JP2011089887A - 光断層画像表示システム - Google Patents

光断層画像表示システム Download PDF

Info

Publication number
JP2011089887A
JP2011089887A JP2009243634A JP2009243634A JP2011089887A JP 2011089887 A JP2011089887 A JP 2011089887A JP 2009243634 A JP2009243634 A JP 2009243634A JP 2009243634 A JP2009243634 A JP 2009243634A JP 2011089887 A JP2011089887 A JP 2011089887A
Authority
JP
Japan
Prior art keywords
light
tomographic image
light source
optical
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009243634A
Other languages
English (en)
Inventor
Keiji Isamoto
圭史 諫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntech Co
Original Assignee
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntech Co filed Critical Suntech Co
Priority to JP2009243634A priority Critical patent/JP2011089887A/ja
Publication of JP2011089887A publication Critical patent/JP2011089887A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】高い分解能を維持しつつ高速で断面画像を得ることができる光断層画像表示システムを提供すること。
【解決手段】光源11は所定の波長範囲で多数のスペクトルから成り、夫々が異なった周波数f1〜fnで変調された光を出力する。この光源11からの光を被検出体16に入射すると共に、光干渉計により干渉させる。得られた干渉光をフォトダイオード18で光電変換し、光源11の変調周波数に相当する通過帯域を有するバンドパスフィルタ19−1〜19−nを介して電気信号の状態で分離し、分離した信号を夫々A/D変換器20−1〜20−nによりA/D変換する。これによって高速で高分解能を有する断層画像を得ることができる。
【選択図】図3

Description

本発明は高速で断面画像を得ることができる光干渉断層画像表示システムに関する。
近年内視鏡治療などの医療技術の進歩に伴って、病理組織の診断を非深襲かつリアルタイムに行う診断方法が望まれている。従来例えばCCDを用いた電子内視鏡や、CT、MRI、超音波による画像化が診断方法として用いられている。電子内視鏡は生体の表面の観察に限定され、また後者の画像診断システムはミクロンオーダーの分解能で観察するには技術的な限界があった。このような方法を補完する技術として、光コヒーレンストモグラフィーシステム(OCT)が注目されている。
OCTの中には、時間領域OCT(TD−OCT)とフーリエドメインOCT(FD−OCT)の2種類があり、またFD−OCTの中にもスペクトラルドメインタイプ(SD−OCT)と波長走査型光源タイプ(SS−OCT)の2つがある。時間領域OCTの場合には深さ方向の走査のために、干渉計のリファレンスミラーを走査距離分だけ移動させる必要があり、高速走査をする上で非常に課題が大きかった。また方式上フーリエドメインと比較するとS/Nが悪く必要な信号光だけを感度良く検出できなかった。
波長走査型光源を用いたSS−OCTは測定感度も高く、動的ノイズに強いという点で内視鏡などの実使用に好適である。この技術は物体内部からの信号の周波数分析から極めて高分解能の断層画像を構築することができるため、高度なシステムとして期待されている。特許文献1には波長走査型OCTの例が示されている。SS−OCTは図1に示すように、光源101より狭帯域で波長を連続的に変化させた光を出力してハーフミラー102を介して参照ミラー103と被検出体104に光を照射し、ハーフミラー103からの参照光と被検出体104内の異なる深さから戻ってくる反射光とを干渉計で干渉させる。干渉信号を光電変換器105で電気信号に変換し、A/D変換器105でA/D変換した後、信号処理部107で周波数成分を分析することによって、断層画像を得るシステムである。ここで照射する光の波長走査の帯域が広いほど周波数分析の帯域が上がるので、深さ方向の分解能が上がる。
又非特許文献1にはSD−OCTが示されている。SD−OCTでは図2に示すように広帯域の光源111を用い、光源111からの光を出力してハーフミラー112を介して参照ミラー113と被検出体114に光を照射し、ハーフミラー113からの参照光と被検出体114内の異なる深さから戻ってくる反射光とを干渉計で干渉させ、その干渉信号を分光素子115に入射する。分光素子115は干渉光をその波長に応じて空間的に分光するもので、分光した光を受光する位置にCCD等のフォトディレクタアレイ116を設ける。そしてフォトディレクタアレイ116からの出力を信号処理部117に与え、各波長の光から被検出体内の断層画像を得るシステムである。
特開2007−278868号公報
A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43?48 (1995).
OCTでは画像を短時間で得ることが求められている。特に走査速度を高速化すると撮像時間を短縮することができ、患者への負担が少ない医療機器を実現したり、動体を観察することができる。しかしSS−OCTの場合には、高速化すると電気信号をA/D変換する際の処理速度が限界に達する。これは波長を掃引しながら干渉光の波長依存性を測定することに起因している。一般的にSS−OCTでは1回の波長掃引の間に2000〜3000点のサンプリング数が必要であり、走査速度を30KHzとすると、30k×3k=90M/secのサンプリングレートが必要となる。更に高速化するため光源の走査速度を100kHzとすると、270M/secサンプリングが必要となる。しかし一般的なA/D変換ボードの動作速度は高々160MHz程度であり、100KHzのスキャニングに対して十分な変換速度のA/D変換ボードを実現することが難しいという欠点があった。
一方SD−OCTでは波長掃引による制限はないため高速化に適している。しかしSD−OCTは分光素子115で波長成分毎に光を空間的に分散させる必要がある。そのため分解能に限界があり、高分解能の画像を得ることが難しいという欠点があった。
本発明はこのような従来の問題点に着目してなされたものであって、高い空間分解能を維持しつつ高速で断面画像を得ることができる光断層画像表示システムを提供することを目的とする。
この課題を解決するために、本発明の光断層画像表示システムは、n本の隣接した波長スペクトルを有し、夫々のスペクトルm1〜mn毎に互いに異なる周波数f1〜fnで強度変調がなされた光を発振する光源と、前記光源からの光を参照光と物体への照射光とに分岐し、照射光を被検出物体に導き、物体からの反射光と前記参照光との干渉光を発生する干渉光学計と、前記干渉光学計より得られる干渉光を受光し、ビート信号を得る受光素子と、前記受光素子より得られる信号が入力され、前記光源の強度変調周波数f1〜fnに相当する周波数f1〜fnの成分を夫々分離する複数のバンドパスフィルタと、前記バンドパスフィルタから夫々得られるn個の出力から成る干渉信号をフーリエ変換することにより、前記物体の断層画像を形成する信号処理部と、を具備するものである。
ここで前記バンドパスフィルタは、周波数f1〜fnのうち夫々異なった複数の周波数を含む範囲を周波数選択範囲とする複数のチューナブルフィルタとしてもよい。
このような特徴を有する本発明によれば、多数のスペクトルを有する光源を被測定体に向けて照射しているため、SS−OCTのように高速のA/D変換器を用いる必要がなく、高速で被測定体の異なった深さからの断面画像を得ることができる。又SD−OCTのように光を分光する必要がなく、高い空間分解能を維持しつつ高速で断面画像を得ることができる。
図1は従来のSS−OCTの構成を示す概略図である。 図2は従来のSD−OCTの構成を示す概略図である。 図3は本発明の第1の実施の形態による光断層画像表示システムを示す構成図である。 図4は本実施の形態に用いる光源の一例を示す図である。 図5は本実施の形態に用いる光源の動作を示す波形図である。 図6は本実施の形態の光断層画像表示システムの各部の波形を示す波形図である。 図7は本実施の形態の光断層画像表示システムの各部の波形を示す波形図である。 図8は本発明の第2の実施の形態による光断層画像表示システムの全体構成を示す図である。
図3は本発明の第1の実施の形態による光断層画像表示システムの全体構成を示すブロック図である。本図において光源11は広い波長範囲で離散的に多数の縦モードが立って発振する光源を用いる。光源の波長範囲は例えば100nmとし、断層画像の深さ方向の分解能に応じて互いに隣接したn本のスペクトル数を持つものとする。ここで縦モードをm1〜mmとし、本実施の形態ではnは例えば2000とする。モード間隔は例えば0.05nm程度であり、SS−OCTのサンプリングの波長間隔とほぼ同等とする。この光源11のn本のスペクトルの光は、夫々のスペクトル毎に互いに異なる変調周波数fi(i=1〜n)で強度変調されているものとする。
次に光源11から出射される光の光軸上にハーフミラー12を45°傾けて配置する。ハーフミラー12はその光の一部を反射し一部を透過するものである。ハーフミラー12で反射される光の光軸に垂直に参照ミラー13が配置される。光源11からハーフミラー12を透過した光軸上には、光をスキャニングするスキャニングミラー14が設けられる。スキャニングミラー14は紙面に垂直な軸を中心にして一定範囲で回動することによって、平行光の反射角度を変化させるものである。集束レンズ15はこの反射光を受光する位置に配置し、測定部位へ光を集束すると共に水平方向にスキャニング(走査)する。そして集束レンズ15の集束位置に、検出対象となる被検出体16を配置し、被検出体16からの反射光をそのままハーフミラー12に入射する。ここでハーフミラー12から参照ミラー13までの光学距離L1と、ハーフミラー12から測定部位の表面までの光学距離L2とを等しくしておく。ここでハーフミラー12、参照ミラー13、スキャニングミラー14、集束レンズ15、コリメートレンズ17は干渉光学計を構成している。
さてハーフミラー12の光を受光する位置にレンズ17を介してフォトダイオード18を接続する。フォトダイオード18は、参照ミラー13からの反射光と測定部位で反射された光の干渉光を受光することによって、そのビート信号を電気信号として得る受光素子である。フォトダイオード15の出力端には図示のように多数のフィルタ(F)19−1〜19−nが並列的に接続されている。フィルタ19−1〜19−nは光源11の変調周波数fi(i=1〜n)に夫々対応する透過波長を有するバンドパスフィルタである。このバンドパスフィルタを透過した信号は夫々A/D変換器20―1〜20−nに与えられる。各A/D変換器は夫々のフィルタからの出力をデジタル値に変換するものであって、その出力は信号処理部21に与えられる。信号処理部21は各A/D変換器からの出力をマルチプレクサ(MPX)22を介してフーリエ変換器23に与える。フーリエ変換器23はこれらの出力をフーリエ変換するものである。CPU24はフーリエ変換の結果に基づき物体の断層画像を生成し、モニタ25に出力するものである。
次に本実施の形態に用いる光源11について詳細に説明する。図4は光源11の一例を示す概略図である。本図に示すように光源11にはゲイン媒体31が設けられ、ゲイン媒体31を中心としてミラー部32a,32bを互いに対向させることにより、外部共振器長をLcとする外部共振器型のレーザ光源が構成されている。そしてこのレーザ光源からの光をカップラ33により分岐して光ファイバ34及び35に与える。光ファイバ34は所定の長さのファイバであって、その他端はカップラ36に接続されている。又光ファイバ35の一端はコリメートレンズ37に入射され、コリメートレンズ37より平行光として外部に出射される。ここでコリメートレンズ37の光の光軸上には、光軸に垂直にミラー38を設ける。駆動部39はミラー38を光軸に垂直に所定の速度vで駆動するものである。ミラー38で反射された光はコリメートレンズ37を介して光ファイバ40に入射される。カップラ36は光ファイバ34と光ファイバ40からの光を合成して出力するものである。
次にこの光源11の動作について説明する。ゲイン媒体31とミラー部31a,31bにより構成されるレーザ光源は、前述した外部共振器長Lcを十分長くすることにより、図5(a)に示すようにm1〜mnの多数のスペクトルが立つ。この光は光ファイバ34を介して図5(b)に示すようにカップラ36にそのまま加えられる。一方光ファイバ35に入射した光は、コリメートレンズ37に入射し、コリメートレンズ37を出射した光はミラー38によって反射されて再びコリメートレンズ37に加わり、更に光ファイバ40を介してカップラ36に加わる。ここでミラー38を光軸に垂直に所定の速度vで駆動することにより、図5(c)に示すようにドップラ効果によって夫々破線で示すスペクトルから実線で示すスペクトルへと各スペクトルm1からmnまで互いに異なる周波数分だけシフトする。そのためカップラ36でこれらの光を合成することによって、図5(d)に示すように光の強度変調周波数が夫々異なった多数のスペクトルを有する光信号が得られることとなる。
次に、この光源11を用いた光断層画像表示システムの動作について説明する。動作原理は従来のSD−OCTとほぼ同様である。即ち図6(a)に示すように光源11から多数のスペクトルを有する光をハーフミラー12、スキャニングミラー14を介して対象物体16に照射する。又光源11からの光をハーフミラー12を介して参照ミラー13に入射し、干渉光学計を用いて物体内部、あるいは生体表皮下層で反射した後方散乱光と参照光とを干渉させる。干渉光のスペクトルは例えば図6(b)に示すものとなる。この干渉光を光電変換することにより、図7(a)に示す信号が得られる。この信号には多数のスペクトル成分が重畳されており、フィルタ19−1〜19−nによって光源11の各スペクトルの変調周波数で分離する。こうすれば結果的に光の波長毎に分離することができ、夫々の成分m1〜mnは例えば図7(b)に示すものとなる。夫々の出力を波長毎にA/D変換し、波長毎の干渉強度を波数(=2π/波長)に対してフーリエ変換器23でフーリエ変換して、被検出体に照射された測定光が後方散乱された深さ方向の位置とその後方散乱光の強度を算出する。そしてスキャニングミラー14で被検出体に対して所定方向にスキャニングし、多数の測定位置で後方散乱光を測定し、その結果に基づいて断層画像を生成し、モニタ25に出力するようにしている。更に物体上で2次元に光空間ビームを走査することによって3次元の断層画像を構築することができる。この場合には光源11は波長走査する必要はなく、A/D変換器も1波長走査の間に高速でA/D変換をする必要がなくなる。又分解能はあらかじめスペクトルの本数で決まっており、スペクトル本数を適宜選択することによって高分解能で高速の断面画像を得ることができる。
次に本発明の第2の実施の形態について説明する。第2の実施の形態において前述した第1の実施の形態と同一部分は同一符号を付して詳細な説明を省略する。この実施の形態ではフォトダイオード18からの出力をチューナブルフィルタ51−1〜51−qに出力する。チューナブルフィルタ51−1〜51−qは夫々A/D変換器52−1〜52−qに接続されている。チューナブルフィルタ51−1は複数の固定バンドパスフィルタ19−1〜19−k(1<k<q)に相当するものであり、これらのバンドパスフィルタの通過周波数f1〜fkを含む周波数範囲をスキャニングしつつその周波数成分を抽出するものである。他のチューナブルフィルタについても固定のバンドパスフィルタの複数分をカバーする可変範囲を有するバンドパスフィルタとする。チューナブルフィルタ51−1〜51−qは全体で全ての変調周波数fi(i=1〜n)をカバーしている。又各A/D変換器はチューナブルフィルタが固定フィルタの通過周波数帯域に一致した時点でA/D変換を行うことによって、その強度変調周波数に応じたデジタル値を出力するものとする。その他の構成は同一である。この場合には前述した第1の実施の形態に比べてフィルタ及びA/D変換器の数を大幅に減少することができる。但し1つのチューナブルフィルタとA/D変換器とすれば、高速のチューナブルフィルタやA/D変換器が必要となるため、従来例と同一の問題点が生じる。従ってチューナブルフィルタ及びA/D変換器は複数用いる必要がある。
尚ここで説明した光源は一例であって、一定の波長帯域を有し、互いに異なる周波数で強度変調された多数のスペクトルを有する光源であれば同様の効果が得られる。
本発明は高い空間分解能を維持しつつ高速で断層画像を得ることができ、光断層画像表示システムに有用であり、動画像の生成にも有用である。
11 光源
12 ハーフミラー
13 参照ミラー
14 スキャニングミラー
15 集束レンズ
16 被検出体
17 レンズ
18 フォトダイオード
19−1〜19−n フィルタ
20−1〜20−n,52−1〜52−q A/D変換器
21 信号処理部
22 マルチプレクサ
23 フーリエ変換器
24 CPU
25 モニタ
31 ゲイン媒体
32a,32b ミラー部
33,36 カップラ
34,35,40 光ファイバ
37 コリメートレンズ
38 ミラー
39 駆動部
51−1〜51−q チューナブルフィルタ

Claims (2)

  1. n本の隣接した波長スペクトルを有し、夫々のスペクトルm1〜mn毎に互いに異なる周波数f1〜fnで強度変調がなされた光を発振する光源と、
    前記光源からの光を参照光と物体への照射光とに分岐し、照射光を被検出物体に導き、物体からの反射光と前記参照光との干渉光を発生する干渉光学計と、
    前記干渉光学計より得られる干渉光を受光し、ビート信号を得る受光素子と、
    前記受光素子より得られる信号が入力され、前記光源の強度変調周波数f1〜fnに相当する周波数f1〜fnの成分を夫々分離する複数のバンドパスフィルタと、
    前記バンドパスフィルタから夫々得られるn個の出力から成る干渉信号をフーリエ変換することにより、前記物体の断層画像を形成する信号処理部と、を具備する光断層画像表示システム。
  2. 前記バンドパスフィルタは、周波数f1〜fnのうち夫々異なった複数の周波数を含む範囲を周波数選択範囲とする複数のチューナブルフィルタである請求項1記載の光断層画像表示システム。
JP2009243634A 2009-10-22 2009-10-22 光断層画像表示システム Pending JP2011089887A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243634A JP2011089887A (ja) 2009-10-22 2009-10-22 光断層画像表示システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243634A JP2011089887A (ja) 2009-10-22 2009-10-22 光断層画像表示システム

Publications (1)

Publication Number Publication Date
JP2011089887A true JP2011089887A (ja) 2011-05-06

Family

ID=44108269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243634A Pending JP2011089887A (ja) 2009-10-22 2009-10-22 光断層画像表示システム

Country Status (1)

Country Link
JP (1) JP2011089887A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145199A (ja) * 2012-01-16 2013-07-25 Nikon Corp 光干渉観察装置
JP2018115939A (ja) * 2017-01-18 2018-07-26 公立大学法人大阪市立大学 物質含有量を断層可視化する装置および方法
WO2020250272A1 (ja) * 2019-06-10 2020-12-17 株式会社ニコン 計測装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145199A (ja) * 2012-01-16 2013-07-25 Nikon Corp 光干渉観察装置
JP2018115939A (ja) * 2017-01-18 2018-07-26 公立大学法人大阪市立大学 物質含有量を断層可視化する装置および方法
WO2020250272A1 (ja) * 2019-06-10 2020-12-17 株式会社ニコン 計測装置

Similar Documents

Publication Publication Date Title
JP4577504B2 (ja) 画像診断装置
JP4933336B2 (ja) 光断層画像表示システム及び光断層画像表示方法
JP4963708B2 (ja) オプティカル・コヒーレンス・トモグラフィー装置
JP4895277B2 (ja) 光断層画像化装置
JP4640813B2 (ja) 光プローブおよび光断層画像化装置
JP5009058B2 (ja) 被検体情報分析装置
JP4429886B2 (ja) 光断層映像装置
JP5064159B2 (ja) 光断層画像化装置
JPWO2007034802A1 (ja) 弾性粘性測定装置
JP4892719B2 (ja) 断層計測装置及び断層計測方法
JP2007101263A (ja) 光断層画像化装置
JP2005249704A (ja) 断層映像装置
US20160047644A1 (en) Phase-inverted sidelobe-annihilated optical coherence tomography
JP2021512336A (ja) コヒーレンスゲーテッド光音響リモートセンシング(cg−pars)
JP2015117978A (ja) 光干渉断層計
JP4874906B2 (ja) 光断層画像取得方法及び光断層画像化装置
JP2015114284A (ja) 光干渉断層計
JP2008089349A (ja) 光断層画像化装置
JP2007101264A (ja) 光断層画像化装置
JP5447512B2 (ja) 光干渉断層画像取得装置及び光干渉断層画像取得装置に用いるプローブ
JP2011089887A (ja) 光断層画像表示システム
JP2006322767A (ja) 光断層画像化装置
JP2008128707A (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム
JP2007101265A (ja) 光断層画像化装置
KR101263326B1 (ko) 음향 광변조필터를 이용한 헤테로다인 광 간섭성 단층 촬영 장치