JP2011089094A - Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product - Google Patents

Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product Download PDF

Info

Publication number
JP2011089094A
JP2011089094A JP2009245909A JP2009245909A JP2011089094A JP 2011089094 A JP2011089094 A JP 2011089094A JP 2009245909 A JP2009245909 A JP 2009245909A JP 2009245909 A JP2009245909 A JP 2009245909A JP 2011089094 A JP2011089094 A JP 2011089094A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
optical semiconductor
semiconductor element
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009245909A
Other languages
Japanese (ja)
Inventor
Shinya Ota
真也 大田
Kazuhiro Fukuya
一浩 福家
Hisataka Ito
久貴 伊藤
Hidenori Nozawa
英則 野澤
Tetsunori Sato
哲則 佐藤
Kazuhiko Yoshida
一彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009245909A priority Critical patent/JP2011089094A/en
Publication of JP2011089094A publication Critical patent/JP2011089094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for optical semiconductor element sealing use, excellent in crack resistance in undergoing soldering reflow and also excellent in temperature cycle reliability. <P>SOLUTION: The epoxy resin composition for optical semiconductor element sealing use includes (A) to (C) components described below; wherein the blend weight ratio [(A):(B)] is set at (60:40) to (95:5). The (A) component is a blend of (a1), (a2) and (a3), each of which has, in the main chain structure, a bisphenol and hexahydrophthalic acid; wherein (a1) is a specific monoepoxy compound, (a2) is a specific epoxy-free compound, and (a3) is a specific diepoxy compound. The (B) component is an epoxy compound other than the (A) component. The (C) component is a curing agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種光半導体素子の封止に用いられる光半導体素子封止用エポキシ樹脂組成物およびその硬化体、ならびにそれを用いて光半導体素子を封止してなる光半導体装置に関するものである。   The present invention relates to an epoxy resin composition for sealing an optical semiconductor element used for sealing various optical semiconductor elements, a cured product thereof, and an optical semiconductor device formed by sealing an optical semiconductor element using the epoxy resin composition. .

従来から、受光素子および発光素子等の光半導体素子の封止材料としては、透明性、耐湿性および耐熱性に優れていなければならないという観点より、エポキシ樹脂組成物が用いられている。このエポキシ樹脂組成物を、光半導体素子を設置した成形金型中にて、例えば、トランスファー成形し、光半導体素子をパッケージにして光半導体装置化されている(例えば、特許文献1参照)。   Conventionally, as a sealing material for an optical semiconductor element such as a light receiving element and a light emitting element, an epoxy resin composition has been used from the viewpoint of excellent transparency, moisture resistance, and heat resistance. This epoxy resin composition is, for example, transfer-molded in a molding die provided with an optical semiconductor element, and an optical semiconductor device is formed by using the optical semiconductor element as a package (see, for example, Patent Document 1).

そして、この光半導体パッケージにおいても、光半導体以外の半導体パッケージと同様に、小型・軽量化や実装生産性の向上を目的として、従来のピン挿入実装方式に代わり、表面実装方式が急速に普及してきている。このような表面実装型パッケージとしては、例えば、2方向フラットパッケージ(スモールアウトラインパッケージ:SOP)や、4方向フラットパッケージ(クワッドフラットパッケージ:QFP)、SON(スモールアウトラインノンリード)があげられる。   In this optical semiconductor package, as with semiconductor packages other than the optical semiconductor, the surface mounting method has been rapidly spread instead of the conventional pin insertion mounting method for the purpose of reducing the size and weight and improving the mounting productivity. ing. Examples of such surface mount packages include a two-way flat package (small outline package: SOP), a four-way flat package (quad flat package: QFP), and SON (small outline non-lead).

特開2006−93277号公報JP 2006-93277 A

上記表面実装方式ではピン挿入実装方式と異なり、実装時にパッケージ全体が最大で260℃の高温環境下にさらされる。その際、光半導体デバイス製造後の保管中に吸湿した水分が急激に気化膨張し、大きな応力が発生する。その応力が、パッケージの強度を超えた場合にパッケージにクラックが発生する。その防止対策として、光半導体メーカーでは、光半導体デバイスを出荷の際に防湿梱包したり、実装現場では、実装工程前に光半導体デバイスをオーブンで加熱乾燥したりする等の工程を加えている。しかし、上記防湿梱包によるコストアップや梱包開封による作業性の悪化、また上記加熱乾燥にかかるコストが大きな負担となっている。   In the surface mounting method, unlike the pin insertion mounting method, the entire package is exposed to a high temperature environment of 260 ° C. at the time of mounting. At that time, moisture absorbed during storage after manufacturing the optical semiconductor device is rapidly vaporized and expanded, and a large stress is generated. When the stress exceeds the strength of the package, a crack occurs in the package. To prevent this, optical semiconductor manufacturers add steps such as moisture-proof packaging of optical semiconductor devices at the time of shipment, and heat-drying of optical semiconductor devices in an oven before the mounting process at the mounting site. However, the cost increase due to the moisture-proof packaging, the deterioration of workability due to the opening of the packaging, and the cost for the heat drying are significant burdens.

この水蒸気による封止樹脂のクラックの問題を解決するための一般的な手法としては、フィラー等の高強度構造物をその封止樹脂中に多く含有させる方法があるが、光半導体用途では、透明性の観点から上記フィラー等の高強度構造物を多く含有させるという手法を用いることは難しい。また、脂肪族基、フェニル基の含有量を増やし、樹脂自身の吸水率を低くすることで耐半田性の効果を上げる手法も考えられるが、この手法でも、エポキシ樹脂組成物のガラス転移温度(Tg)が高く、半田リフロー時の弾性率が高くなるため、半田リフローをかけた際に生じる気化膨張による応力を緩和することができず、クラックが発生する。そして、半田リフロー時の弾性率を低下させる手法としては、エポキシ樹脂組成物のガラス転移温度(Tg)を下げる方法が考えられるが、この方法では、温度サイクル信頼性が著しく低下し、製品の信頼性という点において満足させることができないという問題がある。   As a general technique for solving the problem of cracking of the sealing resin due to water vapor, there is a method in which a large amount of a high-strength structure such as a filler is contained in the sealing resin. From the viewpoint of property, it is difficult to use a technique of containing a large amount of a high-strength structure such as the filler. In addition, a method of increasing the solder group resistance by increasing the content of aliphatic groups and phenyl groups and lowering the water absorption rate of the resin itself is also conceivable. However, even with this method, the glass transition temperature of the epoxy resin composition ( Since Tg) is high and the elastic modulus at the time of solder reflow is high, the stress due to vaporization expansion that occurs when solder reflow is applied cannot be relaxed, and cracks are generated. As a technique for reducing the elastic modulus at the time of solder reflow, a method of lowering the glass transition temperature (Tg) of the epoxy resin composition is conceivable. However, this method significantly reduces the temperature cycle reliability, and the reliability of the product. There is a problem that it cannot be satisfied in terms of sex.

本発明は、このような事情に鑑みなされたもので、良好な透明性はもちろん、半田リフロー時の耐クラック性に優れ、かつ温度サイクル試験信頼性にも優れた光半導体素子封止用エポキシ樹脂組成物およびその硬化体、ならびにそれを用いた高い信頼性を備えた光半導体装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and has an excellent epoxy resin for encapsulating an optical semiconductor element that has excellent transparency as well as excellent crack resistance during solder reflow and excellent temperature cycle test reliability. An object of the present invention is to provide a composition, a cured product thereof, and an optical semiconductor device having high reliability using the composition.

上記目的を達成するため、本発明は、下記の(A)〜(C)成分を含有する光半導体素子封止用エポキシ樹脂組成物であって、上記(A)成分および(B)成分の混合割合〔(A):(B)〕が、重量比で、(A):(B)=60:40〜95:5に設定されている光半導体素子封止用エポキシ樹脂組成物を第1の要旨とする。
(A)下記の一般式(a1)で表されるエポキシ化合物、一般式(a2)で表される化合物および下記の一般式(a3)で表されるエポキシ化合物からなる混合物。

Figure 2011089094
Figure 2011089094
Figure 2011089094
〔上記式(a1)〜(a3)において、k,m,nはそれぞれ0または10以下の正数である。また、式(a1)〜(a3)中、Xは下記の一般式(4)で表される2価の有機基であり、Yは下記の一般式(5)で表される2価の有機基であり、Zは下記の一般式(6)で表される2価の有機基である。〕
Figure 2011089094
Figure 2011089094
Figure 2011089094
(B)上記混合物(A)以外のエポキシ化合物。
(C)硬化剤。 In order to achieve the above object, the present invention provides an epoxy resin composition for encapsulating an optical semiconductor element containing the following components (A) to (C), which is a mixture of the components (A) and (B): The epoxy resin composition for sealing an optical semiconductor element in which the ratio [(A) :( B)] is set to (A) :( B) = 60: 40 to 95: 5 by weight ratio is the first. The gist.
(A) A mixture comprising an epoxy compound represented by the following general formula (a1), a compound represented by the general formula (a2), and an epoxy compound represented by the following general formula (a3).
Figure 2011089094
Figure 2011089094
Figure 2011089094
[In the above formulas (a1) to (a3), k, m, and n are each a positive number of 0 or 10 or less. In the formulas (a1) to (a3), X is a divalent organic group represented by the following general formula (4), and Y is a divalent organic group represented by the following general formula (5). Z is a divalent organic group represented by the following general formula (6). ]
Figure 2011089094
Figure 2011089094
Figure 2011089094
(B) Epoxy compounds other than the mixture (A).
(C) Curing agent.

また、本発明は、上記光半導体素子封止用エポキシ樹脂組成物を硬化させてなる硬化体のガラス転移温度が、110℃以上である光半導体素子封止用エポキシ樹脂組成物硬化体を第2の要旨とする。   In addition, the present invention provides a second cured epoxy resin composition for sealing an optical semiconductor element, wherein a cured product obtained by curing the epoxy resin composition for sealing an optical semiconductor element has a glass transition temperature of 110 ° C. or higher. The gist of

そして、本発明は、上記光半導体素子封止用エポキシ樹脂組成物を用いて光半導体素子をトランスファー成形して封止してなる光半導体装置を第3の要旨とする。   And this invention makes the 3rd summary the optical-semiconductor device formed by carrying out transfer molding of the optical-semiconductor element using the said epoxy resin composition for optical-semiconductor-element sealing.

本発明者らは、半田リフロー時の耐クラック性に優れる光半導体素子封止用エポキシ樹脂組成物を得るべく一連の研究を重ねた。その結果、上記一般式(a1)〜(a3)で表される各化合物の混合物〔(A)成分〕と、それ以外のエポキシ化合物〔(B)成分〕を特定の割合で組み合わせると、上記式(a1)〜(a3)で表される各化合物のうち、式(a1)で表されるエポキシ化合物は、片末端にグリシジル基を有する単官能エポキシ化合物であることから、硬化物のガラス転移温度や軟化点の調整を行なうという作用を奏し、また式(a2)で表される化合物は、両末端水酸基を有するために酸無水物のような硬化剤と反応することによって硬化物の低弾性化に寄与するという作用を奏し、さらに式(a3)で表されるエポキシ化合物は、両末端にグリシジル基を有することから、硬化物に強靱性を付与するという作用を奏することから、半田リフロー温度(ゴム状領域)での高温の弾性率が従来のエポキシ樹脂の使用時に比べて低くなり、リフローをかけた際の気化膨張による発生応力の緩和を可能とし、クラックの発生が抑制されて耐半田リフロー性に優れることはもちろん、ガラス転移温度が高くなり、温度サイクル試験信頼性に関しても向上が図られるようになることを見出し本発明に到達した。   The inventors of the present invention have made a series of studies to obtain an epoxy resin composition for sealing an optical semiconductor element that is excellent in crack resistance during solder reflow. As a result, when the mixture of the compounds represented by the general formulas (a1) to (a3) [component (A)] and the other epoxy compound [component (B)] are combined at a specific ratio, Among the compounds represented by (a1) to (a3), the epoxy compound represented by the formula (a1) is a monofunctional epoxy compound having a glycidyl group at one end, and thus the glass transition temperature of the cured product. Since the compound represented by the formula (a2) has hydroxyl groups at both ends, it reacts with a curing agent such as an acid anhydride to reduce the elasticity of the cured product. Since the epoxy compound represented by the formula (a3) has a glycidyl group at both ends, and has an effect of imparting toughness to the cured product, the solder reflow temperature ( Go The elastic modulus at a high temperature in the area is lower than when using conventional epoxy resin, and it is possible to relieve the stress generated by vaporization expansion when reflow is applied, and the generation of cracks is suppressed and solder reflow resistance is suppressed. As a result, the present inventors have found that the glass transition temperature is increased and the reliability of the temperature cycle test can be improved.

このように、本発明は、上記一般式(a1)〜(a3)で表される各化合物からなる混合物〔(A)成分〕と、それ以外のエポキシ化合物〔(B)成分〕を特定の混合割合で含有してなる光半導体素子封止用エポキシ樹脂組成物である。このため、半田リフロー時の耐クラック性に優れるとともに、ガラス転移温度が高いことから温度サイクル試験信頼性にも優れたものである。したがって、本発明の光半導体素子封止用エポキシ樹脂組成物は、有用な封止材料となり、信頼性の高い光半導体装置を得ることが可能となる。   Thus, the present invention provides a specific mixture of the mixture [component (A)] composed of the compounds represented by the above general formulas (a1) to (a3) and the other epoxy compound [component (B)]. It is the epoxy resin composition for optical semiconductor element sealing formed by a ratio. For this reason, it is excellent in crack resistance at the time of solder reflow, and also has excellent temperature cycle test reliability because of its high glass transition temperature. Therefore, the epoxy resin composition for sealing an optical semiconductor element of the present invention becomes a useful sealing material, and a highly reliable optical semiconductor device can be obtained.

表面実装型光半導体装置の一例である8ピンのスモールアウトラインパッケージ(SOP−8)の外観形状を示す斜視図である。It is a perspective view which shows the external appearance shape of the 8-pin small outline package (SOP-8) which is an example of a surface mount optical semiconductor device.

つぎに、本発明の実施の形態を詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の光半導体素子封止用エポキシ樹脂組成物(以下、単に「エポキシ樹脂組成物」ともいう)は、特定の3種類の化合物からなる混合物(A成分)と、上記A成分以外のエポキシ化合物(B成分)と、硬化剤(C成分)を用いて得られるものであり、通常、粉末状、もしくはこの粉末を打錠したタブレット状になっている。   The epoxy resin composition for sealing an optical semiconductor element of the present invention (hereinafter also simply referred to as “epoxy resin composition”) is composed of a mixture of three specific types of compounds (A component) and an epoxy compound other than the A component. It is obtained using (B component) and a curing agent (C component), and is usually in the form of a powder or a tablet obtained by tableting this powder.

上記特定の3種類の化合物からなる混合物(A成分)は、下記の一般式(a1)で表されるエポキシ化合物、一般式(a2)で表される化合物、および下記の一般式(a3)で表されるエポキシ化合物からなる混合物である。   The mixture (component A) composed of the above three specific compounds is an epoxy compound represented by the following general formula (a1), a compound represented by the general formula (a2), and the following general formula (a3). It is a mixture consisting of the epoxy compound represented.

Figure 2011089094
Figure 2011089094

Figure 2011089094
Figure 2011089094

Figure 2011089094
Figure 2011089094

〔上記式(a1)〜(a3)において、k,m,nはそれぞれ0または10以下の正数である。また、式(a1)〜(a3)中、Xは下記の一般式(4)で表される2価の有機基であり、Yは下記の一般式(5)で表される2価の有機基であり、Zは下記の一般式(6)で表される2価の有機基である。〕

Figure 2011089094
Figure 2011089094
Figure 2011089094
[In the above formulas (a1) to (a3), k, m, and n are each a positive number of 0 or 10 or less. In the formulas (a1) to (a3), X is a divalent organic group represented by the following general formula (4), and Y is a divalent organic group represented by the following general formula (5). Z is a divalent organic group represented by the following general formula (6). ]
Figure 2011089094
Figure 2011089094
Figure 2011089094

上記式(4)において、R1としては、特に−C(CH32−が好ましい。また、上記式(6)においても、R3としては、特に−C(CH32−が好ましい。さらに、式(5)において、R2としては、好ましくは水素またはメチル基であり、その割合は式(a1)〜(a3)で表される各化合物からなる混合物全体の、水素:メチル基=3:7(重量比)であることが好ましい。 In the above formula (4), R 1 is particularly preferably —C (CH 3 ) 2 —. Also in the above formula (6), R 3 is particularly preferably —C (CH 3 ) 2 —. Further, in the formula (5), R 2 is preferably hydrogen or a methyl group, and the ratio thereof is hydrogen: methyl group of the entire mixture composed of the compounds represented by the formulas (a1) to (a3) = It is preferably 3: 7 (weight ratio).

そして、上記式(a1)〜(a3)で表される各化合物からなる混合物(A成分)全体におけるエポキシ当量は、好ましくは500〜1000であり、より好ましくは600〜850である。また、上記式(a1)〜(a3)で表される各化合物からなる混合物全体における軟化点は、好ましくは60〜120℃であり、より好ましくは70〜110℃である。   And the epoxy equivalent in the whole mixture (A component) which consists of each compound represented by said formula (a1)-(a3) becomes like this. Preferably it is 500-1000, More preferably, it is 600-850. Moreover, the softening point in the whole mixture which consists of each compound represented by said formula (a1)-(a3) becomes like this. Preferably it is 60-120 degreeC, More preferably, it is 70-110 degreeC.

上記式(a1)〜(a3)で表される各化合物からなる混合物において、式(a1)で表されるエポキシ化合物と式(a2)で表される化合物の含有率が、混合物(A)全体の10重量%以上100重量%未満であることが好ましい。すなわち、式(a1)で表されるエポキシ化合物と式(a2)で表される化合物の含有率が少なすぎると、硬化性に劣り、ガラス転移温度が高くならない、あるいは高弾性化してしまう傾向がみられるからである。   In the mixture composed of the compounds represented by the above formulas (a1) to (a3), the content of the epoxy compound represented by the formula (a1) and the compound represented by the formula (a2) is the entire mixture (A). It is preferable that it is 10 weight% or more and less than 100 weight%. That is, if the content of the epoxy compound represented by the formula (a1) and the compound represented by the formula (a2) is too small, the curability tends to be inferior, the glass transition temperature does not increase, or the elasticity tends to increase. Because it is seen.

上記式(a1)〜(a3)で表される各化合物からなる混合物(A成分)は、例えば,下記の一般式(7)で表されるエポキシ化合物と、1分子中に1.2〜1.8個のカルボキシル基を有し、かつ0.2〜0.8個の末端水酸基を有するポリエステルオリゴマーを反応させることにより得ることができる。   The mixture (component A) composed of the compounds represented by the above formulas (a1) to (a3) is, for example, an epoxy compound represented by the following general formula (7) and 1.2 to 1 in one molecule. It can be obtained by reacting a polyester oligomer having 8 carboxyl groups and 0.2 to 0.8 terminal hydroxyl groups.

Figure 2011089094
Figure 2011089094

上記A成分とともに用いられる、A成分以外のエポキシ化合物(B成分)としては、例えば、多官能性や透明性という観点から、トリグリシジルイソシアヌレート、下記の一般式(2)で表される脂環式エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。   Examples of the epoxy compound (component B) other than the component A used together with the component A include, for example, triglycidyl isocyanurate and an alicyclic ring represented by the following general formula (2) from the viewpoint of multifunctionality and transparency. Of these, epoxy resin and cresol novolac type epoxy resin are preferably used. These may be used alone or in combination of two or more.

Figure 2011089094
Figure 2011089094

そして、このようなA成分以外のエポキシ化合物(B成分)としては、エポキシ当量が80〜250であるものを用いることが好ましい。また、軟化点が40〜125℃であるものを用いることが好ましい。   And as an epoxy compound (B component) other than such A component, it is preferable to use what has an epoxy equivalent of 80-250. Moreover, it is preferable to use what has a softening point of 40-125 degreeC.

上記特定の3種類の化合物からなる混合物(A成分)およびA成分以外のエポキシ化合物(B成分)の混合割合〔(A成分):(B成分)〕は、重量比で、(A成分):(B成分)=60:40〜95:5に設定する必要がある。より好ましくは(A成分):(B成分)=75:25〜90:10である。すなわち、混合割合が上記範囲を外れA成分の割合が少な過ぎると、半田リフロー時の弾性率が上がり、応力を緩和することができず、耐半田リフロー時にクラックが発生するという問題が生じる。また、混合割合が上記範囲を外れA成分の割合が多過ぎると、エポキシ樹脂組成物のガラス転移温度(Tg)が下がり耐半田リフロー性は向上するが、温度サイクル試験において、光半導体装置内のワイヤーの断線が発生し、光半導体装置自体の信頼性が低下する。さらに、耐熱性が低下し、半田リフロー時の変色が激しく、光学特性に対して悪影響を及ぼすこととなるからである。   The mixture ratio (component A): epoxy compound (component B) other than the component A (component A) and the specific three types of compounds (component A: component B) is a weight ratio of component A: (B component) It is necessary to set to 60: 40-95: 5. More preferably, (component A) :( component B) = 75: 25 to 90:10. That is, if the mixing ratio is out of the above range and the ratio of the component A is too small, the elastic modulus at the time of solder reflow increases, stress cannot be relieved, and cracks occur at solder reflow resistance. Further, if the mixing ratio is out of the above range and the ratio of the component A is too large, the glass transition temperature (Tg) of the epoxy resin composition is lowered and the solder reflow resistance is improved, but in the temperature cycle test, in the optical semiconductor device. Wire breakage occurs, and the reliability of the optical semiconductor device itself decreases. Furthermore, heat resistance is lowered, discoloration during solder reflow is severe, and adversely affects optical characteristics.

上記A成分およびB成分とともに用いられる上記硬化剤(C成分)は、上記A成分およびB成分に対する硬化剤として作用するものであり各種硬化剤が用いられるが、エポキシ樹脂組成物の硬化体が変色しにくいという点から、特に、酸無水物系硬化剤を用いることが好ましい。   The said hardening | curing agent (C component) used with the said A component and B component acts as a hardening | curing agent with respect to the said A component and B component, and although various hardening agents are used, the hardening body of an epoxy resin composition discolors. In particular, it is preferable to use an acid anhydride-based curing agent because it is difficult to perform.

上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物があげられる。これらは単独で使用してもあるいは2種以上併用してもよい。そして、上記酸無水物系硬化剤の中でも、短波長領域の吸収がより低いという点から、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸を用いることが好ましい。   Examples of the acid anhydride-based curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, anhydrous Colorless to light yellow acid anhydrides such as glutaric acid, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like can be mentioned. These may be used alone or in combination of two or more. Of the acid anhydride curing agents, hexahydrophthalic anhydride and methylhexahydrophthalic anhydride are preferably used from the viewpoint of lower absorption in the short wavelength region.

さらに、上記酸無水物系硬化剤以外に、エポキシ樹脂用硬化剤として用いられるアミン系硬化剤、フェノール系硬化剤、上記酸無水物系硬化剤をグリコール類でエステル化したもの、または、ヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルヘキサヒドロフタル酸等のカルボン酸類等の硬化剤を単独で使用してもよいし、あるいは2種以上併用してもよい。   Further, in addition to the above-mentioned acid anhydride-based curing agent, amine-based curing agents used as epoxy resin curing agents, phenol-based curing agents, those obtained by esterifying the above-mentioned acid anhydride-based curing agents with glycols, or hexahydro Curing agents such as carboxylic acids such as phthalic acid, tetrahydrophthalic acid and methylhexahydrophthalic acid may be used alone or in combination of two or more.

上記エポキシ化合物成分(A成分+B成分)と硬化剤(C成分)との配合割合は、例えば、硬化剤(C成分)として酸無水物系硬化剤を用いる場合、上記エポキシ化合物成分(A成分+B成分)中のエポキシ基1当量に対して、酸無水物系硬化剤における酸無水物当量を、0.5〜1.5当量となるように設定することが好ましい。特に好ましくは0.7〜1.2当量である。すなわち、上記配合割合において、酸無水物当量が上記下限値未満では、得られるエポキシ樹脂組成物の硬化後の色相が悪くなる傾向がみられ、逆に、上記上限値を超えると、耐湿性が低下する傾向がみられるからである。   The blending ratio of the epoxy compound component (A component + B component) and the curing agent (C component) is, for example, when an acid anhydride curing agent is used as the curing agent (C component), the epoxy compound component (A component + B). It is preferable to set the acid anhydride equivalent in the acid anhydride curing agent to 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the component. Particularly preferred is 0.7 to 1.2 equivalents. That is, in the above blending ratio, when the acid anhydride equivalent is less than the above lower limit value, the hue after curing of the resulting epoxy resin composition tends to be deteriorated, and conversely, when the above upper limit value is exceeded, moisture resistance is increased. This is because there is a tendency to decrease.

なお、硬化剤(C成分)として、酸無水物系硬化剤以外に前記の他の硬化剤、例えば、ヘキサヒドロフタル酸等のカルボン酸類等の硬化剤を単独で使用あるいは2種以上併用する場合においても、その配合割合は、上記酸無水物系硬化剤を使用した配合割合(当量比)に準ずる。   In addition to the acid anhydride-based curing agent, other curing agents such as carboxylic acids such as hexahydrophthalic acid are used alone or in combination of two or more as the curing agent (C component). However, the blending ratio is in accordance with the blending ratio (equivalent ratio) using the acid anhydride curing agent.

本発明のエポキシ樹脂組成物には、必要に応じて、硬化促進剤を用いることができる。上記硬化促進剤としては、例えば、三級アミン類、イミダゾール類、四級アンモニウム塩および有機金属塩類、リン系化合物等があげられる。これらは単独でもしくは2種以上併せて用いられる。そして、上記硬化促進剤の中でも、リン系化合物、三級アミン類を用いることが好ましい。さらに好ましくは、具体的には、1,8−ジアザビシクロ〔5.4.0〕ウンデセン−7(DBU)、1,5−ジアザビシクロ〔4.3.0〕ノネン−5、DBUのオクチル酸塩、N,N−ジメチルベンジルアミン、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、N,N−ジメチルシクロヘキシルアミンがあげられる。上記硬化促進剤を用いることにより、半田リフロー温度での耐熱変色性が生起しにくいという効果が得られる。   A curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Examples of the curing accelerator include tertiary amines, imidazoles, quaternary ammonium salts and organometallic salts, phosphorus compounds, and the like. These may be used alone or in combination of two or more. And among the said hardening accelerators, it is preferable to use a phosphorus compound and tertiary amines. More preferably, specifically, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5, octylate of DBU, Examples thereof include N, N-dimethylbenzylamine, tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate, and N, N-dimethylcyclohexylamine. By using the curing accelerator, it is possible to obtain an effect that heat discoloration resistance at the solder reflow temperature hardly occurs.

上記硬化促進剤の配合量は、前記エポキシ化合物成分(A成分+B成分)100重量部(以下「部」と略す)に対して、0.05〜7.0部の範囲に設定することが好ましく、より好ましくは0.2〜3.0部である。すなわち、硬化促進剤の配合量が少な過ぎると、充分な硬化促進効果が得られない傾向がみられ、逆に、多過ぎると、エポキシ樹脂組成物の硬化体に変色がみられる傾向があるからである。   The amount of the curing accelerator is preferably set in the range of 0.05 to 7.0 parts with respect to 100 parts by weight (hereinafter referred to as “parts”) of the epoxy compound component (component A + component B). More preferably, it is 0.2 to 3.0 parts. That is, if the blending amount of the curing accelerator is too small, there is a tendency that a sufficient curing accelerating effect cannot be obtained, and conversely, if too large, the cured product of the epoxy resin composition tends to be discolored. It is.

また、本発明のエポキシ樹脂組成物には、前記特定の3種類の化合物からなる混合物(A成分)、A成分以外のエポキシ化合物(B成分)、硬化剤(C成分)および硬化促進剤以外に、エポキシ樹脂組成物の硬化体の透明性を損なわない範囲であれば必要に応じて、カップリング剤、劣化防止剤、変性剤、脱泡剤、離型剤、染料、顔料等の従来公知の各種添加剤を適宜配合することができる。   In addition, the epoxy resin composition of the present invention includes a mixture (component A) composed of the three specific compounds, an epoxy compound other than component A (component B), a curing agent (component C), and a curing accelerator. As long as it does not impair the transparency of the cured product of the epoxy resin composition, as necessary, conventionally known coupling agents, deterioration inhibitors, modifiers, defoamers, mold release agents, dyes, pigments, etc. Various additives can be appropriately blended.

上記カップリング剤としては、例えば、γ−メルカプトメトキシシラン等のシラン系、チタネート系等の、従来から公知のシランカップリング剤があげられる。上記カップリング剤の含有量は、例えば、エポキシ樹脂組成物全体中0.1〜5重量%の範囲に設定することが好ましい。   Examples of the coupling agent include conventionally known silane coupling agents such as silanes such as γ-mercaptomethoxysilane and titanates. The content of the coupling agent is preferably set in the range of 0.1 to 5% by weight in the entire epoxy resin composition, for example.

上記劣化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等の従来公知のものがあげられる。   Examples of the deterioration preventing agent include conventionally known agents such as phenol compounds, amine compounds, organic sulfur compounds, and phosphine compounds.

上記変性剤としては、例えば、グリコール類、シリコーン類、アルコール類等の、従来から公知の変性剤があげられる。   Examples of the modifying agent include conventionally known modifying agents such as glycols, silicones, and alcohols.

上記脱泡剤としては、例えば、シリコーン系等の、従来から公知の脱泡剤があげられる。   Examples of the defoaming agent include conventionally known defoaming agents such as silicone-based ones.

上記離型剤としては、例えば、ステアリン酸、ベヘニン酸、モンタン酸およびその金属塩、ポリエチレン系、ポリエチレン−ポリオキシエチレン系、カルナバワックス等の従来公知のものがあげられる。そして、上記離型剤の中でも、ポリエチレン−ポリオキシエチレン系が、エポキシ樹脂組成物の硬化体の透明性が良好となるため、好ましく用いられる。   Examples of the release agent include conventionally known agents such as stearic acid, behenic acid, montanic acid and metal salts thereof, polyethylene, polyethylene-polyoxyethylene, and carnauba wax. And among the said mold release agents, since the transparency of the hardening body of an epoxy resin composition becomes favorable, polyethylene-polyoxyethylene type | system | group is used preferably.

なお、光分散性が必要な場合には、上記成分以外にさらに充填剤を配合してもよい。この充填剤としては、例えば、石英ガラス粉末、タルク、シリカ粉末、アルミナ粉末、炭酸カルシウム等の無機質充填剤等があげられる。   In addition, when a light dispersibility is required, you may mix | blend a filler other than the said component. Examples of the filler include inorganic fillers such as quartz glass powder, talc, silica powder, alumina powder, and calcium carbonate.

本発明のエポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A成分、B成分およびC成分、さらに必要に応じて、硬化促進剤、劣化防止剤、変性剤、シランカップリング剤、脱泡剤、離型剤、染料、顔料、充填剤等の従来公知の各種添加剤を所定の割合で配合する。そして、これらを常法に準じてドライブレンド法または溶融ブレンド法を適宜採用して混合、混練する。ついで、得られた混練物を冷却したのち粉砕し、さらに必要に応じて打錠することにより、本発明のエポキシ樹脂組成物を製造することができる。   The epoxy resin composition of the present invention can be produced, for example, as follows. That is, the above A component, B component and C component, and further, if necessary, curing accelerators, deterioration inhibitors, modifiers, silane coupling agents, defoaming agents, mold release agents, dyes, pigments, fillers, etc. Various conventionally known additives are blended at a predetermined ratio. Then, these are mixed and kneaded by appropriately adopting a dry blend method or a melt blend method according to a conventional method. Subsequently, the obtained kneaded product is cooled and then pulverized, and further tableted as necessary, whereby the epoxy resin composition of the present invention can be produced.

このような、エポキシ樹脂組成物を用いた光半導体素子の封止は、トランスファーモールド等の公知のモールド方法により行うことができる。   Sealing of the optical semiconductor element using such an epoxy resin composition can be performed by a known molding method such as transfer molding.

なお、本発明のエポキシ樹脂組成物の硬化体は、厚み1mmにおいて、分光光度計の測定により、波長600nmの光透過率が70%以上のものが好ましく、特に好ましくは80%以上である。ただし、上記充填剤、染料、あるいは顔料を用いた場合の光透過率に関してはこの限りではない。上記エポキシ組成物の硬化体は、例えば、150℃×4分間加熱硬化させた後、さらに150℃×3時間で加熱硬化させることにより作製される。   The cured product of the epoxy resin composition of the present invention preferably has a light transmittance of 70% or more at a wavelength of 600 nm as measured by a spectrophotometer at a thickness of 1 mm, particularly preferably 80% or more. However, the light transmittance in the case of using the filler, dye, or pigment is not limited to this. The cured product of the epoxy composition is produced, for example, by heat-curing at 150 ° C. for 4 minutes and further heat-curing at 150 ° C. for 3 hours.

また、本発明のエポキシ樹脂組成物の硬化体におけるガラス転移温度(Tg)は、110℃以上であることが好ましく、より好ましくは、110〜150℃の範囲である。さらに、上記ガラス転移温度(Tg)より50℃高い温度での貯蔵弾性率が2〜15MPaであることが好ましく、より好ましくは3〜14MPaである。このような特性を有することにより本発明のエポキシ樹脂組成物は、耐半田リフロー性および温度サイクル試験信頼性に優れたものとなる。なお、上記ガラス転移温度(Tg)は、例えば、エポキシ樹脂組成物硬化体を作製し、このエポキシ樹脂組成物硬化体を用い、示差走査熱量計(DSC)により測定し、ガラス転移温度の前後に現れる2つの屈曲点の中間点をガラス転移温度(Tg)に決定する。また、上記貯蔵弾性率は、例えば、エポキシ樹脂組成物硬化体を作製し、このエポキシ樹脂組成物硬化体を用い、1Hz,30〜270℃の温度範囲を10℃/分の測定条件にて、RHEOMETRIC SCIENTIFIC社製のRSA−IIにより測定することができる。上記エポキシ樹脂組成物硬化体は、例えば、150℃×4分間加熱硬化させた後、さらに150℃×3時間で加熱硬化させることにより作製される。   Moreover, it is preferable that the glass transition temperature (Tg) in the hardening body of the epoxy resin composition of this invention is 110 degreeC or more, More preferably, it is the range of 110-150 degreeC. Furthermore, the storage elastic modulus at a temperature 50 ° C. higher than the glass transition temperature (Tg) is preferably 2 to 15 MPa, and more preferably 3 to 14 MPa. By having such characteristics, the epoxy resin composition of the present invention is excellent in solder reflow resistance and temperature cycle test reliability. The glass transition temperature (Tg) is measured by, for example, a differential scanning calorimeter (DSC) using a cured epoxy resin composition and a cured epoxy resin composition, and before and after the glass transition temperature. The midpoint between the two inflection points appearing is determined as the glass transition temperature (Tg). Moreover, the said storage elastic modulus prepares an epoxy resin composition hardening body, for example, uses this epoxy resin composition hardening body, and the temperature range of 1 Hz and 30-270 degreeC is 10 degree-C / min measurement conditions, It can be measured by RSA-II manufactured by RHEOMETRIC SCIENTIFIC. The cured epoxy resin composition is produced, for example, by heat-curing at 150 ° C. for 4 minutes and further heat-curing at 150 ° C. for 3 hours.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

まず、下記に示す各成分を準備した。   First, each component shown below was prepared.

〔エポキシ化合物a〕
前記一般式(a1)〜(a3)で表される各化合物からなる混合物〔式(a1)〜(a3)中のk,m,nはそれぞれ0〜10の範囲内であり、これらの混合物である。式(4)のR1は−C(CH32−であって、式(5)中のR2は水素またはメチル基であり、その割合は混合物全体の水素:メチル基=3:7(重量比)、エポキシ当量750、軟化点85℃〕
〔エポキシ化合物b〕
トリグリシジルイソシアヌレート(エポキシ当量100、軟化点115℃)
〔エポキシ化合物c〕
下記の構造式(c)で表される脂環式エポキシ樹脂〔2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(エポキシ当量185、軟化点85℃):ダイセル化学工業社製、EHPE−3150〕

Figure 2011089094
〔エポキシ化合物d〕
クレゾールノボラック型エポキシ樹脂(エポキシ当量205、軟化点92℃) [Epoxy compound a]
A mixture comprising the compounds represented by the general formulas (a1) to (a3) [k, m, n in the formulas (a1) to (a3) are each in the range of 0 to 10, and is there. R 1 in the formula (4) is —C (CH 3 ) 2 —, R 2 in the formula (5) is hydrogen or a methyl group, and the ratio is hydrogen: methyl group of the whole mixture = 3: 7 (Weight ratio), epoxy equivalent 750, softening point 85 ° C.]
[Epoxy compound b]
Triglycidyl isocyanurate (epoxy equivalent 100, softening point 115 ° C.)
[Epoxy compound c]
Cycloaliphatic epoxy resin represented by the following structural formula (c) [1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (epoxy equivalent) 185, softening point 85 ° C.): manufactured by Daicel Chemical Industries, EHPE-3150]
Figure 2011089094
[Epoxy compound d]
Cresol novolac epoxy resin (epoxy equivalent 205, softening point 92 ° C)

〔硬化剤〕
ヘキサヒドロ無水フタル酸
〔硬化促進剤〕
N,N−ジメチルベンジルアミン
〔シランカップリング剤〕
γ−メルカプトトリメトキシシラン
[Curing agent]
Hexahydrophthalic anhydride (curing accelerator)
N, N-dimethylbenzylamine [silane coupling agent]
γ-mercaptotrimethoxysilane

〔実施例1〜8、比較例1〜6〕
後記の表1および表2に示す各成分を同表に示す割合で配合し、ミキシングロールに3分間かけて溶融混練(80〜130℃)を行い、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状のエポキシ樹脂組成物を得た。
[Examples 1-8, Comparative Examples 1-6]
The components shown in Table 1 and Table 2 below are blended in the proportions shown in the same table, melt-kneaded (80 to 130 ° C.) over 3 minutes in a mixing roll, aged, and then cooled to room temperature (25 ° C.). The desired powdery epoxy resin composition was obtained by grinding.

このようにして得られた実施例および比較例のエポキシ樹脂組成物を用い、後記に示す方法にしたがって各種特性評価を行った。その結果を後記の表1および表2に併せて示す。   Using the epoxy resin compositions of Examples and Comparative Examples thus obtained, various characteristics were evaluated according to the methods described below. The results are also shown in Tables 1 and 2 below.

〔ガラス転移温度(Tg)〕
上記のようにして作製した各エポキシ樹脂組成物を用いて、専用金型で成形する(硬化条件:150℃×4分間成形)ことにより、硬化物試験片(大きさ:直径50mm×厚み1mm)を作製した。これを、150℃で3時間加熱することにより完全に硬化を終了させた。ついで、この硬化を完全に終了させた試験片を用い、示差走査熱量計(DSC:セイコーインスツル社製、DSC−6220)にて測定し、ガラス転移温度の前後に現れる2つの屈曲点の中間点をガラス転移温度(Tg)とした。
[Glass transition temperature (Tg)]
Using each epoxy resin composition produced as described above, molding with a dedicated mold (curing conditions: molding at 150 ° C. for 4 minutes) to obtain a cured specimen (size: diameter 50 mm × thickness 1 mm) Was made. This was completely cured by heating at 150 ° C. for 3 hours. Then, using a test piece that has been completely cured, the sample was measured with a differential scanning calorimeter (DSC: manufactured by Seiko Instruments Inc., DSC-6220), and the middle of two bending points appearing before and after the glass transition temperature. The point was made into glass transition temperature (Tg).

〔貯蔵弾性率〕
上記のようにして作製した各エポキシ樹脂組成物を用い、専用金型にて成形する(硬化条件:150℃×4分間成形)ことにより、硬化物試験片(大きさ:幅5mm×長さ35mm×厚み1mm)を作製した。さらに、得られた硬化物を150℃で3時間加熱することにより完全に硬化を終了させた。ついで、この硬化を完全に終了させた試験片を用い、RHEOMETRIC SCIENTIFIC社製のRSA−IIにより、1Hz,30〜270℃の温度範囲を10℃/分の測定条件にて貯蔵弾性率を測定した。
[Storage modulus]
Using each epoxy resin composition produced as described above, molding with a dedicated mold (curing conditions: molding at 150 ° C. for 4 minutes) to obtain a cured product specimen (size: width 5 mm × length 35 mm) X thickness 1 mm). Furthermore, the obtained cured product was completely cured by heating at 150 ° C. for 3 hours. Subsequently, the storage elastic modulus was measured under the measurement conditions of 10 ° C./min in the temperature range of 1 Hz, 30 to 270 ° C. by using RSA-II manufactured by RHEOMETRIC SCIENTIFIC, using the test piece that had been completely cured. .

〔耐半田リフロー性〕
上記エポキシ樹脂組成物を用いて光半導体素子(SiNフォトダイオード:1 .5mm×1.5mm×厚み0.37mm)をトランスファー成形(150℃×4分間成形、150℃×3時間後硬化)にてモールドすることにより表面実装型光半導体装置を得た。この表面実装型光半導体装置は、図1に示すように、8ピンのスモールアウトラインパッケージ(SOP−8:4.9mm×3.9mm×厚み1.5mm)1で、リードフレーム2には、42アロイ合金素体の表面全面に銀メッキ層(厚み0.2μm)を形成したものを用いた。また、ワイヤー径は25μmである。
[Solder reflow resistance]
Using the above epoxy resin composition, an optical semiconductor element (SiN photodiode: 1.5 mm × 1.5 mm × thickness 0.37 mm) is formed by transfer molding (150 ° C. × 4 minutes molding, 150 ° C. × 3 hours post-curing). A surface mount type optical semiconductor device was obtained by molding. As shown in FIG. 1, this surface-mount type optical semiconductor device is an 8-pin small outline package (SOP-8: 4.9 mm × 3.9 mm × thickness 1.5 mm) 1. What formed the silver plating layer (thickness 0.2 micrometer) on the whole surface of the alloy alloy body was used. The wire diameter is 25 μm.

このようにして得られた光半導体装置10個を、30℃/60%RHの条件で、192時間吸湿させ、実際のリフロー炉(トップピ−ク260℃×10秒)に3回通した。その後、顕微鏡を用いて目視にてリードフレームおよび素子と封止樹脂との界面における剥離、クラックの有無を観察し、それが生じた光半導体装置の個数を数えた。   Ten optical semiconductor devices thus obtained were absorbed by 192 hours under the conditions of 30 ° C./60% RH and passed through an actual reflow furnace (top peak 260 ° C. × 10 seconds) three times. Thereafter, the presence or absence of peeling or cracks at the interface between the lead frame and the element and the sealing resin was visually observed using a microscope, and the number of optical semiconductor devices in which they occurred was counted.

〔温度サイクル試験〕
上記耐半田リフロー性試験において測定評価を行なった後の光半導体装置を用い、これを100℃〜−40℃を1サイクルとして300サイクルの温度サイクル試験にかけ、ワイヤーの断線および導通をチェックした。なお、上記耐半田リフロー性試験において、剥離およびクラックが発生した光半導体装置に関しては、温度サイクル試験に供しなかった。
[Temperature cycle test]
The optical semiconductor device after measurement and evaluation in the solder reflow resistance test was used, and this was subjected to a temperature cycle test of 300 cycles with 100 ° C. to −40 ° C. as one cycle, and the wire breakage and continuity were checked. In the solder reflow resistance test, the optical semiconductor device in which peeling and cracking occurred was not subjected to a temperature cycle test.

Figure 2011089094
Figure 2011089094

Figure 2011089094
Figure 2011089094

上記結果から、全ての実施例品は、ガラス転移温度(Tg)は、110℃以上であり、貯蔵弾性率は低く抑えられていた。さらに、耐半田リフロー性および温度サイクル試験において問題も発生せず良好な結果が得られた。   From the above results, all of the examples had glass transition temperatures (Tg) of 110 ° C. or higher, and the storage elastic modulus was kept low. Furthermore, no problems occurred in solder reflow resistance and temperature cycle tests, and good results were obtained.

これに対し、2種類のエポキシ樹脂の混合割合が特定の範囲を外れ、エポキシ化合物aの混合比率が少ない比較例1〜3品は、耐半田リフロー性試験において、全ての評価サンプルに剥離およびクラックが発生した。したがって、耐半田リフロー性試験において全ての光半導体装置に問題が発生したため、温度サイクル試験に供することができなかった。また、2種類のエポキシ樹脂の混合割合が特定の範囲を外れ、エポキシ化合物aの混合比率が多過ぎる比較例4〜6品は、貯蔵弾性率が低く抑えられ、耐半田リフロー性試験において剥離およびクラックは発生しなかったが、温度サイクル試験において全ての光半導体装置にワイヤーの断線および導通不良が発生した。   On the other hand, Comparative Examples 1 to 3 in which the mixing ratio of the two types of epoxy resins deviates from a specific range and the mixing ratio of the epoxy compound a is small are peeled and cracked in all evaluation samples in the solder reflow resistance test. There has occurred. Therefore, since a problem occurred in all the optical semiconductor devices in the solder reflow resistance test, it could not be subjected to a temperature cycle test. In addition, Comparative Examples 4 to 6 in which the mixing ratio of the two types of epoxy resins deviates from a specific range and the mixing ratio of the epoxy compound a is too large have a low storage elastic modulus, and in the solder reflow resistance test, peeling and Although no crack occurred, wire breakage and poor conduction occurred in all the optical semiconductor devices in the temperature cycle test.

本発明のエポキシ樹脂組成物は、受光素子および発光素子等の光半導体素子の封止材料として用いられるものであり、表面実装方式に対応した表面実装型パッケージにおける封止材料として、例えば、スモールアウトラインパッケージ(SOP)や、クワッドフラットパッケージ(QFP)、スモールアウトラインノンリード(SON)のようなパッケージの封止材料として有用である。   The epoxy resin composition of the present invention is used as a sealing material for optical semiconductor elements such as a light receiving element and a light emitting element, and as a sealing material in a surface mounting type package corresponding to a surface mounting method, for example, a small outline It is useful as a sealing material for packages such as packages (SOP), quad flat packages (QFP), and small outline non-lead (SON).

Claims (5)

下記の(A)〜(C)成分を含有する光半導体素子封止用エポキシ樹脂組成物であって、上記(A)成分および(B)成分の混合割合〔(A):(B)〕が、重量比で、(A):(B)=60:40〜95:5に設定されていることを特徴とする光半導体素子封止用エポキシ樹脂組成物。
(A)下記の一般式(a1)で表されるエポキシ化合物、一般式(a2)で表される化合物および下記の一般式(a3)で表されるエポキシ化合物からなる混合物。
Figure 2011089094
Figure 2011089094
Figure 2011089094
〔上記式(a1)〜(a3)において、k,m,nはそれぞれ0または10以下の正数である。また、式(a1)〜(a3)中、Xは下記の一般式(4)で表される2価の有機基であり、Yは下記の一般式(5)で表される2価の有機基であり、Zは下記の一般式(6)で表される2価の有機基である。〕
Figure 2011089094
Figure 2011089094
Figure 2011089094
(B)上記混合物(A)以外のエポキシ化合物。
(C)硬化剤。
An epoxy resin composition for encapsulating an optical semiconductor element containing the following components (A) to (C), wherein the mixing ratio [(A) :( B)] of the components (A) and (B) is: An epoxy resin composition for sealing an optical semiconductor element, wherein the weight ratio is set to (A) :( B) = 60: 40 to 95: 5.
(A) A mixture comprising an epoxy compound represented by the following general formula (a1), a compound represented by the general formula (a2), and an epoxy compound represented by the following general formula (a3).
Figure 2011089094
Figure 2011089094
Figure 2011089094
[In the above formulas (a1) to (a3), k, m, and n are each a positive number of 0 or 10 or less. In the formulas (a1) to (a3), X is a divalent organic group represented by the following general formula (4), and Y is a divalent organic group represented by the following general formula (5). Z is a divalent organic group represented by the following general formula (6). ]
Figure 2011089094
Figure 2011089094
Figure 2011089094
(B) Epoxy compounds other than the mixture (A).
(C) Curing agent.
上記混合物(A)以外のエポキシ化合物(B)が、トリグリシジルイソシアヌレート、下記の一般式(2)で表される脂環式エポキシ樹脂およびクレゾールノボラック型エポキシ樹脂からなる群から選ばれた少なくとも一つである請求項1記載の光半導体素子封止用エポキシ樹脂組成物。
Figure 2011089094
The epoxy compound (B) other than the mixture (A) is at least one selected from the group consisting of triglycidyl isocyanurate, an alicyclic epoxy resin represented by the following general formula (2), and a cresol novolac epoxy resin. The epoxy resin composition for sealing an optical semiconductor element according to claim 1.
Figure 2011089094
上記混合物(A)における、一般式(a1)で表されるエポキシ化合物および一般式(a2)で表される化合物に由来する末端水酸基の含有率が、混合物(A)全体の末端基の5〜50モル%である請求項1または2記載の光半導体素子封止用エポキシ樹脂組成物。   In the mixture (A), the content of terminal hydroxyl groups derived from the epoxy compound represented by the general formula (a1) and the compound represented by the general formula (a2) is 5 to 5 of the terminal groups of the entire mixture (A). The epoxy resin composition for sealing an optical semiconductor element according to claim 1, wherein the epoxy resin composition is 50 mol%. 請求項1〜3のいずれか一項に記載の光半導体素子封止用エポキシ樹脂組成物を硬化させてなる硬化体のガラス転移温度が、110℃以上であることを特徴とする光半導体素子封止用エポキシ樹脂組成物硬化体。   The glass transition temperature of the hardening body formed by hardening | curing the epoxy resin composition for optical semiconductor element sealing as described in any one of Claims 1-3 is 110 degreeC or more, The optical semiconductor element sealing A cured epoxy resin composition for fixing. 請求項1〜3のいずれか一項に記載の光半導体素子封止用エポキシ樹脂組成物を用いて光半導体素子をトランスファー成形して封止してなる光半導体装置。   The optical semiconductor device formed by carrying out transfer molding of the optical semiconductor element using the epoxy resin composition for optical semiconductor element sealing as described in any one of Claims 1-3.
JP2009245909A 2009-10-26 2009-10-26 Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product Pending JP2011089094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245909A JP2011089094A (en) 2009-10-26 2009-10-26 Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245909A JP2011089094A (en) 2009-10-26 2009-10-26 Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product

Publications (1)

Publication Number Publication Date
JP2011089094A true JP2011089094A (en) 2011-05-06

Family

ID=44107619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245909A Pending JP2011089094A (en) 2009-10-26 2009-10-26 Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product

Country Status (1)

Country Link
JP (1) JP2011089094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127050A (en) * 2014-09-26 2020-08-20 東芝ホクト電子株式会社 Light emitting module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182398A (en) * 1975-01-17 1976-07-19 Asahi Denka Kogyo Kk KOKASEIE HOKISHIJUSHISOSEIBUTSU
JPH11302499A (en) * 1998-04-23 1999-11-02 Nitto Denko Corp Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device
JP2002501561A (en) * 1997-05-06 2002-01-15 バンティコ アクチエンゲゼルシャフト Modified epoxy resins and thermosetting compositions, especially their use as components of powder coatings
JP2009029842A (en) * 2007-07-24 2009-02-12 Toto Kasei Co Ltd Epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182398A (en) * 1975-01-17 1976-07-19 Asahi Denka Kogyo Kk KOKASEIE HOKISHIJUSHISOSEIBUTSU
JP2002501561A (en) * 1997-05-06 2002-01-15 バンティコ アクチエンゲゼルシャフト Modified epoxy resins and thermosetting compositions, especially their use as components of powder coatings
JPH11302499A (en) * 1998-04-23 1999-11-02 Nitto Denko Corp Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device
JP2009029842A (en) * 2007-07-24 2009-02-12 Toto Kasei Co Ltd Epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127050A (en) * 2014-09-26 2020-08-20 東芝ホクト電子株式会社 Light emitting module
JP7085724B2 (en) 2014-09-26 2022-06-17 日亜化学工業株式会社 Luminous module

Similar Documents

Publication Publication Date Title
JPH04300914A (en) Epoxy resin composition and semiconductor device
JP5224734B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2003252960A (en) Epoxy resin composition and resin-sealed semiconductor device
JP2005330335A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP2006206783A (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JPH06345847A (en) Epoxy resin composition and semiconductor device
KR101543821B1 (en) Epoxy resin composition for optical-semiconductor element encapsulation and optical-semiconductor device using the same
JP2009013263A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
US7986050B2 (en) Epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor device using the same
JP2009013264A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP2011089094A (en) Epoxy resin composition for optical semiconductor element sealing use, and cured product of the composition, and semiconductor device using the cured product
JP5101425B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP5329054B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP5280298B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2004203911A (en) Resin composition for sealing and resin-sealed type semiconductor device
JP2007262384A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007204643A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP2008291194A (en) Epoxy resin composition for sealing photosemiconductor and photosemiconductor device
JP5367274B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2003268071A (en) Epoxy resin composition and semiconductor device using the same
JP2008031229A (en) Epoxy resin composition for sealing photosemiconductor and photosemiconductor device
KR101570558B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP2006063191A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2004300239A (en) Resin-sealed semiconductor device and epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129