JP2011086518A - Glass composition for dye-sensitized solar cell, and material for dye-sensitized solar cell - Google Patents

Glass composition for dye-sensitized solar cell, and material for dye-sensitized solar cell Download PDF

Info

Publication number
JP2011086518A
JP2011086518A JP2009238951A JP2009238951A JP2011086518A JP 2011086518 A JP2011086518 A JP 2011086518A JP 2009238951 A JP2009238951 A JP 2009238951A JP 2009238951 A JP2009238951 A JP 2009238951A JP 2011086518 A JP2011086518 A JP 2011086518A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
glass
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238951A
Other languages
Japanese (ja)
Other versions
JP5713422B2 (en
Inventor
Tomoko Yamada
朋子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009238951A priority Critical patent/JP5713422B2/en
Publication of JP2011086518A publication Critical patent/JP2011086518A/en
Application granted granted Critical
Publication of JP5713422B2 publication Critical patent/JP5713422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise long-term durability of a dye-sensitized solar cell by providing a glass composition for the dye-sensitized solar cell and a material for the dye-sensitized solar cell which have low melting-point characteristics and are excellent on electrolyte resistance and waterproof characteristics. <P>SOLUTION: The glass composition for the dye-sensitized solar cell contains 20-50% V<SB>2</SB>O<SB>5</SB>, 15-45% P<SB>2</SB>O<SB>5</SB>, 5-35% ZnO, and 15-40% BaO at mol% in terms of oxide as glass formation. Furthermore, the material for the dye-sensitized solar cell contains 50-100 vol.% of glass powder made of a glass composition for the dye-sensitized solar cell, and 0-50 vol.% of fireproof filler. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池用ガラス組成物および色素増感型太陽電池用材料に関し、具体的には色素増感型太陽電池の透明電極基板と対極基板の封着、集電電極の被覆およびセル間を区切るための隔壁の形成に好適な色素増感型太陽電池用ガラス組成物および色素増感型太陽電池用材料に関する。   The present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, specifically, sealing of a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, The present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, which are suitable for forming a partition for partitioning between coating and cells.

グレッチェルらが開発した色素増感型太陽電池は、シリコン半導体を使用した太陽電池と比べ、低コストであり、且つ製造に必要な原料が豊富にあるため、次世代の太陽電池として期待されている。   Dye-sensitized solar cells developed by Gretcher et al. Are expected to be the next-generation solar cells because they are less expensive than solar cells using silicon semiconductors and have abundant raw materials necessary for production. .

色素増感型太陽電池は、透明導電膜が形成された透明電極基板と、透明電極基板に形成された多孔質酸化物半導体層(主にTiO層)からなる多孔質酸化物半導体電極と、その多孔質酸化物半導体電極に吸着されたRu色素等の色素と、ヨウ素を含むヨウ素電解液と、触媒膜と透明導電膜が形成された対極基板等により構成される。 The dye-sensitized solar cell includes a transparent electrode substrate on which a transparent conductive film is formed, and a porous oxide semiconductor electrode composed of a porous oxide semiconductor layer (mainly a TiO 2 layer) formed on the transparent electrode substrate, It is composed of a dye such as Ru dye adsorbed on the porous oxide semiconductor electrode, an iodine electrolyte containing iodine, a counter electrode substrate on which a catalyst film and a transparent conductive film are formed, and the like.

透明電極基板と対極基板には、ガラス基板やプラスチック基板等が使用される。透明電極基板にプラスチック基板を使用すると、透明電極膜の抵抗値が大きくなり、色素増感型太陽電池の光電変換効率が低下する。一方、透明電極基板にガラス基板を使用すると、透明電極膜の抵抗値が上昇し難く、色素増感型太陽電池の光電変換効率を維持することができる。したがって、近年では、透明電極基板として、ガラス基板が使用されている。   A glass substrate, a plastic substrate, or the like is used as the transparent electrode substrate and the counter electrode substrate. When a plastic substrate is used as the transparent electrode substrate, the resistance value of the transparent electrode film increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell decreases. On the other hand, when a glass substrate is used as the transparent electrode substrate, the resistance value of the transparent electrode film hardly increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell can be maintained. Therefore, in recent years, a glass substrate has been used as the transparent electrode substrate.

色素増感型太陽電池は、透明電極基板と対極基板の間にヨウ素電解液が充填される。色素増感型太陽電池からヨウ素電解液の漏れを防止するために、透明電極基板と対極基板の外周縁を封着する必要がある。また、発生した電子を効率よく取り出すために、集電電極(例えば、Ag等が用いられる)を透明電極基板上に形成することがある。このとき、集電電極を被覆し、ヨウ素電解液により、集電電極が侵食される事態を防止する必要がある。さらに、一枚のガラス基板上に電池回路を形成する場合、透明電極基板と対極基板の間に隔壁を形成することがある。   In the dye-sensitized solar cell, an iodine electrolyte is filled between the transparent electrode substrate and the counter electrode substrate. In order to prevent the leakage of iodine electrolyte from the dye-sensitized solar cell, it is necessary to seal the outer peripheral edges of the transparent electrode substrate and the counter electrode substrate. Moreover, in order to take out generated electrons efficiently, a collecting electrode (for example, Ag or the like is used) may be formed on the transparent electrode substrate. At this time, it is necessary to cover the current collecting electrode and prevent the current collecting electrode from being eroded by the iodine electrolyte. Furthermore, when a battery circuit is formed on a single glass substrate, a partition wall may be formed between the transparent electrode substrate and the counter electrode substrate.

特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特開2002−75472号公報JP 2002-75472 A 特開2004−146425号公報JP 2004-146425 A

色素増感型太陽電池は、長期耐久性の向上が実用化への課題である。長期耐久性を損なう原因として、太陽電池部材(封着材料、集電電極等)とヨウ素電解液が反応し、太陽電池部材やヨウ素電解液が劣化することが挙げられる。特に、封着材料に樹脂を用い、ヨウ素電解液にアセトニトリル等の有機溶媒を用いたときに、その傾向が顕著である。この場合、樹脂がヨウ素電解液により侵食されるため、色素増感型太陽電池からヨウ素電解液が漏洩し、電池特性が著しく低下する。同様にして、集電電極の被覆や隔壁の形成に樹脂を使用した場合も、樹脂がヨウ素電解液により侵食されるため、集電電極の劣化や隔壁の破れ等が生じる。   In dye-sensitized solar cells, improvement of long-term durability is a problem for practical use. As a cause of impairing the long-term durability, the solar cell member (sealing material, current collecting electrode, etc.) reacts with the iodine electrolyte, and the solar cell member and the iodine electrolyte are deteriorated. This tendency is particularly remarkable when a resin is used as the sealing material and an organic solvent such as acetonitrile is used as the iodine electrolyte. In this case, since the resin is eroded by the iodine electrolyte, the iodine electrolyte leaks from the dye-sensitized solar cell, and the battery characteristics are remarkably deteriorated. Similarly, when a resin is used for covering the collector electrode or forming the partition wall, the resin is eroded by the iodine electrolyte solution, so that the collector electrode is deteriorated or the partition wall is broken.

封着材料にガラスを用いると、この問題を解決できる可能性がある。例えば、特許文献1には、封着材料にガラスを用いることが記載されている。特許文献2、3には、封着材料に鉛ガラスを用いることが記載されている。   If glass is used as the sealing material, this problem may be solved. For example, Patent Document 1 describes using glass as a sealing material. Patent Documents 2 and 3 describe the use of lead glass as a sealing material.

しかし、鉛ガラスもヨウ素電解液に対する耐性(耐電解液性)が十分とは言えず、鉛ガラスを用いた場合でも、長期間の使用により、鉛ガラスの成分がヨウ素電解液中に溶出する。その結果、ヨウ素電解液が劣化し、電池特性が低下してしまう。また、集電電極の被覆や隔壁の形成に鉛ガラスを用いた場合でも、長期間の使用により、集電電極の劣化や隔壁の破れが生じる。これらの現象も、鉛ガラスの耐電解液性が不十分であることが原因である。   However, lead glass cannot be said to have sufficient resistance (electrolytic solution resistance) to iodine electrolyte, and even when lead glass is used, the components of lead glass are eluted into the iodine electrolyte by long-term use. As a result, the iodine electrolyte solution deteriorates and the battery characteristics deteriorate. Further, even when lead glass is used for covering the current collecting electrode and forming the partition walls, deterioration of the current collecting electrodes and breakage of the partition walls occur due to long-term use. These phenomena are also caused by the insufficient resistance to electrolyte of lead glass.

また、鉛を含まないガラスとして、V−P系ガラスが鋭意検討されている。しかし、V−P系ガラスは、耐水性が十分でない場合が多く、外部の水分等により侵食されやすく、長期の使用により、色素増感型太陽電池からヨウ素電解液が漏洩し、電池特性が著しく低下するおそれがある。 Further, as the glass does not contain lead, V 2 O 5 -P 2 O 5 -based glass has been studied intensively. However, V 2 O 5 -P 2 O 5 glass often has insufficient water resistance and is easily eroded by external moisture or the like, and iodine electrolyte leaks from a dye-sensitized solar cell after long-term use. In addition, battery characteristics may be significantly degraded.

さらに、封着材料の軟化点が透明電極基板と対極基板の歪点より高いと、封着に際し、高温焼成が必要になり、封着時に透明電極基板と対極基板が変形するおそれがある。したがって、封着材料(封着材料に含まれるガラス)は低融点特性が要求される。具体的には、封着材料には550℃以下、特に500℃以下の軟化点が要求される。   Furthermore, if the softening point of the sealing material is higher than the strain point of the transparent electrode substrate and the counter electrode substrate, high temperature firing is required for sealing, and the transparent electrode substrate and the counter electrode substrate may be deformed during sealing. Therefore, the sealing material (glass contained in the sealing material) is required to have a low melting point characteristic. Specifically, the sealing material is required to have a softening point of 550 ° C. or lower, particularly 500 ° C. or lower.

そこで、本発明は、低融点特性を有し、且つ耐電解液性や耐水性に優れる色素増感型太陽電池用ガラス組成物および色素増感型太陽電池用材料を提供することにより、色素増感型太陽電池の長期耐久性を高めることを技術的課題とする。   Accordingly, the present invention provides a dye-sensitized solar cell glass composition and a dye-sensitized solar cell material having low melting point characteristics and excellent electrolyte solution resistance and water resistance. The technical challenge is to increase the long-term durability of sensitive solar cells.

本発明者は、種々の検討を行った結果、ガラス組成中にV、P、ZnOおよびBaOを必須成分として所定量導入することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の色素増感型太陽電池用ガラス組成物は、ガラス組成として、下記酸化物換算のモル%で、V 20〜50%、P 15〜45%、ZnO 5〜35%、BaO 15〜40%含有することを特徴とする。 As a result of various studies, the present inventor has found that the above technical problem can be solved by introducing a predetermined amount of V 2 O 5 , P 2 O 5 , ZnO and BaO as essential components into the glass composition. This is proposed as the present invention. That is, the dye-sensitized solar cell glass composition of the present invention has a glass composition, in mol% terms of oxide, V 2 O 5 20~50%, P 2 O 5 15~45%, ZnO 5 It is characterized by containing -35% and BaO 15-40%.

本発明の色素増感型太陽電池用ガラス組成物において、ガラス組成中にV、P、ZnOおよびBaOを必須成分として導入し、その含有量を厳密に規制することにより、低融点特性を確保できるとともに、耐電解液性を高めることができる。特に、カ゛ラス組成中にPの含有量を45モル%以下、ZnOの含有量を5モル%以上およびBaOの含有量を15モル%以上含有させることにより、耐水性を顕著に高めることができる。その結果、本発明の色素増感型太陽電池用ガラス組成物を用いると、色素増感型太陽電池の長期耐久性が高まるため、長期の使用により、電池特性が低下する事態を防止することができる。 In the glass composition for a dye-sensitized solar cell of the present invention, by introducing V 2 O 5 , P 2 O 5 , ZnO and BaO as essential components in the glass composition, and strictly regulating the content thereof, The low melting point characteristic can be secured and the resistance to electrolyte can be improved. In particular, the water resistance is remarkably enhanced by containing P 2 O 5 content of 45 mol% or less, ZnO content of 5 mol% or more and BaO content of 15 mol% or more in the glass composition. Can do. As a result, when the dye-sensitized solar cell glass composition of the present invention is used, the long-term durability of the dye-sensitized solar cell is increased. it can.

第二に、本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー 0〜50体積%とを含有することを特徴とする。なお、本発明の色素増感型太陽電池用材料は、上記のガラス組成物からなるガラス粉末のみで構成される態様を含む。   Secondly, the material for a dye-sensitized solar cell of the present invention comprises 50 to 100% by volume of a glass powder composed of the above glass composition for a dye-sensitized solar cell and 0 to 50% by volume of a refractory filler. It is characterized by containing. In addition, the material for dye-sensitized solar cells of the present invention includes an embodiment constituted only by glass powder made of the above glass composition.

第三に、本発明の色素増感型太陽電池用材料は、70℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする。ここで、「ヨウ素電解液」には、アセトニトリル中に、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、および1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを溶解させたものを使用する。また、「質量減」は、色素増感型太陽電池用材料を緻密に焼き付けたガラス基板(焼成膜付きガラス基板)を、密閉容器中にてヨウ素電解液に浸漬し、浸漬前の質量から2週間経過後の質量を減じた値を、ヨウ素電解液に接する焼成膜の面積で除することで算出する。なお、ガラス基板は、ヨウ素電解液によって侵食されないものを用いる。 Third, the dye-sensitized solar cell material of the present invention is characterized in that the mass loss when immersed in an iodine electrolyte solution at 70 ° C. for 2 weeks is 0.1 mg / cm 2 or less. Here, “iodine electrolyte” includes 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, and 1,2-dimethyl-3-propylimidazolium iodide in acetonitrile. Use 6M dissolved. Further, “mass loss” means that a glass substrate (a glass substrate with a fired film) onto which a dye-sensitized solar cell material has been finely baked is immersed in an iodine electrolytic solution in a sealed container, and the mass before immersion is 2 The value obtained by subtracting the mass after the lapse of the week is calculated by dividing the value by the area of the fired film in contact with the iodine electrolyte. A glass substrate that is not eroded by the iodine electrolyte is used.

一般的に、ヨウ素電解液は、ヨウ素、アルカリ金属ヨウ化物、イミダゾリウムヨウ化物、四級アンモニウム塩等のヨウ素化合物を有機溶媒に溶解させたものを指すが、ヨウ素化合物以外にもtert−ブチルピリジン、1メトキシベンゾイミダゾール等を溶解させたものもある。溶媒として、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル系溶媒、炭酸エチレン、炭酸プロピレン等のカーボネート系溶媒、ラクトン系溶媒等が用いられる。これら化合物や溶媒で構成されるヨウ素電解液であっても、ガラスがヨウ素電解液に侵食される上記問題は生じ得る。したがって、本発明の色素増感型太陽電池用材料は、これらのヨウ素電解液に70℃で2週間浸漬したときの質量減も、0.1mg/cm以下であることが好ましい。 In general, the iodine electrolyte refers to a solution obtained by dissolving an iodine compound such as iodine, alkali metal iodide, imidazolium iodide, quaternary ammonium salt, etc. in an organic solvent. Some have 1 methoxybenzimidazole dissolved. As the solvent, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, carbonate solvents such as ethylene carbonate and propylene carbonate, lactone solvents and the like are used. Even in the case of an iodine electrolytic solution composed of these compounds and solvents, the above problem that the glass is eroded by the iodine electrolytic solution may occur. Therefore, the dye-sensitized solar cell material of the present invention preferably has a mass loss of 0.1 mg / cm 2 or less when immersed in these iodine electrolytes at 70 ° C. for 2 weeks.

第四に、本発明の色素増感型太陽電池用材料は、軟化点が550℃以下であることを特徴とする。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(Ts)を指す。   Fourthly, the dye-sensitized solar cell material of the present invention is characterized in that the softening point is 550 ° C. or lower. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold DTA apparatus points out the temperature (Ts) of the 4th bending point shown in FIG.

第五に、本発明の色素増感型太陽電池用材料は、封着に用いることを特徴とする。ここで、封着には、透明電極基板と対極基板の封着に加えて、ガラス管の封着等が含まれる。
なお、透明電極基板と対極基板等に複数の開口部を設けて、各開口部にガラス管を封着した後、ガラス管を介して、色素増感型太陽電池内に色素を含有させた液体等を循環させて、多孔質酸化物半導体に色素を吸着させる場合がある。このような場合、本発明の色素増感型太陽電池用材料を用いると、ガラス管から液体等が漏洩する事態を防止することができる。
Fifth, the dye-sensitized solar cell material of the present invention is characterized by being used for sealing. Here, the sealing includes sealing of a glass tube in addition to sealing of the transparent electrode substrate and the counter electrode substrate.
In addition, after providing a plurality of openings in the transparent electrode substrate and the counter electrode substrate, and sealing the glass tube in each opening, the liquid containing the dye in the dye-sensitized solar cell through the glass tube Etc. may be circulated to adsorb the dye to the porous oxide semiconductor. In such a case, when the dye-sensitized solar cell material of the present invention is used, it is possible to prevent a liquid or the like from leaking from the glass tube.

第六に、本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることを特徴とする。   Sixth, the material for a dye-sensitized solar cell according to the present invention is used for coating a collecting electrode.

本発明の色素増感型太陽電池用ガラス組成物は、ガラス組成中にV、P、ZnOおよびBaOを所定量含有するため、低融点特性を有し、且つ耐電解液性や耐水性が良好である。その結果、色素増感型太陽電池の長期耐久性が向上するため、長期間の使用により、電池特性が低下する事態を防止することができる。同様にして、本発明の色素増感型太陽電池用材料は、ガラス粉末のガラス組成中にV、P、ZnOおよびBaOを所定量含むため、低融点特性を有し、且つ耐電解液性(特に70℃のヨウ素電解液に2週間浸漬させたときの質量減が0.1mg/cm以下)や耐水性が良好である。その結果、色素増感型太陽電池の長期耐久性が向上するため、長期間の使用により、電池特性が低下する事態を防止することができる。 The glass composition for a dye-sensitized solar cell of the present invention contains a predetermined amount of V 2 O 5 , P 2 O 5 , ZnO and BaO in the glass composition. Good water resistance and water resistance. As a result, since the long-term durability of the dye-sensitized solar cell is improved, it is possible to prevent the battery characteristics from being deteriorated by long-term use. Similarly, the dye-sensitized solar cell material of the present invention includes a predetermined amount of V 2 O 5 , P 2 O 5 , ZnO and BaO in the glass composition of the glass powder, and thus has a low melting point characteristic, In addition, the electrolytic solution resistance (particularly, the weight loss when immersed in an iodine electrolytic solution at 70 ° C. for 2 weeks is 0.1 mg / cm 2 or less) and the water resistance are good. As a result, since the long-term durability of the dye-sensitized solar cell is improved, it is possible to prevent the battery characteristics from being deteriorated by long-term use.

マクロ型DTA装置で測定した時の色素増感型太陽電池用材料(ガラス粉末)の軟化点を示す模式図である。It is a schematic diagram which shows the softening point of the dye-sensitized solar cell material (glass powder) when measured with a macro DTA apparatus.

本発明の色素増感型太陽電池用ガラス組成物において、上記のようにガラス組成範囲を限定した理由を以下に説明する。なお、以下の%表示は、特に断りがある場合を除き、モル%を指す。   The reason for limiting the glass composition range as described above in the dye-sensitized solar cell glass composition of the present invention will be described below. In addition, the following% display points out mol% unless there is particular notice.

は、ガラスネットワークを形成する成分であるとともに、軟化点を下げるための主要成分であり、その含有量は25〜55%、好ましくは28〜50%、より好ましくは30〜45%である。Vの含有量が少ないと、ガラスの粘性が高くなるため、焼成温度(封着温度等)が上昇する。一方、Vの含有量が多いと、ガラスが熱的に不安定になり、耐水性も低下する。 V 2 O 5 is a component that forms a glass network and is a main component for lowering the softening point, and its content is 25 to 55%, preferably 28 to 50%, more preferably 30 to 45%. It is. When the content of V 2 O 5 is small, the viscosity of the glass increases, and the firing temperature (sealing temperature or the like) increases. On the other hand, when the content of V 2 O 5 is large, glass becomes thermally unstable, water resistance also decreases.

は、ガラスネットワークを形成する成分であり、その含有量は15〜45%、好ましくは15〜40%、より好ましくは20〜30%である。Pの含有量が少ないと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくなる。一方、Pの含有量が多いと、ガラスの粘性が高くなり過ぎ、また耐水性が低下する。 P 2 O 5 is a component for forming a glass network, the content is 15% to 45%, preferably 15 to 40%, more preferably 20-30%. When the content of P 2 O 5 is less, glass becomes thermally unstable, the glass tends to be devitrified when melted or during sintering. On the other hand, when the content of P 2 O 5 is large, too high the viscosity of the glass, also the water resistance is lowered.

ZnOは、ガラスを熱的に安定化させるとともに、耐水性を高める成分であり、その含有量は5〜35%、好ましくは10〜30%、より好ましくは13〜25%である。ZnOの含有量が少ないと、ガラスが熱的に不安定になり、また耐水性が低下する。一方、ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。   ZnO is a component that thermally stabilizes the glass and increases water resistance, and its content is 5 to 35%, preferably 10 to 30%, and more preferably 13 to 25%. When the content of ZnO is small, the glass becomes thermally unstable and the water resistance is lowered. On the other hand, when there is too much content of ZnO, the component balance of a glass composition will be impaired and glass will become thermally unstable conversely.

BaOは、ガラスを熱的に安定化させるとともに、耐水性を高める成分であり、その含有量は15〜40%、好ましくは15〜30%、より好ましくは15〜25%である。BaOの含有量が少ないと、耐水性が低下する。一方、BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。   BaO is a component that thermally stabilizes the glass and increases water resistance, and its content is 15 to 40%, preferably 15 to 30%, and more preferably 15 to 25%. When there is little content of BaO, water resistance will fall. On the other hand, when there is too much content of BaO, the component balance of a glass composition will be impaired and glass will become thermally unstable conversely.

上記の成分以外に、下記の成分をガラス組成中に添加することができる。   In addition to the above components, the following components can be added to the glass composition.

SrOは、ガラスを熱的に安定化させて、失透を抑制する成分であるとともに、ガラスの粘性を低下させる成分であり、その含有量は0〜20%、好ましくは0〜15%である。SrOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。   SrO is a component that thermally stabilizes the glass and suppresses devitrification and lowers the viscosity of the glass, and its content is 0 to 20%, preferably 0 to 15%. . When there is too much content of SrO, the component balance of a glass composition will be impaired and glass will become thermally unstable conversely.

CuOは、ガラスを熱的に安定化させて、失透を抑制する成分であるとともに、耐水性を高める成分であり、その含有量は0〜10%、好ましくは0〜8%である。CuOの含有量が多いと、ガラスの粘性が高くなるため、焼成温度が上昇する。   CuO is a component that stabilizes the glass thermally and suppresses devitrification, and is a component that increases water resistance, and its content is 0 to 10%, preferably 0 to 8%. When the content of CuO is large, the viscosity of the glass increases, and the firing temperature increases.

Alは、ガラスを熱的に安定化させて、失透を抑制する成分であるとともに、耐水性を高める成分であり、その含有量は0〜10%、好ましくは1〜5%である。Alの含有量が多いと、ガラスの粘性が高くなり過ぎて、焼成温度が上昇する。 Al 2 O 3 is a component that stabilizes the glass thermally and suppresses devitrification and is a component that increases water resistance, and its content is 0 to 10%, preferably 1 to 5%. is there. When the content of Al 2 O 3 is large, the viscosity of the glass becomes too high, the firing temperature increases.

Biは、耐水性を高める成分であり、その含有量は0〜10%、好ましくは1〜5%である。Biの含有量が多いと、ガラスの粘性が高くなり過ぎて、焼成温度が高くなりやすい。 Bi 2 O 3 is a component that improves water resistance, and its content is 0 to 10%, preferably 1 to 5%. The content of Bi 2 O 3 is large, the viscosity of the glass becomes too high, the firing temperature tends to increase.

上記成分に加えて、CaO、MgO、TeO、B、Fe、SiO等の成分を10%までガラス組成中に添加してもよい。 In addition to the above ingredients, CaO, MgO, TeO 2, B 2 O 3, Fe 2 O 3, the components of SiO 2 or the like may be added to the glass composition to 10%.

なお、耐電解液性を高めるために、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)以下の場合を指す。なお、実質的にPbOを含有しない態様にすれば、近年の環境的要請も満たすことができる。 In addition, in order to improve electrolyte solution resistance, it is preferable not to contain PbO substantially. Here, “substantially no PbO” refers to the case where the content of PbO in the glass composition is 1000 ppm (mass) or less. In addition, if it is set as the aspect which does not contain PbO substantially, the recent environmental request | requirement can also be satisfied.

本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラス組成物からなるガラス粉末のみで構成されることが好ましい。このようにすれば、太陽電池のセルギャップを小さく、且つ均一化しやすくなるとともに、耐火性フィラー等の混合工程等が不要になるため、色素増感型太陽電池用材料の製造コストを低廉化することができる。   It is preferable that the material for a dye-sensitized solar cell of the present invention is composed only of glass powder made of the above-described glass composition for a dye-sensitized solar cell. In this way, the cell gap of the solar cell can be made small and easy to be uniformed, and a mixing step of a refractory filler or the like is not required, so the manufacturing cost of the dye-sensitized solar cell material is reduced. be able to.

本発明の色素増感型太陽電池用材料は、機械的強度を向上、或いは熱膨張係数を低下させるために、耐火性フィラーを含有してもよい。その混合割合は、ガラス粉末50〜100体積%、耐火性フィラー0〜50体積%、特にガラス粉末65〜100体積%、耐火性フィラー0〜35体積%が好ましい。耐火性フィラーの含有量が50体積%より多いと、相対的にガラス粉末の割合が少なくなるため、所望の流動性を確保し難くなる。一方、耐火性フィラーの添加量を低減すれば、色素増感型太陽電池用材料の流動性、特に封着性を高めることができる。なお、流動性を考慮すると、耐火性フィラーの含有量は10体積%以下、5体積%以下、特に1体積%以下が好ましく、上記の通り、実質的に耐火性フィラーを含有しないことが望ましい。   The dye-sensitized solar cell material of the present invention may contain a refractory filler in order to improve the mechanical strength or lower the thermal expansion coefficient. The mixing ratio is preferably 50 to 100% by volume of glass powder, 0 to 50% by volume of refractory filler, particularly 65 to 100% by volume of glass powder, and 0 to 35% by volume of refractory filler. When the content of the refractory filler is more than 50% by volume, the ratio of the glass powder is relatively reduced, so that it is difficult to ensure desired fluidity. On the other hand, if the addition amount of the refractory filler is reduced, the fluidity, particularly the sealing property, of the dye-sensitized solar cell material can be improved. In consideration of fluidity, the content of the refractory filler is preferably 10% by volume or less, 5% by volume or less, and particularly preferably 1% by volume or less. As described above, it is desirable that the refractory filler is not substantially contained.

耐火性フィラーは、特に限定されず、種々の材料を選択することができるが、本発明に係るガラス粉末や電解液と反応し難いものが好ましい。具体的には、耐火性フィラーとして、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β−スポジュメン、ムライト、チタニア、石英ガラス、β−ユークリプタイト、β−石英、リン酸ジルコニウム、ウイレマイト、コーディエライト、[AB(MO]の基本構造をもつ化合物、
A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
B:Zr、Ti、Sn、Nb、Al、Sc、Y等
M:P、Si、W、Mo等
若しくはこれらの固溶体が使用可能である。
The refractory filler is not particularly limited, and various materials can be selected, but those that do not easily react with the glass powder or the electrolytic solution according to the present invention are preferable. Specifically, as a refractory filler, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, zirconium phosphate, willemite, Cordierite, a compound having a basic structure of [AB 2 (MO 4 ) 3 ],
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y etc. M: P, Si, W, Mo etc. Alternatively, these solid solutions can be used.

耐火性フィラーを含む場合、耐火性フィラーの最大粒子径は25μm以下が好ましい。色素増感型太陽電池のセルギャップは非常に薄い(例えば50μm以下)ため、耐火性フィラーの粒子経が大き過ぎると、透明電極基板と対極基板を封着し難くなる。ここで、「最大粒子径」とは、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。   When the refractory filler is included, the maximum particle size of the refractory filler is preferably 25 μm or less. Since the cell gap of the dye-sensitized solar cell is very thin (for example, 50 μm or less), if the particle size of the refractory filler is too large, it becomes difficult to seal the transparent electrode substrate and the counter electrode substrate. Here, the “maximum particle size” represents a particle size whose cumulative amount is 99% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve measured by a laser diffraction method.

本発明の色素増感型太陽電池用材料において、70℃のヨウ素電解液に2週間浸漬させた時の質量減が0.1mg/cm以下、特に0.05mg/cm以下が好ましく、実質的に質量減がないことが望ましい。質量減が0.1mg/cm以下であれば、長期に亘り、ヨウ素電解液による侵食や電池特性の低下を防止することができる。ここで、「実質的に質量減がない」とは、質量減が0.01mg/cm以下の場合を指す。 In the dye-sensitized solar cell material of the present invention, the mass loss when immersed in an iodine electrolyte at 70 ° C. for 2 weeks is preferably 0.1 mg / cm 2 or less, particularly preferably 0.05 mg / cm 2 or less. It is desirable that there is no mass loss. If the mass loss is 0.1 mg / cm 2 or less, it is possible to prevent erosion due to iodine electrolyte and deterioration of battery characteristics over a long period of time. Here, “substantially no weight loss” refers to a case where the weight loss is 0.01 mg / cm 2 or less.

本発明の色素増感型太陽電池用材料において、軟化点は550℃以下、特に500℃以下が好ましい。軟化点が550℃より高いと、ガラスの粘性が高くなり過ぎるため、焼成温度(特に封着温度等)が不当に上昇し、焼成時に透明電極基板や対極基板が変形しやすくなる。また、多孔質酸化物半導体(主にTiO)層の形成と透明電極基板と対極基板の封着を同時に行う場合、封着温度が高過ぎると、酸化物粒子の融着が進行し、多孔質酸化物半導体層を形成し難くなり、結果として、色素増感型太陽電池の製造工程を簡略化し難くなる。 In the dye-sensitized solar cell material of the present invention, the softening point is preferably 550 ° C. or lower, particularly preferably 500 ° C. or lower. If the softening point is higher than 550 ° C., the viscosity of the glass becomes too high, and the firing temperature (especially the sealing temperature, etc.) rises unreasonably, and the transparent electrode substrate and the counter electrode substrate are easily deformed during firing. In addition, when forming the porous oxide semiconductor (mainly TiO 2 ) layer and sealing the transparent electrode substrate and the counter electrode substrate at the same time, if the sealing temperature is too high, the fusion of the oxide particles proceeds and the porous As a result, it becomes difficult to simplify the manufacturing process of the dye-sensitized solar cell.

本発明の色素増感型太陽電池用材料において、熱膨張係数は60〜120×10−7/℃、特に65〜110×10−7/℃が好ましい。色素増感型太陽電池用材料と透明電極基板や対極基板に用いられるソーダガラス等の熱膨張係数の差が大きいと、焼成後に、両者に不当な応力が残留し、クラックや剥れが生じやすくなる。ここで、「熱膨張係数」とは、押棒式熱膨張係数測定(TMA)装置により、30〜300℃の温度範囲で測定した値を指す。 In the dye-sensitized solar cell material of the present invention, the thermal expansion coefficient is preferably 60 to 120 × 10 −7 / ° C., particularly preferably 65 to 110 × 10 −7 / ° C. If the difference in thermal expansion coefficient between the dye-sensitized solar cell material and soda glass used for the transparent electrode substrate or the counter electrode substrate is large, unreasonable stress will remain on both after firing, and cracks and peeling will easily occur. Become. Here, the “thermal expansion coefficient” refers to a value measured in a temperature range of 30 to 300 ° C. by a push rod type thermal expansion coefficient measurement (TMA) apparatus.

本発明の色素増感型太陽電池用材料は、粉末のまま使用に供してもよいが、ビークルと均一に混練し、ペーストに加工すると取り扱いやすい。ビークルは、主に溶媒と樹脂とからなる。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いてガラス基板上に塗布される。   The dye-sensitized solar cell material of the present invention may be used as it is in powder form, but is easy to handle when it is uniformly kneaded with a vehicle and processed into a paste. The vehicle mainly consists of a solvent and a resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The produced paste is applied onto the glass substrate using an applicator such as a dispenser or a screen printer.

樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好である。   As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid esters and nitrocellulose have good thermal decomposability.

溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好である。   As the solvent, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-me -2-pyrrolidone and the like can be used. In particular, α-terpineol has high viscosity and good solubility for resins and the like.

本発明の色素増感型太陽電池用材料は、封着に用いることが好ましく、特に透明電極基板と対極基板の封着に用いることが好ましい。本発明の色素増感型太陽電池用材料は、低融点特性を有し、且つ耐電解液性や耐水性が良好であるため、色素増感型太陽電池の長期耐久性が向上し、長期間の使用により、電池特性が低下する事態を防止することができる。   The dye-sensitized solar cell material of the present invention is preferably used for sealing, and particularly preferably used for sealing a transparent electrode substrate and a counter electrode substrate. Since the dye-sensitized solar cell material of the present invention has low melting point characteristics and good electrolytic solution resistance and water resistance, the long-term durability of the dye-sensitized solar cell is improved, and the long-term By using this, it is possible to prevent the battery characteristics from deteriorating.

本発明の色素増感型太陽電池用材料は、ガラス粉末のガラス組成中にVを20%以上含有しているため、レーザー光による封着処理に供することができる。レーザー光を用いると、色素増感型太陽電池用材料を局所加熱できるため、ヨウ素電解液等の構成部材の熱劣化を防止した上で、透明電極基板と対極基板を封着することができる。本発明の色素増感型太陽電池用材料は、レーザー光を用いて透明電極基板と対極基板を封着する場合、ガラス粉末のガラス組成として、Vを30%以上、特に40%以上含有することが好ましい。このように規制すれば、レーザー光の光エネルギーを熱エネルギーに効率良く変換できるため、換言すればガラスがレーザー光を的確に吸収できるため、封着すべき部位のみを的確に局所加熱することができる。なお、レーザー光として、種々のレーザー光を使用することができるが、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザー等は取り扱いが容易な点で好適である。また、ガラスに的確にレーザー光を吸収させるために、レーザー光は500〜1600nm、特に750〜1300nmの発光中心波長を有することが好ましい。 Since the dye-sensitized solar cell material of the present invention contains 20% or more of V 2 O 5 in the glass composition of the glass powder, it can be subjected to a sealing treatment with a laser beam. When laser light is used, the dye-sensitized solar cell material can be locally heated, so that the transparent electrode substrate and the counter electrode substrate can be sealed while preventing thermal deterioration of the constituent members such as iodine electrolyte. When the transparent electrode substrate and the counter electrode substrate are sealed using a laser beam, the dye-sensitized solar cell material of the present invention has a glass composition of glass powder of V 2 O 5 of 30% or more, particularly 40% or more. It is preferable to contain. If regulated in this way, the light energy of the laser light can be efficiently converted into thermal energy, in other words, the glass can absorb the laser light accurately, so that only the part to be sealed can be locally heated accurately. it can. Various laser beams can be used as the laser beam, but a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling. Moreover, in order to make a glass absorb a laser beam exactly, it is preferable that a laser beam has an emission center wavelength of 500-1600 nm, especially 750-1300 nm.

本発明の色素増感型太陽電池用材料は、ガラスビーズ等のスペーサーを含んでもよい。このようにすれば、透明電極基板と対極基板の封着に用いる場合に、太陽電池のセルギャップを均一化することができる。   The dye-sensitized solar cell material of the present invention may contain a spacer such as glass beads. If it does in this way, when using for sealing of a transparent electrode substrate and a counter electrode substrate, the cell gap of a solar cell can be made uniform.

本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることが好ましい。一般的に、集電電極にはAgが使用される。しかし、Agはヨウ素電解液に侵食されやすい性質を有する。このため、集電電極にAgを用いる場合、ヨウ素電解液に接する表面を被覆する必要がある。そこで、本発明の色素増感型太陽電池用材料を用いると、低温で緻密な被覆層を形成でき、且つ耐電解液性が良好であるため、長期間に亘って、Agを保護することができる。   The dye-sensitized solar cell material of the present invention is preferably used for coating the current collecting electrode. Generally, Ag is used for the current collecting electrode. However, Ag has the property of being easily eroded by iodine electrolyte. For this reason, when using Ag for a current collection electrode, it is necessary to coat | cover the surface which contact | connects an iodine electrolyte solution. Therefore, when the material for a dye-sensitized solar cell of the present invention is used, a dense coating layer can be formed at low temperature and the resistance to electrolytic solution is good, so that Ag can be protected over a long period of time. it can.

本発明の色素増感型太陽電池用材料は、隔壁の形成に用いることができる。本発明の色素増感型太陽電池用材料は、低融点特性を有するため、緻密な隔壁を低温で形成できるとともに、耐電解液性が良好であるため、長期間に亘って、隔壁の破れを防止することができる。なお、一般的に、隔壁で形成されたセル内にはヨウ素電解液が充填される。   The dye-sensitized solar cell material of the present invention can be used for forming partition walls. Since the dye-sensitized solar cell material of the present invention has a low melting point property, it can form dense barrier ribs at low temperature and has good resistance to electrolyte solution. Can be prevented. In general, the cell formed by the partition walls is filled with an iodine electrolyte.

実施例に基づいて、本発明を詳細に説明する。表1は、本発明の実施例(試料No.1〜4)および比較例(試料No.5〜8)を示している。   The present invention will be described in detail based on examples. Table 1 shows Examples (Sample Nos. 1 to 4) and Comparative Examples (Sample Nos. 5 to 8) of the present invention.

Figure 2011086518
Figure 2011086518

次のようにして、表中に記載の各試料を調製した。まず、表中のガラス組成になるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1000〜1200℃で1〜2時間溶融した。次に、溶融ガラスの一部を耐水性評価用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスは、水冷ローラーにより薄片状に成形した。耐水性評価用サンプルは、成形後に所定の徐冷(アニール)処理を行った。最後に、薄片状のガラスをボールミルにて粉砕後、目開き75μmの篩いを通過させて、平均粒子径が約10μmの各ガラス粉末を得た。なお、試料No.8は、表中の耐火性フィラー(チタン酸鉛、平均粒子径10μm)を表中の割合で添加、混合したものである。   Each sample described in the table was prepared as follows. First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1000 to 1200 ° C. for 1 to 2 hours. Next, a part of the molten glass was poured into a stainless steel mold as a sample for water resistance evaluation, and the other molten glass was formed into a flake shape with a water-cooled roller. The sample for water resistance evaluation was subjected to a predetermined slow cooling (annealing) treatment after molding. Finally, the glass flakes were pulverized with a ball mill and passed through a sieve having an opening of 75 μm to obtain glass powders having an average particle diameter of about 10 μm. Sample No. No. 8 is obtained by adding and mixing the refractory fillers (lead titanate, average particle diameter 10 μm) in the table at the ratio in the table.

次いで、各ガラス粉末(試料No.8は混合粉末)と、ビークル(エチルセルロースをα−ターピネオールに溶解させたもの)を混錬し、ペースト状とした。これをソーダガラス基板(熱膨張係数:90×10−7/℃)に、直径40mmで20〜40μm厚となるようにスクリーン印刷し、電気炉で120℃10分間乾燥した後、430〜610℃で10分間焼成し、質量減の評価用サンプルを得た。 Next, each glass powder (sample No. 8 is a mixed powder) and a vehicle (ethyl cellulose dissolved in α-terpineol) were kneaded to obtain a paste. This was screen-printed on a soda glass substrate (coefficient of thermal expansion: 90 × 10 −7 / ° C.) to a thickness of 20 to 40 μm with a diameter of 40 mm, dried in an electric furnace at 120 ° C. for 10 minutes, and then 430 to 610 ° C. Was baked for 10 minutes to obtain a sample for mass reduction evaluation.

以上の試料を用いて、軟化点、耐電解液性および耐水性を評価した。その結果を表1に示す。   Using the above samples, the softening point, electrolytic solution resistance and water resistance were evaluated. The results are shown in Table 1.

軟化点は、マクロ型DTA装置により求めた。測定は、空気中で行い、昇温速度は10℃/分とした。   The softening point was determined by a macro type DTA apparatus. The measurement was performed in air, and the rate of temperature increase was 10 ° C./min.

次のようにして、耐電解液性を評価した。まず上記質量減の評価用サンプルについて、焼成膜の質量と焼成膜のヨウ素電解液に接する表面積を測定した。次に、このサンプルをガラス製密閉容器中のヨウ素電解液に浸漬した上で、70℃の恒温槽にガラス製密閉容器を静置し、浸漬前のサンプルの質量から2週間経過した後のサンプルの質量を減じた値を、焼成膜の表面積で除することで、ヨウ素電解液に浸漬させた時の焼成膜の質量減を算出し、耐電解液性を評価した。なお、ヨウ素電解液は、アセトニトリルに対し、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、および1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを加えたものを使用した。   Electrolytic solution resistance was evaluated as follows. First, the mass of the fired film and the surface area of the fired film in contact with the iodine electrolyte solution were measured for the sample for evaluation of mass reduction. Next, after immersing this sample in an iodine electrolyte solution in a glass sealed container, the glass sealed container is allowed to stand in a constant temperature bath at 70 ° C., and the sample after two weeks has passed from the mass of the sample before immersion. The value obtained by subtracting the mass of the fired film was divided by the surface area of the fired film to calculate the weight loss of the fired film when immersed in the iodine electrolyte, and the resistance to the electrolyte was evaluated. The iodine electrolyte was 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, and 0.6M 1,2-dimethyl-3-propylimidazolium iodide to acetonitrile. Used.

次のようにして、耐水性を評価した。まず、バルク状の耐水性評価用サンプルの質量を測定した。次に、このサンプルを80℃の純水中に3時間浸漬し、浸漬後の質量を測定した。なお、浸漬後の試料は、洗浄後、十分に乾燥させたものとした。最後に、質量減がなかった場合を「○」、質量減があった場合を「×」として評価した。   The water resistance was evaluated as follows. First, the mass of the bulk water resistance evaluation sample was measured. Next, this sample was immersed in pure water at 80 ° C. for 3 hours, and the mass after the immersion was measured. Note that the sample after the immersion was sufficiently dried after washing. Finally, the case where there was no mass loss was evaluated as “◯”, and the case where there was a mass loss was evaluated as “x”.

表1から明らかなように、試料No.1〜4は、軟化点が414〜479℃であり、ヨウ素電解液に浸漬させた後の質量減が認められず、耐水性も良好であった。一方、試料No.5は、ガラス組成中のV量が少なく、P量が多いため、軟化点が590℃と高く、耐水性が不良であった。試料No.6は、ガラス組成中にZnOを含有していないため、耐水性が不良であった。試料No.7は、ガラス組成中にBaO量を10モル%しか含有していないため、耐水性が不良であった。試料No.8は、鉛ガラスであるため、質量減が0.32mg/cmであり、また耐水性も不良であった。 As is clear from Table 1, sample No. Nos. 1 to 4 had a softening point of 414 to 479 ° C., no mass loss was observed after immersion in iodine electrolyte solution, and water resistance was also good. On the other hand, sample No. No. 5 had a small amount of V 2 O 5 in the glass composition and a large amount of P 2 O 5, so the softening point was as high as 590 ° C. and the water resistance was poor. Sample No. Since No. 6 did not contain ZnO in the glass composition, the water resistance was poor. Sample No. Since No. 7 contained only 10 mol% of BaO in the glass composition, the water resistance was poor. Sample No. Since No. 8 is lead glass, the weight loss was 0.32 mg / cm 2 and the water resistance was also poor.

本発明の色素増感型太陽電池用ガラス組成物および色素増感型太陽電池用材料は、色素増感型太陽電池の透明電極基板と対極基板の封着、集電電極の被覆およびセル間を区切るための隔壁の形成に好適であり、特に色素増感型太陽電池の透明電極基板と対極基板の封着に好適である。   The glass composition for a dye-sensitized solar cell and the material for a dye-sensitized solar cell according to the present invention are provided by sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, covering a collector electrode, and between cells. It is suitable for forming partition walls for partitioning, and particularly suitable for sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell.

Claims (6)

ガラス組成として、下記酸化物換算のモル%で、V 20〜50%、P 15〜45%、ZnO 5〜35%、BaO 15〜40%含有することを特徴とする色素増感型太陽電池用ガラス組成物。 As a glass composition, it contains 20 to 50% of V 2 O 5 , 15 to 45% of P 2 O 5, 5 to 35% of ZnO, and 15 to 40% of BaO in terms of the following oxide equivalent mol%. A glass composition for a sensitized solar cell. 請求項1に記載の色素増感型太陽電池用ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー 0〜50体積%とを含有することを特徴とする色素増感型太陽電池用材料。   A dye-sensitized solar cell comprising 50 to 100% by volume of a glass powder comprising the glass composition for a dye-sensitized solar cell according to claim 1 and 0 to 50% by volume of a refractory filler. Materials. 70℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする請求項2に記載の色素増感型太陽電池用材料。 The material for a dye-sensitized solar cell according to claim 2, wherein a weight loss when immersed in an iodine electrolyte at 70 ° C for 2 weeks is 0.1 mg / cm 2 or less. 軟化点が550℃以下であることを特徴とする請求項2または3に記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to claim 2 or 3, wherein the softening point is 550 ° C or lower. 封着に用いることを特徴とする請求項2〜4のいずれかに記載の色素増感型太陽電池用材料。   The dye-sensitized solar cell material according to any one of claims 2 to 4, wherein the material is used for sealing. 集電電極の被覆に用いることを特徴とする請求項2〜4のいずれかに記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to any one of claims 2 to 4, wherein the material is used for coating a collecting electrode.
JP2009238951A 2009-10-16 2009-10-16 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material Expired - Fee Related JP5713422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238951A JP5713422B2 (en) 2009-10-16 2009-10-16 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238951A JP5713422B2 (en) 2009-10-16 2009-10-16 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material

Publications (2)

Publication Number Publication Date
JP2011086518A true JP2011086518A (en) 2011-04-28
JP5713422B2 JP5713422B2 (en) 2015-05-07

Family

ID=44079313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238951A Expired - Fee Related JP5713422B2 (en) 2009-10-16 2009-10-16 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material

Country Status (1)

Country Link
JP (1) JP5713422B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071862A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2013071861A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2014156369A (en) * 2013-02-15 2014-08-28 Hitachi Ltd Glass and manufacturing method thereof
JP2014194356A (en) * 2013-03-28 2014-10-09 Sysmex Corp Electrochemical detection method of material to be inspected
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
WO2016110986A1 (en) * 2015-01-08 2016-07-14 ヤマト電子株式会社 Crystallized glass and binding method, and method for producing molded product
US20170092437A1 (en) * 2014-05-21 2017-03-30 Orion Co., Ltd. Glass material for sealing large-area dye-sensitized solar cell
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000755A1 (en) * 2003-06-27 2005-01-06 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008186692A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method
JP2009231284A (en) * 2008-03-20 2009-10-08 Dongjin Semichem Co Ltd Dye sensitized solar battery and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000755A1 (en) * 2003-06-27 2005-01-06 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008186692A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method
JP2009231284A (en) * 2008-03-20 2009-10-08 Dongjin Semichem Co Ltd Dye sensitized solar battery and method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752535B2 (en) 2011-02-22 2020-08-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US11028009B2 (en) 2011-02-22 2021-06-08 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
JP2013071861A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2013071862A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
EP3925937A1 (en) * 2012-01-20 2021-12-22 Guardian Glass, LLC Process of using a coefficient of thermal expansion filler for frit materials
EP2804841B1 (en) * 2012-01-20 2021-04-07 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
JP2014156369A (en) * 2013-02-15 2014-08-28 Hitachi Ltd Glass and manufacturing method thereof
JP2014194356A (en) * 2013-03-28 2014-10-09 Sysmex Corp Electrochemical detection method of material to be inspected
US10068712B2 (en) * 2014-05-21 2018-09-04 Orion Co., Ltd. Glass material for sealing large-area dye-sensitized solar cell
US20170092437A1 (en) * 2014-05-21 2017-03-30 Orion Co., Ltd. Glass material for sealing large-area dye-sensitized solar cell
WO2016110986A1 (en) * 2015-01-08 2016-07-14 ヤマト電子株式会社 Crystallized glass and binding method, and method for producing molded product

Also Published As

Publication number Publication date
JP5713422B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5489054B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5534550B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5713422B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
WO2010098297A1 (en) Glass composition for electrode formation and electrode-forming material
JP5796270B2 (en) Electrode forming material
JP2015107906A (en) Sealing material
JP2010280554A (en) Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell
JP2007210870A (en) Bismuth-based glass composition and bismuth-based sealing material
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
JP2008127240A (en) Bismuth-based glass composition and bismuth-based sealing material
JP2011126722A (en) Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
JP2011084437A (en) Sealing material
JP5713189B2 (en) Dye-sensitized solar cell glass and dye-sensitized solar cell material
JP2013155059A (en) Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell
JP5354447B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5534553B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
WO2014010553A1 (en) Sealing material for dye-sensitized solar cells
WO2020153061A1 (en) Glass powder and sealing material using same
JP5796281B2 (en) Electrode forming material
JP5709033B2 (en) Bismuth glass
JP2013018666A (en) Electrode formation glass and electrode formation material
JP6885445B2 (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence device
JP2014037334A (en) Lead-free glass for laser sealing and glass ceramic composition using the same
CN109415244B (en) Bismuth glass, method for producing bismuth glass, and sealing material
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140423

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5713422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees