JPS58221109A - Gyro device - Google Patents

Gyro device

Info

Publication number
JPS58221109A
JPS58221109A JP57104331A JP10433182A JPS58221109A JP S58221109 A JPS58221109 A JP S58221109A JP 57104331 A JP57104331 A JP 57104331A JP 10433182 A JP10433182 A JP 10433182A JP S58221109 A JPS58221109 A JP S58221109A
Authority
JP
Japan
Prior art keywords
axis
plates
detected
displacement
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57104331A
Other languages
Japanese (ja)
Inventor
Takeshi Hojo
武 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP57104331A priority Critical patent/JPS58221109A/en
Publication of JPS58221109A publication Critical patent/JPS58221109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Abstract

PURPOSE:To improve the sensitivity of detection with simple constitution and to eliminate the influence of an external acceleration, by mounting two flat plates having inertial mass symmetrically orthogonally with a shaft which oscillates alternately, and drawing out differentially the axial displacement of the flat plates generated by Coriolis forces. CONSTITUTION:Thin platelike members 13, 13' having a weight 14 are mounted symmetrically to a shaft 11, and a driving device 16 is driven by the output of a driving amplifier 5 to oscillate the plates 13, 13' alternately at an angular speed omega. When the weights 14, 14' move in opposite directions at a velocity (v), an angular speed OMEGA is inputted around an axis X and the upward and downward Coriolis forces FC act on the weights. The rates of deflection in the opposite directions at the forward ends of the plates 13, 13' which are generated as a result of said action are detected with a displacement detector 17, whereby the input angular speed OMEGA is detected. Since the Coriolis forces are detected as the direct displacement, the sensitivity of detection is high and since the thin plates are used as a sensing part, the influence of the external acceleration in the axial direction of the oscillation is eliminated and the construction is made simple and rigid.

Description

【発明の詳細な説明】 禾−発明は、ジャイロ装置、特に振動数ジャイロ装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gyro device, particularly a frequency gyro device.

従来、この種の振動型ジャイロ装置としては、例えば第
1図に示すようなものが提供されている。
Conventionally, as this type of vibrating gyro device, one shown in FIG. 1, for example, has been provided.

この第1図に示す従来のジャイロ装置では、音叉11)
を、撓み軸(3)を介して基台(2)に取付ける。音叉
(1)の上端に近い位置に、変位検出器(6)及び駆動
コイル(4)を取付け、変位検出器(6)の出力を、駆
動増巾器(5)を通して駆動コイル(4)に入力し、音
叉+11の振動振巾な一定に保持してる。音叉(11の
撓み軸(3)の軸(2−2)のまわりに、角速度Ωが入
力されると、音叉(1)の振動速度v1人カ角速度Ωに
対応したコリオリの力Fcが発生し、これにより、音叉
(1)全体が軸(2−2)のまわりに交番的に回転する
In the conventional gyro device shown in FIG. 1, the tuning fork 11)
is attached to the base (2) via the flexible shaft (3). A displacement detector (6) and a drive coil (4) are installed near the upper end of the tuning fork (1), and the output of the displacement detector (6) is passed through a drive amplifier (5) to the drive coil (4). I input it and keep the vibration amplitude of tuning fork +11 constant. When an angular velocity Ω is input around the axis (2-2) of the deflection axis (3) of the tuning fork (11), a Coriolis force Fc corresponding to the vibration velocity v1 of the tuning fork (1) and the human force angular velocity Ω is generated. , thereby causing the entire tuning fork (1) to alternately rotate around the axis (2-2).

即ち、捩り振動が、音叉filに発生する。That is, torsional vibration occurs in the tuning fork fil.

第1図に示す従来例では、音叉(1)のこの捩り振動を
、捩り検出器(8)で検出し、この検出出力と駆動増巾
器(5)の出力とを、デモシュレータ(7)で同期整流
することにより、入力角速度Ωを検出している。
In the conventional example shown in FIG. 1, this torsional vibration of the tuning fork (1) is detected by a torsion detector (8), and the detected output and the output of the drive amplifier (5) are combined by a demosulator (7). The input angular velocity Ω is detected by synchronous rectification.

しかしながら、かかる従来の振動型ジャイロ装置にあつ
【は、入力角速度Ωに対応したコリオリの力Fcを、大
きな慣性モーメントを有する音叉(130回転角として
取り出す方式の為、入力角速度Ωに対する感度が悪(、
これを増大しようとすると、装置全体が大屋化してしま
うこと、音叉[11のアンバランス等が直接外乱となっ
て検出精度に影響を及ぼす為、加工精度上の要求が厳し
いこと、これを避けようとして音叉(1)の駆動周波数
を下げると、音叉(1)のアンバランスによる外乱の増
大や、周波数特性が低下すること、音叉(11を片持ち
的に支持する構造の為、撓み軸(3)の負荷容量を大き
くとる必要があり、この部分が大型化すること等の問題
点(欠点)があった。
However, in such conventional vibrating gyro devices, the Coriolis force Fc corresponding to the input angular velocity Ω is extracted as a tuning fork (130 rotation angle) having a large moment of inertia, so the sensitivity to the input angular velocity Ω is poor ( ,
If you try to increase this, the entire device will become a large building, and the unbalance of the tuning fork [11] will directly affect the detection accuracy, so the requirements for processing accuracy will be strict, so this should be avoided. If the driving frequency of the tuning fork (1) is lowered, the disturbance due to the imbalance of the tuning fork (1) will increase, the frequency characteristics will decrease, and since the tuning fork (11) is supported in a cantilevered manner, the bending axis (3) will be lowered. ) has to have a large load capacity, which has the problem (disadvantage) of increasing the size of this part.

従って、本発明の主目的は、このような従来の装置が有
する問題点(欠点)に着目して、慣性質址を有する2個
の平板を、交番振動する軸の1800対称の位置に、平
板の面が軸と直交するように取りつけ、コリオリの力に
よって生ずる2個の平板の軸方向の変位、或いは歪みを
差動的に取出すことにより、上記の問題点を解決したジ
ャイロ装置を提供することに在る。
Therefore, the main purpose of the present invention is to focus on the problems (defects) of such conventional devices, and to install two flat plates having an inertial mass at positions 1800 degrees symmetrical about the axis of alternating vibration. To provide a gyro device which solves the above problems by installing the two flat plates so that their surfaces are perpendicular to the axis and differentially extracting the axial displacement or distortion of the two flat plates caused by the Coriolis force. is in

従って、本発明の要旨は、基台と該基台に回動的に取り
付けた軸部材と、該軸部材の軸線と略々直交する面と夫
々の藺が一致し、且つ夫々の長手方向が上記軸線に関し
軸対称となるように上記軸部材に取り付けた2個の短冊
状部材と、該2個の短冊状部材の上記軸線方向の撓みを
差動的に検出する検出装置と、上記2個の短冊状部材を
有する上記軸部材に上記基台に対し上記軸線のまわりに
交番角振動(捩り振動)を与える為の駆動装置とより成
るジャイロ装置に在る。
Therefore, the gist of the present invention is to provide a base, a shaft member rotatably attached to the base, and a surface that is substantially perpendicular to the axis of the shaft member, and whose respective longitudinal directions are aligned. two strip-shaped members attached to the shaft member so as to be axially symmetrical with respect to the axis; a detection device that differentially detects deflection of the two strip-shaped members in the axial direction; The gyro device comprises a drive device for applying alternating angular vibration (torsional vibration) around the axis to the base to the shaft member having a strip-shaped member.

以下、上述した要旨を有する本発明を、図面に基づいて
説明する。
Hereinafter, the present invention having the above-mentioned gist will be explained based on the drawings.

第2図は、本発明によるジャイロ装置の一実施例を示す
図である。この第2図の例では、基台叫に、軸αυの一
端を軸αυが基台OIに対し略々垂直となる如(回動的
に取り付け、その他端に、取付部材0を介して、2枚の
、例えば短冊状の薄い板状部材C13J 、 amを取
り付ける。この場合、板状部材03゜(Ijは、それ等
の板面が軸αυの軸線(2−2)と略々直交し、且つそ
れ等の長手方向が軸tiυに対して対称となるようにな
されている。板状部材(131、aiの遊端には、重錘
(141、(141を夫々取り付ける。変角検出器Q9
及び駆動装置(161を、軸圓の周囲に取り付け、外部
の駆動増巾器(5)よりの出力により、駆動装置aeを
駆動し、取付部材α2、板状部材(13、a:4及び重
錘(141、(141を、同図の軸線(2−2)のまわ
りに、角速度ωで交番振動させる。変位検出器(17)
 、αhを基台01上に於て、重錘Q41 、 a4の
下方に設け、重錘■。
FIG. 2 is a diagram showing an embodiment of a gyro device according to the present invention. In the example shown in FIG. 2, one end of the axis αυ is attached to the base OI so that the axis αυ is approximately perpendicular to the base OI (rotationally attached), and the other end is attached via the attachment member 0. Two, e.g., strip-shaped thin plate members C13J and am are attached. In this case, the plate member 03° (Ij is a member whose plate surface is approximately perpendicular to the axis (2-2) of the axis αυ). , and their longitudinal directions are symmetrical with respect to the axis tiυ. Weights (141, (141) are attached to the free ends of the plate members (131, ai, respectively. Q9
and a drive device (161) are attached around the axial circle, and the drive device ae is driven by the output from the external drive amplifier (5), and the mounting member α2, the plate member (13, a: 4 and the heavy The weights (141, (141) are alternately vibrated around the axis (2-2) in the figure at an angular velocity ω.Displacement detector (17)
, αh are placed on the base 01, and the weights Q41 and a4 are provided below the weights ■.

0石の基台(11に対する軸線(2−2)方向の変位を
検出する。尚、設計上の都合により、重錘圓、 Q41
は、板状部材0.αj自身の重量によって代替させるこ
とも出来る。
Detects the displacement in the axis (2-2) direction with respect to the base (11) of the 0 stone.Due to design considerations, the weight circle, Q41
is a plate member 0. It can also be replaced by the weight of αj itself.

次に、第2図に示す本発明の一実施例の動作を説明する
。今、駆動装置ueにより、重錘I及び(141が、速
度Vで互いに反対方向に運動している時に、装置の軸線
(2−2)に対して垂直な軸(X)のまわりに、被測定
角速度Ωが入力され、装置全停が、慣性空間で回転して
いるものとすれば、重錘Iには上向きの、又重錘0石に
は下向きのコリオリの力Fcが作用する。その結果、板
状部材(1:1. a、4の可撓性により、第3図に示
す如き方向反対の撓み量ΔXが、板状部材(131、a
:jに生ずる。故に、これを変位検出器面、 (17)
により電気的に検出し、それ等の検出出力を、差動増巾
器賭を通した後、デモシュレータ(7)に入力し、これ
により入力角速度Ωに比例した出力を得ることが出来る
。即ち、角速度Ωを検出することが出来る。尚、軸線(
2−2)方向の加速度によっても、変位検出器(17)
 、 (17)は変位出力を発生するが、これ等は、同
方向の変位の為、差動増巾器a81で相殺され、出力と
はならない。
Next, the operation of the embodiment of the present invention shown in FIG. 2 will be explained. Now, when the weights I and (141) are moving in mutually opposite directions at a speed V, the driving device ue causes the weights I and (141 to move around the axis (X) perpendicular to the axis (2-2) of the device. Assuming that the measured angular velocity Ω is input and the device is rotating in inertial space, an upward Coriolis force Fc acts on the weight I and a downward Coriolis force Fc acts on the weight 0. As a result, due to the flexibility of the plate member (1:1.a, 4), the amount of deflection ΔX in the opposite direction as shown in FIG.
: Occurs in j. Therefore, this is the displacement detector surface, (17)
After passing through a differential amplifier, the detected outputs are input to the demoscillator (7), whereby an output proportional to the input angular velocity Ω can be obtained. That is, the angular velocity Ω can be detected. In addition, the axis line (
2-2) Depending on the acceleration in the direction, the displacement detector (17)
, (17) generate displacement outputs, but since these are displacements in the same direction, they are canceled out by the differential amplifier a81 and do not become outputs.

第4図は、本発明の他の実施例を示す。尚、同図におい
て、第2図と同一部材には同一の符号を付し、それ等の
説明は省略する。この第4図の実施例においては、第2
図の変位検出器fRaD、(17)の代りに、チタン酸
バリウムや水晶等より成る圧電素子(18a ) 、 
(1B’a )を用いる。即ち、圧電素子(18a) 
、 (18′a)を板状部材α漕、aj上に夫々装墳し
、板状部材as 、 aiの曲ゲ歪みを基にして、コリ
オリの力Fcを検出し、第2図の例と同様の目的を達成
するようになしたものである。従って、図示せずも、第
2図の例と同様の素子が使用されている。
FIG. 4 shows another embodiment of the invention. In this figure, the same members as those in FIG. 2 are designated by the same reference numerals, and the explanation thereof will be omitted. In the embodiment of FIG. 4, the second
In place of the displacement detector fRaD (17) shown in the figure, a piezoelectric element (18a) made of barium titanate, crystal, etc.
(1B'a) is used. That is, the piezoelectric element (18a)
, (18'a) are mounted on the plate members α row and aj, respectively, and the Coriolis force Fc is detected based on the bending distortion of the plate members as and ai, and the result is the same as the example in Fig. 2. It was designed to achieve a similar purpose. Therefore, although not shown, elements similar to those in the example of FIG. 2 are used.

尚、この第4図の例では、圧電素子(18a) 、 (
18’a)の接続の仕方によっては、差動増巾器(1a
lを省略することができる。
In the example shown in FIG. 4, the piezoelectric elements (18a), (
Depending on how the differential amplifier (18'a) is connected, the differential amplifier (1a
l can be omitted.

第5図は、本発明の他の実施例を示す。この場合も、第
2図と同一部材には同一符号を付し、その詳細説明を省
略する。この例では、環状部材(至)及びその内部の軸
状部材311を、その下端において基台Qlに取付ける
。上記環状部材−と軸状部材Ci!Dとの間に、例えば
4個の薄板で製作した撓み部材のが、環状部材−の約9
0°の角間隔の4個の半径方向に配され、それぞれの各
端部が、環状部材(イ)の内周面及び軸状部材01Jの
外周面に例えば溶接等によって固定される。同−直径上
の一対の撓み部材■4には、駆動用圧電素子(ハ)、−
が、他方の同−直径上の一対の撓み部材四には、角変位
検出用の圧電素子等より成る歪み検出器c!a 、 c
!4が夫々接着等により取付けられ、これ等は、外部の
駆動用増巾器−(第2図の符号(5))により、軸線(
Z−Z) iわりに一定振巾の捩り振動を維持するよう
制御される。環状部材(イ)の外周面には、バイモルフ
より成る薄い短冊状の圧電素子c!乳−が、それ等の面
が軸線(2−2)と直交する如(、取付けられる。
FIG. 5 shows another embodiment of the invention. In this case as well, the same members as in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted. In this example, the annular member (to) and the shaft-like member 311 inside the annular member are attached to the base Ql at their lower ends. The annular member and the shaft member Ci! A flexible member made of, for example, four thin plates is placed between the annular member and the annular member.
Four pieces are arranged in the radial direction at an angular interval of 0°, and each end portion of each is fixed to the inner circumferential surface of the annular member (a) and the outer circumferential surface of the shaft-like member 01J, for example, by welding or the like. A pair of flexible members 4 on the same diameter include a driving piezoelectric element (c),
However, on the other pair of flexible members 4 on the same diameter, there is a strain detector c! made of a piezoelectric element or the like for detecting angular displacement. a, c
! 4 are attached to each other by adhesive or the like, and these are connected to the axis line (
Z-Z) Controlled to maintain constant amplitude torsional vibration. On the outer peripheral surface of the annular member (a), there is a thin strip-shaped piezoelectric element c! made of bimorph. The breasts are mounted such that their planes are perpendicular to the axis (2-2).

圧電素子(ハ)、−の一方の出力端子は、短絡線(至)
によって短絡され、他方の出力端子(5)から、入力角
速度Ωに対応した出力が電気的に取り出される。
One output terminal of the piezoelectric element (c) and - is connected to the short-circuit wire (to)
, and an output corresponding to the input angular velocity Ω is electrically taken out from the other output terminal (5).

この例では、バイモルフより成る圧電素子(ハ)、−は
、例えば第2図の例に於ける板状部材Q31 、 a、
4及び変位検出装置an 、 (L?)の両者を兼用し
ている。尚、第5図に於ては、第3図、!4図に示した
重錘I。
In this example, the piezoelectric element (c), - consisting of a bimorph is, for example, the plate member Q31, a, in the example of FIG.
4 and a displacement detection device (L?). In addition, in Figure 5, Figure 3, ! Weight I shown in Figure 4.

篩は省略しであるが、設計によっては、勿論、これ等を
同様に取付けた構造も、可能である。
Although the sieve is omitted, depending on the design, it is of course possible to construct a structure in which these are attached in the same way.

第6図は、本発明の更に他の実施例を示す。この例では
、1 ([1i1の駆動用圧電素子(ハ)を、一対の撓
み部材シシの一方に設け、その他方に、検出用歪み検出
器041を設けると共に、コリオリの力の検出手段とし
ては、第3図に示した変位検出器αη、 (L?lを、
又第5図のバイモルフ圧電素子(ハ)、(ハ)の代りに
、第2図等に示すと同様の板状部材Q31 、 amを
用いたものである。
FIG. 6 shows yet another embodiment of the invention. In this example, the drive piezoelectric element (C) of 1 ([1i1) is provided on one side of the pair of flexible members, the detection strain detector 041 is provided on the other side, and the Coriolis force detection means is , the displacement detector αη, (L?l shown in Fig. 3),
Further, in place of the bimorph piezoelectric elements (c) and (c) of FIG. 5, plate-like members Q31 and am similar to those shown in FIG. 2 are used.

第7図は、本発明の又更に他の実施例を示す。FIG. 7 shows yet another embodiment of the invention.

この例では、コリ・オリの力Fcの検出部としては、第
5図と同様バイモルフ圧電素子(ハ)、(251を用い
るが、振動駆動部にバイモルフ圧電素子を用いる点が、
第5図の例と異る。即ち、駆動用バイモルフ圧電素子0
υ、 cl+:+と変角検出用バイモルフ圧電素子0a
 、 osとを、図示の如く、それ等の長手方向が軸線
(2−2)と平行で、同一円周上90°間隔にて基台(
IIに固定する一方、それ等の上端を円盤状の取付部材
(至)に固定し、この円盤状の取付部材(至)の軸対称
位置に、コリオリの力の検出用圧電素子eω、051を
取り付ける。ここで、駆動用バイモルフ圧電素子C(υ
、06には、軸線(2−2)に対して対称形の曲ゲが生
ずる様に配されており、これによって、円盤状の取付部
材(7)は、軸線(2−2)のまわりに交番回転振動が
゛与えられる。この捩り振動は、変角検出用バイモルフ
圧電索子oc 、 a’aによって等測的に検出され、
外部の駆動用増1]器(図示せず)とループを構成する
ことにより、常時、一定振巾になるよう制御される。尚
、この例に於て、駆動用及び変角検出用バイモルフ圧電
素子C3U 、 則及び国。
In this example, a bimorph piezoelectric element (c) (251) is used as the detection part for the Cori-Olis force Fc, as in FIG. 5, but the difference is that the bimorph piezoelectric element is used in the vibration driving part.
This is different from the example in Figure 5. That is, the driving bimorph piezoelectric element 0
υ, cl+:+ and bimorph piezoelectric element 0a for detecting angle of change
, os, and the base (
At the same time, their upper ends are fixed to a disc-shaped mounting member (to), and a piezoelectric element eω, 051 for detecting Coriolis force is attached at an axially symmetrical position of this disc-shaped mounting member (to). Attach. Here, the driving bimorph piezoelectric element C (υ
, 06 are arranged so as to have a symmetrical curve with respect to the axis (2-2), so that the disc-shaped mounting member (7) can be bent around the axis (2-2). Alternating rotational vibration is applied. This torsional vibration is detected isometrically by bimorph piezoelectric cords oc and a'a for detecting displacement angle,
By forming a loop with an external drive amplifier (not shown), the amplitude is controlled to be constant at all times. In this example, a bimorph piezoelectric element C3U for driving and angle detection is used.

0急の代りに、4個の薄板状撓み部材と、それぞれに取
り付けた板状の圧電素子とを用いることも可能である。
It is also possible to use four thin plate-like flexible members and a plate-like piezoelectric element attached to each of them instead of the zero stiffness.

第8図は、本発明の更に他の実施例を示す。この例では
、第7図における駆動用バイモルフ圧電素子81) 、
 C311の代りに、第9図に示す捩り振動型の圧電素
子−を用い、又変角検出器(ロ)、041として、歪み
ゲージ又は歪み検出圧電素子を、上記捩り振動型の圧電
素子□□□の両面に交叉させて接着したものである。他
は第7図の例と、実質的に同一である。
FIG. 8 shows yet another embodiment of the invention. In this example, the drive bimorph piezoelectric element 81) in FIG.
Instead of C311, a torsionally vibrating piezoelectric element shown in FIG. It is glued crosswise to both sides of □. The rest is substantially the same as the example shown in FIG.

尚、以上述べた本発明の各実施例においては、交番振動
駆動手段として、変角検出器、駆動装置、駆動増巾器か
らなる制御ループを用いたが、性能上許容出来る場合、
駆動装置を直接交流電源によって駆動することも可能で
ある。
In each of the embodiments of the present invention described above, a control loop consisting of a displacement angle detector, a drive device, and a drive amplifier is used as the alternating vibration drive means, but if it is permissible in terms of performance,
It is also possible to drive the drive device directly by an alternating current power supply.

又、第3図、第6図等において板状部材の撓みを検出す
る手段として、光、静電容量、電磁気等各種の手段が使
用できることは言うまでもない。
Further, it goes without saying that various means such as light, capacitance, electromagnetism, etc. can be used as means for detecting the deflection of the plate member in FIGS. 3, 6, etc.

更に、第8図に示した板状の捩り振動型の圧電素子の代
りに、円筒状の捩り振動素子を使用することも可能であ
る。
Furthermore, it is also possible to use a cylindrical torsionally vibrating element instead of the plate-like torsionally vibrating piezoelectric element shown in FIG.

以上説明した本発明によれば、以下に列挙する効果が得
られる。
According to the present invention described above, the effects listed below can be obtained.

■ 重錘に作用したコリオリの力を直接変位や歪みとし
て取り出す構造の為、検出感度が高く、且つ高い周波数
の入力角速度が検出できる。
■ Since the structure directly extracts the Coriolis force acting on the weight as displacement or strain, the detection sensitivity is high and high frequency input angular velocities can be detected.

■ 交番振動駆動部とコリオリの力の検出系が完全に独
立している為、検出系の感度を太き(保ったまま、振動
駆動部を外部の振動や衝撃に強い構造にすることが出来
る。
■ Since the alternating vibration drive unit and the Coriolis force detection system are completely independent, the vibration drive unit can be structured to be resistant to external vibrations and shocks while maintaining the sensitivity of the detection system. .

■ コリオリの力の受感部を、2枚の薄板で構成し、そ
れぞれの変位を差動的に出力させることにより、振動軸
方向の外部加速度の影響を完全にとり除(ことが出来る
■ By constructing the Coriolis force sensing section with two thin plates and differentially outputting the displacement of each, it is possible to completely eliminate the influence of external acceleration in the direction of the vibration axis.

■ 構造が簡単で、安価に製作でき、且つ堅牢−につく
ることができる。
■ It has a simple structure, can be manufactured at low cost, and can be made robustly.

■ 音叉式と異り、コリオリの力の検出部と交番振動駆
動部との駆動軸線方向の距離が短(、或いはほとんどゼ
ロとすることができる為、′駆動軸々受がモーメント荷
重を受ける必要がなく、駆動軸々受の小型化が可能であ
る。
■ Unlike the tuning fork type, the distance between the Coriolis force detection unit and the alternating vibration drive unit in the drive axis direction is short (or can be almost zero), so the drive shaft bearings do not need to receive moment loads. This allows the drive shaft and bearings to be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周知の音叉方式振動ジャイロを示す斜視図、第
2図は本発明の一実施例を示す斜視図、第3図は第2図
の実施例の原理を示す路線図、第4乃至第8図は夫々本
発明の他の実施例を示す斜視図、第9図は第8図に示す
実施例の捩り振動型圧電素子の斜視図である。 図に於て、(5)は駆動増巾器、(7)はデモシュレー
タ、鵠は基台、(1Bは軸、鰭は取付部材、(13、a
:iは板状部材、(141、04+ ハ重錘、a51.
pa、iは変角検出器、α日は駆動装置、αn、(1η
は変位検出装置、tie tt差動増巾器、(18a)
 、 (18′a) 、(23,(2j、CB、(24
,C3υ、6υ、O)。 −は圧電素子、(至)は環状部材、(ハ)は撓み部材、
(2尋、−は歪み検出器、(ホ)は短絡線、(5)は出
力端子、(至)は取付部材、關は捩り振動型の圧電素子
である。 第1図 第2図 り 第3図 第9図
FIG. 1 is a perspective view showing a well-known tuning fork vibrating gyroscope, FIG. 2 is a perspective view showing an embodiment of the present invention, FIG. 3 is a route map showing the principle of the embodiment of FIG. FIG. 8 is a perspective view showing other embodiments of the present invention, and FIG. 9 is a perspective view of the torsionally vibrating piezoelectric element of the embodiment shown in FIG. In the figure, (5) is the driving amplifier, (7) is the demosulator, the mouse is the base, (1B is the shaft, the fin is the mounting member, (13, a
: i is a plate-shaped member, (141, 04+ C weight, a51.
pa, i are angle detectors, α days are drive devices, αn, (1η
is displacement detection device, tie tt differential amplifier, (18a)
, (18'a) , (23, (2j, CB, (24
, C3υ, 6υ, O). - is a piezoelectric element, (to) is an annular member, (c) is a flexible member,
(2 fathoms, - is the strain detector, (E) is the short-circuit wire, (5) is the output terminal, (to) is the mounting member, and the connection is the torsional vibration type piezoelectric element. Figure 1, Figure 2, Figure 3) Figure 9

Claims (1)

【特許請求の範囲】[Claims] 基台と、該基台に回動的に取り付けた軸部材と、該軸部
材の軸線と略々直交する面と夫々の面が一致し、且つ夫
々の長手方向が上記軸線に関し軸対称となるように上記
軸部材に取り付けた2個の短冊状部材と、該2個の短冊
状部材の上記軸線方向の撓みを差動的に検出する検出装
置と、上記2個の短冊状部材を有する上記軸部材に上記
基台に対し上記軸線のまわりに交番角振動(捩り振動)
を与える為の駆動装置とより成るジャイロ装置。
A base, a shaft member rotatably attached to the base, and each surface thereof coincides with a surface substantially orthogonal to the axis of the shaft member, and each longitudinal direction is axially symmetrical with respect to the axis. two strip-shaped members attached to the shaft member, a detection device that differentially detects the deflection of the two strip-shaped members in the axial direction; Alternating angular vibration (torsional vibration) on the shaft member around the above axis with respect to the above base.
A gyro device consisting of a drive device and a drive device for giving
JP57104331A 1982-06-17 1982-06-17 Gyro device Pending JPS58221109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104331A JPS58221109A (en) 1982-06-17 1982-06-17 Gyro device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104331A JPS58221109A (en) 1982-06-17 1982-06-17 Gyro device

Publications (1)

Publication Number Publication Date
JPS58221109A true JPS58221109A (en) 1983-12-22

Family

ID=14377948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104331A Pending JPS58221109A (en) 1982-06-17 1982-06-17 Gyro device

Country Status (1)

Country Link
JP (1) JPS58221109A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122818U (en) * 1984-01-27 1985-08-19 ジエコ−株式会社 angular velocity sensor
JPS60228915A (en) * 1984-04-26 1985-11-14 Matsushita Electric Ind Co Ltd Angular velocity sensor
JPS60250207A (en) * 1984-05-28 1985-12-10 Matsushita Electric Ind Co Ltd Angular velocity sensor
JPH01142477A (en) * 1987-11-30 1989-06-05 Tohoku Tokushuko Kk Vibrator for detection of magnetization
JPH05322584A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH05322582A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH05322583A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH0650762A (en) * 1993-03-08 1994-02-25 Murata Mfg Co Ltd Vibrating gyro
JPH0650761A (en) * 1993-03-08 1994-02-25 Murata Mfg Co Ltd Vibrating gyro
WO1998001722A1 (en) * 1996-07-10 1998-01-15 Wacoh Corporation Angular velocity sensor
WO1999019689A1 (en) * 1997-10-14 1999-04-22 Omron Corporation Angular velocity sensor
US6016698A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibratory gyroscope including piezoelectric electrodes or detectors arranged to be non-parallel and non-perpendicular to coriolis force direction
US6367326B1 (en) 1996-07-10 2002-04-09 Wacoh Corporation Angular velocity sensor
JP2011085429A (en) * 2009-10-14 2011-04-28 Japan Aviation Electronics Industry Ltd Tuning fork type vibration gyro
JP2013532272A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric 3-axis gyroscope and stacked lateral overlap transducer (SLOT) based 3-axis accelerometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842681A (en) * 1973-07-19 1974-10-22 Sperry Rand Corp Angular rate sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842681A (en) * 1973-07-19 1974-10-22 Sperry Rand Corp Angular rate sensor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122818U (en) * 1984-01-27 1985-08-19 ジエコ−株式会社 angular velocity sensor
JPH0326411Y2 (en) * 1984-01-27 1991-06-07
JPS60228915A (en) * 1984-04-26 1985-11-14 Matsushita Electric Ind Co Ltd Angular velocity sensor
JPS60250207A (en) * 1984-05-28 1985-12-10 Matsushita Electric Ind Co Ltd Angular velocity sensor
JPH01142477A (en) * 1987-11-30 1989-06-05 Tohoku Tokushuko Kk Vibrator for detection of magnetization
US6016698A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibratory gyroscope including piezoelectric electrodes or detectors arranged to be non-parallel and non-perpendicular to coriolis force direction
US6016699A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibrator including piezoelectric electrodes of detectors arranged to be non-parallel and non-perpendicular to Coriolis force direction and vibratory gyroscope using the same
US6161432A (en) * 1988-08-12 2000-12-19 Murata Manufacturing Co., Ltd. Vibrator and vibratory gyroscope using the same
JPH05322582A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH0765898B2 (en) * 1992-11-13 1995-07-19 株式会社村田製作所 Vibrating gyro
JPH05322584A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH05322583A (en) * 1992-11-13 1993-12-07 Murata Mfg Co Ltd Oscillation gyroscope
JPH0650761A (en) * 1993-03-08 1994-02-25 Murata Mfg Co Ltd Vibrating gyro
JPH0650762A (en) * 1993-03-08 1994-02-25 Murata Mfg Co Ltd Vibrating gyro
WO1998001722A1 (en) * 1996-07-10 1998-01-15 Wacoh Corporation Angular velocity sensor
US6367326B1 (en) 1996-07-10 2002-04-09 Wacoh Corporation Angular velocity sensor
US6076401A (en) * 1996-07-10 2000-06-20 Wacoh Corporation Angular velocity sensor
WO1999019689A1 (en) * 1997-10-14 1999-04-22 Omron Corporation Angular velocity sensor
JP2011085429A (en) * 2009-10-14 2011-04-28 Japan Aviation Electronics Industry Ltd Tuning fork type vibration gyro
JP2013532272A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric 3-axis gyroscope and stacked lateral overlap transducer (SLOT) based 3-axis accelerometer
JP2013532273A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric X-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer

Similar Documents

Publication Publication Date Title
EP2192382B1 (en) Microelectromechanical gyroscope with rotary driving motion and improved electrical properties
US7240552B2 (en) Torsional rate sensor with momentum balance and mode decoupling
USRE45855E1 (en) Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes
JPS58221109A (en) Gyro device
US7222533B2 (en) Torsional rate sensor with momentum balance and mode decoupling
US4930351A (en) Vibratory linear acceleration and angular rate sensing system
US7228738B2 (en) Torsional rate sensor with momentum balance and mode decoupling
JP6514790B2 (en) Gyroscope
US11390517B2 (en) Systems and methods for bias suppression in a non-degenerate MEMS sensor
CN1318821C (en) Micromachined silicon gyro using tuned accelerometer
JPH10318759A (en) Monolithic vibration beam angular velocity sensor
JP2006521560A (en) Micromachine vibration gyroscope using electrostatic coupling
JPH06508684A (en) Improvement of gyroscope device
JP6527235B2 (en) Gyroscope
JP3307907B2 (en) Micro gyroscope
JPH02129514A (en) Angular velocity sensor
JPH0654235B2 (en) Vibration type angular velocity meter
JPS62217114A (en) Gyro device
JPH0455249B2 (en)
JPH0257247B2 (en)
JPS60135815A (en) Multi-sensor
JPS60185111A (en) Gyroscope device
US20130333470A1 (en) Planar coriolis gyroscope
JPS59151016A (en) Gyro device
JPH0319488B2 (en)