JP2011091204A - Method for manufacturing led light source device - Google Patents

Method for manufacturing led light source device Download PDF

Info

Publication number
JP2011091204A
JP2011091204A JP2009243447A JP2009243447A JP2011091204A JP 2011091204 A JP2011091204 A JP 2011091204A JP 2009243447 A JP2009243447 A JP 2009243447A JP 2009243447 A JP2009243447 A JP 2009243447A JP 2011091204 A JP2011091204 A JP 2011091204A
Authority
JP
Japan
Prior art keywords
led
led element
phosphor
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009243447A
Other languages
Japanese (ja)
Other versions
JP5468349B2 (en
Inventor
Nobuhiro Sato
信宏 佐藤
Masahiro Fukuda
福田  匡広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009243447A priority Critical patent/JP5468349B2/en
Publication of JP2011091204A publication Critical patent/JP2011091204A/en
Application granted granted Critical
Publication of JP5468349B2 publication Critical patent/JP5468349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an LED (light-emitting diode) light source device having a satisfactory mixed color performance and which has less color unevenness. <P>SOLUTION: The method for manufacturing the LED light source device having a resin layer covering the LED element includes forming the resin layer, by partially hardening a resin member around the LED element by the energy generated, when the LED element is made to emit light; and forming a fluorescent material layer having a uniform film thickness, by making the fluorescent material settle down on the surface of the resin layer with the resin layer in an uncured state. As a result of this, the fluorescent material layer having a uniform film thickness around the LED element to manufacture the LED light source device which is evenly colored and moreover, and which uses the fluorescent in an effective way. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子から発せられる光を受けて励起されることにより波長変換光を発する蛍光体を含有した樹脂層を備えたLED光源装置の製造方法に関する。   The present invention relates to a method for manufacturing an LED light source device including a resin layer containing a phosphor that emits wavelength-converted light when excited by receiving light emitted from a light emitting element.

従来、化合物半導体である発光ダイオード(以下、LEDと略す)は、長寿命や小型化の特徴を生かして光源装置として幅広く利用されている。また、窒化ガリウム系化合物半導体(以下、GaN系半導体と略す)等による青色を発光するLEDが開発され製品化されたことにより、LED素子を封止する樹脂に黄色光を発する蛍光体を含有させ、青色光と黄色光との混合により疑似白色光を得るLED光源装置が実用化されている。また、GaN系半導体により紫外光〜近紫外光(例えば350〜410nm)にピーク波長を有するLEDが開発され、この紫外光〜近紫外光を受けて励起されることにより、赤色光、緑色光、青色光を発する三種類の蛍光体を用いて白色光を得るLED光源装置も開示されている。   Conventionally, light-emitting diodes (hereinafter abbreviated as LEDs), which are compound semiconductors, are widely used as light source devices by taking advantage of their long life and miniaturization. In addition, LEDs that emit blue light using gallium nitride-based compound semiconductors (hereinafter abbreviated as GaN-based semiconductors) have been developed and commercialized, so that a resin that seals LED elements contains a phosphor that emits yellow light. LED light source devices that obtain pseudo white light by mixing blue light and yellow light have been put into practical use. In addition, LEDs having a peak wavelength from ultraviolet light to near ultraviolet light (for example, 350 to 410 nm) have been developed by GaN-based semiconductors, and are excited by receiving this ultraviolet light to near ultraviolet light, thereby causing red light, green light, An LED light source device that obtains white light using three types of phosphors that emit blue light is also disclosed.

このような白色LEDにおいて、光硬化性蛍光体含有組成物をLED素子に塗布した後、LED素子を発光させて光硬化性蛍光体含有組成物を硬化させる製造方法が開示されている(例えば、特許文献1参照)。この白色LED光源装置の製造方法は、LED素子の表面に光硬化性蛍光体含有組成物層を形成する工程と、LED素子を発光させて光硬化性蛍光体含有組成物を硬化する工程と、硬化工程後に光硬化性蛍光体含有組成物の硬化物を残すように未硬化物を除去する工程とを備えている。   In such a white LED, a manufacturing method is disclosed in which after the photocurable phosphor-containing composition is applied to the LED element, the LED element emits light to cure the photocurable phosphor-containing composition (for example, Patent Document 1). The manufacturing method of this white LED light source device includes a step of forming a photocurable phosphor-containing composition layer on the surface of the LED element, a step of causing the LED element to emit light and curing the photocurable phosphor-containing composition, And a step of removing the uncured product so as to leave a cured product of the photocurable phosphor-containing composition after the curing step.

そして、光硬化性蛍光体含有組成物に含有される蛍光体粒子の混合にむらが生じても、蛍光体粒子が多く存在する光路では、組成物の硬化が進まないので硬化領域が薄くなり、蛍光体粒子が少ない光路では、組成物の硬化が進むので硬化領域が厚くなることが示されている。これにより、蛍光体からの変換光が調整されて色むらや発光むらを抑制することが示されている。   And even if uneven mixing of the phosphor particles contained in the photocurable phosphor-containing composition occurs, in the optical path where there are a lot of phosphor particles, the curing of the composition does not proceed, the cured region becomes thin, It has been shown that in an optical path with few phosphor particles, the cured region becomes thicker as the composition is cured. Thereby, it is shown that the converted light from the phosphor is adjusted to suppress uneven color and uneven light emission.

特開2008―159756号公報(第4頁、第10頁)JP 2008-159756 A (pages 4 and 10)

しかしながら、特許文献1の白色LED光源装置の製造方法では、以下の課題を有する。
LED素子を発光させて光硬化性蛍光体含有組成物を硬化し、その後光硬化性蛍光体含有組成物の硬化物を残すように未硬化物を除去する製造方法においては、除去する工程において未硬化部の樹脂を完全に除去することは難しく、硬化物以外すなわち基材や電極への蛍光体の付着などによる汚れが懸念される。また、硬化部の表面に未硬化の樹脂が付着していた場合は、付着した未硬化の樹脂中の蛍光体によって色むらが発生してしまう。
However, the manufacturing method of the white LED light source device of Patent Document 1 has the following problems.
In the production method of removing the uncured product by leaving the LED element to emit light and curing the photocurable phosphor-containing composition, and then leaving the cured product of the photocurable phosphor-containing composition, in the step of removing It is difficult to completely remove the resin in the cured portion, and there is a concern about contamination due to adhesion of the phosphor to other than the cured product, that is, the base material or the electrode. Moreover, when uncured resin has adhered to the surface of the cured portion, color unevenness occurs due to the phosphor in the adhered uncured resin.

また、特許文献1の白色LED光源装置の製造方法では、LED素子を自発光させて光硬化性蛍光体含有組成物を硬化すると、硬化によって形成される蛍光体層が、LED素子の発光強度に依存して形成されるため、LED素子を中心にして略半円球状となるので、発光角度による色むらが発生する問題もある。その理由について、以下に説明する。   Moreover, in the manufacturing method of the white LED light source device of patent document 1, when the LED element self-emits and the photocurable phosphor-containing composition is cured, the phosphor layer formed by curing has the light emission intensity of the LED element. Since it is formed depending on the LED element, it becomes a substantially semispherical shape with the LED element as the center, and there is a problem that uneven color due to the emission angle occurs. The reason will be described below.

図18は、上記の問題を説明する従来のLED光源装置の一例を示している。図18に示すように、100は特許文献1などで開示されている従来のLED光源装置の一例である。
LED光源装置100は、基板101にLED素子102が実装され、このLED素子102を被覆し、蛍光体111を含有する蛍光体層110は、光硬化性蛍光体含有組成物がLED素子の自発光によって硬化した領域であり、LED素子102の発光強度に応じて略半円球状に形成される。
FIG. 18 shows an example of a conventional LED light source device for explaining the above problem. As shown in FIG. 18, reference numeral 100 is an example of a conventional LED light source device disclosed in Patent Document 1 or the like.
In the LED light source device 100, an LED element 102 is mounted on a substrate 101, and the LED element 102 is covered. The phosphor layer 110 containing the phosphor 111 is composed of a light-curable phosphor-containing composition that emits light from the LED element. The region is cured by the above, and is formed in a substantially semispherical shape according to the light emission intensity of the LED element 102.

すなわち、LED素子102から垂直方向に出射される出射光120aは発光強度が強いので、LED素子102の出射面102aから遠い距離まで蛍光体層110の硬化が進む。また、LED素子102から図面上左側の斜め方向に出射される出射光120bは発光強度が弱いので、LED素子102の出射面102aから比較的近い距離で蛍光体層110の硬化が停止する。また、LED素子102から図面上右側の横方向に出射される出射光120cも発光強度が弱いので、LED素子102の出射面102aから比較的近い距離で蛍光体層110の硬化が停止する。このように、蛍光体層110の形状は、LED素子102から垂直方向の距離が長くなり、LED素子102から斜め方向、横方向は次第に短くなるので、LED素子102を中心として略半円球状に形成される。   That is, since the emitted light 120a emitted from the LED element 102 in the vertical direction has a high emission intensity, the phosphor layer 110 is cured to a distance far from the emission surface 102a of the LED element 102. Further, since the emitted light 120b emitted from the LED element 102 in the diagonal direction on the left side in the drawing has a low emission intensity, the curing of the phosphor layer 110 stops at a relatively close distance from the emission surface 102a of the LED element 102. Further, since the emitted light 120c emitted from the LED element 102 in the lateral direction on the right side in the drawing has a low emission intensity, the curing of the phosphor layer 110 stops at a relatively close distance from the emission surface 102a of the LED element 102. As described above, the phosphor layer 110 has a substantially hemispherical shape centered on the LED element 102 because the vertical distance from the LED element 102 becomes longer and the oblique direction and the lateral direction gradually become shorter from the LED element 102. It is formed.

ここで、LED光源装置100が駆動されると、LED素子102から垂直に出射される出射光120aは、蛍光体層110を通過して外部に出射され、そのときのLED素子102の出射面102aから蛍光体層110を通る長さを経路長121aとする。また、LED素子102から図面上左側の斜め方向に出射される出射光120bは、同様に蛍光体層110を斜めに通過して外部に出射され、そのときのLED素子102の出射面102aから蛍光体層110を通る長さを経路長121bとする。また、LED素子102から図面上右側の横方向に出射される出射光120cは、同様に蛍光体層110を横方向に通過して外部に出射され、そのときのLED素子102の出射面102aから蛍光体層110を通る長さを経路長121cとする。   Here, when the LED light source device 100 is driven, the emitted light 120a emitted vertically from the LED element 102 is emitted to the outside through the phosphor layer 110, and the emission surface 102a of the LED element 102 at that time is emitted. The length from the first through the phosphor layer 110 is defined as a path length 121a. Similarly, the emitted light 120b emitted from the LED element 102 in the diagonal direction on the left side of the drawing is similarly emitted obliquely through the phosphor layer 110 and emitted from the emission surface 102a of the LED element 102 at that time. A length passing through the body layer 110 is defined as a path length 121b. Similarly, the emitted light 120c emitted from the LED element 102 in the lateral direction on the right side in the drawing similarly passes through the phosphor layer 110 in the lateral direction and is emitted to the outside, and from the emission surface 102a of the LED element 102 at that time. A length passing through the phosphor layer 110 is defined as a path length 121c.

ここで、垂直方向の経路長121aと斜め方向、横方向の経路長121b、121cは、前述したようにLED素子102の出射面102aから蛍光体層110が終わるまでの距離が方向によって異なるので、垂直方向の経路長121aが長く、斜め方向、横方向の経路長121b、121cが短くなることが理解出来る。これにより、垂直方向の出射光120aは、経路長121aが長いので蛍光体層110の中の多くの蛍光体111に入射し吸収される。また、斜め方向、横方向の出射光120b、120cは、経路長121b、121cが短いので蛍光体層110の中の少ない蛍光体111に入射し吸収される。従って、LED素子102からの出射光の発光角度によって、出射光の波長変換の割合が異なることになる。   Here, the path length 121a in the vertical direction and the path lengths 121b and 121c in the oblique direction and the horizontal direction are different depending on the direction from the emission surface 102a of the LED element 102 to the end of the phosphor layer 110 as described above. It can be understood that the vertical path length 121a is long and the diagonal and horizontal path lengths 121b and 121c are short. Thereby, the outgoing light 120a in the vertical direction is incident on and absorbed by many phosphors 111 in the phosphor layer 110 because the path length 121a is long. In addition, since the path lengths 121b and 121c are short, the outgoing lights 120b and 120c in the oblique direction and the lateral direction are incident on and absorbed by the few phosphors 111 in the phosphor layer 110. Accordingly, the wavelength conversion ratio of the emitted light varies depending on the emission angle of the emitted light from the LED element 102.

すなわち、LED素子102の垂直方向の出射光120aは、波長変換される割合が多いので変換光の光量が多くなるが、LED素子102の斜め方向、横方向の出射光120b、120cは、波長変換される割合が少ないので変換光の光量が少ない。この結果、出射光の発光角度によって色むらが発生することになり問題である。   That is, the emitted light 120a in the vertical direction of the LED element 102 has a high ratio of wavelength conversion, and thus the amount of converted light increases. However, the emitted light 120b and 120c in the oblique and lateral directions of the LED element 102 are converted in wavelength. The amount of converted light is small because the ratio of the generated light is small. As a result, color unevenness occurs depending on the emission angle of the emitted light, which is a problem.

また、この従来のLED光源装置の製造方法は、硬化工程後に行う、未硬化物を除去する工程を含むため、未硬化部に含まれる樹脂や高価な蛍光体が無駄になってしまい、部材を効率良く利用することが出来ない。仮に何らかの手法により、除去した蛍光体を回収したとしても、回収工程が必要となり工程の複雑化を招いてしまう。   Moreover, since this conventional method for manufacturing an LED light source device includes a step of removing uncured material after the curing step, the resin and expensive phosphor contained in the uncured portion are wasted, and the member is removed. It cannot be used efficiently. Even if the removed phosphor is recovered by some method, a recovery process is required, which complicates the process.

そこで本発明の目的は上記課題を解決し、蛍光体を含む未硬化の樹脂を除去することなく、且つ色むらが少ないLED光源装置の製造方法を提供することである。   Accordingly, an object of the present invention is to solve the above problems and provide a method for manufacturing an LED light source device without removing uncured resin containing a phosphor and having less color unevenness.

上記課題を解決するために、本発明のLED光源装置の製造方法は、下記記載の手段を採用する。   In order to solve the above-mentioned problems, the manufacturing method of the LED light source device of the present invention employs the following means.

本発明のLED光源装置の製造方法は、LED素子を被覆する、蛍光体を含む封止樹脂を硬化して形成するLED光源装置の製造方法において、蛍光体を含む封止樹脂を、LED素子を被覆して塗布する工程と、LED素子を自発光させることにより、LED素子周りの封止樹脂を、部分的に硬化させる工程と、未硬化の封止樹脂に含まれる蛍光体を沈降させる工程と、蛍光体を沈降させた後に、LED素子を自発光させることにより、未硬化の封止樹脂を硬化させる工程と、を有することを特徴とする。   The manufacturing method of the LED light source device of the present invention is a manufacturing method of an LED light source device that is formed by curing a sealing resin containing a phosphor that covers the LED element. A step of covering and applying, a step of partially curing the sealing resin around the LED element by causing the LED element to emit light, and a step of precipitating the phosphor contained in the uncured sealing resin A step of curing the uncured sealing resin by causing the LED element to self-emit after the phosphor is precipitated.

また、本発明のLED光源装置の製造方法は、未硬化の封止樹脂を硬化させる工程を、前記LED素子を自発光させることにより行うことを特徴とする。   Moreover, the manufacturing method of the LED light source device of this invention performs the process which hardens uncured sealing resin by making the said LED element self-light-emit.

また、本発明のLED光源装置の製造方法は、基板に設けた電極部とLED素子とを電気的に接続したワイヤーを介してLED素子に電流を供給することで、LED素子を自発光させて、封止樹脂を部分的に硬化させることを特徴とする。   Moreover, the manufacturing method of the LED light source device of this invention makes an LED element self-light-emit by supplying an electric current to an LED element through the wire which electrically connected the electrode part and LED element which were provided in the board | substrate. The sealing resin is partially cured.

また、本発明のLED光源装置の製造方法は、封止樹脂は、熱硬化型樹脂であり、部分的に硬化させた封止樹脂の厚みは、LED素子を発光させたときの熱量により決定した膜厚であることを特徴とする。   Moreover, the manufacturing method of the LED light source device of the present invention is such that the sealing resin is a thermosetting resin, and the thickness of the partially cured sealing resin is determined by the amount of heat when the LED element emits light. It is a film thickness.

また、本発明のLED光源装置の製造方法は、封止樹脂は、光硬化型樹脂であり、部分的に硬化させた封止樹脂の厚みは、LED素子の発光強度分布により決定した膜厚であることを特徴とする。   Moreover, the manufacturing method of the LED light source device of the present invention is such that the sealing resin is a photocurable resin, and the thickness of the partially cured sealing resin is a film thickness determined by the emission intensity distribution of the LED element. It is characterized by being.

また、本発明のLED光源装置の製造方法は、未硬化の封止樹脂を硬化させる工程を、集合基板に複数個並べられたLED素子の多数個を同時に自発光させることにより行うことを特徴とする。   In addition, the manufacturing method of the LED light source device of the present invention is characterized in that the step of curing the uncured sealing resin is performed by simultaneously causing a plurality of LED elements arranged on the collective substrate to self-emit. To do.

本発明のLED光源装置の製造方法は、従来の製造方法の様に、未硬化部の蛍光体を含有する樹脂を除去する工程を含まないため、未硬化樹脂の基材や電極への付着などによる汚れや未硬化樹脂に含まれる蛍光体の付着による色むらの発生を防ぐことが出来る。また、樹脂材料や蛍光体などを無駄にすることなく、部材を有効に活用することが出来る。   Since the manufacturing method of the LED light source device of the present invention does not include the step of removing the resin containing the phosphor in the uncured portion unlike the conventional manufacturing method, the uncured resin adheres to the base material or the electrode. It is possible to prevent the occurrence of color unevenness due to dirt caused by the adhesion of the phosphors contained in the uncured resin. In addition, the members can be used effectively without wasting resin materials or phosphors.

また、本発明によれば、蛍光体層をLED素子に対してほぼ一様の厚みで形成させることが可能となり、このため、LED素子からの光線が蛍光体に入射する確率がどの方向においても同様となる。そのため、本発明で製造したLED光源装置は、色むらのないLED光源装置となる。   In addition, according to the present invention, the phosphor layer can be formed with a substantially uniform thickness with respect to the LED element. For this reason, the probability that the light beam from the LED element is incident on the phosphor element in any direction. The same is true. Therefore, the LED light source device manufactured by the present invention is an LED light source device without color unevenness.

また、本発明では、LED素子を自発光させ、発光させた際の熱エネルギーもしくは光エネルギーによってLED素子周りの樹脂を硬化させ、その上に蛍光体を沈降させて蛍光体層を形成するため、LED素子と基板を電気的に接続するワイヤーに影響されずに蛍光体層を形成でき、ワイヤーボンディングによる実装にも適した製造方法である。   Further, in the present invention, the LED element is self-luminous, the resin around the LED element is cured by thermal energy or light energy when the LED element is caused to emit light, and the phosphor is settled thereon to form a phosphor layer. The phosphor layer can be formed without being affected by the wire that electrically connects the LED element and the substrate, and is a manufacturing method suitable for mounting by wire bonding.

また、LED素子を集合基板上に複数個実装し、多数個同時に発光させ、その後蛍光体を沈降させることにより、個々のLED素子の周りに均一膜厚の蛍光体層を一括して形成することが出来るので、色むらが少なく特性が安定したLED光源装置を一括して大量に
製造することが出来る。
In addition, a plurality of LED elements are mounted on a collective substrate, and a large number of phosphor layers are simultaneously formed around each LED element by simultaneously emitting a plurality of LED elements and then allowing the phosphors to settle. Therefore, LED light source devices with little color unevenness and stable characteristics can be manufactured in large quantities in a lump.

本発明の実施例1に係わるLED光源装置の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the LED light source device concerning Example 1 of this invention. 本発明の実施例1に係わる集合基板の製造工程を示す平面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the aggregate substrate concerning Example 1 of this invention. 本発明の実施例1に係わるLED素子の実装工程を示す平面図および拡大側面図である。It is the top view and enlarged side view which show the mounting process of the LED element concerning Example 1 of this invention. 本発明の実施例1に係わる実装工程によって形成されるLED素子の接続を示す回路図である。It is a circuit diagram which shows the connection of the LED element formed by the mounting process concerning Example 1 of this invention. 本発明の実施例1に係わる樹脂部材を塗布するポッティング工程を示す拡大断面図である。It is an expanded sectional view which shows the potting process which apply | coats the resin member concerning Example 1 of this invention. 本発明の実施例1に係わる樹脂部材の部分硬化工程を示す平面図および拡大断面図である。It is the top view and enlarged sectional view which show the partial hardening process of the resin member concerning Example 1 of this invention. 本発明の実施例1に係わる樹脂の部分硬化部を示す模式的な断面図である。It is typical sectional drawing which shows the partial hardening part of resin concerning Example 1 of this invention. 本発明の実施例1に係わる蛍光体の沈降工程を示す模式的な断面図である。It is typical sectional drawing which shows the sedimentation process of the fluorescent substance concerning Example 1 of this invention. 本発明の実施例1に係わる集合基板上に形成された蛍光体層を示す斜視図である。It is a perspective view which shows the fluorescent substance layer formed on the aggregate substrate concerning Example 1 of this invention. 本発明の実施例1に係わる集合基板上に完成した多数のLED光源装置を分離する切断工程と、切断工程によって完成した単個のLED光源装置とを示す斜視図である。It is a perspective view which shows the cutting process which isolate | separates many LED light source devices completed on the aggregate substrate concerning Example 1 of this invention, and the single LED light source device completed by the cutting process. 本発明の実施例1に係わるLED光源装置を示す断面図である。It is sectional drawing which shows the LED light source device concerning Example 1 of this invention. 本発明の実施例2に係わるLED光源装置の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the LED light source device concerning Example 2 of this invention. 本発明の実施例2に係わる蛍光体を沈降させる工程を示す断面図である。It is sectional drawing which shows the process of settling the fluorescent substance concerning Example 2 of this invention. 本発明の実施例2に係わる樹脂部材の部分硬化工程を示す断面図である。It is sectional drawing which shows the partial hardening process of the resin member concerning Example 2 of this invention. 本発明の実施例2に係わる樹脂の部分硬化部を示す模式的な断面図である。It is typical sectional drawing which shows the partial hardening part of resin concerning Example 2 of this invention. 本発明の実施例2に係わる蛍光体の沈降工程を示す模式的な断面図である。It is typical sectional drawing which shows the sedimentation process of the fluorescent substance concerning Example 2 of this invention. 本発明の実施例2に係わるLED光源装置を示す断面図である。It is sectional drawing which shows the LED light source device concerning Example 2 of this invention. 従来のLED光源装置の出射光の経路長を示す断面図である。It is sectional drawing which shows the path | route length of the emitted light of the conventional LED light source device.

以下図面に基づいて本発明のLED光源装置の製造方法の具体的な実施の形態、及びその変形例を詳述する。   Hereinafter, specific embodiments of the LED light source device manufacturing method of the present invention and modifications thereof will be described in detail with reference to the drawings.

[実施例1のLED光源装置の製造方法の説明:図1]
本実施例におけるLED光源装置の製造方法の概略を図1によって説明する。図1は、本発明の実施例1のLED光源装置の製造工程の全体概略を示すフローチャートである。尚、各製造工程の詳細は後述する。
[Description of Manufacturing Method of LED Light Source Device of Example 1: FIG. 1]
The outline of the manufacturing method of the LED light source device in a present Example is demonstrated with reference to FIG. FIG. 1 is a flowchart showing an overall outline of the manufacturing process of the LED light source device according to the first embodiment of the present invention. Details of each manufacturing process will be described later.

図1に示すように、まず、複数のLED素子を実装するための集合基板を製造する集合基板製造工程を実施する(工程M1)。   As shown in FIG. 1, first, a collective substrate manufacturing process for manufacturing a collective substrate for mounting a plurality of LED elements is performed (process M1).

次に、完成した集合基板上に複数のLED素子を固着し、各LED素子をワイヤーボンディングなどによって集合基板の電極部と電気的に接続するLED素子実装工程を実施する(工程M2)。   Next, an LED element mounting step is performed in which a plurality of LED elements are fixed on the completed aggregate substrate, and each LED element is electrically connected to the electrode portion of the aggregate substrate by wire bonding or the like (process M2).

次に、蛍光体を含有する樹脂部材を集合基板上に実装した複数のLED素子に被覆する
ポッティング工程を実施する(工程M3)。尚、本実施例における樹脂部材は光硬化型樹脂であるものとする。
Next, a potting step of covering the plurality of LED elements mounted on the aggregate substrate with the resin member containing the phosphor is performed (step M3). In addition, the resin member in a present Example shall be photocurable resin.

次に、実装したLED素子のそれぞれに所定の電流を流してLED素子を発光させ、LED素子周辺の樹脂部材を部分的に硬化させる樹脂部分硬化工程を実施する(工程M4)。   Next, a resin is partially cured by causing a predetermined current to flow through each of the mounted LED elements to cause the LED elements to emit light and partially curing the resin member around the LED elements (process M4).

次に、未硬化部の樹脂部材中に含有される蛍光体を未硬化部の樹脂部内において沈降させる蛍光体沈降工程を実施する(工程M5)。   Next, a phosphor sedimentation step is performed in which the phosphor contained in the resin member of the uncured portion is precipitated in the resin portion of the uncured portion (Step M5).

次に、未硬化部の樹脂を含めて樹脂全体を硬化させる樹脂硬化工程を実施する(工程M6)。   Next, a resin curing step of curing the entire resin including the uncured resin is performed (step M6).

最後に、樹脂部材によって封止された集合基板を所定の切断位置で切断し、複数個のLED光源装置を完成する(工程M7)。   Finally, the collective substrate sealed with the resin member is cut at a predetermined cutting position to complete a plurality of LED light source devices (step M7).

[実施例1の集合基板製造工程(工程M1)の説明:図2]
次に、本発明の実施例1の集合基板の製造工程の詳細を図2によって説明する。図2は本発明によって製造されるLED光源装置の集合基板を示し、図2(a)は集合基板の平面図であり、図2(b)は図2(a)の切断線A−A’で切断した集合基板の断面図である。
[Description of Assembly Substrate Manufacturing Process (Process M1) of Example 1: FIG. 2]
Next, details of the manufacturing process of the collective substrate of Example 1 of the present invention will be described with reference to FIG. FIG. 2 shows a collective substrate of the LED light source device manufactured according to the present invention, FIG. 2 (a) is a plan view of the collective substrate, and FIG. 2 (b) is a section line AA ′ of FIG. 2 (a). It is sectional drawing of the collective substrate cut | disconnected by.

まず、図2(a)(b)に示すように、エポキシ材等の絶縁性材料からなる基板1上に電極2a〜2eを配置し、電極2a〜2eが、それぞれスルーホール3a〜3eを介して基板1の表面側と裏面側が接続する様に形成する。ここで、電極2aを図示するように、基板1上に所定の間隔で図面上縦に、電極2bを電極2aに隣接して、電極2aと同様に基板1上に所定の間隔で図面上縦に形成する。また、電極2c〜2eも同様に基板1上に所定の間隔で図面上縦に形成する。   First, as shown in FIGS. 2 (a) and 2 (b), electrodes 2a to 2e are arranged on a substrate 1 made of an insulating material such as an epoxy material, and the electrodes 2a to 2e pass through through holes 3a to 3e, respectively. Thus, the front surface side and the back surface side of the substrate 1 are connected. Here, as shown in the figure, the electrode 2a is vertically arranged on the substrate 1 at a predetermined interval on the substrate, and the electrode 2b is adjacent to the electrode 2a. To form. Similarly, the electrodes 2c to 2e are formed vertically on the substrate 1 at predetermined intervals on the drawing.

これにより、電極2a〜2eは、基板1上にマトリクス状に形成され、図2においては、図面上横方向で5列、図面上縦方向で6行、合計30個の電極2a〜2eが形成されるが、電極2a〜2eは、この個数に限定されるものではなく、基板1の大きさや電極形状等によって任意の数に形成して良い。尚、基板1の裏面においても、表面の電極2a〜2eと同様に電極2a〜2eが形成されている。   As a result, the electrodes 2a to 2e are formed in a matrix on the substrate 1. In FIG. 2, a total of 30 electrodes 2a to 2e are formed in 5 rows in the horizontal direction on the drawing and 6 rows in the vertical direction on the drawing. However, the number of the electrodes 2a to 2e is not limited to this number, and may be formed in an arbitrary number depending on the size of the substrate 1, the electrode shape, or the like. Note that the electrodes 2a to 2e are formed on the back surface of the substrate 1 in the same manner as the electrodes 2a to 2e on the front surface.

ここでスルーホール3aは、電極2aの領域内で図面上左側に寄った位置に形成され、基板1の表面の電極2aと裏面の電極2aを電気的に接続する。また、スルーホール3bは、電極2bの領域内で図面上左側に寄った位置に形成され、基板1の表面の電極2bと裏面の電極2bを電気的に接続する。同様に、スルーホール3c〜3eは、電極2c〜2eのそれぞれの領域内で図面上左側に寄った位置に形成され、基板1の表面の電極2c〜2eと裏面の電極2c〜2eをそれぞれ電気的に接続する。   Here, the through hole 3a is formed at a position closer to the left side in the drawing within the region of the electrode 2a, and electrically connects the electrode 2a on the front surface of the substrate 1 and the electrode 2a on the back surface. The through hole 3b is formed at a position closer to the left side in the drawing within the region of the electrode 2b, and electrically connects the electrode 2b on the front surface of the substrate 1 and the electrode 2b on the back surface. Similarly, the through holes 3c to 3e are formed at positions on the left side in the drawing within the respective regions of the electrodes 2c to 2e, and the electrodes 2c to 2e on the front surface of the substrate 1 and the electrodes 2c to 2e on the back surface are respectively electrically connected. Connect.

また、11と12は電極端子であり、基板1上の図面上左右の端部に電極2aと電極2eにそれぞれ接してライン状に形成される。ここで、電極端子11は電極2aの端部に接して形成されるので、すべての電極2aは電極端子11によって電気的に接続する。また、電極端子12は電極2eの端部にそれぞれ接して形成されるので、すべての電極2eは電極端子12によって電気的に接続する。この電極端子11、12は、集合基板に実装されるLED素子に電流を供給する端子として用いられるが、詳細は後述する。尚、図2に示す集合基板の電極パターンは一例を示すものであり、電極パターンの構成はこれに限定されるものではない。   Reference numerals 11 and 12 denote electrode terminals, which are formed in a line shape in contact with the electrodes 2a and 2e at the left and right ends on the substrate 1 in the drawing. Here, since the electrode terminal 11 is formed in contact with the end of the electrode 2 a, all the electrodes 2 a are electrically connected by the electrode terminal 11. Further, since the electrode terminals 12 are formed in contact with the end portions of the electrodes 2e, all the electrodes 2e are electrically connected by the electrode terminals 12. The electrode terminals 11 and 12 are used as terminals for supplying current to the LED elements mounted on the collective substrate, and details will be described later. In addition, the electrode pattern of the collective substrate shown in FIG. 2 shows an example, and the configuration of the electrode pattern is not limited to this.

[実施例1のLED素子の実装工程(工程M2)の説明:図3、図4]
次に、本発明の実施例1のLED素子の実装工程の詳細を図3及び図4によって説明する。図3は本発明の実施例1のLED素子の実装工程を示し、図3(a)はLED素子が実装された集合基板の平面図であり、図3(b)はLED素子が実装された集合基板の拡大側面図である。
[Description of LED Element Mounting Step (Step M2) of Example 1: FIGS. 3 and 4]
Next, details of the mounting process of the LED element according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 3 shows a mounting process of the LED element of Example 1 of the present invention, FIG. 3 (a) is a plan view of the collective substrate on which the LED element is mounted, and FIG. 3 (b) is a mounting of the LED element. It is an enlarged side view of an aggregate substrate.

図3(a)(b)に示すように、まず、LED素子の実装工程として、電極2a〜2dの図面上略右半分の領域(すなわち、スルーホール3a〜3d以外の領域)に、LED素子4を接着剤等(図示せず)によって固着し実装する。すなわち、電極2a〜2dは図示するようにそれぞれ縦に6個ずつ形成されているので、縦6行、横4列の合計24個のLED素子4が1枚の集合基板に実装される。尚、図面上右端の電極2eには、実装されない。ここで、LED素子4は実施例1においては、発光波長が一例として450nm程度の青色ダイオードである。   As shown in FIGS. 3 (a) and 3 (b), first, as a mounting process of the LED element, the LED element is placed in a region on the substantially right half of the electrodes 2a to 2d (that is, a region other than the through holes 3a to 3d). 4 is fixed and mounted with an adhesive or the like (not shown). That is, as shown in the figure, six electrodes 2a to 2d are formed vertically, so that a total of 24 LED elements 4 in six rows and four columns are mounted on one collective substrate. It is not mounted on the electrode 2e at the right end in the drawing. Here, in Example 1, the LED element 4 is a blue diode having an emission wavelength of about 450 nm as an example.

次に、実装されたLED素子4は、ワイヤーボンダ(図示せず)によってワイヤーボンディングされ、接続部材としての金細線によって成るワイヤー5aと5bで、電極2a〜2eに電気的に接続される。すなわち、図示するように、電極2aに実装されたLED素子4のアノード(図示せず)はワイヤー5aによって電極2aと電気的に接続され、LED素子4のカソード(図示せず)はワイヤー5bによって横隣りの電極2bと電気的に接続される。   Next, the mounted LED element 4 is wire-bonded by a wire bonder (not shown), and is electrically connected to the electrodes 2a to 2e by wires 5a and 5b made of gold fine wires as connection members. That is, as illustrated, the anode (not shown) of the LED element 4 mounted on the electrode 2a is electrically connected to the electrode 2a by the wire 5a, and the cathode (not shown) of the LED element 4 is connected by the wire 5b. It is electrically connected to the adjacent electrode 2b.

また同様に、電極2bに実装されたLED素子4のアノード(図示せず)はワイヤー5aによって電極2bと電気的に接続され、LED素子4のカソード(図示せず)はワイヤー5bによって横隣りの電極2cと電気的に接続される。また同様に、電極2cに実装されたLED素子4と、電極2dに実装されたLED素子4も、ワイヤー5a、5bによってそれぞれの電極と電気的に接続される。   Similarly, the anode (not shown) of the LED element 4 mounted on the electrode 2b is electrically connected to the electrode 2b by the wire 5a, and the cathode (not shown) of the LED element 4 is adjacent to the side by the wire 5b. It is electrically connected to the electrode 2c. Similarly, the LED element 4 mounted on the electrode 2c and the LED element 4 mounted on the electrode 2d are also electrically connected to the respective electrodes by wires 5a and 5b.

これにより、図面上横4列のLED素子4が、電極2a〜2eを介して電極端子11と12の間で直列に接続されることになる。また同様に、LED素子4は図面上縦方向の6行に実装されているので、6行すべてのLED素子4もワイヤー5a、5bで電極2a〜2eに接続される。この結果、電極端子11と12の間にある4個のLED素子4が直列接続された6つの並列接続のグループによって成る合計24個のLED素子4による回路が形成される。   As a result, the four rows of LED elements 4 in the drawing are connected in series between the electrode terminals 11 and 12 via the electrodes 2a to 2e. Similarly, since the LED elements 4 are mounted in six rows in the vertical direction in the drawing, the LED elements 4 in all six rows are also connected to the electrodes 2a to 2e by wires 5a and 5b. As a result, a circuit composed of a total of 24 LED elements 4 is formed, which is composed of six parallel connection groups in which the four LED elements 4 between the electrode terminals 11 and 12 are connected in series.

図4は、図3を用いて説明した、集合基板上に実装されるLED素子4の接続回路を示している。ここで前述したように、4個のLED素子4が一つのグループとして直列接続されており、更にこの6つのグループが並列に接続されているので、電極端子11に所定のプラス電圧を印加し、電極端子12にゼロ電圧を印加すれば、全てのLED素子4のアノードからカソードに駆動電流が流れて、全てのLED素子4を点灯させることが出来る。   FIG. 4 shows a connection circuit of the LED elements 4 mounted on the collective substrate described with reference to FIG. Here, as described above, the four LED elements 4 are connected in series as one group, and further, since these six groups are connected in parallel, a predetermined positive voltage is applied to the electrode terminal 11, When a zero voltage is applied to the electrode terminal 12, a drive current flows from the anode to the cathode of all the LED elements 4, and all the LED elements 4 can be turned on.

尚、LED素子4の接続は、図示した例に限定されず、電極端子11と12の接続パターンを工夫して、全てのLED素子4を直列接続にすることも出来る。ここで、全てのLED素子4を直列接続するならば、全てのLED素子4に流れる電流値を同一に出来るので、後述する樹脂の硬化工程において、個々のLED素子4に対する樹脂の硬化条件を合わせることが出来るが、実施例1のような直列−並列接続であっても、LED素子4の特性がグループ内で平均化されるので、ほぼ同一の硬化条件に合わせることが出来る。   The connection of the LED elements 4 is not limited to the illustrated example, and all the LED elements 4 can be connected in series by devising the connection pattern of the electrode terminals 11 and 12. Here, if all the LED elements 4 are connected in series, the current value flowing through all the LED elements 4 can be made the same. Therefore, in the resin curing step described later, the resin curing conditions for the individual LED elements 4 are matched. However, even in the case of the series-parallel connection as in the first embodiment, the characteristics of the LED elements 4 are averaged within the group, so that almost the same curing conditions can be achieved.

[実施例1の樹脂部材のポッティング工程(工程M3)の説明:図5]
次に、本発明の実施例1のポッティング工程の詳細を図5によって説明する。図5は本発明の実施例1のポッティング工程を説明する拡大断面図である。図5に示すように、集合基板の表面に実装された全てのLED素子4を被覆する封止樹脂として、蛍光体7を含有する樹脂部材20をディスペンサ13によって塗布する。
[Description of Potting Step (Step M3) of Resin Member of Example 1: FIG. 5]
Next, details of the potting process of the first embodiment of the present invention will be described with reference to FIG. FIG. 5 is an enlarged cross-sectional view for explaining a potting process according to the first embodiment of the present invention. As shown in FIG. 5, a resin member 20 containing a phosphor 7 is applied by a dispenser 13 as a sealing resin that covers all the LED elements 4 mounted on the surface of the collective substrate.

ここで、蛍光体7は、LED素子4からの青色光を黄色光に波長変換する蛍光体であり、樹脂部材20は、熱エネルギーによって硬化する熱硬化型のシリコーン樹脂によって成る。尚、樹脂部材20が集合基板表面の全面に塗布され、全てのLED素子4を被覆するように、ディスペンサ13を集合基板に対して移動させながら、樹脂を吐出すると良い。これにより、集合基板上の全てのLED素子4を被覆することが出来る。   Here, the phosphor 7 is a phosphor that converts the wavelength of blue light from the LED element 4 into yellow light, and the resin member 20 is made of a thermosetting silicone resin that is cured by thermal energy. In addition, it is good to discharge resin, moving the dispenser 13 with respect to an aggregate board so that the resin member 20 may be apply | coated to the whole surface of an aggregate board surface, and may cover all the LED elements 4. FIG. Thereby, it is possible to cover all the LED elements 4 on the collective substrate.

[実施例1の樹脂部材の樹脂部分硬化工程(工程M4)の説明:図6、7]
次に、本発明の実施例1の樹脂部分硬化工程の詳細を図6、図7によって説明する。図6は本発明の実施例1の樹脂硬化工程を示し、図6(a)は樹脂部材20が塗布された集合基板に直流電源を接続することを示す平面図であり、図6(b)は集合基板上のLED素子4が自発光して樹脂部材20を硬化させることを模式的に示す拡大断面図である。また、図7は樹脂部分硬化工程後を示す断面図である。
[Description of Resin Partial Curing Process (Process M4) of Resin Member of Example 1: FIGS. 6 and 7]
Next, details of the resin partial curing step of Example 1 of the present invention will be described with reference to FIGS. FIG. 6 shows the resin curing process of Example 1 of the present invention, and FIG. 6 (a) is a plan view showing that a DC power source is connected to the aggregate substrate coated with the resin member 20, and FIG. 6 (b). FIG. 4 is an enlarged cross-sectional view schematically showing that the LED element 4 on the aggregate substrate emits light spontaneously to cure the resin member 20. FIG. 7 is a cross-sectional view after the resin partial curing step.

図6(a)に示すように、樹脂部材20が全面に塗布された集合基板の電極端子11と12に、所定の電圧を出力する直流電源15を接続する。すなわち、電極2aを介してLED素子4のアノードに接続する電極端子11に、直流電源15のプラスライン16aがスイッチSWを介して接続され、電極2eを介してLED素子4のカソードに接続する電極端子12に、直流電源15のマイナスライン16bが接続される。尚、スイッチSWは直流電源15からの電流をON/OFFする機能を有し、LED素子4に所定の時間だけ駆動電流を供給するように制御する。   As shown in FIG. 6A, a DC power source 15 that outputs a predetermined voltage is connected to the electrode terminals 11 and 12 of the aggregate substrate on which the resin member 20 is applied on the entire surface. That is, the plus line 16a of the DC power source 15 is connected to the electrode terminal 11 connected to the anode of the LED element 4 via the electrode 2a via the switch SW, and the electrode connected to the cathode of the LED element 4 via the electrode 2e. The negative line 16 b of the DC power supply 15 is connected to the terminal 12. The switch SW has a function of turning on / off the current from the DC power supply 15 and controls the LED element 4 so as to supply a drive current for a predetermined time.

次に、図6(b)において、前述のスイッチSWを所定の時間だけONすると、集合基板上のすべてのLED素子4にワイヤー5a、5bを介して駆動電流が供給されて、LED素子4は発光し、それに伴い光エネルギー14を放射する。すると、LED素子4を被覆する樹脂部材20は前述したように光硬化型樹脂であるので、LED素子4近傍の樹脂部材20の領域から硬化が始まる。   Next, in FIG. 6B, when the aforementioned switch SW is turned on for a predetermined time, the drive current is supplied to all the LED elements 4 on the collective substrate via the wires 5a and 5b, and the LED elements 4 are Light is emitted and light energy 14 is emitted accordingly. Then, since the resin member 20 that covers the LED element 4 is a photocurable resin as described above, curing starts from the region of the resin member 20 near the LED element 4.

上述のように所定の時間LED素子4を駆動させることにより、その光エネルギー14の大きさに応じて、図7に示すようなLED素子4周りに、その光量分布に応じた厚みの第一の蛍光体層6aが形成される。この第一の蛍光体層6aは略ドーム状の形状であり、樹脂部材20に蛍光体7が含まれているものである。図6、図7においては図面を見やすくするために、樹脂部材20、第一の蛍光体層6aに含有する蛍光体7の図示を省略している。   By driving the LED element 4 for a predetermined time as described above, the first of the thickness corresponding to the light amount distribution around the LED element 4 as shown in FIG. 7 according to the magnitude of the light energy 14. A phosphor layer 6a is formed. The first phosphor layer 6 a has a substantially dome shape, and the resin member 20 includes the phosphor 7. In FIG. 6 and FIG. 7, the phosphor 7 contained in the resin member 20 and the first phosphor layer 6a is omitted for easy viewing of the drawings.

[実施例1の蛍光体沈降工程(工程M5)の説明:図8]
次に、本発明の実施例1の蛍光体沈降工程の詳細を図8によって説明する。図8(a)は本発明の実施例1の蛍光体沈降工程を示す模式的な断面図であり、図8(b)は蛍光体沈降工程後を示す模式的な断面図である。
[Description of Phosphor Sedimentation Step (Step M5) in Example 1: FIG. 8]
Next, details of the phosphor sedimentation step of Example 1 of the present invention will be described with reference to FIG. FIG. 8A is a schematic cross-sectional view showing the phosphor sedimentation step of Example 1 of the present invention, and FIG. 8B is a schematic cross-sectional view after the phosphor sedimentation step.

樹脂部材20中に含まれる蛍光体7は樹脂部材20が流動性を持っているため、樹脂部材20中を移動することが可能である。ここで、樹脂部材20中の樹脂の比重は1.0g/cm程度であり、蛍光体7の比重は4.4g/cm程度である。そのため、樹脂部材20を未硬化状態のまま放置すれば、図8(a)に示すように、蛍光体7は図中下方向へ移動、すなわち沈降する。この蛍光体7を沈降させる他の方法として、樹脂の粘度が下がる温度に樹脂部材20を加熱し、蛍光体7の沈降を促進させる方法、また、樹脂部材2
0が未硬化状態のときに、遠心分離に掛けて、強制的に蛍光体7を沈降させる方法などがある。このとき、LED素子4上には略ドーム状の第一の蛍光体層6aが存在するため、蛍光体7は第一の蛍光体層6a上に堆積し、図8(b)に示すように、第一の蛍光体層6aに含まれる蛍光体7と同じ蛍光体を含む、第二の蛍光体層6bを形成する。この様にして、蛍光体7を沈降させることにより、蛍光体層6b上には透明樹脂層6cを形成することができる。従って、ポッティング工程においてポッティングされた樹脂部材20内の蛍光体7の多くは、第二の蛍光体層6b中に含まれることとなり、第二の蛍光体層6bの中の蛍光体7の濃度は、第一の蛍光体層6a中の蛍光体7の濃度と比較して、充分に高いものとなる。図8(b)においては図面を見やすくするために、蛍光体7の図示を省略している。
The phosphor 7 contained in the resin member 20 can move through the resin member 20 because the resin member 20 has fluidity. Here, the specific gravity of the resin in the resin member 20 is about 1.0 g / cm 3 , and the specific gravity of the phosphor 7 is about 4.4 g / cm 3 . Therefore, if the resin member 20 is left in an uncured state, as shown in FIG. 8A, the phosphor 7 moves downward in the figure, that is, sinks. As another method for precipitating the phosphor 7, a method of heating the resin member 20 to a temperature at which the viscosity of the resin is lowered to promote sedimentation of the phosphor 7, or the resin member 2
For example, when 0 is in an uncured state, the phosphor 7 is forced to settle by centrifugation. At this time, since the substantially dome-shaped first phosphor layer 6a exists on the LED element 4, the phosphor 7 is deposited on the first phosphor layer 6a, as shown in FIG. 8B. Then, the second phosphor layer 6b including the same phosphor as the phosphor 7 included in the first phosphor layer 6a is formed. In this way, the transparent resin layer 6c can be formed on the phosphor layer 6b by allowing the phosphor 7 to settle. Therefore, most of the phosphors 7 in the resin member 20 potted in the potting process are contained in the second phosphor layer 6b, and the concentration of the phosphor 7 in the second phosphor layer 6b is as follows. Compared with the concentration of the phosphor 7 in the first phosphor layer 6a, the concentration becomes sufficiently high. In FIG. 8B, the phosphor 7 is not shown for easy viewing of the drawing.

[実施例1の樹脂硬化工程(工程M6)の説明:図8(b)、図9]
次に、本発明の実施例1の樹脂硬化工程の詳細を、図8(b)及び図9によって説明する。図9は本発明の実施例1の樹脂硬化工程を説明する斜視図である。
図8(b)に示すように、基板1上に第一の蛍光体層6a、第二の蛍光体層6b、透明樹脂層6cが形成された後、LED素子4の自発光で光照射を行うことにより、樹脂部全体(第二の蛍光体層6bと透明樹脂層6c)を完全に硬化させる。なお、この第二の蛍光体層6bと透明樹脂層6cからなる樹脂部全体の硬化処理を、外部からの光により行っても構わない。この工程により、図9に示す様に、LED素子4とワイヤー5a、5b、及び基板1の表面全体が封止され、電気的機械的に保護されて、耐環境性に優れたLED光源装置を製造することが出来る。図9においては図面を見やすくするために、第一の蛍光体層、蛍光体、ワイヤーの図示を省略している。
[Description of Resin Curing Step of Example 1 (Step M6): FIGS. 8B and 9]
Next, details of the resin curing step of Example 1 of the present invention will be described with reference to FIGS. FIG. 9 is a perspective view for explaining the resin curing step of Example 1 of the present invention.
As shown in FIG. 8B, after the first phosphor layer 6a, the second phosphor layer 6b, and the transparent resin layer 6c are formed on the substrate 1, the LED element 4 emits light by self-light emission. By performing, the whole resin part (the 2nd fluorescent substance layer 6b and the transparent resin layer 6c) is hardened completely. In addition, you may perform the hardening process of the whole resin part which consists of this 2nd fluorescent substance layer 6b and the transparent resin layer 6c with the light from the outside. Through this process, as shown in FIG. 9, the LED element 4, the wires 5a and 5b, and the entire surface of the substrate 1 are sealed, electrically and mechanically protected, and an LED light source device having excellent environmental resistance is obtained. Can be manufactured. In FIG. 9, the first phosphor layer, the phosphor, and the wires are not shown in order to make the drawing easy to see.

[実施例1の切断工程(工程M7)の説明:図10]
次に、本発明の実施例1の切断工程を図10によって説明する。図10は本発明の実施例1の切断工程を示し、図10(a)は集合基板上に完成した多数のLED光源装置を分離する切断工程を説明する集合基板の一部を示す斜視図であり、図10(b)は切断工程によって完成した単個のLED光源装置の一例を示す斜視図である。
[Description of Cutting Process (Process M7) of Example 1: FIG. 10]
Next, the cutting process of Example 1 of the present invention will be described with reference to FIG. FIG. 10 shows a cutting process according to the first embodiment of the present invention, and FIG. 10A is a perspective view showing a part of the collective substrate for explaining a cutting process for separating a large number of LED light source devices completed on the collective board. FIG. 10B is a perspective view showing an example of a single LED light source device completed by the cutting process.

図10(a)に示すように、樹脂部材によって封止された集合基板を所定の切断線X、Yに沿ってダイシング装置(図示せず)等によって切断分離し、複数個のLED光源装置が完成する。尚、切断線Xは基板1上の各電極2a〜2eの間に設定され、切断線Yは集合基板上の各スルーホール3a〜3eの中心を通るように設定される。   As shown in FIG. 10A, the collective substrate sealed by the resin member is cut and separated by a dicing device (not shown) or the like along predetermined cutting lines X and Y, and a plurality of LED light source devices are obtained. Complete. The cutting line X is set between the electrodes 2a to 2e on the substrate 1, and the cutting line Y is set to pass through the centers of the through holes 3a to 3e on the collective substrate.

また、図10(b)に示すように、完成したLED光源装置30は、集合基板から切断分離された基板1に電極2a、2bが形成されている。この電極2a、2bは中心部で切断されたスルーホール3a、3bを備え、このスルーホール3a、3bによって、基板1の裏面の電極2a、2b(図示せず)に電気的に接続される。また、電極2aの表面には、LED素子4が実装され、このLED素子4は、前述したように2本のワイヤー5a、5bによって電極2a、2bと電気的に接続される。   As shown in FIG. 10B, in the completed LED light source device 30, electrodes 2a and 2b are formed on the substrate 1 cut and separated from the collective substrate. The electrodes 2a and 2b include through holes 3a and 3b cut at the center, and are electrically connected to the electrodes 2a and 2b (not shown) on the back surface of the substrate 1 through the through holes 3a and 3b. Further, the LED element 4 is mounted on the surface of the electrode 2a, and the LED element 4 is electrically connected to the electrodes 2a and 2b by the two wires 5a and 5b as described above.

この接続により、外部から電極2a、2bに駆動電圧が供給されると、LED素子4にワイヤー5a、5bを介して駆動電流が流れて、LED素子4は発光する。尚、完成したLED光源装置30は、集合基板から分離された位置によって、電極2a、2bは、電極2b、2c、電極2c、2d、または電極2d、2eとなる。また、スルーホール3a、3bは、同様に集合基板から分離された位置によって、スルーホール3b、3c、スルーホール3c、3d、またはスルーホール3d、3eとなるが、集合基板のどの位置で切断分離されたとしても、同一のLED光源装置30であることはもちろんである。このように本発明は、多数のLED光源装置を一括して製造することが出来る。図10においては図面を見やすくするために、第一の蛍光体層6a、蛍光体7の図示を省略している。   With this connection, when a drive voltage is supplied to the electrodes 2a and 2b from the outside, a drive current flows to the LED element 4 via the wires 5a and 5b, and the LED element 4 emits light. In the completed LED light source device 30, the electrodes 2a and 2b become the electrodes 2b and 2c, the electrodes 2c and 2d, or the electrodes 2d and 2e depending on the position separated from the collective substrate. Similarly, the through holes 3a and 3b become through holes 3b and 3c, through holes 3c and 3d, or through holes 3d and 3e depending on the positions separated from the collective substrate. Of course, the LED light source device 30 is the same. Thus, this invention can manufacture many LED light source devices collectively. In FIG. 10, the first phosphor layer 6a and the phosphor 7 are not shown in order to make the drawing easy to see.

[実施例1によって製造されるLED光源装置の構成と動作の説明:図11]
本発明の実施例1によって製造されるLED光源装置の構成を図11によって説明する。図11において、本実施例で製造されたLED光源装置30は、基板1上に電極2a、2bが配置されており、電極2aと2bはそれぞれスルーホール3a、3bを介して基板1の表面側と裏面側が接続されているものである。基板1はエポキシ等の絶縁性基板で形成され、電極2a、2bは、導電性の銅箔等によって成る。また、LED素子4は基板に実装され、ワイヤー5a、5bによって電極2a、2bと電気的に接続されている。なお、本実施例においてはLED素子4は電極2a上に実装されているものとする。また、LED素子4と電極2a、2bを電気的に接続する方法としては、ワイヤー5a、5bを用いず、フリップチップ実装を用いることも可能である。
[Description of Configuration and Operation of LED Light Source Device Manufactured by Example 1: FIG. 11]
The configuration of the LED light source device manufactured according to Example 1 of the present invention will be described with reference to FIG. In FIG. 11, the LED light source device 30 manufactured in the present embodiment has electrodes 2a and 2b arranged on a substrate 1, and the electrodes 2a and 2b are on the surface side of the substrate 1 through through holes 3a and 3b, respectively. And the back side is connected. The substrate 1 is formed of an insulating substrate such as epoxy, and the electrodes 2a and 2b are made of conductive copper foil or the like. The LED element 4 is mounted on a substrate and is electrically connected to the electrodes 2a and 2b by wires 5a and 5b. In this embodiment, it is assumed that the LED element 4 is mounted on the electrode 2a. In addition, as a method of electrically connecting the LED element 4 and the electrodes 2a and 2b, flip-chip mounting can be used without using the wires 5a and 5b.

また、LED素子4は、LED素子4側から順に第一の蛍光体層6a、第二の蛍光体層6b、透明樹脂層6cで被覆されている。本実施例における樹脂材料は光硬化性樹脂であり、第一の蛍光体層6aはLED素子4を発光させたときに発生する光エネルギーにより決定した厚みで、LED素子4の周りを被覆して形成されている。また、第二の蛍光体層6bは第一の蛍光体層6a上に蛍光体7が沈降することによって形成されるもので、第一の蛍光体層6a上、基板1上に略均一の膜厚で形成されている。また、透明樹脂層6cは、蛍光体7が第二の蛍光体層6b中に沈降することによって透明となって形成される。ここで、上述のように、第二の蛍光体層6bの中の蛍光体7の濃度は、第一の蛍光体層6a中の蛍光体7の濃度と比較して、充分高いものとなっている。   Moreover, the LED element 4 is coat | covered with the 1st fluorescent substance layer 6a, the 2nd fluorescent substance layer 6b, and the transparent resin layer 6c in order from the LED element 4 side. The resin material in the present embodiment is a photo-curable resin, and the first phosphor layer 6a covers the periphery of the LED element 4 with a thickness determined by the light energy generated when the LED element 4 emits light. Is formed. The second phosphor layer 6b is formed by the phosphor 7 being settled on the first phosphor layer 6a, and is a substantially uniform film on the first phosphor layer 6a and the substrate 1. It is formed with a thickness. Further, the transparent resin layer 6c is formed to be transparent as the phosphor 7 settles in the second phosphor layer 6b. Here, as described above, the concentration of the phosphor 7 in the second phosphor layer 6b is sufficiently higher than the concentration of the phosphor 7 in the first phosphor layer 6a. Yes.

ここで、本実施例においてLED素子4は、青色発光のLED素子であり、蛍光体7は例えばYAGなどの青色を吸収して黄色を発光する蛍光体であるとすると、LED素子4からの青色光の一部は、第一の蛍光体層6aもしくは第二の蛍光体層6b内の蛍光体7に入射し、黄色光に波長変換される。よって、LED光源装置30から発せられる光線は、青色光10Bと黄色光10Yが混ざり合ったものとなり、LED光源装置30は、擬似白色光10Wを出射するものとなる。   Here, in the present embodiment, the LED element 4 is a blue light emitting LED element, and the phosphor 7 is a phosphor that absorbs blue light such as YAG and emits yellow light. A part of the light enters the phosphor 7 in the first phosphor layer 6a or the second phosphor layer 6b, and is wavelength-converted into yellow light. Therefore, the light emitted from the LED light source device 30 is a mixture of the blue light 10B and the yellow light 10Y, and the LED light source device 30 emits pseudo white light 10W.

このとき、第一の蛍光体層6aと第二の蛍光体層6b内の蛍光体7の濃度は、上述のように第二の蛍光体層6bの方が充分に高いため、青色光から黄色光への波長変換は主に、均一な膜厚で形成された第二の蛍光体層6bによって起こる。このため、LED素子4から出射される青色光は、いずれの方向においても一様な膜厚の蛍光体層を通過することとなり、第二の蛍光体層6bを通過する際に、ほぼ同じ割合で黄色光に変換される。したがって、LED光源装置30から発せられる光線は、いずれの方向においても青色光と黄色光の割合が等しくなり、LED光源装置30の色むらは非常に小さいものとなる。   At this time, the concentration of the phosphor 7 in the first phosphor layer 6a and the second phosphor layer 6b is sufficiently higher in the second phosphor layer 6b as described above. The wavelength conversion into light is mainly caused by the second phosphor layer 6b formed with a uniform film thickness. For this reason, the blue light emitted from the LED element 4 passes through the phosphor layer having a uniform film thickness in any direction, and substantially the same ratio when passing through the second phosphor layer 6b. Is converted to yellow light. Therefore, the light emitted from the LED light source device 30 has the same ratio of blue light and yellow light in any direction, and the color unevenness of the LED light source device 30 is very small.

また、本発明の実施例1のLED光源装置の製造方法においては、蛍光体7を含む未硬化の樹脂を除去する工程を含まないため、基板1や電極2a〜2eへの未硬化樹脂の付着などによる汚れや、未硬化樹脂に含まれる蛍光体7の付着による色むらの発生を防ぐことが出来る。さらに、樹脂部材20や蛍光体7などを無駄にすることなく、特に高価な蛍光体を有効に活用することが出来る。   Moreover, in the manufacturing method of the LED light source device of Example 1 of this invention, since the process of removing uncured resin containing the fluorescent substance 7 is not included, adhesion of uncured resin to the substrate 1 and the electrodes 2a to 2e. It is possible to prevent the occurrence of stains due to, for example, color unevenness due to adhesion of the phosphor 7 contained in the uncured resin. Furthermore, it is possible to effectively utilize a particularly expensive phosphor without wasting the resin member 20 or the phosphor 7.

また、本発明の実施例1のLED光源装置の製造方法においては、LED素子4の自発光によってLED素子4周りの樹脂を硬化させることにより、LED素子4と基板の電極2a、2bを電気的に接続するワイヤー5a、5bに影響されずに、ワイヤー5a、5bと基板1の隙間にまでも、第一の蛍光体層6a、第二の蛍光体層6bをともに形成することが出来る。そのため、このLED光源装置30から出射する擬似白色光10Wの指向性や混色性が良好で、色むらを少なくすることができる。この様に、本発明はワイヤーボンディング実装のLED光源装置に好適である。   Moreover, in the manufacturing method of the LED light source device of Example 1 of this invention, the LED element 4 and the electrode 2a, 2b of a board | substrate are electrically connected by hardening the resin around LED element 4 by self-light-emission of LED element 4. Both the first phosphor layer 6 a and the second phosphor layer 6 b can be formed even in the gap between the wires 5 a, 5 b and the substrate 1 without being affected by the wires 5 a, 5 b connected to. Therefore, the directivity and color mixing of the pseudo white light 10W emitted from the LED light source device 30 is good, and the color unevenness can be reduced. In this way, the present invention is suitable for an LED light source device mounted with wire bonding.

また本発明の実施例1によれば、LED素子4を集合基板上に多数実装し、多数個同時に自発光させ、その後蛍光体7を沈降させることにより、個々のLED素子4の周りに均一膜厚の蛍光体層を一括して形成することが出来る。そのため、色むら等の特性ばらつきが少ない複数のLED光源装置30を、一括して大量に製造することが出来る。   Further, according to the first embodiment of the present invention, a large number of LED elements 4 are mounted on a collective substrate, and a large number of LED elements 4 are self-luminous at the same time. Thick phosphor layers can be formed at once. Therefore, a plurality of LED light source devices 30 with little variation in characteristics such as color unevenness can be manufactured in a large amount in a lump.

なお、本発明の実施例1のLED光源装置30の製造方法においては、光硬化樹脂を用いているが、熱硬化樹脂を使用し、LED素子4を発光させた際に生じる熱エネルギーを用いて形成することもできる。そして、紫外線硬化型樹脂を用いたときと同様に、LED素子4近傍の樹脂部材20の領域を、LED素子4で発生する熱エネルギーにより部分的に硬化させ、LED素子4周りに、第一の蛍光体層6aをこの熱エネルギーに応じた膜厚で形成することができる。この様にして、色むらが少なく、且つ蛍光体7を有効に利用したLED光源装置を製造することが可能となる。   In addition, in the manufacturing method of the LED light source device 30 of Example 1 of this invention, although photocuring resin is used, using thermosetting resin and using the thermal energy produced when the LED element 4 is made to light-emit. It can also be formed. As in the case of using the ultraviolet curable resin, the region of the resin member 20 in the vicinity of the LED element 4 is partially cured by the heat energy generated in the LED element 4, The phosphor layer 6a can be formed with a film thickness corresponding to this thermal energy. In this way, it is possible to manufacture an LED light source device that has little color unevenness and that effectively uses the phosphor 7.

[実施例2のLED光源装置の製造方法の説明:図12]
次に、本実施例におけるLED光源装置の製造方法の概略を図12によって説明する。図12は、本発明の実施例2のLED光源装置の製造工程の全体概略を示すフローチャートである。尚、各製造工程の詳細は後述する。
[Description of Manufacturing Method of LED Light Source Device of Example 2: FIG. 12]
Next, the outline of the manufacturing method of the LED light source device in a present Example is demonstrated with reference to FIG. FIG. 12 is a flowchart showing an overall outline of the manufacturing process of the LED light source device according to the second embodiment of the present invention. Details of each manufacturing process will be described later.

図12において、集合基板製造工程(工程M1)、LED素子実装工程(工程M2)、ポッティング工程(工程M3)を実施例1と同様にして行う。   In FIG. 12, the collective substrate manufacturing process (process M1), the LED element mounting process (process M2), and the potting process (process M3) are performed in the same manner as in the first embodiment.

次に、ポッティング工程を行った集合基板を逆さ方向に配置し、蛍光体をLED素子と反対側である樹脂部材の表面方向に向けて沈降させる(工程M8)。   Next, the aggregate substrate that has been subjected to the potting step is disposed in the upside down direction, and the phosphor is allowed to settle toward the surface direction of the resin member that is opposite to the LED element (step M8).

次に、実装したLED素子のそれぞれに所定の電流を流してLED素子を発光させ、LED素子周辺の樹脂部材を部分的に硬化させる、樹脂部分硬化工程を実施する(工程M4’)。   Next, a resin partial curing step is performed in which a predetermined current is supplied to each of the mounted LED elements to cause the LED elements to emit light and a resin member around the LED elements is partially cured (process M4 ').

次に、集合基板を元の方向に戻し、未硬化部の樹脂部材中に含有される蛍光体を未硬化部の樹脂部内において沈降させる、蛍光体沈降工程を実施する(工程M5’)。   Next, the aggregate substrate is returned to the original direction, and a phosphor sedimentation step is performed in which the phosphor contained in the resin member of the uncured portion is precipitated in the resin portion of the uncured portion (step M5 ').

最後に、実施例1と同様に、樹脂硬化工程(工程M6)、切断工程(工程M7)を行い、複数個のLED光源装置が完成する。   Finally, similarly to Example 1, a resin curing step (step M6) and a cutting step (step M7) are performed to complete a plurality of LED light source devices.

[実施例2の製造工程の説明:図13]
次に、本発明の実施例2における一連の工程の詳細を図13によって説明する。図13は蛍光体逆沈降工程後を示す模式的な断面図である。
[Description of Manufacturing Process of Example 2: FIG. 13]
Next, details of a series of steps in Embodiment 2 of the present invention will be described with reference to FIG. FIG. 13 is a schematic cross-sectional view showing the phosphor after the reverse sedimentation step.

まず、実施例1と同様に、集合基板製造工程(工程M1)、LED素子実装工程(工程M2、図3)、ポッティング工程(M3)を行った後、蛍光体逆沈降工程(M8)を行う。
このポッティング工程(M3、図5)においては、ポッティングした樹脂部材20上にフィルム17を配置し、ポッティング工程時と上下方向を逆の方向に引っくり返して行う。すると、図13に示すように、樹脂部材20中の蛍光体7は、比重が樹脂部材20と比較して大きいため、図中下方向へ沈降する。この蛍光体7を沈降させる他の方法として、樹脂の粘度が下がる温度まで加熱し、蛍光体7の沈降を促進させる方法、また、樹脂部材20が未硬化状態のときに、遠心分離に掛けて、強制的に蛍光体7を沈降させる方法などがある。この工程により、樹脂部材20中において上部、すなわちLED素子4の周囲は
、蛍光体7を含まない透明樹脂のみとなる。ここで、フィルム17は、逆さにした状態で樹脂部材20が流れ落ちないようにするためのものであり、同じ様に作用する部材であれば、他の部材であっても構わない。
First, similarly to Example 1, after performing the collective substrate manufacturing process (process M1), the LED element mounting process (process M2, FIG. 3), and the potting process (M3), the phosphor reverse sedimentation process (M8) is performed. .
In this potting process (M3, FIG. 5), the film 17 is arranged on the potted resin member 20, and the up and down direction is turned over in the opposite direction to that in the potting process. Then, as shown in FIG. 13, since the specific gravity of the phosphor 7 in the resin member 20 is larger than that of the resin member 20, the phosphor 7 sinks downward in the figure. As another method for precipitating the phosphor 7, a method of heating the resin 7 to a temperature at which the viscosity of the resin is lowered to accelerate the sedimentation of the phosphor 7, and when the resin member 20 is in an uncured state, it is subjected to centrifugation. There is a method of forcibly precipitating the phosphor 7. By this process, the upper part in the resin member 20, that is, the periphery of the LED element 4 is only the transparent resin not including the phosphor 7. Here, the film 17 is for preventing the resin member 20 from flowing down in an inverted state, and may be another member as long as it is a member that acts in the same manner.

[実施例2の樹脂部分硬化工程(工程M4’)の説明:図14、図15]
次に、本発明の実施例2の樹脂部分硬化工程の詳細を図14、図15によって説明する。図14は本発明の実施例2の樹脂部分硬化工程を示し、集合基板上のLED素子4が自発光して樹脂部材を硬化させることを模式的に示す拡大断面図であり、図15は樹脂部分硬化工程後を示す断面図である。
[Description of Resin Partial Curing Step of Example 2 (Step M4 ′): FIGS. 14 and 15]
Next, details of the resin partial curing step of Example 2 of the present invention will be described with reference to FIGS. FIG. 14 is an enlarged sectional view schematically showing that the LED element 4 on the collective substrate spontaneously emits light and cures the resin member, and FIG. 15 shows the resin partial curing process of Example 2 of the present invention. It is sectional drawing which shows a partial hardening process.

実施例1と同様に、LED素子4に所定の時間だけ電流を供給すると、図14に示すようにLED素子4は発光し、それに伴い光エネルギー14を放射する。これにより、LED素子4を被覆する樹脂部材20は前述したように光硬化型樹脂であるので、LED素子4近傍の樹脂部材20の領域から硬化が開始する。   As in the first embodiment, when a current is supplied to the LED element 4 for a predetermined time, the LED element 4 emits light as shown in FIG. Thereby, since the resin member 20 which coat | covers the LED element 4 is a photocurable resin as mentioned above, hardening starts from the area | region of the resin member 20 of the LED element 4 vicinity.

このとき、蛍光体逆沈降工程(工程M8)において、LED素子4の周囲は透明樹脂となっているため、上述のように所定の時間LED素子4を駆動させることにより、その光エネルギー14の大きさに応じて、LED素子4の周りに図15に示す様に、略ドーム状の第一の透明樹脂層8aを形成する。   At this time, since the periphery of the LED element 4 is made of a transparent resin in the phosphor reverse sedimentation process (process M8), the light energy 14 is increased by driving the LED element 4 for a predetermined time as described above. Accordingly, as shown in FIG. 15, a substantially dome-shaped first transparent resin layer 8 a is formed around the LED element 4.

[実施例2の蛍光体沈降工程(工程M5’)の説明:図16]
次に、本発明の実施例1の蛍光体沈降工程の詳細を図16によって説明する。図16(a)は本発明の実施例2の蛍光体沈降工程を示す模式的な断面図であり、図16(b)は蛍光体沈降工程後を示す模式的な側面図である。
[Description of Phosphor Precipitation Step of Example 2 (Step M5 ′): FIG. 16]
Next, details of the phosphor sedimentation step of Example 1 of the present invention will be described with reference to FIG. FIG. 16A is a schematic cross-sectional view showing the phosphor sedimentation step of Example 2 of the present invention, and FIG. 16B is a schematic side view after the phosphor sedimentation step.

図16(a)に示すように、樹脂部分硬化工程後に基板の上下方向の向きをポッティング工程時と同じ方向に戻す。このとき、樹脂部材20中に含まれる蛍光体7は樹脂部材20が流動性を持っており、かつ樹脂部材20より比重が大きいため、樹脂部材20中を図中下方向(第一の透明樹脂層8aの表面方向)へ移動、すなわち沈降する。上述した蛍光体7を沈降させる他の方法として、樹脂の粘度が下がる温度まで加熱し、蛍光体7の沈降を促進させる方法、また、樹脂部材20が未硬化状態のときに遠心分離などに掛けて、強制的に蛍光体7を沈降させる方法などがある。このとき、LED素子4上には略ドーム状の第一の透明樹脂層8aが存在するため、蛍光体7は第一の透明樹脂層8a上に堆積し、図16(b)に示すように、蛍光体層8bを形成するとともに、蛍光体層8b上に第二の透明樹脂層8cが形成される。従って、この工程により、透明樹脂層に挟まれた蛍光体層8bが形成され、蛍光体層8bの膜厚はいずれの箇所においてほぼ均一となる。尚、図16(b)においては、図面を見やすくするために、蛍光体7の図示を省略している。   As shown in FIG. 16A, the vertical direction of the substrate is returned to the same direction as in the potting step after the resin partial curing step. At this time, since the phosphor 7 contained in the resin member 20 has the fluidity and the specific gravity is larger than that of the resin member 20, the resin member 20 is moved downward in the figure (first transparent resin). Moves to the surface of the layer 8a), that is, settles. As another method for precipitating the phosphor 7 described above, it is heated to a temperature at which the viscosity of the resin is lowered to promote the sedimentation of the phosphor 7, or is subjected to centrifugation or the like when the resin member 20 is in an uncured state. For example, there is a method of forcibly precipitating the phosphor 7. At this time, since the substantially transparent dome-shaped first transparent resin layer 8a exists on the LED element 4, the phosphor 7 is deposited on the first transparent resin layer 8a, as shown in FIG. The phosphor layer 8b is formed, and the second transparent resin layer 8c is formed on the phosphor layer 8b. Therefore, the phosphor layer 8b sandwiched between the transparent resin layers is formed by this step, and the film thickness of the phosphor layer 8b is almost uniform at any location. In FIG. 16B, the phosphor 7 is not shown for easy viewing of the drawing.

次に、本発明の実施例2の樹脂硬化工程(M6)と切断工程(M7)を行う。これら工程は、実施例1と同様であるため、ここでの詳細な説明は省略する。そして、以上の一連の工程により、多数のLED光源装置を一括して製造することが出来る。   Next, the resin curing step (M6) and the cutting step (M7) of Example 2 of the present invention are performed. Since these steps are the same as those in Example 1, detailed description thereof is omitted here. And many LED light source devices can be manufactured collectively by the above series of processes.

[実施例2によって製造されるLED光源装置の構成と動作の説明:図17]
次に、本発明の実施例2によって製造されるLED光源装置の構成を図17によって説明する。
図17に示す様に、上述した工程で製造されたLED光源装置31は、基板1上に電極2a、2bが配置されており、また電極2a、2b上にLED素子4が実装され、ワイヤー5a、5bによって電極2a、2bと電気的に接続して形成されている。
[Description of Configuration and Operation of LED Light Source Device Manufactured in Example 2: FIG. 17]
Next, the configuration of the LED light source device manufactured according to Example 2 of the present invention will be described with reference to FIG.
As shown in FIG. 17, in the LED light source device 31 manufactured in the above-described process, the electrodes 2a and 2b are arranged on the substrate 1, the LED element 4 is mounted on the electrodes 2a and 2b, and the wire 5a. 5b and electrically connected to the electrodes 2a and 2b.

また、LED素子4は、LED素子4側から順に第一の透明樹脂層8a、蛍光体層8b
、第二の透明樹脂層8cで被覆されている。本実施例における樹脂材料は光硬化性樹脂であり、第一の透明樹脂層8aはLED素子4を発光させたときに発生する光エネルギーにより決定した厚みで、LED素子4の周りを被覆して形成されている。また、蛍光体層8bは第一の透明樹脂層8a上に蛍光体7が沈降することによって形成されるもので、第一の透明樹脂層8a上、基板1上にほぼ均一の膜厚で形成されている。また、第二の透明樹脂層8cは蛍光体7が蛍光体層8b中に沈降することによって形成される。
The LED element 4 includes a first transparent resin layer 8a and a phosphor layer 8b in order from the LED element 4 side.
The second transparent resin layer 8c is covered. The resin material in the present embodiment is a photocurable resin, and the first transparent resin layer 8a covers the periphery of the LED element 4 with a thickness determined by the light energy generated when the LED element 4 emits light. Is formed. The phosphor layer 8b is formed when the phosphor 7 settles on the first transparent resin layer 8a, and is formed with a substantially uniform film thickness on the first transparent resin layer 8a and the substrate 1. Has been. The second transparent resin layer 8c is formed by the phosphor 7 being settled in the phosphor layer 8b.

ここで、本実施例においてLED素子4は青色発光のLED素子であり、蛍光体7は例えばYAGなどの青色を吸収して黄色を発光する蛍光体であるとすると、LED素子4からの青色光の一部は蛍光体層8b内の蛍光体7に入射し、黄色光に波長変換される。よって、LED光源装置31から発せられる光線は青色光10Bと黄色光10Yが混ざり合ったものとなり、LED光源装置31は擬似白色光10Wを出射するものとなる。   Here, in this embodiment, the LED element 4 is a blue light emitting LED element, and the phosphor 7 is a phosphor that absorbs blue light such as YAG and emits yellow light. Is incident on the phosphor 7 in the phosphor layer 8b and wavelength-converted to yellow light. Therefore, the light emitted from the LED light source device 31 is a mixture of the blue light 10B and the yellow light 10Y, and the LED light source device 31 emits pseudo white light 10W.

このとき、蛍光体層8bはLED素子4に対してほぼ均一の厚みで形成されているため、LED素子4から出射される青色光はいずれの方向においても、一様な膜厚の蛍光体層を通過することとなり、蛍光体層8bを通過する際にほぼ同じ割合で黄色光に変換される。したがって、LED光源装置31から発せられる光線は、いずれの方向においても青色光と黄色光の割合が等しくなり、LED光源装置31の色むらは非常に小さいものとなる。   At this time, since the phosphor layer 8b is formed with a substantially uniform thickness with respect to the LED element 4, the blue light emitted from the LED element 4 has a uniform thickness in any direction. When the light passes through the phosphor layer 8b, it is converted into yellow light at substantially the same rate. Therefore, the light emitted from the LED light source device 31 has the same proportion of blue light and yellow light in any direction, and the color unevenness of the LED light source device 31 is very small.

この様に、本発明の実施例2のLED光源装置の製造方法においては、実施例1と同様に蛍光体を含む未硬化の樹脂を除去する工程を含まないため、未硬化樹脂の基板や電極への付着などによる汚れや未硬化樹脂に含まれる蛍光体の付着による色むらの発生を防ぐことが出来る。また、除去工程を含まないために、樹脂や高価な蛍光体などを無駄にすることなく有効に活用することが出来る。   Thus, since the manufacturing method of the LED light source device of Example 2 of the present invention does not include the step of removing the uncured resin containing the phosphor as in Example 1, the substrate and the electrode of the uncured resin It is possible to prevent the occurrence of stains due to adhesion to the surface and uneven color due to the adhesion of the phosphor contained in the uncured resin. Further, since the removal step is not included, it is possible to effectively use the resin or the expensive phosphor without wasting it.

また、本発明の実施例2のLED光源装置の製造方法においては、光硬化樹脂を用いているが、これに限るものではなく、熱硬化樹脂を使用し、LED素子4を発光させた際に生じる熱エネルギーを用いることによっても同様にLED素子4近傍の樹脂部材20の領域を部分的に硬化させることができ、色むらの少ないLED光源装置を製造することが可能である。   Moreover, in the manufacturing method of the LED light source device of Example 2 of this invention, although photocuring resin is used, it is not restricted to this, When using thermosetting resin and making LED element 4 light-emit, Similarly, by using the generated thermal energy, the region of the resin member 20 in the vicinity of the LED element 4 can be partially cured, and an LED light source device with less color unevenness can be manufactured.

また、本発明によって製造されるLED光源装置は、実施例において青色LED素子+YAGで白色光を発光することを前提に説明したが、本発明の製造方法によるLED光源装置の出射光はこれに限定されるものではなく、他のLED素子と蛍光体の組み合わせや、白色以外の光を発光するLED光源装置であっても良い。また、本発明によって製造されるLED光源装置は、ワイヤーボンディングによる実装に限定されず、例えば、フリップチップ実装等によるLED光源装置にも適用される。尚、本発明の実施例で示したフローチャートや正面図、断面図等は、これに限定されるものではなく、本発明の要旨を満たすものであれば、任意に変更してよい。   Moreover, although the LED light source device manufactured by the present invention has been described on the premise that the white light is emitted by the blue LED element + YAG in the embodiments, the emitted light of the LED light source device by the manufacturing method of the present invention is limited to this. The LED light source device that emits light other than white or a combination of other LED elements and phosphors may be used. Moreover, the LED light source device manufactured by this invention is not limited to the mounting by wire bonding, For example, it is applied also to the LED light source device by flip-chip mounting etc. The flowcharts, front views, cross-sectional views, and the like shown in the embodiments of the present invention are not limited to these, and may be arbitrarily changed as long as they satisfy the gist of the present invention.

本発明のLED光源装置の製造方法は、混色性が良好で色むらが少ない白色LED光源装置を提供出来るため、液晶カラーテレビや携帯型電子機器等のバックライト用白色光源装置や、照明用の白色光源装置の製造方法として好適である。   The manufacturing method of the LED light source device of the present invention can provide a white LED light source device with good color mixing and little color unevenness. Therefore, a white light source device for backlights such as liquid crystal color televisions and portable electronic devices, It is suitable as a method for manufacturing a white light source device.

1 基板
2a〜2e 電極
3a〜3e スルーホール
4 LED素子
5a、5b ワイヤー
6a 第一の蛍光体層
6b 第二の蛍光体層
6c 透明樹脂層
7 蛍光体
8a 第一の透明樹脂層
8b 蛍光体層
8c 第二の透明樹脂層
10B 青色光
10Y 黄色光
10W 白色光
11、12 電極端子
13 ディスペンサ
14 光エネルギー
17 フィルム
20 樹脂部材
30、31 LED光源装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2a-2e Electrode 3a-3e Through-hole 4 LED element 5a, 5b Wire 6a 1st fluorescent substance layer 6b 2nd fluorescent substance layer 6c Transparent resin layer 7 Phosphor 8a 1st transparent resin layer 8b Phosphor layer 8c Second transparent resin layer 10B Blue light 10Y Yellow light 10W White light 11, 12 Electrode terminal 13 Dispenser 14 Light energy 17 Film 20 Resin member 30, 31 LED light source device

Claims (6)

LED素子を被覆する、蛍光体を含む封止樹脂を硬化して形成するLED光源装置の製造方法において、
前記蛍光体を含む封止樹脂を、前記LED素子を被覆して塗布する工程と、
前記LED素子を自発光させることにより、前記LED素子周りの前記封止樹脂を部分的に硬化させる工程と、
未硬化の封止樹脂に含まれる前記蛍光体を沈降させる工程と、
前記蛍光体を沈降させた後に、前記未硬化の封止樹脂を硬化させる工程と、
を有することを特徴とするLED光源装置の製造方法。
In the manufacturing method of the LED light source device that covers the LED element and cures and forms the sealing resin containing the phosphor,
A step of coating the LED element with a sealing resin containing the phosphor;
A step of partially curing the sealing resin around the LED element by causing the LED element to self-emit;
A step of precipitating the phosphor contained in the uncured sealing resin;
Curing the uncured sealing resin after allowing the phosphor to settle;
The manufacturing method of the LED light source device characterized by having.
前記未硬化の封止樹脂を硬化させる工程を、前記LED素子を自発光させることにより行う
ことを特徴とする請求項1に記載のLED光源装置の製造方法。
The method of manufacturing an LED light source device according to claim 1, wherein the step of curing the uncured sealing resin is performed by causing the LED element to emit light.
基板に設けた電極部と前記LED素子とを電気的に接続したワイヤーを介して前記LED素子に電流を供給することで、前記LED素子を自発光させて、前記封止樹脂を部分的に硬化させる
ことを特徴とする請求項1または2に記載のLED光源装置の製造方法。
By supplying a current to the LED element through a wire electrically connecting the electrode part provided on the substrate and the LED element, the LED element is caused to self-emit, and the sealing resin is partially cured. The manufacturing method of the LED light source device of Claim 1 or 2 characterized by the above-mentioned.
前記封止樹脂は、熱硬化型樹脂であり、
部分的に硬化させた前記封止樹脂の厚みは、前記LED素子を発光させたときの熱量により決定した膜厚である
ことを特徴とする請求項1から3のいずれか一項に記載のLED光源装置の製造方法。
The sealing resin is a thermosetting resin,
4. The LED according to claim 1, wherein the thickness of the partially cured sealing resin is a film thickness determined by an amount of heat when the LED element is caused to emit light. 5. Manufacturing method of light source device.
前記封止樹脂は、光硬化型樹脂であり、
部分的に硬化させた前記封止樹脂の厚みは、前記LED素子の発光強度分布により決定した膜厚である
ことを特徴とする請求項1から3のいずれか一項に記載のLED光源装置の製造方法。
The sealing resin is a photocurable resin,
4. The LED light source device according to claim 1, wherein the thickness of the partially cured sealing resin is a film thickness determined by a light emission intensity distribution of the LED element. 5. Production method.
前記封止樹脂を部分的に硬化させる工程は、集合基板に複数個並べられた前記LED素子の多数個を同時に自発光させることにより行う
ことを特徴とする請求項1から5のいずれか一項に記載のLED光源装置の製造方法。
The step of partially curing the sealing resin is performed by simultaneously causing a plurality of the LED elements arranged on a collective substrate to emit light simultaneously. The manufacturing method of the LED light source device of description.
JP2009243447A 2009-10-22 2009-10-22 Manufacturing method of LED light source device Active JP5468349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243447A JP5468349B2 (en) 2009-10-22 2009-10-22 Manufacturing method of LED light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243447A JP5468349B2 (en) 2009-10-22 2009-10-22 Manufacturing method of LED light source device

Publications (2)

Publication Number Publication Date
JP2011091204A true JP2011091204A (en) 2011-05-06
JP5468349B2 JP5468349B2 (en) 2014-04-09

Family

ID=44109198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243447A Active JP5468349B2 (en) 2009-10-22 2009-10-22 Manufacturing method of LED light source device

Country Status (1)

Country Link
JP (1) JP5468349B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115088A (en) * 2011-11-25 2013-06-10 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2014022451A (en) * 2012-07-13 2014-02-03 Citizen Electronics Co Ltd Phosphor lens sheet and production method therefor, and light-emitting device including phosphor lens sheet
CN106030832A (en) * 2014-03-04 2016-10-12 奥斯兰姆奥普托半导体有限责任公司 Production of optoelectronic components
KR20170060098A (en) * 2014-09-23 2017-05-31 코닌클리케 필립스 엔.브이. Luminance pattern shaping using a back-emitting led and a reflective substrate
JP2020080431A (en) * 2016-07-29 2020-05-28 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459826A (en) * 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Mounting of led chip
JP2001196639A (en) * 2000-01-12 2001-07-19 Sanyo Electric Co Ltd Led light emitting element and its manufacturing method
JP2007036030A (en) * 2005-07-28 2007-02-08 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2007506279A (en) * 2003-09-18 2007-03-15 クリー インコーポレイテッド Molded chip manufacturing method and apparatus
JP2007250629A (en) * 2006-03-14 2007-09-27 Toshiba Corp Light emitting apparatus and manufacturing method thereof, and fluorescent pattern formation
JP2008159756A (en) * 2006-12-22 2008-07-10 Sekisui Chem Co Ltd Manufacturing method of white light-emitting diode, and photo-curing phosphor containing composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459826A (en) * 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Mounting of led chip
JP2001196639A (en) * 2000-01-12 2001-07-19 Sanyo Electric Co Ltd Led light emitting element and its manufacturing method
JP2007506279A (en) * 2003-09-18 2007-03-15 クリー インコーポレイテッド Molded chip manufacturing method and apparatus
JP2007036030A (en) * 2005-07-28 2007-02-08 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2007250629A (en) * 2006-03-14 2007-09-27 Toshiba Corp Light emitting apparatus and manufacturing method thereof, and fluorescent pattern formation
JP2008159756A (en) * 2006-12-22 2008-07-10 Sekisui Chem Co Ltd Manufacturing method of white light-emitting diode, and photo-curing phosphor containing composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115088A (en) * 2011-11-25 2013-06-10 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2014022451A (en) * 2012-07-13 2014-02-03 Citizen Electronics Co Ltd Phosphor lens sheet and production method therefor, and light-emitting device including phosphor lens sheet
CN106030832A (en) * 2014-03-04 2016-10-12 奥斯兰姆奥普托半导体有限责任公司 Production of optoelectronic components
JP2017509155A (en) * 2014-03-04 2017-03-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Manufacturing of optoelectronic components
US10847686B2 (en) 2014-03-04 2020-11-24 Osram Oled Gmbh Production of optoelectronic components
KR20170060098A (en) * 2014-09-23 2017-05-31 코닌클리케 필립스 엔.브이. Luminance pattern shaping using a back-emitting led and a reflective substrate
KR102475229B1 (en) 2014-09-23 2022-12-09 루미리즈 홀딩 비.브이. Luminance pattern shaping using a back-emitting led and a reflective substrate
JP2020080431A (en) * 2016-07-29 2020-05-28 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
JP5468349B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8581291B2 (en) Semiconductor device and method for manufacturing the same
US7683539B2 (en) Light emitting device package and method for manufacturing the same
KR101241973B1 (en) Luminous apparatus and method for manufacturing the same
US7294961B2 (en) Photo-radiation source provided with emissive particles dispersed in a charge-transport matrix
US20070194332A1 (en) Light active sheet material
US8704265B2 (en) Light emitting device package and lighting apparatus using the same
US20050214962A1 (en) Light active sheet and methods for making the same
CN102751424A (en) Light emitting device module and method of manufacturing the same
JP5468349B2 (en) Manufacturing method of LED light source device
CN101388426B (en) Manufacturing process of light-emitting semiconductor wafer and light-emitting semiconductor component
JP5349167B2 (en) Manufacturing method of LED light source device
JP2010267900A (en) Method of manufacturing led light source device
KR20080070280A (en) Printed circuit board, light emitting apparatus having the same and method for manufacturing thereof
JP2011142255A (en) Method of manufacturing led light source
JP2016122690A (en) Method for manufacturing light-emitting device, and light-emitting device
JP2011009725A (en) Method of manufacturing led light source device
KR102242007B1 (en) Apparatus for Illumination using LED die Array and Method thereof
KR101179797B1 (en) Method for manufacturing light emitting device
US20220328461A1 (en) Substrate structure, light-emitting device, and manufacturing method of substrate structure
KR101865272B1 (en) Light emitting diode module and method for manufacturing the same
WO2014038169A1 (en) Light-emitting element substrate and method for producing same
KR100721962B1 (en) Light-emitting device and Method of manufacturing the same
JP2022022598A (en) Led light-emitting device
KR20110127884A (en) Light emitting diode package fabrication method
KR20130076328A (en) Light emitting device package and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250