流路のそれぞれの内壁に、限外ろ過膜層を有するセラミックフィルタであることを特徴とする請求項1記載のナノ濾過膜の製造方法。

The ceramic filter has an ultrafiltration membrane layer on each inner wall of a plurality of flow paths provided so as to penetrate between both end faces of the columnar shape in the axial direction inside the columnar ceramic filter. 2. The method for producing a nanofiltration membrane according to claim 1, wherein the nanofiltration membrane is a filter.

JP2009250020A 2009-10-30 2009-10-30 Method for producing nanofiltration membrane Active JP5075186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250020A JP5075186B2 (en) 2009-10-30 2009-10-30 Method for producing nanofiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250020A JP5075186B2 (en) 2009-10-30 2009-10-30 Method for producing nanofiltration membrane

Publications (2)

Publication Number Publication Date
JP2011092875A true JP2011092875A (en) 2011-05-12
JP5075186B2 JP5075186B2 (en) 2012-11-14

Family

ID=44110399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250020A Active JP5075186B2 (en) 2009-10-30 2009-10-30 Method for producing nanofiltration membrane

Country Status (1)

Country Link
JP (1) JP5075186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744707B1 (en) 2014-09-02 2017-06-20 서울시립대학교 산학협력단 Dual Structure Membrane Module Combined with Carbon Nano Tube, and Water treatment system using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050814A1 (en) * 2006-10-18 2008-05-02 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2008106028A1 (en) * 2007-02-27 2008-09-04 Corning Incorporated Inorganic membranes and method of making
JP2008246304A (en) * 2007-03-29 2008-10-16 Ngk Insulators Ltd Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050814A1 (en) * 2006-10-18 2008-05-02 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2008106028A1 (en) * 2007-02-27 2008-09-04 Corning Incorporated Inorganic membranes and method of making
JP2008246304A (en) * 2007-03-29 2008-10-16 Ngk Insulators Ltd Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744707B1 (en) 2014-09-02 2017-06-20 서울시립대학교 산학협력단 Dual Structure Membrane Module Combined with Carbon Nano Tube, and Water treatment system using the same

Also Published As

Publication number Publication date
JP5075186B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5048371B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
US20080096751A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
TW200921303A (en) System for continuously using resist stripper liquid based on nanofiltration
CN108389784B (en) The preparation method of patterned metal layer
US20110139708A1 (en) Composite semipermeable membrane and manufacturing method therefor
US8318607B2 (en) Immersion lithography wafer edge bead removal for wafer and scanner defect prevention
JP5269583B2 (en) Method for producing ceramic porous membrane
KR100950931B1 (en) Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product
JP5075186B2 (en) Method for producing nanofiltration membrane
JP4960286B2 (en) Method for producing nanofiltration membrane
US20240050905A1 (en) Tangential flow cassette-hf emulation
JP2011092876A (en) Method for manufacturing nanofiltration membrane
JP2009241054A (en) Method for manufacturing of ceramic filter
KR100731549B1 (en) Manufacturing method of a complex ceramic membrane and complex ceramic membrane that is made by it membrane
JP5033670B2 (en) Manufacturing method of ceramic filter
TWI574344B (en) Support plate, method for producing the same, and method for processing substrate
JP5897334B2 (en) Method for producing silica film
JP4960287B2 (en) Method for producing nanofiltration membrane
JP2010099559A (en) Method for manufacturing separation membrane
JP2005263582A (en) Perovskite type compound thin film and its forming method
JP2009255031A (en) Treatment method of ceramic porous film
KR100558932B1 (en) Manufacturing method of a ceramic membrane and ceramic membrane that is made by it membrane
JP5274320B2 (en) Nanofiltration membrane manufacturing method
JPH0264A (en) Production of photomask cover
JP2009226339A (en) Ceramic filter and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5075186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3