JP2011085429A - Tuning fork type vibration gyro - Google Patents

Tuning fork type vibration gyro Download PDF

Info

Publication number
JP2011085429A
JP2011085429A JP2009236751A JP2009236751A JP2011085429A JP 2011085429 A JP2011085429 A JP 2011085429A JP 2009236751 A JP2009236751 A JP 2009236751A JP 2009236751 A JP2009236751 A JP 2009236751A JP 2011085429 A JP2011085429 A JP 2011085429A
Authority
JP
Japan
Prior art keywords
vibrator
support member
electrodes
electrode
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009236751A
Other languages
Japanese (ja)
Other versions
JP5016652B2 (en
Inventor
Takeshi Hosokawa
武志 細川
Kenji Kuramoto
健次 倉本
Mitsuhiro Nakajima
光浩 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2009236751A priority Critical patent/JP5016652B2/en
Publication of JP2011085429A publication Critical patent/JP2011085429A/en
Application granted granted Critical
Publication of JP5016652B2 publication Critical patent/JP5016652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tuning fork type vibration gyro, which enables input of an angular velocity to its angular-velocity input axis, and which facilitates miniaturization as well. <P>SOLUTION: A support member 2 is composed of a quadrangular crystal prism. Electrodes 21-24 are stuck respectively to both-side edges of two side faces opposite to each other of the quadrangular prism. The support member 2 performs stretching vibrations in the direction reverse to each other in the Y-axis direction, by applying an AC voltage v of a frequency f to the electrodes 21-24. The angular-velocity input axis 100 of a vibrator 1 is at the longitudinal axis of a driving leg 11c for non-excitation and a detecting leg 12c for nonvibration, thereby the stretching vibrations in the direction opposite to each other in the right and left side faces of the support member 2 can apply rotational vibration around the angular-velocity input axis 100 to the vibrator 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動子にその振動子の入力軸廻りの回転振動を与えることにより、振動ジャイロの故障の診断を可能にする振動ジャイロに関し、特に支持部材の一端を振動子に固定し、支持部材の他端をパッケージに固定することにより、振動子をパッケージに支持する音叉型振動ジャイロに関する。   The present invention relates to a vibration gyro that enables a vibration gyro to be diagnosed by applying rotational vibration about the input shaft of the vibrator to the vibrator, and in particular, one end of a support member is fixed to the vibrator, and the support member This invention relates to a tuning fork type vibration gyro that supports a vibrator on a package by fixing the other end of the vibrator to the package.

音叉型振動ジャイロは、一般に圧電材料でなる振動子をパッケージに搭載してなる。振動子をパッケージに搭載するために、振動子における比較的振動の小さい領域に支持部材の一端を固定し、支持部材の他端をパッケージに固定する構造が採用される。振動子には6脚型、H型(4脚型)などがある。   A tuning fork type vibration gyro is generally formed by mounting a vibrator made of a piezoelectric material in a package. In order to mount the vibrator on the package, a structure is adopted in which one end of the support member is fixed to a relatively small vibration region of the vibrator and the other end of the support member is fixed to the package. The vibrator and the like hexapodal, H-type (four-legged type).

図7は、特許文献1に図1として開示された音叉型振動ジャイロを示す分解斜視図である。図7の音叉型振動ジャイロは、音叉型の6脚型振動子1と、支持部材2と、パッケージ3とを備えてなる。支持部材2の下面はパッケージ基板30の上面における支持部材固着領域30aに接着剤で固着され、支持部材2の上面は振動子1の胴部10の底面の支持部材固着領域に接着剤で固着されている。   FIG. 7 is an exploded perspective view showing a tuning-fork type vibration gyro disclosed in FIG. The tuning fork type vibration gyro shown in FIG. 7 includes a tuning fork type hexapod type vibrator 1, a support member 2, and a package 3. The lower surface of the support member 2 is fixed to the support member fixing region 30a on the upper surface of the package substrate 30 with an adhesive, and the upper surface of the support member 2 is fixed to the support member fixing region on the bottom surface of the body 10 of the vibrator 1 with an adhesive. ing.

この6脚型振動子1は、圧電材料からなり、中央の板状の胴部10と、胴部10の一方の端面から延びる駆動脚11と、胴部10の他方の端面から延びる検出脚12とを有している。駆動脚11は、励振用駆動脚11a,11bと非励振用駆動脚11cとでなる。検出脚12は、振動用検出脚12a,12bと非振動用検出脚12cとでなる。   The hexapod type vibrator 1 is made of a piezoelectric material, and has a central plate-like body 10, a drive leg 11 extending from one end face of the body 10, and a detection leg 12 extending from the other end face of the body 10. And have. The drive leg 11 includes excitation drive legs 11a and 11b and a non-excitation drive leg 11c. The detection leg 12 includes vibration detection legs 12a and 12b and a non-vibration detection leg 12c.

図7の6脚型振動子1において、主面(図7における上面)に平行な方向の面内振動を励振用駆動脚11a,11bに励起させ、非励振用駆動脚11cの長手軸周りに回転が入力されると、入力された角速度に応じて、主面に垂直な方向の面垂直振動がコリオリ力により励起され、胴部10を介して振動用検出脚12a,12bに伝達される。非励振用駆動脚11c及び非振動用検出脚12cの長手軸は一致しており、この長手軸が6脚型振動子1の入力軸となる。   In the hexapodal vibrator 1 of FIG. 7, in-plane vibration in a direction parallel to the main surface (upper surface in FIG. 7) is excited by the excitation drive legs 11a and 11b and around the longitudinal axis of the non-excitation drive leg 11c. When rotation is input, surface vertical vibration in a direction perpendicular to the main surface is excited by Coriolis force in accordance with the input angular velocity, and is transmitted to the vibration detection legs 12 a and 12 b via the trunk portion 10. The longitudinal axes of the non-excitation drive leg 11 c and the non-vibration detection leg 12 c coincide with each other, and this longitudinal axis becomes the input axis of the hexapod type vibrator 1.

6脚型振動子1は、入力軸廻りの角速度を振動用検出脚12a,12bの面垂直振動に変換するとともに、振動用検出脚12a,12bに取り付けられた電極(図示省略)により、その面垂直振動を電気信号に変換し、出力する。   The hexapod vibrator 1 converts the angular velocity around the input shaft into surface vertical vibration of the vibration detection legs 12a and 12b, and the surface thereof is provided by electrodes (not shown) attached to the vibration detection legs 12a and 12b. Converts vertical vibrations into electrical signals and outputs them.

音叉型振動ジャイロでは、振動子をパッケージに搭載し、角速度を測定しようとする対象物にパッケージを固定する。そこで、パッケージの一部を支点として、振動子を支える何らかの支持手段が必須の構成部材となる。支持手段は、振動子とパッケージの間に設けられる。図7の音叉型振動ジャイロでは、6脚型振動子1に四角柱型の支持部材2を接着剤等で固着することにより、6脚型振動子1を支持する構造が示されている。この支持部材2が前記支持手段である。   In a tuning fork type vibration gyro, a vibrator is mounted on a package, and the package is fixed to an object whose angular velocity is to be measured. Therefore, some supporting means for supporting the vibrator with the part of the package as a fulcrum is an essential constituent member. The support means is provided between the vibrator and the package. The tuning fork type vibration gyro of FIG. 7 shows a structure in which the hexagonal vibrator 1 is supported by fixing a quadrangular prism support member 2 to the hexapod vibrator 1 with an adhesive or the like. This support member 2 is the support means.

6脚型振動子1の寸法を特許文献1は開示していないが、例えば、厚みが0.4mm、胴部10の長さ及び幅が共に4mm、駆動脚11a,11b,11c及び検出脚12a,12b,12cの長さがいずれも6mm、それら脚の幅がいずれも0.4mmである。このように、振動子1は微細な構造であり、特に各脚11a,11b,11c,12a,12b,12cは長さと幅の比がいずれも15:1であり、細長いので、加工工程で受けた損傷等が原因となって、何らかの衝撃等で折れたり、ひびが入ったりする可能性がある。   Although Patent Document 1 does not disclose the dimensions of the hexapod vibrator 1, for example, the thickness is 0.4 mm, the length and width of the body 10 are both 4 mm, the drive legs 11a, 11b, 11c, and the detection legs 12a. , 12b and 12c are all 6 mm in length, and the widths of their legs are both 0.4 mm. Thus, the vibrator 1 has a fine structure. In particular, each of the legs 11a, 11b, 11c, 12a, 12b, and 12c has a length to width ratio of 15: 1, and is long and thin. May be broken or cracked due to some kind of impact.

図7の音叉型振動ジャイロがビデオカメラやスチールカメラといった携帯装置に搭載されたとき、これら携帯装置は簡易に動かし得るので、振動子に角速度を加え、振動子の出力を検知することにより、振動子の損傷の有無は容易に試験できる。しかしながら、図7の音叉型振動ジャイロが自動車、船舶、建物などの大型の対象物に搭載されたとき、これら大型の対象物に角速度を加えることは、簡易にはできない。大型対象物に搭載されたジャイロに角速度を加えるには、かなりの大掛かりな装置を必要とする。そこで大型の対象物に搭載されたジャイロの損傷の有無を診断することは、容易ではなかった。   When the tuning-fork type vibration gyro shown in FIG. 7 is mounted on a portable device such as a video camera or a still camera, these portable devices can be easily moved. Therefore, by adding an angular velocity to the vibrator and detecting the output of the vibrator, The child can be easily tested for damage. However, when the tuning fork type vibration gyro of FIG. 7 is mounted on a large object such as an automobile, a ship, or a building, it is not easy to apply an angular velocity to the large object. In order to apply angular velocity to a gyro mounted on a large object, a considerably large device is required. Therefore, it has not been easy to diagnose the presence or absence of damage to a gyro mounted on a large object.

従来は、大型対象物に搭載されたジャイロの故障診断は、角速度をかけない状態(角速度=0)における、出力信号の大きさ、複数のジャイロ相互の出力比較など、電気的手段で行っていた。しかしながら、電気的な故障診断では、振動子に角速度が加えられないから、脚にヒビが入った損傷などの如くの振動子の故障を確認できないことが少なくなかった。   Conventionally, failure diagnosis of a gyro mounted on a large object has been performed by electrical means such as the magnitude of an output signal and output comparison among a plurality of gyros when angular velocity is not applied (angular velocity = 0). . However, in the electrical failure diagnosis, since the angular velocity is not applied to the vibrator, it is not often possible to confirm the failure of the vibrator such as a cracked leg.

従来このような電気的な故障診断の欠点を補う手段として、特許文献2に開示された方法が提案されている。図8(A),(B)及び(C)は特許文献2に図1、図2及び図5としてそれぞれ示されている図である。   Conventionally, a method disclosed in Patent Document 2 has been proposed as a means for compensating for the drawbacks of such electrical fault diagnosis. FIGS. 8A, 8B, and 8C are diagrams shown in FIG. 1, FIG. 2, and FIG. 5 in Patent Document 2, respectively.

特許文献2の角速度検出装置は、センサパッケージ(11)と支持部(12)とを備えている。センサパッケージ(11)は、被検出体に固定された基体(10)とともに運動する基板上でX軸及びY軸方向に振動可能に支持された振動子と、同振動子を基板に対しX軸方向に振動する駆動手段と、同振動子の基板に対するY軸方向の振動を検出するための検出手段とを含んでいる。支持部(12)は、基体(10)に立設された駆動部支持体(12−3a,12−3b)と、この駆動部支持体に支持されるとともにセンサパッケージ(11)を支持する診断用駆動部(12−2a,12−2b)とを備えている。そして、角速度検出機能の故障診断時においては、駆動部支持体(12−3a,12−3b)の圧電素子(12−4a,12−4b)に駆動信号を与えることにより、センサパッケージ(11)を回転振動させ、その際の前記検出手段の検出結果に基づいて故障診断を行う。   The angular velocity detection device of Patent Document 2 includes a sensor package (11) and a support portion (12). The sensor package (11) includes a vibrator supported so as to be able to vibrate in the X-axis and Y-axis directions on a substrate that moves together with a base (10) fixed to a detection target, and the vibrator with respect to the substrate. Drive means that vibrates in the direction, and detection means for detecting vibration in the Y-axis direction with respect to the substrate of the vibrator. The support unit (12) is a drive unit support (12-3a, 12-3b) erected on the base (10), and a diagnosis that is supported by the drive unit support and supports the sensor package (11). use driving unit (12-2a, 12-2b) and a. At the time of failure diagnosis of the angular velocity detection function, a drive signal is given to the piezoelectric elements (12-4a, 12-4b) of the drive unit support bodies (12-3a, 12-3b), thereby the sensor package (11). Is diagnosed based on the detection result of the detection means at that time.

特開2006−275630号公報JP 2006-275630 A 特開2001−221637号公報JP 2001-221737 A

特許文献2の角速度検出装置は、センサパッケージ(11)を回転振動させるために、基体(10)に支持部(12)を設け、支持部(12)でセンサパッケージ(11)を支持する構成を必須とするから、小型化が困難である。そこで、本発明は、音叉型振動ジャイロの角速度入力軸に角速度を入力でき、しかも小型化が容易な振動ジャイロの提供を目的とする。   The angular velocity detection device of Patent Document 2 has a configuration in which a support portion (12) is provided on a base body (10) and the sensor package (11) is supported by the support portion (12) in order to cause the sensor package (11) to rotate and vibrate. Since it is essential, miniaturization is difficult. Accordingly, an object of the present invention is to provide a vibrating gyroscope that can input an angular velocity to an angular velocity input shaft of a tuning fork type vibrating gyroscope and that can be easily downsized.

前述の課題を解決するために本発明は次の手段を提供する。   The present invention to solve the problems described above provides the following means.

(1)振動子とパッケージと支持部材とを含んでなる音叉型振動ジャイロにおいて、
前記支持部材は、多角柱でなり、この多角柱の縦軸方向に直交する片端面及び他端面を前記振動子及び前記パッケージにそれぞれ固定し、前記振動子を前記パッケージに支持し、前記縦軸方向は前記振動子の角速度入力軸に直交する方向であり、前記振動子の入力軸廻りの回転振動を前記振動子に付与する回転振動付与手段が前記支持部材に設けてあることを特徴とする音叉型振動ジャイロ。
(1) In a tuning fork type vibration gyroscope including a vibrator, a package, and a support member,
The support member is a polygonal column, and one end surface and the other end surface orthogonal to the longitudinal direction of the polygonal column are fixed to the vibrator and the package, the vibrator is supported on the package, and the vertical axis The direction is a direction orthogonal to the angular velocity input axis of the vibrator, and the support member is provided with rotational vibration applying means for applying rotational vibration around the input axis of the vibrator to the vibrator. Tuning fork type vibration gyro.

(2)前記回転振動付与手段は、前記縦軸方向に平行な互いに逆の向きに前記支持部材を伸縮振動させることを特徴とする前記(1)に記載の音叉型振動ジャイロ。   (2) The tuning-fork type vibration gyro according to (1), wherein the rotational vibration applying means causes the support member to expand and contract in opposite directions parallel to the vertical axis direction.

(3)前記支持部材は、圧電単結晶材料製の四角柱でなり、前記回転振動付与手段は、前記支持部材における対向する2つの側面の両側縁にそれぞれ設けた電極でなることを特徴とする前記(2)に記載の音叉型振動ジャイロ。   (3) The support member is a quadrangular prism made of a piezoelectric single crystal material, and the rotational vibration applying means is an electrode provided on each side edge of two opposing side surfaces of the support member. tuning-fork vibrating gyroscope according to (2).

(4)前記支持部材は、弾性材料でなり、前記回転振動付与手段は、前記支持部材における対向する2つの側面にそれぞれ設けた電極付の圧電素子であることを特徴とする前記(2)に記載の音叉型振動ジャイロ。   (4) In the above (2), the support member is made of an elastic material, and the rotational vibration applying means is a piezoelectric element with an electrode provided on each of two opposing side surfaces of the support member. The tuning fork type vibration gyro described.

(5)前記回転振動付与手段に、故障診断用の角速度入力として交流を供給することを特徴とする前記(1)乃至(4)に記載の音叉型振動ジャイロ。   (5) The tuning fork type vibration gyroscope according to any one of (1) to (4), wherein an AC is supplied to the rotational vibration applying means as an angular velocity input for fault diagnosis.

(6)前記対向する2つの側面は、前記角速度入力軸に直交する第1の側面及び第2の側面であり、
前記電極は、互いに対向する第1及び第2の電極、並びに互いに対向する第3及び第4の電極でなり、
前記第1及び第3の電極は、前記第1の側面上であって、前記角速度入力軸及び縦軸方向に直交する方向に関し互いに反対側の各側縁にそれぞれ設けてあり、
前記第2及び第4の電極は、前記第2の側面上であって、前記角速度入力軸及び縦軸方向に直交する方向に関し互いに反対側の各側縁にそれぞれ設けてあり、
前記支持部材は、前記第1の電極から前記第2の電極へ向かう電界が印加されるとともに、前記第4の電極から前記第3の電極へ向かう電界が印加されたとき、該第1及び該第2の電極が設けられている側の前記側縁部における前記縦軸方向の長さを伸張させ、該第3及び該第4の電極が設けられている側の前記側縁部における該縦軸方向の長さを収縮させ、逆に、該第2の電極から該第1の電極へ向かう電界が印加されるとともに、該第3の電極から該第4の電極へ向かう電界が印加されたとき、該第1及び該第2の電極が設けられている側の該側縁部における該縦軸方向の長さを収縮させ、該第3及び該第4の電極が設けられている側の該側縁部における該縦軸方向の長さを伸張させる
ことを特徴とする前記(3)に記載の音叉型振動ジャイロ。
(6) The two opposite side surfaces are a first side surface and a second side surface orthogonal to the angular velocity input axis,
The electrodes include first and second electrodes facing each other, and third and fourth electrodes facing each other,
The first and third electrodes are provided on each side edge on the first side surface and opposite to each other in a direction orthogonal to the angular velocity input axis and the longitudinal axis direction,
The second and fourth electrodes are provided on each side edge on the second side surface and opposite to each other in a direction orthogonal to the angular velocity input axis and the vertical axis direction,
The support member is applied with an electric field from the first electrode to the second electrode, and when an electric field from the fourth electrode to the third electrode is applied, The length in the longitudinal direction at the side edge on the side where the second electrode is provided is extended, and the length at the side edge on the side where the third and fourth electrodes are provided. The length in the axial direction was shrunk, and conversely, an electric field from the second electrode toward the first electrode was applied, and an electric field from the third electrode toward the fourth electrode was applied. When the first and second electrodes are provided on the side edge portion of the side edge portion, the length in the longitudinal axis direction is contracted, and the third and fourth electrodes are provided on the side provided with the first and second electrodes. The length of the side edge portion in the longitudinal axis direction is extended. The tuning-fork type vibration jig according to (3) above, Gyro.

本発明によれば、音叉型振動ジャイロの角速度入力軸に試験用角速度を入力でき、しかも小型化が容易な音叉型振動ジャイロを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the angular velocity for a test can be input into the angular velocity input shaft of a tuning fork type vibration gyro, and also the tuning fork type vibration gyro which can be reduced in size easily can be provided.

本発明の第1の実施形態である6脚型の音叉型振動ジャイロの分解斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a hexapod tuning fork type vibrating gyroscope according to a first embodiment of the present invention. 支持構造20による回転振動付与手段の原理を示す図である。(A)は上方から見た支持構造20と振動子1の斜視図、(B)は支持構造20の拡大図、(C)及び(D)は、支持構造20が備える回転振動付与手段によって振動子1が振動する態様を示す図である。It is a diagram showing the principle of a rotary vibrating means by the support structure 20. (A) is a perspective view of the support structure 20 and the vibrator 1 as viewed from above, (B) is an enlarged view of the support structure 20, and (C) and (D) are vibrated by the rotational vibration applying means included in the support structure 20. It is a figure which shows the aspect which the child 1 vibrates. 本発明の第2の実施形態の6脚型の音叉型振動ジャイロにおける支持構造40による回転振動付与手段の動作原理を示す図である。(A)は支持構造40と振動子1の上方から見た斜視図、(B)は支持構造40の拡大図、(C)及び(D)は支持構造40が備える回転振動付与手段によって振動子1が振動する態様を示す図である。It is a figure which shows the operation principle of the rotational vibration provision means by the support structure 40 in the 6 leg type tuning fork type vibration gyro of the 2nd Embodiment of this invention. (A) is a perspective view of the support structure 40 and the vibrator 1 as viewed from above, (B) is an enlarged view of the support structure 40, and (C) and (D) are vibrators by the rotational vibration applying means included in the support structure 40. It is a figure which shows the aspect which 1 vibrates. 図1、図2の実施の形態における振動子1の角速度を説明するための図である。It is a figure for demonstrating the angular velocity of the vibrator | oscillator 1 in embodiment of FIG. 1, FIG. 図3に示した本発明の第2の実施形態の変形例である音叉型振動ジャイロおける支持構造50による回転振動付与手段の動作原理を示す図である。(A)は上方から見た支持構造50と振動子1の斜視図、(B)は支持構造50の拡大図、(C)及び(D)は支持構造50が備える回転振動付与手段によって振動子1が振動する態様を示す図である。It is a figure which shows the operation principle of the rotational vibration provision means by the support structure 50 in the tuning fork type vibration gyroscope which is a modification of the 2nd Embodiment of this invention shown in FIG. (A) is a perspective view of the support structure 50 and the vibrator 1 as viewed from above, (B) is an enlarged view of the support structure 50, and (C) and (D) are vibrators by the rotational vibration applying means included in the support structure 50. It is a figure which shows the aspect which 1 vibrates. 図5に示した支持構造50の拡大図であり、支持部材5および圧電セラミック素子51,52が不透明体でなるとして描いた図である。FIG. 6 is an enlarged view of the support structure 50 shown in FIG. 5, in which the support member 5 and the piezoelectric ceramic elements 51 and 52 are drawn as opaque bodies. 特許文献1に図1として開示された音叉型振動ジャイロを示す分解斜視図である。FIG. 2 is an exploded perspective view showing a tuning-fork type vibration gyro disclosed in FIG. 図8(A),(B)及び(C)は特許文献2に図1、図2及び図5として開示された角速度検出装置の図である。8A, 8 </ b> B, and 8 </ b> C are diagrams of the angular velocity detection device disclosed in Patent Document 2 as FIGS. 1, 2, and 5.

次に本発明の実施の形態を挙げ、図面を参照し、本発明を一層具体的に説明する。図1は、本発明の第1の実施形態である6脚型の音叉型振動ジャイロの分解斜視図である。図2は、図1の第1の実施形態における回転振動付与手段の作動原理を示す図である。図2(A)は上方から見た支持構造20と振動子1の斜視図、支持構造20及び振動子1が透明であると仮定して描いてある。図2(B)は、支持構造20の拡大図、図2(C)及び(D)は支持構造20が備える回転振動付与手段によって振動子1が振動する態様を示す図である。図1及び図2において、図7における符号と同じ符号は、同じものを意味する。後に説明する図3〜図5においても同様である。   Next, embodiments of the present invention will be described, and the present invention will be described more specifically with reference to the drawings. FIG. 1 is an exploded perspective view of a six-leg type tuning fork type vibrating gyroscope according to the first embodiment of the present invention. FIG. 2 is a diagram showing the operating principle of the rotational vibration applying means in the first embodiment of FIG. FIG. 2A is a perspective view of the support structure 20 and the vibrator 1 viewed from above, and is drawn on the assumption that the support structure 20 and the vibrator 1 are transparent. FIG. 2B is an enlarged view of the support structure 20, and FIGS. 2C and 2D are views showing a mode in which the vibrator 1 vibrates by the rotational vibration applying means included in the support structure 20. 1 and 2, the same reference numerals as those in FIG. 7 mean the same elements. The same applies to FIGS. 3 to 5 to be described later.

図1の6脚型の音叉型振動ジャイロは、音叉型の6脚型振動子である振動子1と、支持構造20と、パッケージ3とを備えてなる。支持構造20の下面はパッケージ3の上面に接着剤で固着され、支持構造20の上面は振動子1の胴部10の底面の中央に接着剤で固着されている。図1における矢印は、振動子1及び支持構造20をパッケージ3に搭載する方向を示す。   The six-leg type tuning fork type vibration gyro shown in FIG. 1 includes a vibrator 1 that is a tuning fork type six-leg vibrator, a support structure 20, and a package 3. The lower surface of the support structure 20 is fixed to the upper surface of the package 3 with an adhesive, and the upper surface of the support structure 20 is fixed to the center of the bottom surface of the body 10 of the vibrator 1 with an adhesive. An arrow in FIG. 1 indicates a direction in which the vibrator 1 and the support structure 20 are mounted on the package 3.

振動子1は、圧電材料からなり、中央の板状の胴部10と、胴部10の一方の端面から延びる3脚の駆動脚11と、胴部10の他方の端面から延びる3脚の検出脚12とを有している。駆動脚11は、励振用駆動脚11a,11bと非励振用駆動脚11cとでなる。検出脚12は、振動用検出脚12a,12bと非振動用検出脚12cとでなる。   The vibrator 1 is made of a piezoelectric material, and has a plate-like body portion 10 at the center, a tripod drive leg 11 extending from one end surface of the body portion 10, and detection of three legs extending from the other end surface of the body portion 10. Legs 12. The drive leg 11 includes excitation drive legs 11a and 11b and a non-excitation drive leg 11c. The detection leg 12 includes vibration detection legs 12a and 12b and a non-vibration detection leg 12c.

振動子1において、主面(図1における上面)に平行な方向の面内振動を励振用駆動脚11a,11bに励起させ、非励振用駆動脚11cの長手軸周りに回転が入力されると、入力された角速度に応じて、主面に垂直な方向の面垂直振動がコリオリ力により励起され、胴部10を介して振動用検出脚12a,12bに伝達される。この長手軸が振動子1の入力軸となる。   In the vibrator 1, when in-plane vibration in a direction parallel to the main surface (upper surface in FIG. 1) is excited by the excitation drive legs 11 a and 11 b, and rotation is input around the longitudinal axis of the non-excitation drive legs 11 c. In accordance with the input angular velocity, the surface vertical vibration in the direction perpendicular to the main surface is excited by the Coriolis force and transmitted to the vibration detection legs 12a and 12b via the trunk portion 10. This longitudinal axis is the input axis of the vibrator 1.

振動子1は、入力軸廻りの角速度を振動用検出脚12a,12bの面垂直振動に変換するとともに、振動用検出脚12a,12bに取り付けられた電極(図示省略)により、その面垂直振動を電気信号に変換し、出力する。   The vibrator 1 converts the angular velocity around the input shaft into surface vertical vibration of the vibration detection legs 12a and 12b, and the surface vertical vibration is generated by electrodes (not shown) attached to the vibration detection legs 12a and 12b. Convert to electrical signal and output.

振動子1の圧電材料は水晶などである。振動子1の寸法は、厚みが0.4mm、胴部10の長さ及び幅(後述の2w、図4参照)が共に4mm、駆動脚11a,11b,11c及び検出脚12a,12b,12cの長さがいずれも6mm、それら脚の幅がいずれも0.4mmである。なお、図1及び図2は概念的に描いてあるので、これら図における各部の寸法の比は前記各部の寸法には必ずしも対応していない。後に説明する図3〜図6についても同様である。   The piezoelectric material of the vibrator 1 is quartz or the like. The dimensions of the vibrator 1 are as follows: the thickness is 0.4 mm, the length and width of the body 10 (2w described later, see FIG. 4) are both 4 mm, the drive legs 11a, 11b, 11c and the detection legs 12a, 12b, 12c. any length 6 mm, the width of which leg is 0.4mm either. 1 and 2 are conceptually drawn, the ratio of the dimensions of the respective parts in these drawings does not necessarily correspond to the dimensions of the respective parts. The same applies to FIGS. 3 to 6 to be described later.

音叉型振動ジャイロでは、振動子をパッケージに搭載し、角速度を測定しようとする対象物にパッケージを固定する。そこで、パッケージの一部を支点として、振動子を支える何らかの支持手段が必須の構成部材となる。支持手段は、振動子とパッケージの間に設けられる。図1の音叉型振動ジャイロは、振動子1の胴部10に四角柱型の支持構造20を接着剤等で固着することにより、振動子1を支持する構造となっている。   In a tuning fork type vibration gyro, a vibrator is mounted on a package, and the package is fixed to an object whose angular velocity is to be measured. Therefore, some supporting means for supporting the vibrator with the part of the package as a fulcrum is an essential constituent member. The support means is provided between the vibrator and the package. The tuning fork type vibration gyro shown in FIG. 1 has a structure that supports the vibrator 1 by fixing a square pillar type support structure 20 to the body portion 10 of the vibrator 1 with an adhesive or the like.

支持構造20は、図2(B)に拡大図で示すように、支持部材2と電極21〜24とでなる。支持部材2は、水晶製の四角柱でなり、高さが1mm、幅及び奥行きがいずれも0.6mmである。電極21〜24は、前述の回転振動付与手段に相当し、四角柱における対向する2つの側面の両側縁にそれぞれ貼付されている。2つの側面とは、図2(B)おける手前側の面と奥側の面を指し、手前側の面には電極21及び23が貼付され、奥側の面には電極22及び24が貼付されている。電極21は手前側の面の左側側縁に、電極23は手前側の面の右側側縁にそれぞれ設けられている。また、電極22は、奥側の面の片側縁に、電極21と対面して設けてある。電極24は、奥側の面の他方の側の側縁に、電極23と対面して設けてある。   The support structure 20 includes a support member 2 and electrodes 21 to 24 as shown in an enlarged view in FIG. The support member 2 is a quadrangular prism made of quartz and has a height of 1 mm and a width and a depth of 0.6 mm. The electrodes 21 to 24 correspond to the above-described rotational vibration applying means, and are respectively attached to both side edges of two opposing side surfaces of the quadrangular prism. The two side surfaces refer to the front side surface and the back side surface in FIG. 2B, and electrodes 21 and 23 are attached to the front side surface, and electrodes 22 and 24 are attached to the back side surface. Has been. The electrode 21 is provided on the left side edge of the front side surface, and the electrode 23 is provided on the right side edge of the front side surface. Further, the electrode 22 is provided on one side edge of the rear surface so as to face the electrode 21. The electrode 24 is provided facing the electrode 23 on the side edge on the other side of the rear surface.

図2(B)に示す交流電源25は、電極21〜24に周波数f、電圧vの交流電圧を印加する。図2(C)及び(D)は、周波数fの交流電圧vを電極21〜24に印加することにより、支持部材2が、互いに逆方向に伸縮振動する態様を概念的に示す図である。支持部材2の左側が縮むとき、支持部材2の右側が伸び(図2(C))、逆に支持部材2の左側が伸びるとき、支持部材2の右側が縮む(図2(D))。   2B applies an AC voltage having a frequency f and a voltage v to the electrodes 21 to 24. FIGS. 2C and 2D are diagrams conceptually showing a mode in which the support member 2 expands and contracts in opposite directions by applying an alternating voltage v having a frequency f to the electrodes 21 to 24. When the left side of the support member 2 contracts, the right side of the support member 2 expands (FIG. 2C). Conversely, when the left side of the support member 2 extends, the right side of the support member 2 contracts (FIG. 2D).

図2(B)において、支持部材2が水晶である場合、支持部材2をなす四角柱の縦軸方向(四角柱の上面及び下面に直交する方向)は、結晶軸のY方向である。ここで言うY方向とは、電界が印加されると伸縮振動する方向を示している。また、このときの電界の印加方向をX方向とする。電極21と22の間に電圧が加えられ、X方向の電界が支持部材2に加えられることにより、支持部材2の左側が縮むとき、電極23と24の間に逆極性の電圧が加えられ、−X方向の電界が支持部材2に加えられることにより、支持部材2の右側が伸びる(図2(C))。同様に、電極21と22の間の電圧により−X方向の電界が支持部材2に加えられ、支持部材2の左側が伸び、電極23と24の間の電圧によりX方向の電界が支持部材2に加えられ、支持部材2の右側が縮む(図2(D))。なお、電界の向きと支持部材の伸縮振動の向きの関係は、支持部材で使用する圧電材料によって変わる。   In FIG. 2B, when the support member 2 is a crystal, the longitudinal direction of the quadrangular column forming the support member 2 (the direction perpendicular to the upper surface and the lower surface of the quadrangular column) is the Y direction of the crystal axis. The Y direction here refers to the direction of stretching vibration when an electric field is applied. Further, the application direction of the electric field at this time is defined as the X direction. When a voltage is applied between the electrodes 21 and 22 and an electric field in the X direction is applied to the support member 2, when the left side of the support member 2 contracts, a reverse polarity voltage is applied between the electrodes 23 and 24. When the electric field in the −X direction is applied to the support member 2, the right side of the support member 2 extends (FIG. 2C). Similarly, an electric field in the −X direction is applied to the support member 2 by the voltage between the electrodes 21 and 22, the left side of the support member 2 extends, and an electric field in the X direction is applied to the support member 2 by the voltage between the electrodes 23 and 24. added to, it shrinks right support member 2 (FIG. 2 (D)). Note that the relationship between the direction of the electric field and the direction of the stretching vibration of the support member varies depending on the piezoelectric material used in the support member.

振動子1の角速度入力軸100の方向は、図2(A)及び同図(C),(D)に示すように、非励振用駆動脚11c及び非振動用検出脚12cの長手軸方向である。支持部材2の縦軸は、前述のとおり、図2(B)のY軸方向にあるので、角速度入力軸100と直交する。支持部材2は、図2(C)及び(D)の態様では、その軸を中心として、左右で互いに反対方向に伸縮振動する。そこで、支持部材2と電極21〜24とでなる支持構造20は、図2(C)及び(D)に振動子1の左右に描いた矢印で示すように、角速度入力軸100廻りの回転振動を振動子1に与える。   The direction of the angular velocity input shaft 100 of the vibrator 1 is the longitudinal axis direction of the non-excitation drive leg 11c and the non-vibration detection leg 12c, as shown in FIG. 2 (A) and FIGS. is there. Since the vertical axis of the support member 2 is in the Y-axis direction of FIG. 2B as described above, it is orthogonal to the angular velocity input shaft 100. In the mode of FIGS. 2C and 2D, the support member 2 expands and contracts in the directions opposite to each other about the axis. Therefore, the support structure 20 composed of the support member 2 and the electrodes 21 to 24 has a rotational vibration around the angular velocity input shaft 100 as shown by arrows drawn on the left and right of the vibrator 1 in FIGS. Is given to the vibrator 1.

図4は、回転振動による振動子1の角速度を説明するための図である。いま、XYZ直交座標において、支持部材2の縦軸がY軸にあり、振動子1の角速度入力軸がX軸方向にあり、振動子1がX軸廻りの回転振動を受けないときにおける振動子1の底面がZ軸に平行であり、振動子1の胴部10の幅を2w、sinωtの回転振動による振動子1の回転角度をθ[rad]、振動子1が角度θだけ回転したときにおける振動子1の幅方向の端の周方向変位をhとすると、回転振動による角速度dθ/dtは次の式で求められる。 FIG. 4 is a diagram for explaining the angular velocity of the vibrator 1 due to rotational vibration. Now, in the XYZ orthogonal coordinates, the vertical axis of the support member 2 is in the Y axis, the angular velocity input axis of the vibrator 1 is in the X axis direction, and the vibrator when the vibrator 1 is not subjected to rotational vibration around the X axis. 1 is parallel to the Z-axis, the width of the body 10 of the vibrator 1 is 2w, the rotational angle of the vibrator 1 due to the rotational vibration of sinωt is θ [rad], and the vibrator 1 is rotated by an angle θ. Where h is the circumferential displacement of the end of the vibrator 1 in the width direction, the angular velocity dθ / dt due to rotational vibration can be obtained by the following equation.

wθ=hsinωt
θ=(h/w)sinωt
dθ/dt=ω・(h/w)cosωt
=2πf・(h/w)cosωt[rad/s]・・・・・・・(1)
コンピュータシミュレーションによると、電極21−22間、23−24間の電圧を1[V]、周波数fを100[Hz]とすると、w=2mmであるから、h=0.015nm(MAX)となる。これらの数値を式(1)に適用すると、角速度dθ/dtの最大値2πf・(h/w)は、0.00036[°/s]となる。このことは、図1、図2の実施形態の音叉型振動ジャイロでは、支持構造20の電極21−22間、23−24間に周波数f=100[Hz]、電圧v=1[V]を印加することにより、最大0.00036[°/s]の角速度dθ/dtを入力できることを示す。
wθ = hsinωt
θ = (h / w) sinωt
dθ / dt = ω · (h / w) cos ωt
= 2πf (h / w) cos ωt [rad / s] (1)
According to the computer simulation, if the voltage between the electrodes 21-22 and 23-24 is 1 [V] and the frequency f is 100 [Hz], w = 2 mm, so h = 0.015 nm (MAX). . When these numerical values are applied to the equation (1), the maximum value 2πf · (h / w) of the angular velocity dθ / dt is 0.00036 [° / s]. This is because, in the tuning fork type vibration gyro according to the embodiment of FIGS. 1 and 2, the frequency f = 100 [Hz] and the voltage v = 1 [V] between the electrodes 21-22 of the support structure 20 and 23-24. It shows that an angular velocity dθ / dt of 0.00036 [° / s] at maximum can be input by applying the voltage.

いま図1、図2の実施形態の音叉型振動ジャイロが高精度のものであり、そのバイアス安定性が最大0.005[°/s]であるとする。故障診断には、検出感度を超える角速度を入力できれば良く、この検出感度はバイアス安定性よりも十分に小さい値である。従って、バイアス安定性0.005[°/s]を超える角速度を入力できれば良い。角速度dθ/dtは電圧vに比例するので、上記v=1[V]をv=20[V]とすることにより、0.007[°/s]という角速度を振動子1に入力できる。   Now, it is assumed that the tuning fork type vibration gyro according to the embodiment shown in FIGS. 1 and 2 has a high accuracy and the bias stability is a maximum of 0.005 [° / s]. For fault diagnosis, it is only necessary to input an angular velocity exceeding the detection sensitivity, and this detection sensitivity is sufficiently smaller than the bias stability. Therefore, it is only necessary to input an angular velocity exceeding the bias stability of 0.005 [° / s]. Since the angular velocity dθ / dt is proportional to the voltage v, an angular velocity of 0.007 [° / s] can be input to the vibrator 1 by setting v = 1 [V] to v = 20 [V].

支持構造20の印加電圧vを20[V]以上とすることは十分に可能であるので、バイアス安定性が0.005[°/s]より大きい音叉型振動ジャイロの故障の有無も診断できる角速度を入力することができる。   Since the applied voltage v of the support structure 20 can be sufficiently set to 20 [V] or more, the angular velocity capable of diagnosing the presence or absence of a failure of the tuning fork type vibrating gyroscope having a bias stability larger than 0.005 [° / s]. Can be entered.

本実施の形態では、音叉型振動ジャイロの角速度入力軸(振動子1の入力軸100に同じ)に故障診断用の角速度を入力するために、電極21〜24でなる回転振動付与手段を四角柱の支持部材2の対面する2つの側面に設け、支持部材2を電極21、22側と電極23、24側とで互いに逆方向に伸縮振動させる。このように、本実施の形態では、振動子1の入力軸100廻りの回転振動を振動子1に付与する手段(回転振動付与手段)は、支持部材2に設けた電極21〜24でなるので、極めて小型に、しかも安価に実現できる。   In this embodiment, in order to input an angular velocity for failure diagnosis to the angular velocity input shaft (same as the input shaft 100 of the vibrator 1) of the tuning fork type vibration gyroscope, the rotational vibration applying means including the electrodes 21 to 24 is a rectangular column. The support member 2 is provided on two opposing side surfaces, and the support member 2 is expanded and contracted in the opposite directions on the electrodes 21 and 22 side and the electrodes 23 and 24 side. As described above, in the present embodiment, the means for applying rotational vibration around the input shaft 100 of the vibrator 1 to the vibrator 1 (rotational vibration applying means) includes the electrodes 21 to 24 provided on the support member 2. It can be realized extremely small and inexpensively.

図1、図2の実施形態では、支持部材2の高さ、横幅及び奥行きはそれぞれ1mm、0.6mm及び0.6mmとしたが、これら3辺の寸法比には格別の制限はない。支持部材2の材料は、本実施の形態では水晶としたが、ランガサイト等の他の圧電単結晶、その他の圧電材料であっても差し支えない。本実施の形態では、パッケージ3はコバール製とし、支持部材2を振動子1及びパッケージ3に固着する接着剤にはシリコーンを用いた。しかし、これらに代えて、パッケージ3の材料はセラミック、鉄ニッケル合金などでも差し支えないし、接着剤はエポキシ樹脂、ゴム等でも差し支えない。   In the embodiment of FIGS. 1 and 2, the height, width, and depth of the support member 2 are 1 mm, 0.6 mm, and 0.6 mm, respectively, but there is no particular limitation on the dimensional ratio of these three sides. The material of the support member 2 is quartz in the present embodiment, but other piezoelectric single crystals such as langasite and other piezoelectric materials may be used. In the present embodiment, the package 3 is made of Kovar, and silicone is used as an adhesive for fixing the support member 2 to the vibrator 1 and the package 3. However, instead of these, the material of the package 3 may be ceramic, iron-nickel alloy, or the like, and the adhesive may be epoxy resin, rubber, or the like.

図3は、本発明の第2の実施形態の6脚型の音叉型振動ジャイロにおける支持構造40による回転振動付与手段の作動原理を示す図である。図3(A)は、支持構造40と振動子1の上方から見た斜視図であり、支持構造40及び振動子1が透明であると仮定して描いてある。図3(B)は、支持構造40の拡大図。図3(C)及び(D)は支持構造40が備える回転振動付与手段によって振動子1が振動する態様を示す図である。   FIG. 3 is a diagram showing an operating principle of the rotational vibration applying means by the support structure 40 in the six-leg type tuning fork type vibration gyro according to the second embodiment of the present invention. FIG. 3A is a perspective view of the support structure 40 and the vibrator 1 as viewed from above, and is drawn on the assumption that the support structure 40 and the vibrator 1 are transparent. FIG. 3B is an enlarged view of the support structure 40. FIGS. 3C and 3D are views showing a mode in which the vibrator 1 vibrates by the rotational vibration applying means provided in the support structure 40.

図3の6脚型の音叉型振動ジャイロは、図1、図2に示した第1の実施形態の音叉型振動ジャイロと支持構造20を支持構造40に代えた点で相違し、その他の点で同じである。支持構造40は、弾性体でなる四角柱の支持部材4と圧電セラミック素子41,42でなる。圧電セラミック素子41,42は、その四角柱における対向する2つの側面にそれぞれ設けてあり、前述の回転振動付与手段に相当する。圧電セラミック素子41,42には図示を省略した電極が固着してあり、それらの電極に交流電圧を加えることにより、図3(C),(D)に示すように伸縮振動をし、振動子1の角速度入力軸100廻りの回転振動を振動子1に与える。振動子1に回転振動を与える原理は図2(C),(D)を参照して第1の実施の形態について説明したところと同様である。支持部材4を成す弾性体としては、硬度が高く、弾性の高い材料が好ましく、金属、樹脂又はガラスが可能である。金属材料としては、ステンレス鋼が一例として挙げられる。   The six-leg type tuning fork type vibration gyro of FIG. 3 is different from the tuning fork type vibration gyro of the first embodiment shown in FIGS. 1 and 2 in that the support structure 20 is replaced with a support structure 40, and other points. Is the same. The support structure 40 includes a quadrangular prism support member 4 made of an elastic body and piezoelectric ceramic elements 41 and 42. The piezoelectric ceramic elements 41 and 42 are respectively provided on two opposing side surfaces of the quadrangular prism, and correspond to the aforementioned rotational vibration applying means. Electrodes (not shown) are fixed to the piezoelectric ceramic elements 41 and 42. By applying an AC voltage to these electrodes, the piezoelectric ceramic elements 41 and 42 are subjected to stretching vibration as shown in FIGS. providing rotational oscillation of the first angular velocity input shaft 100 around the vibrator 1. The principle of applying rotational vibration to the vibrator 1 is the same as that described in the first embodiment with reference to FIGS. The elastic body forming the support member 4 is preferably a material having high hardness and high elasticity, and can be metal, resin, or glass. As the metal material, stainless steel can be mentioned as an example.

図5は、図3に示した本発明の第2の実施形態の変形例における回転振動付与手段の動作原理を示す図である。図5の変形例では、図3の第2の実施形態における四角柱の支持構造40に替えて六角柱の支持構造50を備え、その他の点で図3の第2の実施形態と同様である。図5は、支持構造50及び振動子1が透明であると仮定して描いてある。支持構造50は、弾性体でなる六角柱の支持部材5と圧電セラミック素子51,52でなる。圧電セラミック素子51,52は、その六角柱における対向する2つの側面にそれぞれ設けてあり、前述の回転振動付与手段に相当する。圧電セラミック素子51,52には図示を省略した電極が固着してあり、それらの電極に交流電圧を加えることにより、図5(C),(D)に示すように伸縮振動をし、振動子1の角速度入力軸100廻りの回転振動を振動子1に与える。振動子1に回転振動を与える原理は図2(C),(D)を参照して第1の実施の形態について前に説明したところと同様である。支持部材5を成す弾性体としては、硬度が高く、弾性の高い材料が好ましく、金属、樹脂又はガラスが可能である。金属材料としては、ステンレス鋼が一例として挙げられる。図6は、図5に示した支持構造50の拡大図であり、支持部材5および圧電セラミック素子51,52が不透明体でなるとして描いた図である。   FIG. 5 is a diagram showing the operating principle of the rotational vibration applying means in the modification of the second embodiment of the present invention shown in FIG. The modification of FIG. 5 includes a hexagonal column support structure 50 instead of the square column support structure 40 in the second embodiment of FIG. 3, and is otherwise the same as the second embodiment of FIG. 3. . FIG. 5 is drawn assuming that the support structure 50 and the vibrator 1 are transparent. The support structure 50 includes a hexagonal column support member 5 made of an elastic body and piezoelectric ceramic elements 51 and 52. The piezoelectric ceramic elements 51 and 52 are respectively provided on two opposing side surfaces of the hexagonal column, and correspond to the aforementioned rotational vibration applying means. Electrodes (not shown) are fixed to the piezoelectric ceramic elements 51 and 52, and by applying an alternating voltage to these electrodes, stretching vibration is generated as shown in FIGS. providing rotational oscillation of the first angular velocity input shaft 100 around the vibrator 1. The principle of applying rotational vibration to the vibrator 1 is the same as that described above for the first embodiment with reference to FIGS. 2 (C) and 2 (D). As the elastic body constituting the support member 5, a material having high hardness and high elasticity is preferable, and metal, resin, or glass can be used. As the metal material, stainless steel can be mentioned as an example. FIG. 6 is an enlarged view of the support structure 50 shown in FIG. 5, in which the support member 5 and the piezoelectric ceramic elements 51 and 52 are drawn as opaque bodies.

上述の本発明の実施の形態では、振動子は6脚型としたが、振動子の形式はH型(4脚)など6脚型以外のものであっても本発明は適用できる。更に、本発明の実施の形態では、各部の寸法、形状、材料等を具体的に示したが、これらは一例であって、本発明がこの実施の形態に限定されるものでないことは勿論である。   In the embodiment of the present invention described above, the vibrator is a hexapod type, but the present invention can be applied even if the vibrator is of a type other than the hexapod type such as an H type (four legs). Furthermore, in the embodiment of the present invention, the dimensions, shapes, materials, and the like of each part are specifically shown. However, these are merely examples, and the present invention is of course not limited to this embodiment. is there.

〔図1〜図6における符号の説明〕
1 振動子
2,4,5 支持部材
3 パッケージ
10 胴部
11 駆動脚
11a,11b 励振用駆動脚
11c 非励振用駆動脚
12 検出脚
12a,12b 振動用検出脚
12c 非振動用検出脚
20,40,50 支持構造
21,22,23,24 電極
25 交流電源
30 パッケージ基板
30a 支持部材固着領域
41,42,51,52 圧電セラミック素子
100 角速度入力軸
[Explanation of Symbols in FIGS. 1 to 6]
DESCRIPTION OF SYMBOLS 1 Vibrator 2,4,5 Support member 3 Package 10 Trunk part 11 Drive leg 11a, 11b Excitation drive leg 11c Non-excitation drive leg 12 Detection leg 12a, 12b Vibration detection leg 12c Non-vibration detection leg 20, 40 , 50 Support structure 21, 22, 23, 24 Electrode 25 AC power supply 30 Package substrate 30a Support member fixing area 41, 42, 51, 52 Piezoelectric ceramic element 100 Angular velocity input shaft

Claims (6)

振動子とパッケージと支持部材とを含んでなる音叉型振動ジャイロにおいて、
前記支持部材は、多角柱でなり、この多角柱の縦軸方向に直交する片端面及び他端面を前記振動子及び前記パッケージにそれぞれ固定し、前記振動子を前記パッケージに支持し、前記縦軸方向は前記振動子の角速度入力軸に直交する方向であり、前記振動子の入力軸廻りの回転振動を前記振動子に付与する回転振動付与手段が前記支持部材に設けてあることを特徴とする音叉型振動ジャイロ。
In a tuning fork-type vibrating gyroscope including a vibrator, a package, and a support member,
The support member is a polygonal column, and one end surface and the other end surface orthogonal to the longitudinal direction of the polygonal column are fixed to the vibrator and the package, the vibrator is supported on the package, and the vertical axis The direction is a direction orthogonal to the angular velocity input axis of the vibrator, and the support member is provided with rotational vibration applying means for applying rotational vibration around the input axis of the vibrator to the vibrator. Tuning fork type vibration gyro.
前記回転振動付与手段は、前記縦軸方向に平行な互いに逆の向きに前記支持部材を伸縮振動させることを特徴とする請求項1に記載の音叉型振動ジャイロ。   2. The tuning fork type vibration gyro according to claim 1, wherein the rotational vibration applying means causes the support member to expand and contract in opposite directions parallel to the longitudinal axis direction. 前記支持部材は、圧電単結晶材料製の四角柱でなり、前記回転振動付与手段は、前記支持部材における対向する2つの側面の両側縁にそれぞれ設けた電極でなることを特徴とする請求項2に記載の音叉型振動ジャイロ。   3. The support member is a rectangular column made of a piezoelectric single crystal material, and the rotational vibration applying means is an electrode provided on each side edge of two opposing side surfaces of the support member. Tuning fork type vibration gyro described in 1. 前記支持部材は、弾性材料でなり、前記回転振動付与手段は、前記支持部材における対向する2つの側面にそれぞれ設けた電極付の圧電素子であることを特徴とする請求項2に記載の音叉型振動ジャイロ。   3. The tuning fork type according to claim 2, wherein the support member is made of an elastic material, and the rotational vibration applying unit is a piezoelectric element with an electrode provided on each of two opposing side surfaces of the support member. Vibration gyro. 前記回転振動付与手段に、故障診断用の角速度入力として交流を供給することを特徴とする請求項1乃至4に記載の音叉型振動ジャイロ。   5. A tuning fork type vibration gyro according to claim 1, wherein an alternating current is supplied to said rotational vibration applying means as an angular velocity input for fault diagnosis. 前記対向する2つの側面は、前記角速度入力軸に直交する第1の側面及び第2の側面であり、
前記電極は、互いに対向する第1及び第2の電極、並びに互いに対向する第3及び第4の電極でなり、
前記第1及び第3の電極は、前記第1の側面上であって、前記角速度入力軸及び縦軸方向に直交する方向に関し互いに反対側の各側縁にそれぞれ設けてあり、
前記第2及び第4の電極は、前記第2の側面上であって、前記角速度入力軸及び縦軸方向に直交する方向に関し互いに反対側の各側縁にそれぞれ設けてあり、
前記支持部材は、前記第1の電極から前記第2の電極へ向かう電界が印加されるとともに、前記第4の電極から前記第3の電極へ向かう電界が印加されたとき、該第1及び該第2の電極が設けられている側の前記側縁部における前記縦軸方向の長さを伸張させ、該第3及び該第4の電極が設けられている側の前記側縁部における該縦軸方向の長さを収縮させ、逆に、該第2の電極から該第1の電極へ向かう電界が印加されるとともに、該第3の電極から該第4の電極へ向かう電界が印加されたとき、該第1及び該第2の電極が設けられている側の該側縁部における該縦軸方向の長さを収縮させ、該第3及び該第4の電極が設けられている側の該側縁部における該縦軸方向の長さを伸張させる
ことを特徴とする請求項3に記載の音叉型振動ジャイロ。
The two opposing side surfaces are a first side surface and a second side surface orthogonal to the angular velocity input axis,
The electrodes include first and second electrodes facing each other, and third and fourth electrodes facing each other,
The first and third electrodes are provided on each side edge on the first side surface and opposite to each other in a direction orthogonal to the angular velocity input axis and the longitudinal axis direction,
The second and fourth electrodes are provided on each side edge on the second side surface and opposite to each other in a direction orthogonal to the angular velocity input axis and the vertical axis direction,
The support member is applied with an electric field from the first electrode to the second electrode, and when an electric field from the fourth electrode to the third electrode is applied, The length in the longitudinal direction at the side edge on the side where the second electrode is provided is extended, and the length at the side edge on the side where the third and fourth electrodes are provided. The length in the axial direction was shrunk, and conversely, an electric field from the second electrode toward the first electrode was applied, and an electric field from the third electrode toward the fourth electrode was applied. When the first and second electrodes are provided on the side edge portion of the side edge portion, the length in the longitudinal axis direction is contracted, and the third and fourth electrodes are provided on the side provided with the first and second electrodes. The tuning-fork type vibration jaw according to claim 3, wherein a length of the side edge portion in the longitudinal axis direction is extended. Iro.
JP2009236751A 2009-10-14 2009-10-14 Tuning fork type vibration gyro Expired - Fee Related JP5016652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236751A JP5016652B2 (en) 2009-10-14 2009-10-14 Tuning fork type vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236751A JP5016652B2 (en) 2009-10-14 2009-10-14 Tuning fork type vibration gyro

Publications (2)

Publication Number Publication Date
JP2011085429A true JP2011085429A (en) 2011-04-28
JP5016652B2 JP5016652B2 (en) 2012-09-05

Family

ID=44078485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236751A Expired - Fee Related JP5016652B2 (en) 2009-10-14 2009-10-14 Tuning fork type vibration gyro

Country Status (1)

Country Link
JP (1) JP5016652B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221109A (en) * 1982-06-17 1983-12-22 Tokyo Keiki Co Ltd Gyro device
JPH03122518A (en) * 1989-10-06 1991-05-24 Akai Electric Co Ltd Oscillating gyro
JPH05312578A (en) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd Gyro
JPH0777538A (en) * 1993-08-02 1995-03-20 New Sd Inc Rotational speed sensor with built-in type test circuit
JPH09318359A (en) * 1996-05-27 1997-12-12 Tamagawa Seiki Co Ltd Input angular speed detecting method and gyro device
JP2006112800A (en) * 2004-10-12 2006-04-27 Japan Aviation Electronics Industry Ltd Vibrator loading structure of vibrating gyro
JP2006275630A (en) * 2005-03-28 2006-10-12 Japan Aviation Electronics Industry Ltd Structure for mounting tuning-fork vibrator of vibrating gyroscope
JP2007292743A (en) * 2006-03-28 2007-11-08 Japan Aviation Electronics Industry Ltd Tuning fork type vibration gyro

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221109A (en) * 1982-06-17 1983-12-22 Tokyo Keiki Co Ltd Gyro device
JPH03122518A (en) * 1989-10-06 1991-05-24 Akai Electric Co Ltd Oscillating gyro
JPH05312578A (en) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd Gyro
JPH0777538A (en) * 1993-08-02 1995-03-20 New Sd Inc Rotational speed sensor with built-in type test circuit
JPH09318359A (en) * 1996-05-27 1997-12-12 Tamagawa Seiki Co Ltd Input angular speed detecting method and gyro device
JP2006112800A (en) * 2004-10-12 2006-04-27 Japan Aviation Electronics Industry Ltd Vibrator loading structure of vibrating gyro
JP2006275630A (en) * 2005-03-28 2006-10-12 Japan Aviation Electronics Industry Ltd Structure for mounting tuning-fork vibrator of vibrating gyroscope
JP2007292743A (en) * 2006-03-28 2007-11-08 Japan Aviation Electronics Industry Ltd Tuning fork type vibration gyro

Also Published As

Publication number Publication date
JP5016652B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2006170860A (en) Piezoelectric gyro element, and piezoelectric gyroscope
JP4911690B2 (en) Vibrating gyro vibrator
JPH08152328A (en) Angular speed sensor and its using method
CN102679967B (en) Piezoelectric biaxial micro gyroscope with rocking mass block
JP3751745B2 (en) Vibrator, vibratory gyroscope and measuring method of rotational angular velocity
JPH10227642A (en) Angular velocity sensor
JP5016652B2 (en) Tuning fork type vibration gyro
JP2010032482A (en) Gyro sensor vibrator
JP2006010408A (en) Vibratory gyro
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP2016040550A (en) Physical quantity sensor and electronic equipment
JP2009192400A (en) Angular velocity sensor
JP2002277247A (en) Vibratory gyro
WO2019017277A1 (en) Vibration type angular velocity sensor
JP2010096695A (en) Vibration gyroscope
RU2444703C1 (en) Vibration gyroscope
JP2008145325A (en) Vibration gyro
JP2009192403A (en) Angular velocity and acceleration detector
JPH09113279A (en) Vibrational gyro
JPH116734A (en) Oscillation gyro and driving method therefor
JP2000249554A (en) Oscillation gyro
JP3371609B2 (en) Vibrating gyro
JP2015203627A (en) Multi-axis detection angular velocity sensor structure, multi-axis detection angular velocity sensor and sensor element base

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees