JP2009255031A - Treatment method of ceramic porous film - Google Patents

Treatment method of ceramic porous film Download PDF

Info

Publication number
JP2009255031A
JP2009255031A JP2008271803A JP2008271803A JP2009255031A JP 2009255031 A JP2009255031 A JP 2009255031A JP 2008271803 A JP2008271803 A JP 2008271803A JP 2008271803 A JP2008271803 A JP 2008271803A JP 2009255031 A JP2009255031 A JP 2009255031A
Authority
JP
Japan
Prior art keywords
ceramic porous
porous membrane
ceramic
carboxylic acid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008271803A
Other languages
Japanese (ja)
Inventor
Tatsuya Hishiki
達也 菱木
Naoko Takahashi
直子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008271803A priority Critical patent/JP2009255031A/en
Publication of JP2009255031A publication Critical patent/JP2009255031A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of a ceramic porous film, capable of substantially shortening the time until a ceramic porous film reaches a resolution performance which can be finally developed by the lapse of timer, and preventing damages with the possibility of lowering film characteristics such as dissolution from being easily generated. <P>SOLUTION: In the treatment method of the ceramic porous film, to the ceramic porous film 1 formed by attaching ceramic sol onto a porous base material 10, drying the ceramic sol and then calcining it, the treatment of bringing carboxylic acid molecules into contact is executed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、セラミック多孔質膜を分離膜として使用する際の分離性能を向上させる処理方法に関する。   The present invention relates to a treatment method for improving separation performance when a ceramic porous membrane is used as a separation membrane.

複数の液体成分を含む混合液体からの特定成分の分離、例えばバイオマスから得られる水とエタノールとを含有する混合液体からの水の分離等に使用する分離膜(フィルタ)として、シリカ、アルミナ、コーディエライト、ムライト、炭化珪素等の耐食性に優れたセラミックス材料からなるセラミック多孔質膜が使用されている。   Separation of specific components from mixed liquids containing multiple liquid components, such as separation membranes (filters) used for separation of water from mixed liquids containing water obtained from biomass and ethanol, etc. A ceramic porous film made of a ceramic material having excellent corrosion resistance such as erlite, mullite, silicon carbide and the like is used.

このようなセラミック多孔質膜は、多孔質基材上にセラミックゾルを付着させ、このセラミックゾルを乾燥した後、焼成することにより形成され、通常は支持体となる多孔質基材と一体的に用いられる。   Such a ceramic porous membrane is formed by adhering a ceramic sol on a porous substrate, drying the ceramic sol, and firing it, and is usually integrated with the porous substrate serving as a support. Used.

ところで、前記のようにセラミック多孔質膜を分離膜として使用する場合には、その分離性能が経時的に変化することが知られている。具体的には、時間の経過とともにセラミック多孔質膜の分離係数αが上昇し、ある程度まで上昇した後、その分離係数αが維持される。即ち、セラミック多孔質膜は、作製したばかりの初期状態においては分離係数αが低く、最終的に発現される分離係数αに到達するまでの間は、本来の分離性能が得られないという問題がある。   Incidentally, as described above, when a ceramic porous membrane is used as a separation membrane, it is known that the separation performance changes with time. Specifically, the separation factor α of the ceramic porous membrane increases with the passage of time, and after rising to some extent, the separation factor α is maintained. That is, the ceramic porous membrane has a problem that the separation factor α is low in the initial state just produced, and the original separation performance cannot be obtained until the separation factor α is finally expressed. is there.

特許文献1には、シリカ質多孔質膜を、水中に浸漬したり、100℃以上の水蒸気に接触させたり、湿度が30%以上で温度が0℃以上の環境にさらしたりすることにより、予め細孔の壁面に所定量の水を吸着させるという処理方法が開示されている。このような処理を施すことによって、最終的な分離性能を発現するまでの時間をやや短縮することが可能ではある。しかしながら、最終的な分離性能を発現するまでにかかる時間の大きな短縮化は期待できないことに加えて、その効果にもバラツキが有る。更に前記処理を施す際の水や水蒸気との接触によりシリカ質多孔質膜の溶解が起こり、分離膜としての膜特性が低下する可能性がある。   In Patent Document 1, a siliceous porous membrane is immersed in water, brought into contact with water vapor of 100 ° C. or higher, or exposed to an environment having a humidity of 30% or higher and a temperature of 0 ° C. or higher in advance. A treatment method is disclosed in which a predetermined amount of water is adsorbed on the wall surfaces of the pores. By performing such treatment, it is possible to slightly shorten the time until the final separation performance is developed. However, in addition to not expecting a significant reduction in the time taken to develop the final separation performance, there are variations in the effect. Furthermore, dissolution of the siliceous porous membrane may occur due to contact with water or water vapor during the treatment, and the membrane characteristics as a separation membrane may be deteriorated.

特開2001−276586号公報JP 2001-276586 A

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、セラミック多孔質膜が時間の経過によって最終的に発現し得る分離性能に到達するまでの時間を大幅に短縮できるとともに、溶解することによる分離膜としての膜特性を低下させる可能性を抑制することができるセラミック多孔質膜の処理方法を提供することにある。   The present invention has been made in view of such conventional circumstances, and the purpose of the present invention is to determine the time until the ceramic porous membrane finally reaches the separation performance that can be developed over time. An object of the present invention is to provide a method for treating a ceramic porous membrane, which can be greatly shortened and can suppress the possibility of deteriorating membrane characteristics as a separation membrane by dissolution.

上記目的を達成するため、本発明によれば、以下のセラミック多孔質膜の処理方法が提供される。   In order to achieve the above object, according to the present invention, the following ceramic porous membrane treatment method is provided.

[1]多孔質基材上にセラミックゾルを付着させ、前記セラミックゾルを乾燥し、その後焼成することにより形成されたセラミック多孔質膜に対し、カルボン酸分子を接触させる処理を施すセラミック多孔質膜の処理方法。   [1] A ceramic porous membrane that is subjected to a treatment of bringing a carboxylic acid molecule into contact with a ceramic porous membrane formed by attaching a ceramic sol on a porous substrate, drying the ceramic sol, and then firing the ceramic sol. Processing method.

[2]前記セラミック多孔質膜が、多孔質基材上にシリカゾルを付着させ、前記シリカゾルを乾燥し、その後焼成することにより形成されたシリカ多孔質膜である前記[1]に記載のセラミック多孔質膜の処理方法。   [2] The ceramic porous membrane according to [1], wherein the ceramic porous membrane is a porous silica membrane formed by adhering a silica sol on a porous substrate, drying the silica sol, and then firing the silica sol. How to treat the membrane.

[3]前記カルボン酸分子を接触させる処理を施した後、更に前記セラミック多孔質膜の表面に熱処理を施す前記[1]又は[2]に記載のセラミック多孔質膜の処理方法。   [3] The method for treating a ceramic porous membrane according to [1] or [2], wherein after the treatment for bringing the carboxylic acid molecule into contact, the surface of the ceramic porous membrane is further subjected to a heat treatment.

[4]前記処理として、カルボン酸水溶液を前記セラミック多孔質膜表面上に流通させる処理を施す前記[1]〜[3]のいずれかに記載のセラミック多孔質膜の処理方法。   [4] The method for treating a ceramic porous membrane according to any one of [1] to [3], wherein as the treatment, a carboxylic acid aqueous solution is circulated on the surface of the ceramic porous membrane.

[5]前記処理として、カルボン酸水溶液を前記セラミック多孔質膜表面上に流通させるとともに、前記セラミック多孔質膜の前記カルボン酸水溶液が流通する面と反対側の面を減圧状態とすることで、前記カルボン酸水溶液に前記セラミック多孔質膜中を透過させる処理を施す前記[1]〜[3]のいずれかに記載のセラミック多孔質膜の処理方法。   [5] As the treatment, while allowing the carboxylic acid aqueous solution to flow on the surface of the ceramic porous membrane, the surface of the ceramic porous membrane opposite to the surface through which the carboxylic acid aqueous solution flows is in a reduced pressure state, The method for treating a ceramic porous membrane according to any one of [1] to [3], wherein the carboxylic acid aqueous solution is treated to permeate the ceramic porous membrane.

[6]前記セラミック多孔質膜表面上に流通させる前記カルボン酸水溶液の膜面での線速度が0.5〜100cm/秒である前記[4]又は[5]に記載のセラミック多孔質膜の処理方法。   [6] The ceramic porous membrane according to [4] or [5], wherein a linear velocity on the membrane surface of the carboxylic acid aqueous solution circulated on the surface of the ceramic porous membrane is 0.5 to 100 cm / sec. Processing method.

[7]前記処理において、使用する前記カルボン酸水溶液のpHが6以下であり、処理温度が20〜110℃であり、処理時間が2〜500時間である前記[4]〜[6]のいずれかに記載のセラミック多孔質膜の処理方法。   [7] In any of the above [4] to [6], in the treatment, the pH of the aqueous carboxylic acid solution to be used is 6 or less, the treatment temperature is 20 to 110 ° C., and the treatment time is 2 to 500 hours. A method for treating a ceramic porous membrane according to claim 1.

[8]前記カルボン酸分子が、酢酸分子及びクエン酸分子の少なくともいずれかである前記[1]〜[7]のいずれかに記載のセラミック多孔質膜の処理方法。   [8] The method for treating a porous ceramic membrane according to any one of [1] to [7], wherein the carboxylic acid molecule is at least one of an acetic acid molecule and a citric acid molecule.

[9]前記カルボン酸分子が、クエン酸分子である前記[1]〜[8]のいずれかに記載のセラミック多孔質膜の処理方法。   [9] The method for treating a ceramic porous membrane according to any one of [1] to [8], wherein the carboxylic acid molecule is a citric acid molecule.

本発明の処理方法を実施すると、セラミック多孔質膜の初期状態における分離性能(分離係数α)が向上し、セラミック多孔質膜が時間の経過によって最終的に発現し得る分離性能に到達するまでの時間を大幅に短縮できるので、セラミック多孔質膜の製造後、短時間で高い分離性能を発揮させることが可能となる。また、カルボン酸分子を接触させる処理には、水に比してpHの値が低いカルボン酸水溶液を使用できるため、処理対象であるセラミック多孔質膜がシリカ多孔質膜のような高pH環境で溶解しやすくても溶解が起こりにくく、分離膜としての膜特性が低下する可能性を抑制することができる。   When the treatment method of the present invention is carried out, the separation performance (separation coefficient α) in the initial state of the ceramic porous membrane is improved, and until the ceramic porous membrane finally reaches the separation performance that can be developed over time. Since the time can be greatly shortened, high separation performance can be exhibited in a short time after the production of the ceramic porous membrane. In addition, since the aqueous solution of carboxylic acid having a lower pH value than that of water can be used for the treatment for contacting the carboxylic acid molecules, the ceramic porous membrane to be treated can be used in a high pH environment such as a silica porous membrane. Even if it is easy to dissolve, it is difficult for dissolution to occur, and it is possible to suppress the possibility that the membrane characteristics as a separation membrane deteriorate.

以下、本発明を具体的な実施形態に基づき説明するが、本発明は、これに限定されて解釈されるもではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the present invention will be described based on specific embodiments, but the present invention should not be construed as being limited thereto and based on the knowledge of those skilled in the art without departing from the scope of the present invention. Various changes, modifications, and improvements can be added.

本発明において、処理対象となるセラミック多孔質膜は、多孔質基材上にセラミックゾルを付着させ、そのセラミックゾルを乾燥し、その後焼成することにより形成されたものである。   In the present invention, the ceramic porous membrane to be treated is formed by attaching a ceramic sol on a porous substrate, drying the ceramic sol, and then firing it.

セラミック多孔質膜の支持体となる多孔質基材の材質としては、アルミナ、シリカ、コージェライト等が好適なものとして挙げられる。多孔質基材の気孔率は、当該基材の強度と透過性の観点から25〜55%程度とすることが好ましい。また、多孔質基材の平均細孔径は、0.005〜5μm程度とすることが好ましい。多孔質基材の厚さは、支持体として必要な強度を満たすとともに、分離成分の透過性を損なわない範囲で選択すればよい。   Preferred examples of the material for the porous substrate serving as the support for the ceramic porous membrane include alumina, silica, cordierite and the like. The porosity of the porous substrate is preferably about 25 to 55% from the viewpoint of the strength and permeability of the substrate. Moreover, it is preferable that the average pore diameter of a porous base material shall be about 0.005-5 micrometers. What is necessary is just to select the thickness of a porous base material in the range which does not impair the permeability | transmittance of a separation component while satisfy | filling intensity | strength required as a support body.

また、多孔質基材は、全体が同じ材質で構成されており、各部の平均細孔径や気孔率等が均等な単層構造を有する基材でもよいし、材質、平均細孔径、気孔率等が異なる複数の層が積層された複層構造を有する基材でもよい。複層構造を有する多孔質基材としては、例えば図2に示すような、所定の平均細孔径を有する基材本体11と、この基材本体11上に形成された基材本体11よりも小さい平均細孔径を有する限外濾過膜(以下「UF膜」と言う。)14とからなる多孔質基材10が好ましい。図1に示すように、このような構造を有する多孔質基材10のUF膜14上にセラミック多孔質膜1を形成すると、クラック等の欠陥の少ない高分離能のセラミック多孔質膜1が得られやすい。多孔質基材10を基材本体11とUF膜14とから構成する場合、UF膜14の材質としてはチタニアを用いることが好ましい。   In addition, the porous base material is composed entirely of the same material, and may be a base material having a single-layer structure in which the average pore diameter and porosity of each part are uniform, or the material, average pore diameter, porosity, etc. May be a base material having a multilayer structure in which a plurality of different layers are laminated. As a porous substrate having a multilayer structure, for example, as shown in FIG. 2, a substrate body 11 having a predetermined average pore diameter and a substrate body 11 formed on the substrate body 11 are smaller. A porous substrate 10 composed of an ultrafiltration membrane (hereinafter referred to as “UF membrane”) 14 having an average pore diameter is preferred. As shown in FIG. 1, when the ceramic porous membrane 1 is formed on the UF membrane 14 of the porous substrate 10 having such a structure, a high-separability ceramic porous membrane 1 with few defects such as cracks is obtained. It is easy to be done. When the porous substrate 10 is composed of the substrate body 11 and the UF membrane 14, it is preferable to use titania as the material of the UF membrane 14.

多孔質基材の形状については特に制限はなく、セラミック多孔質膜の使用目的に応じて適宜選択することができる。例えば、図3に示す多孔質基材10は、流体の流路となる複数のセル(貫通孔)23が隔壁22により区画形成されたモノリス形状を呈したものである。このような形状の多孔質基材10のセル23の内壁面にセラミック多孔質膜を形成して、セル23内に混合液体を導入すると、混合液体を構成する成分の内、セラミック多孔質膜を透過可能な特定成分だけが、セラミック多孔質膜を透過し、更に多孔質基材10を透過して外壁面から排出される。このような形状の多孔質基材10は、押出成形法等により作製することができる。なお、多孔質基材10のセル23の内壁面は、前記のようにUF膜によって構成されていることが好ましい。   There is no restriction | limiting in particular about the shape of a porous base material, According to the intended purpose of using a ceramic porous membrane, it can select suitably. For example, the porous substrate 10 shown in FIG. 3 has a monolithic shape in which a plurality of cells (through holes) 23 serving as fluid flow paths are partitioned by partition walls 22. When a ceramic porous film is formed on the inner wall surface of the cell 23 of the porous substrate 10 having such a shape, and the mixed liquid is introduced into the cell 23, the ceramic porous film is formed among the components constituting the mixed liquid. Only the specific component which can permeate | transmit can permeate | transmit a ceramic porous membrane, and also permeate | transmit the porous base material 10, and is discharged | emitted from an outer wall surface. The porous substrate 10 having such a shape can be produced by an extrusion molding method or the like. In addition, it is preferable that the inner wall surface of the cell 23 of the porous base material 10 is comprised by the UF film | membrane as mentioned above.

多孔質基材10上に形成されるセラミック多孔質膜1の材質としては、シリカ、チタニア、ジルコニア、アルミナ、コーディエライト、ムライト、炭化珪素等が好適なものとして挙げられる。これらの中でも、特にシリカからなる多孔質膜は、平均細孔径の制御が容易であるため特に好ましい。   Suitable materials for the porous ceramic film 1 formed on the porous substrate 10 include silica, titania, zirconia, alumina, cordierite, mullite, silicon carbide, and the like. Among these, a porous film made of silica is particularly preferable because the average pore diameter can be easily controlled.

セラミック多孔質膜の形成に当たっては、まず、得ようとするセラミック多孔質膜の成分が含まれたセラミックゾル(コーティング液)を調製する。例えば、シリカ多孔質膜を形成する場合には、テトラエトシキシランを硝酸の存在下で、50℃にて5時間加水分解してゾル液とし、そのゾル液をシリカ換算で1.0質量%となるようにエタノールで希釈、調整することによりシリカゾルを調製する。エタノールで希釈する代わりに水で希釈することも可能ではあるが、エタノールで希釈する方が、1回の成膜において薄く成膜することができ、高透過速度の膜を形成することができる。また、ここではセラミックゾルの成分としてシリカゾルを用いているが、シリカゾルの代わりにチタニア、ジルコニア等の他の成分のゾルを用いることもできる。   In forming the ceramic porous film, first, a ceramic sol (coating liquid) containing the components of the ceramic porous film to be obtained is prepared. For example, when forming a porous silica membrane, tetraethoxysilane is hydrolyzed at 50 ° C. for 5 hours in the presence of nitric acid to obtain a sol solution, and the sol solution is 1.0% by mass in terms of silica. A silica sol is prepared by diluting and adjusting with ethanol so as to be. Although it is possible to dilute with water instead of diluting with ethanol, diluting with ethanol can form a thin film in one film formation, and a film with a high permeation rate can be formed. Here, silica sol is used as a component of the ceramic sol, but sol of other components such as titania and zirconia can be used instead of silica sol.

次に、調製したセラミックゾルを多孔質基材上に付着させる。例えば、多孔質基材がモノリス形状である場合には、図4に示すように、多孔質基材10の外周面をマスキングテープ41でマスクし、多孔質基材10の上部からセラミックゾル40を流し込んでセル23内を通過させることにより、セル23の内壁面上にセラミックゾルを付着させる。その後、必要に応じ、多孔質基材10を数回手で振るなどして、余剰のセラミックゾルを飛ばし、除去する。なお、セラミックゾルを多孔質基材上に付着させる方法は、このような流し込みに限られず、ディップ法等の他の方法により行ってもよい。   Next, the prepared ceramic sol is deposited on the porous substrate. For example, when the porous substrate is monolithic, as shown in FIG. 4, the outer peripheral surface of the porous substrate 10 is masked with a masking tape 41, and the ceramic sol 40 is removed from the upper part of the porous substrate 10. The ceramic sol is deposited on the inner wall surface of the cell 23 by pouring and passing through the cell 23. Thereafter, if necessary, excess ceramic sol is removed by shaking the porous substrate 10 by hand several times. The method of attaching the ceramic sol on the porous substrate is not limited to such pouring, and may be performed by other methods such as a dip method.

次に、多孔質基材に付着させたセラミックゾルを乾燥させる。乾燥方法は特に限定されないが、例えば、図5に示すように、ドライヤ25等によりセル23内に風を送って乾燥させることが好ましい。このように送風により乾燥を行うことにより、セラミックゾルを密に膜化することができる。送風の温度は好ましくは10〜80℃である。10℃よりも低い温度で送風すると、セル23の内壁面に付着したセラミックゾルの乾燥がなかなか進展しないため、密なセラミック多孔質膜が得られず、平均細孔径が大きい膜となってしまう場合がある。また、80℃よりも高い温度で送風すると、セラミック多孔質膜表面にクラックが発生しやくなる。送風がセル23内を通過する速度は、0.1〜100m/秒であることが好ましい。送風がセル内を通過する速度が0.1m/秒未満だと、乾燥に要する時間が長くなりすぎる場合がある。また、送風がセル内を通過する速度が100m/秒を超えるとセラミック多孔質膜表面にクラックが発生しやすくなる。   Next, the ceramic sol attached to the porous substrate is dried. The drying method is not particularly limited. For example, as shown in FIG. 5, it is preferable to dry the cell 23 by sending air into the cell 23 using a dryer 25 or the like. Thus, by drying by ventilation, the ceramic sol can be densely formed into a film. The temperature of ventilation is preferably 10 to 80 ° C. When the air is blown at a temperature lower than 10 ° C., the ceramic sol attached to the inner wall surface of the cell 23 does not easily dry, and thus a dense ceramic porous film cannot be obtained, resulting in a film having a large average pore diameter. There is. Further, when the air is blown at a temperature higher than 80 ° C., cracks are likely to occur on the ceramic porous membrane surface. The speed at which the blast passes through the cell 23 is preferably 0.1 to 100 m / sec. If the speed at which the blast passes through the cell is less than 0.1 m / sec, the time required for drying may become too long. On the other hand, if the speed at which the blast passes through the cell exceeds 100 m / sec, cracks are likely to occur on the surface of the ceramic porous membrane.

こうして多孔質基材上に付着させたセラミックゾルを乾燥させた後、焼成する。焼成は、例えば、100℃/hrにて昇温し、500℃で1時間保持した後、100℃/hrで降温するという方法で行うことができる。   The ceramic sol thus deposited on the porous substrate is dried and then fired. Firing can be performed, for example, by raising the temperature at 100 ° C./hr, holding at 500 ° C. for 1 hour, and then lowering the temperature at 100 ° C./hr.

なお、以上説明したセラミックゾルの付着、乾燥、焼成という一連の操作は、必要に応じ複数回繰り返してもよい。   The series of operations described above for attaching, drying, and firing the ceramic sol may be repeated a plurality of times as necessary.

本発明においては、このようにして多孔質基材上に形成されたセラミック多孔質膜に対し、カルボン酸分子を接触させる処理を施す。本発明者らが鋭意研究を重ねた結果、このようにセラミック多孔質膜にカルボン酸分子を接触させることにより、セラミック多孔質膜の初期状態における分離性能(分離係数α)が向上し、セラミック多孔質膜が時間の経過によって最終的に発現し得る分離性能に到達するまでの時間を大幅に短縮できることがわかった。前記処理によりセラミック多孔質膜の分離性能が向上する理由としては、カルボン酸分子が細孔壁に接触することによって、細孔壁の親水性が向上するためと考えられる。   In the present invention, the ceramic porous film thus formed on the porous base material is subjected to a treatment for bringing carboxylic acid molecules into contact therewith. As a result of extensive studies by the present inventors, the separation performance (separation coefficient α) in the initial state of the ceramic porous membrane is improved by bringing the carboxylic acid molecule into contact with the ceramic porous membrane in this way, and the ceramic porous It was found that the time until the membrane reaches the separation performance that can be finally expressed over time can be greatly shortened. The reason why the separation performance of the ceramic porous membrane is improved by the treatment is considered to be that the hydrophilicity of the pore wall is improved by contacting the carboxylic acid molecule with the pore wall.

本発明において、セラミック多孔質膜に接触させるカルボン酸分子としては、酢酸分子及びクエン酸分子の少なくともいずれかが、分離性能(分離係数α)を向上させる効果が高いので好ましく、特に、クエン酸分子を接触させた場合は、酢酸分子を接触させた場合に比べより高い効果が得られるので更に好ましい。   In the present invention, as the carboxylic acid molecule to be brought into contact with the ceramic porous membrane, at least one of acetic acid molecule and citric acid molecule is preferable because it has a high effect of improving the separation performance (separation coefficient α). Is more preferable because a higher effect can be obtained than when acetic acid molecules are contacted.

セラミック多孔質膜にカルボン酸分子を接触させるための具体的な方法としては、カルボン酸水溶液をセラミック多孔質膜表面上に流通させる方法(以下、「流通法」と言う。)や、カルボン酸水溶液をセラミック多孔質膜表面上に流通させるとともに、セラミック多孔質膜のカルボン酸水溶液が流通する面と反対側の面を減圧状態とすることで、カルボン酸水溶液にセラミック多孔質膜中を透過させる方法(以下、「透過法」と言う。)等が好適な方法として挙げられる。特に、透過法により処理すると、分離性能(分離係数α)を向上させる効果が高く、好ましい。なお、これらの方法においては、カルボン酸水溶液を気化させてセラミック多孔質膜の表面上に流通させてもよい。   Specific methods for bringing the carboxylic acid molecules into contact with the ceramic porous membrane include a method of circulating a carboxylic acid aqueous solution on the surface of the ceramic porous membrane (hereinafter referred to as “circulation method”), a carboxylic acid aqueous solution. Is passed through the ceramic porous membrane surface, and the surface of the ceramic porous membrane opposite to the surface through which the carboxylic acid aqueous solution circulates is reduced in pressure so that the carboxylic acid aqueous solution permeates the ceramic porous membrane. (Hereinafter referred to as “transmission method”) and the like. In particular, the treatment by the permeation method is preferable because the effect of improving the separation performance (separation coefficient α) is high. In these methods, the carboxylic acid aqueous solution may be vaporized and distributed on the surface of the ceramic porous membrane.

このようにカルボン酸分子を接触させる処理には、水に比してpHの低いカルボン酸水溶液を使用することができるので、処理対象であるセラミック多孔質膜がシリカ多孔質膜のような高pH環境で溶解しやすいものであっても、先述の従来技術における水を吸着させる処理に比して、溶解が起こりにくく、膜特性が低下することを抑制することができる。   Thus, since the carboxylic acid aqueous solution having a pH lower than that of water can be used for the treatment for bringing the carboxylic acid molecules into contact with each other, the ceramic porous membrane to be treated has a high pH such as a silica porous membrane. Even if it is easy to dissolve in the environment, dissolution is less likely to occur and deterioration of the film characteristics can be suppressed as compared with the above-described treatment for adsorbing water.

透過法や流通法に用いるカルボン酸水溶液のpHは、6以下であることが好ましく、1〜4であることがより好ましい。pHが6を超えると、処理対象であるセラミック多孔質膜がシリカ多孔質膜のような高pH環境で溶解しやすいものである場合に、溶解する可能性が高まる。なお、使用するカルボン酸水溶液のpHが1〜4程度である場合は、カルボン酸水溶液の温度を変化させても、当該処理を施すことによって到達する分離係数αはほとんど変わらない。   The pH of the carboxylic acid aqueous solution used for the permeation method and the distribution method is preferably 6 or less, and more preferably 1 to 4. When the pH exceeds 6, when the ceramic porous membrane to be treated is easily soluble in a high pH environment such as a silica porous membrane, the possibility of dissolution increases. In addition, when the pH of the carboxylic acid aqueous solution to be used is about 1-4, even if it changes the temperature of carboxylic acid aqueous solution, the separation factor (alpha) which reaches | attains by performing the said process hardly changes.

処理温度、すなわち、カルボン酸水溶液の温度は、20〜110℃であることが好ましく、20〜50℃であることが更に好ましい。処理温度が20℃未満では、処理に時間がかかりすぎる場合がある。また、処理温度が110℃を超えると、処理に使用するカルボン酸水溶液等のpHが高めである場合に、セラミック多孔質膜が溶解する可能性が高まる。   The treatment temperature, that is, the temperature of the aqueous carboxylic acid solution is preferably 20 to 110 ° C, and more preferably 20 to 50 ° C. If the treatment temperature is less than 20 ° C., the treatment may take too long. Moreover, when processing temperature exceeds 110 degreeC, when pH, such as carboxylic acid aqueous solution used for a process, is high, possibility that a ceramic porous membrane will melt | dissolve will increase.

処理時間、すなわち、カルボン酸水溶液をセラミック多孔質膜表面上に流通させたり、カルボン酸水溶液にセラミック多孔質膜中を透過させたりする時間は、2〜500時間であることが好ましく、24〜500時間であることが更に好ましい。処理時間が2時間未満では、分離性能の向上効果が十分に得られない場合がある。また、500時間を超えて処理を行っても、それ以上の分離性能の向上効果は得られにくい。   The treatment time, that is, the time for allowing the aqueous carboxylic acid solution to flow over the ceramic porous membrane surface or for allowing the aqueous carboxylic acid solution to pass through the ceramic porous membrane is preferably 2 to 500 hours, and preferably 24 to 500 hours. More preferably, it is time. If the treatment time is less than 2 hours, the effect of improving the separation performance may not be sufficiently obtained. Further, even if the treatment is performed for more than 500 hours, it is difficult to obtain a further improvement effect of separation performance.

前記の流通法や透過法において、セラミック多孔質膜表面上に流通させるカルボン酸水溶液の膜面での線速度は、0.5〜100cm/秒であることが好ましい。線速度に関しては、速い方がカルボン酸分子の接触の効率が高まるので好ましいが、100cm/秒を超えると、それ以上のカルボン酸分子の接触の効率向上効果は得られにくい。   In the flow method and the permeation method, the linear velocity at the film surface of the carboxylic acid aqueous solution to be circulated on the surface of the ceramic porous film is preferably 0.5 to 100 cm / second. As for the linear velocity, a higher speed is preferable because the contact efficiency of the carboxylic acid molecule is increased. However, if the linear velocity exceeds 100 cm / sec, it is difficult to obtain an effect of further improving the contact efficiency of the carboxylic acid molecule.

また、前記の流通法や透過法によってカルボン酸分子を接触させた後、セル内に2〜100時間風を送ってセラミック多孔質膜の表面に熱処理を施すことで分離性能を向上させる効果が更に高くなる。送風の温度としては10〜200℃であることが好ましく、高温にすることで最終的に発現し得る分離性能に到達するまでの時間を短縮できる。これは、熱処理を施すことによってカルボン酸分子がセラミック多孔質膜の表面に固着し、高い分離性能(分離係数α)の向上するためと考えられる。   In addition, after contacting the carboxylic acid molecules by the flow method or the permeation method, the effect of improving the separation performance is further improved by sending air to the cell for 2 to 100 hours to heat-treat the surface of the ceramic porous membrane. Get higher. The temperature of the air blowing is preferably 10 to 200 ° C., and the time until the separation performance that can be finally expressed can be shortened by increasing the temperature. This is presumably because carboxylic acid molecules are fixed to the surface of the ceramic porous membrane by heat treatment, and high separation performance (separation coefficient α) is improved.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
平均細孔径が0.2μmのアルミナからなるモノリス形状の基材本体(外径30mm、長さ80mm、セル内径:2.5mm、セル数:55個)と、当該基材本体の各セルの内壁面に形成された、平均細孔径が0.8nmのチタニアからなるUF膜とで構成された多孔質基材上に、シリカ多孔質膜を形成した。なお、多孔質基材の両端部はガラスにてシールされている。
Example 1
A monolithic substrate body (outer diameter 30 mm, length 80 mm, cell inner diameter: 2.5 mm, number of cells: 55) made of alumina having an average pore diameter of 0.2 μm, and each cell of the substrate body A porous silica membrane was formed on a porous substrate formed of a titania UF membrane having an average pore diameter of 0.8 nm formed on the wall surface. Note that both ends of the porous substrate are sealed with glass.

シリカ多孔質膜の具体的な形成方法としては、まず、テトラエトシキシランを硝酸の存在下で、50℃にて5時間加水分解してゾル液とし、そのゾル液をシリカ換算で0.7質量%となるようにエタノールで希釈、調整することによりシリカゾル(コーティング液)を得た。次いで、多孔質基材を、その軸方向が鉛直方向となるように治具で固定し、多孔質基材の上部から温度制御したシリカゾルを約80mL分セル内に流し込んで、セル内を通過させることにより、セルの内壁面上にシリカゾルを付着させた。その後、多孔質基材の上部から通風を約5秒間行い、余剰のシリカゾルを除去した。なお、この工程により、セルの内周壁の全体にシリカゾルが付着(成膜)されていることを確認した。   As a specific method for forming the porous silica membrane, first, tetraethoxysilane is hydrolyzed in the presence of nitric acid at 50 ° C. for 5 hours to form a sol solution, and the sol solution is 0.7 mass in terms of silica. The silica sol (coating solution) was obtained by diluting and adjusting with ethanol so as to be in%. Next, the porous base material is fixed with a jig so that the axial direction thereof is the vertical direction, and about 80 mL of silica sol whose temperature is controlled from the upper part of the porous base material is poured into the cell and allowed to pass through the cell. As a result, silica sol was deposited on the inner wall surface of the cell. Thereafter, ventilation was performed from the top of the porous substrate for about 5 seconds to remove excess silica sol. In addition, it confirmed that the silica sol adhered (film-forming) to the whole inner peripheral wall of a cell by this process.

続いて、多孔質基材のセル内を室温の風が通過するようにして、セルの内周壁に付着したシリカゾルを1時間に渡って通風乾燥させた。通風させる風の量は、多孔質基材のセルの出口風速が3〜4m/secとなるように調整した。乾燥後、多孔質基材全体を、電気炉で100℃/hrにて昇温し、500℃で1時間保持した後、100℃/hrで降温した。以上の一連の操作(シリカゾルの付着、乾燥、焼成)を4回繰り返し、多孔質基材上にシリカ多孔質膜を形成した。   Subsequently, the silica sol adhering to the inner peripheral wall of the cell was air-dried for 1 hour so that air at room temperature passed through the cell of the porous substrate. The amount of air to be ventilated was adjusted so that the outlet air speed of the porous substrate cell was 3 to 4 m / sec. After drying, the entire porous substrate was heated at 100 ° C./hr in an electric furnace, held at 500 ° C. for 1 hour, and then cooled at 100 ° C./hr. The above series of operations (attachment of silica sol, drying, firing) was repeated four times to form a porous silica film on the porous substrate.

次いで、形成されたシリカ多孔質膜に対し、カルボン酸分子を接触させる処理を施した。具体的には、シリカ多孔質膜が形成された多孔質基材のセル内に、pHが1である液温70℃の酢酸水溶液を、300cm/秒の線速度で流通させながら、多孔質基材の側面より約10Torrの真空度で減圧することにより、酢酸水溶液にシリカ多孔質膜中を透過させるという処理を2時間に渡って行った。   Next, the formed porous silica membrane was subjected to a treatment for bringing carboxylic acid molecules into contact therewith. Specifically, an aqueous acetic acid solution having a pH of 1 and a liquid temperature of 70 ° C. is circulated at a linear velocity of 300 cm / sec in a cell of a porous base material on which a porous silica film is formed. A process of allowing the aqueous acetic acid solution to permeate through the porous silica membrane by reducing the pressure from the side of the material at a vacuum of about 10 Torr was performed for 2 hours.

こうしてシリカ多孔質膜にカルボン酸分子を接触させた後、水−エタノール分離試験を行った。この試験は、エタノール濃度94質量%の水溶液を、15L/minの送液速度にてセル内に温度70℃で流通させながら、多孔質基材の側面より約10Torrの真空度で減圧して、当該側面から排出される透過液を液体窒素トラップで捕集し、捕集した透過液と透過前の原液とのエタノール濃度から分離係数αを算出するという方法で行った。試験により算出された分離係数αを表1に示した。   Thus, after contacting a carboxylic acid molecule with the porous silica membrane, a water-ethanol separation test was conducted. In this test, an aqueous solution having an ethanol concentration of 94% by mass was decompressed at a vacuum degree of about 10 Torr from the side surface of the porous substrate while circulating an aqueous solution at a temperature of 70 ° C. through the cell at a feeding rate of 15 L / min. The permeate discharged from the side surface was collected by a liquid nitrogen trap, and the separation factor α was calculated from the ethanol concentration of the collected permeate and the raw solution before permeation. The separation factor α calculated by the test is shown in Table 1.

(実施例2〜20)
実施例1と同様にして形成されたシリカ多孔質膜に対し、カルボン酸分子を接触させる処理として、シリカ多孔質膜が形成された多孔質基材のセル内に、表1に示すpH及び液温(処理温度)の酢酸水溶液又はクエン酸水溶液を、同表に示す線速度で、同表に示す時間(処理時間)に渡って流通させた。こうしてシリカ多孔質膜にカルボン酸分子を接触させた後、実施例1と同様にして水−エタノール分離試験を行った。試験により算出された分離係数αを表1に示した。
(Examples 2 to 20)
As a treatment for bringing a carboxylic acid molecule into contact with the porous silica membrane formed in the same manner as in Example 1, the pH and liquid shown in Table 1 were placed in the cell of the porous substrate on which the porous silica membrane was formed. A warm (treatment temperature) acetic acid aqueous solution or citric acid aqueous solution was circulated over the time (treatment time) shown in the same table at the linear velocity shown in the same table. After contacting carboxylic acid molecules with the porous silica membrane in this manner, a water-ethanol separation test was conducted in the same manner as in Example 1. The separation factor α calculated by the test is shown in Table 1.

(比較例1)
実施例1と同様にして形成されたシリカ多孔質膜に対し、カルボン酸分子を接触させる処理を施さずに、水−エタノール分離試験を行った。試験により算出された分離係数αを表1に示した。
(Comparative Example 1)
The silica-porous membrane formed in the same manner as in Example 1 was subjected to a water-ethanol separation test without being subjected to a treatment for bringing a carboxylic acid molecule into contact therewith. The separation factor α calculated by the test is shown in Table 1.

(比較例2)
実施例1と同様にして形成されたシリカ多孔質膜に対し、硝酸水溶液による処理を施した。具体的には、シリカ多孔質膜が形成された多孔質基材のセル内に、pHが1である液温70℃の硝酸水溶液を、50cm/秒の線速度で500時間に渡って流通させた。こうしてシリカ多孔質膜に硝酸分子を接触させた後、実施例1と同様にして水−エタノール分離試験を行った。試験により算出された分離係数αを表1に示した。
(Comparative Example 2)
The silica porous membrane formed in the same manner as in Example 1 was treated with a nitric acid aqueous solution. Specifically, a nitric acid aqueous solution with a liquid temperature of 70 ° C. and a pH of 1 is circulated for 500 hours at a linear velocity of 50 cm / second in a cell of a porous substrate on which a porous silica membrane is formed. It was. After contacting nitric acid molecules with the porous silica membrane in this manner, a water-ethanol separation test was conducted in the same manner as in Example 1. The separation factor α calculated by the test is shown in Table 1.

Figure 2009255031
Figure 2009255031

表1に示すとおり、シリカ多孔質膜に対し、カルボン酸分子を接触させる処理を施した実施例1〜17は、当該処理を施さなかった比較例1よりも分離係数αが高く、当該処理により分離性能が向上することがわかる。これは、カルボン酸分子を接触させることでシリカ多孔質膜の細孔が小径化したためか、若しくは親水性の高いカルボン酸水溶液を接触させることで親水化して水選択性が向上したためと推測される。特に、透過法により処理を施した実施例1は、短時間で分離性能向上効果を発現した。また、実施例2、3、5及び7の結果から、カルボン酸水溶液のpHその他の条件が同じ場合には、酢酸分子よりもクエン酸分子を接触させた方が、高い分離性能向上効果が得られることがわかる。また、実施例2、9及び10の結果から、pHが1程度のカルボン酸水溶液中では、シリカの溶解は起こらず、液温(処理温度)によって分離係数αの値は変化しないが、液温が高温であるほど反応が促進され、分離膜が時間の経過によって最終的に発現し得る分離性能に到達するまでの時間が早まることがわかる。更に、実施例3、11及び12の結果が示すように、pHが4程度のカルボン酸水溶液中でも、液温(処理温度)による分離係数αの値の変化は見られなかった。しかし、実施例4、13及び14の結果が示すように、カルボン酸水溶液のpHが5程度になると、液温が高まるにつれて、シリカの溶解が促進され、分離性能向上効果が減少する。また、実施例6及び15〜17の結果が示すように、膜上を流通するカルボン酸水溶液の線速度が速い方がカルボン酸分子の接触の効率が高まり、高い分離性能向上効果が得られるが、線速度が100cm/sec程度を越えると、それ以上の向上効果は得られにくくなる。硝酸水溶液を用いて処理を行った比較例2は、分離性能向上効果が低いが、これは当該処理では分離膜が親水化されないためであると考えられる。   As shown in Table 1, Examples 1-17 which performed the process which contacts a carboxylic acid molecule with respect to a silica porous membrane have a higher separation coefficient (alpha) than the comparative example 1 which did not perform the said process, and the said process It can be seen that the separation performance is improved. This is presumably because the pores of the porous silica membrane were reduced in size by contacting with carboxylic acid molecules, or the water selectivity was improved by contacting with a highly hydrophilic carboxylic acid aqueous solution to improve water selectivity. . In particular, Example 1 treated by the permeation method exhibited an effect of improving the separation performance in a short time. Further, from the results of Examples 2, 3, 5 and 7, when the pH and other conditions of the aqueous carboxylic acid solution are the same, it is possible to obtain a higher separation performance improvement effect by bringing the citric acid molecule into contact with the acetic acid molecule. I understand that Further, from the results of Examples 2, 9 and 10, in the carboxylic acid aqueous solution having a pH of about 1, the silica does not dissolve and the value of the separation factor α does not change depending on the liquid temperature (treatment temperature). It can be seen that the higher the temperature is, the more the reaction is promoted, and the time it takes for the separation membrane to reach the separation performance that can finally be expressed over time. Furthermore, as the results of Examples 3, 11 and 12 show, even in the carboxylic acid aqueous solution having a pH of about 4, no change in the value of the separation coefficient α due to the liquid temperature (treatment temperature) was observed. However, as the results of Examples 4, 13, and 14 show, when the pH of the carboxylic acid aqueous solution is about 5, dissolution of silica is promoted and the effect of improving the separation performance decreases as the liquid temperature increases. Moreover, as the results of Examples 6 and 15 to 17 show, the higher the linear velocity of the aqueous carboxylic acid solution flowing on the membrane, the higher the contact efficiency of the carboxylic acid molecules, and the higher separation performance improvement effect is obtained. When the linear velocity exceeds about 100 cm / sec, it is difficult to obtain a further improvement effect. The comparative example 2 which processed using the nitric acid aqueous solution has a low separation performance improvement effect, but this is considered to be because the separation membrane is not hydrophilized by the processing.

また、実施例6及び18〜20の結果が示すように、カルボン酸水溶液を接触させた後にシリカ多孔質膜の表面に熱処理を施すことで高い分離性能向上効果が得られることがわかる。熱処理温度が高温であるほど最終的に発現し得る分離性能に到達するまでの時間が早まる。これは、熱処理を施すことでカルボン酸分子がシリカ多孔質膜の表面に固着し、分離性能向上効果が高まるためと考えられる。   Moreover, as the results of Examples 6 and 18 to 20 show, it can be seen that a high separation performance improvement effect can be obtained by applying a heat treatment to the surface of the porous silica membrane after contacting the carboxylic acid aqueous solution. The higher the heat treatment temperature, the faster the time until the separation performance that can be finally expressed is reached. This is considered to be because the carboxylic acid molecules are fixed to the surface of the porous silica membrane by heat treatment, and the effect of improving the separation performance is enhanced.

本発明は、セラミック多孔質膜を分離膜として使用する際の分離性能を向上させる処理方法として好適に利用することができる。   The present invention can be suitably used as a treatment method for improving the separation performance when using a ceramic porous membrane as a separation membrane.

多孔質基材上に形成されたセラミック多孔質膜の構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the ceramic porous membrane formed on the porous base material. 多孔質基材の構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the porous base material. 多孔質基材の形状の一例を示す斜視図である。It is a perspective view which shows an example of the shape of a porous base material. 多孔質基材上にセラミック多孔質膜を形成(成膜)する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of forming (film-forming) a ceramic porous film | membrane on a porous base material. 多孔質基材上にセラミック多孔質膜を形成(成膜)する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of forming (film-forming) a ceramic porous film | membrane on a porous base material.

符号の説明Explanation of symbols

1:セラミック多孔質膜、10:多孔質基材、11:基材本体、14:限外濾過膜(UF膜)、22:隔壁、23:セル、25:ドライヤ、40:セラミックゾル(コーティング液)、41:マスキングテープ。 1: Ceramic porous membrane, 10: Porous base material, 11: Base material, 14: Ultrafiltration membrane (UF membrane), 22: Partition wall, 23: Cell, 25: Dryer, 40: Ceramic sol (coating solution) ), 41: Masking tape.

Claims (9)

多孔質基材上にセラミックゾルを付着させ、前記セラミックゾルを乾燥し、その後焼成することにより形成されたセラミック多孔質膜に対し、
カルボン酸分子を接触させる処理を施すセラミック多孔質膜の処理方法。
Ceramic porous film formed by attaching a ceramic sol on a porous substrate, drying the ceramic sol, and then firing it,
A method for treating a ceramic porous membrane, wherein a treatment for contacting carboxylic acid molecules is performed.
前記セラミック多孔質膜が、多孔質基材上にシリカゾルを付着させ、前記シリカゾルを乾燥し、その後焼成することにより形成されたシリカ多孔質膜である請求項1に記載のセラミック多孔質膜の処理方法。   The ceramic porous membrane according to claim 1, wherein the ceramic porous membrane is a porous silica membrane formed by adhering a silica sol on a porous substrate, drying the silica sol, and then firing the silica sol. Method. 前記カルボン酸分子を接触させる処理を施した後、更に前記セラミック多孔質膜の表面に熱処理を施す請求項1又は2に記載のセラミック多孔質膜の処理方法。   The method for treating a ceramic porous membrane according to claim 1 or 2, wherein after the treatment for bringing the carboxylic acid molecules into contact, a surface of the ceramic porous membrane is further subjected to a heat treatment. 前記処理として、カルボン酸水溶液を前記セラミック多孔質膜表面上に流通させる処理を施す請求項1〜3のいずれか一項に記載のセラミック多孔質膜の処理方法。   The processing method of the ceramic porous membrane as described in any one of Claims 1-3 which performs the process which distribute | circulates carboxylic acid aqueous solution on the said ceramic porous membrane surface as said process. 前記処理として、カルボン酸水溶液を前記セラミック多孔質膜表面上に流通させるとともに、
前記セラミック多孔質膜の前記カルボン酸水溶液が流通する面と反対側の面を減圧状態とすることで、前記カルボン酸水溶液に前記セラミック多孔質膜中を透過させる処理を施す請求項1〜3のいずれか一項に記載のセラミック多孔質膜の処理方法。
As the treatment, while circulating an aqueous carboxylic acid solution on the surface of the ceramic porous membrane,
The process of making the said carboxylic acid aqueous solution permeate | transmit the said ceramic porous membrane by making into a pressure reduction state the surface on the opposite side to the surface through which the said carboxylic acid aqueous solution distribute | circulates of the said ceramic porous membrane. The processing method of the ceramic porous membrane as described in any one of Claims.
前記セラミック多孔質膜表面上に流通させる前記カルボン酸水溶液の膜面での線速度が0.5〜100cm/秒である請求項4又は5に記載のセラミック多孔質膜の処理方法。   The method for treating a ceramic porous membrane according to claim 4 or 5, wherein a linear velocity at the membrane surface of the carboxylic acid aqueous solution circulated on the surface of the ceramic porous membrane is 0.5 to 100 cm / sec. 前記処理において、使用する前記カルボン酸水溶液のpHが6以下であり、処理温度が20〜110℃であり、処理時間が2〜500時間である請求項4〜6のいずれか一項に記載のセラミック多孔質膜の処理方法。   The said process WHEREIN: The pH of the said carboxylic acid aqueous solution to be used is 6 or less, process temperature is 20-110 degreeC, and process time is 2-500 hours, It is any one of Claims 4-6 A method for treating a ceramic porous membrane. 前記カルボン酸分子が、酢酸分子及びクエン酸分子の少なくともいずれかである請求項1〜7のいずれか一項に記載のセラミック多孔質膜の処理方法。   The method for treating a ceramic porous membrane according to any one of claims 1 to 7, wherein the carboxylic acid molecule is at least one of an acetic acid molecule and a citric acid molecule. 前記カルボン酸分子が、クエン酸分子である請求項1〜8のいずれか一項に記載のセラミック多孔質膜の処理方法。   The method for treating a ceramic porous membrane according to any one of claims 1 to 8, wherein the carboxylic acid molecule is a citric acid molecule.
JP2008271803A 2008-03-26 2008-10-22 Treatment method of ceramic porous film Withdrawn JP2009255031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271803A JP2009255031A (en) 2008-03-26 2008-10-22 Treatment method of ceramic porous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008080335 2008-03-26
JP2008271803A JP2009255031A (en) 2008-03-26 2008-10-22 Treatment method of ceramic porous film

Publications (1)

Publication Number Publication Date
JP2009255031A true JP2009255031A (en) 2009-11-05

Family

ID=41383164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271803A Withdrawn JP2009255031A (en) 2008-03-26 2008-10-22 Treatment method of ceramic porous film

Country Status (1)

Country Link
JP (1) JP2009255031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261343A1 (en) * 2011-04-15 2012-10-18 William Marsh Rice University Methods, Systems and Membranes for Separation of Organic Compounds from Liquid Samples
JP2013013884A (en) * 2010-08-26 2013-01-24 Mitsubishi Chemicals Corp Method for producing porous support-zeolite membrane composite
EP4232185A4 (en) * 2020-10-26 2024-10-02 Apex Water Solutions And Services Processes for forming functionalized membranes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013884A (en) * 2010-08-26 2013-01-24 Mitsubishi Chemicals Corp Method for producing porous support-zeolite membrane composite
US20120261343A1 (en) * 2011-04-15 2012-10-18 William Marsh Rice University Methods, Systems and Membranes for Separation of Organic Compounds from Liquid Samples
US9242876B2 (en) * 2011-04-15 2016-01-26 William Marsh Rice University Methods, systems and membranes for separation of organic compounds from liquid samples
EP4232185A4 (en) * 2020-10-26 2024-10-02 Apex Water Solutions And Services Processes for forming functionalized membranes

Similar Documents

Publication Publication Date Title
US20080096751A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP6523516B2 (en) Method of regenerating zeolite membrane
JP5048371B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
CN101679135B (en) Method for preparing a porous inorganic coating on a porous support using certain pore fillers
JP5426367B2 (en) Ceramic porous membrane and ceramic filter
EP2258465B1 (en) Ceramic filter
US3926799A (en) Support for dynamic membrane
JP2010509034A (en) Ceramic filter and method for regenerating the same
JP5269583B2 (en) Method for producing ceramic porous membrane
JP2017159295A (en) Hollow fiber membrane having hexagonal voids
DK177790B1 (en) A METHOD OF PRODUCING A CERAMIC FILTER MEMBRANE, A METHOD OF IMPROVING A CERAMIC FILTER MEMBRANE AND THE CERAMIC FILTER MEMBRANE OBTAINED BY THE METHOD
US9878272B2 (en) Porous inorganic membranes and method of manufacture
JP6363592B2 (en) Structure
JP2009255031A (en) Treatment method of ceramic porous film
JP2010089000A (en) Method of manufacturing separation membrane
JP2009241054A (en) Method for manufacturing of ceramic filter
JP2004168615A (en) Porous silica membrane and method for manufacturing the same
JP5897334B2 (en) Method for producing silica film
JP4960286B2 (en) Method for producing nanofiltration membrane
JP2011194283A (en) Treating method of silica film
JP5033670B2 (en) Manufacturing method of ceramic filter
JP6767995B2 (en) Separation membrane repair method and separation membrane structure manufacturing method
JPS5962324A (en) Filter medium and its manufacture
JP6009541B2 (en) Manufacturing method of separation membrane
JPH0899027A (en) Ceramic structure for gas separation and manufacture of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110