JPH10227642A - Angular velocity sensor - Google Patents
Angular velocity sensorInfo
- Publication number
- JPH10227642A JPH10227642A JP9027972A JP2797297A JPH10227642A JP H10227642 A JPH10227642 A JP H10227642A JP 9027972 A JP9027972 A JP 9027972A JP 2797297 A JP2797297 A JP 2797297A JP H10227642 A JPH10227642 A JP H10227642A
- Authority
- JP
- Japan
- Prior art keywords
- vibrating
- vibration
- angular velocity
- vibrator
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車のナビゲー
ションシステムや姿勢制御などに用いられる角速度セン
サに関するものであり、特に、2軸の回転角速度を検出
することができる振動型の角速度センサに関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor for use in an automobile navigation system and attitude control, and more particularly to a vibration type angular velocity sensor capable of detecting a rotational angular velocity of two axes. is there.
【0002】[0002]
【従来の技術】従来から、振動体に回転を加えるとコリ
オリの力によって回転角速度に応じた新たな振動が発生
することを利用した様々な振動型の角速度センサが知ら
れており、2軸の回転角速度を検出することができるも
のとして、例えば、特開平7−190782号公報に開
示された振動角速度計がある。2. Description of the Related Art Conventionally, various vibration-type angular velocity sensors utilizing the fact that when a vibrating body is rotated to generate a new vibration in accordance with the rotational angular velocity due to Coriolis force are known. As a device capable of detecting a rotational angular velocity, for example, there is a vibration angular velocity meter disclosed in JP-A-7-190782.
【0003】この角速度計は、重りを同一平面において
90度間隔で配置された4本の梁で支持したものであ
る。この重りを梁が配置される平面に対して垂直な方向
に励振させたときに、梁の軸周りに回転運動が起こる
と、励振振動方向および回転軸に垂直な方向にコリオリ
の力に基づく振動が生じるので、これを検知すれば角速
度が判る。また、4本の梁は、互いに直交する2本の軸
上に配置されているので、この2本の軸周りの回転角速
度を検知できる。In this gyro, a weight is supported by four beams arranged at 90-degree intervals on the same plane. When this weight is excited in a direction perpendicular to the plane on which the beam is placed, and a rotational movement occurs around the axis of the beam, the vibration based on the Coriolis force occurs in the direction of the excitation vibration and in the direction perpendicular to the rotation axis. Is detected, the angular velocity can be determined by detecting this. Further, since the four beams are arranged on two axes orthogonal to each other, it is possible to detect a rotational angular velocity around these two axes.
【0004】[0004]
【発明が解決しようとする課題】しかし、この角速度セ
ンサでは、重りおよび梁を圧電結晶体で一体に構成しよ
うとすると、互いに垂直な3方向の圧電効果を有するこ
とが必須要件となり、現実的にはそれを満足する結晶体
を見出すことは困難である。However, in this angular velocity sensor, it is essential to have a piezoelectric effect in three directions perpendicular to each other in order to integrally form the weight and the beam with a piezoelectric crystal. It is difficult to find crystals satisfying the above.
【0005】また、コリオリの力による振動は重りの励
振方向に垂直に発生するが、4本の梁は励振方向に垂直
な方向に対して重りをしっかりと固定しており、コリオ
リの力による振動をむしろ発生しにくくしている。その
ため、検出感度が十分に得られない可能性がある。Further, the vibration due to the Coriolis force occurs perpendicularly to the exciting direction of the weight, but the four beams fix the weight firmly in the direction perpendicular to the exciting direction, and the vibration caused by the Coriolis force. Rather less likely to occur. Therefore, there is a possibility that sufficient detection sensitivity cannot be obtained.
【0006】[0006]
【課題を解決するための手段】本発明の角速度センサは
このような問題点に鑑みてなされたものであり、XYZ
三次元座標空間において、角速度を検出すべき物体に固
定される基部と、この基部から+Yの向きに互いに離れ
て突出した第1振動片および第2振動片と、この第1振
動片および第2振動片にそれぞれ連結片を介して連結す
る重り部とを備える振動子と、この振動子の重り部がY
方向に振動するように第1振動片および第2振動片を励
振する励振手段と、励振された重り部がZ軸を中心とし
て回転したときに発生するコリオリの力に基づくX方向
振動と、励振された重り部がX軸を中心として回転した
ときに発生するコリオリの力に基づくZ方向振動とを検
出する検出手段と、検出手段が検出したX方向振動に基
づいてZ軸を中心とする回転の角速度を演算し、検出手
段が検出したZ方向振動にも基づいてX軸を中心とする
回転の角速度を演算する角速度演算手段とを備えたこと
を特徴とする。SUMMARY OF THE INVENTION The angular velocity sensor of the present invention has been made in view of such a problem, and has been developed in consideration of XYZ.
In a three-dimensional coordinate space, a base fixed to an object whose angular velocity is to be detected, a first vibrating piece and a second vibrating piece projecting away from this base in the direction of + Y, a first vibrating piece and a second vibrating piece. A vibrator having a weight connected to the vibrating piece via a connecting piece, and a weight of the vibrator being Y
Exciting means for exciting the first vibrating piece and the second vibrating piece so as to vibrate in the directions; X-direction vibration based on Coriolis force generated when the excited weight rotates about the Z axis; Detecting means for detecting a Z-direction vibration based on the Coriolis force generated when the weight portion rotated about the X-axis, and rotating about the Z-axis based on the X-direction vibration detected by the detecting means And an angular velocity calculating means for calculating the angular velocity of rotation about the X axis based on the Z-direction vibration detected by the detecting means.
【0007】第1および第2振動片を例えばX方向に互
いに逆相で励振すると、この2つの振動片に連結片を介
して接続されている重り部はY方向に振動する。したが
って、振動子がZ軸周りに回転するとコリオリの力によ
り重り部はX方向に振動し、振動子がX軸周りに回転す
るとコリオリの力により重り部はZ方向に振動する。一
方、重り部を支持する第1および第2振動片は基部から
+Yの向きに突出しているので、すなわち、基部による
片持ち支持の形となっているので、第1および第2振動
片の先端部はX方向およびZ方向の力に対して揺動可能
となっている。したがって、重り部のX方向およびZ方
向の振動は第1および第2振動片に効率よく伝達され
る。検出手段ではこのX方向またはZ方向の振動を検出
し、角速度演算手段はこの検出手段の検出結果に基づい
て角速度を求めることができる。When the first and second vibrating bars are excited, for example, in mutually opposite phases in the X direction, the weight connected to the two vibrating bars via the connecting piece vibrates in the Y direction. Therefore, when the vibrator rotates around the Z axis, the weight portion vibrates in the X direction due to the Coriolis force, and when the vibrator rotates around the X axis, the weight portion vibrates in the Z direction due to the Coriolis force. On the other hand, the first and second vibrating reeds that support the weight portion protrude from the base in the + Y direction, that is, since they are in a cantilevered form by the base, the leading ends of the first and second vibrating reeds. The portion is swingable with respect to forces in the X and Z directions. Therefore, the vibrations of the weight in the X and Z directions are efficiently transmitted to the first and second vibrating bars. The detecting means detects the vibration in the X direction or the Z direction, and the angular velocity calculating means can calculate the angular velocity based on the detection result of the detecting means.
【0008】振動子として水晶のZ板を用いた場合に
は、振動片に検出電極を適当に配置することにより、振
動片のX方向またはZ方向の振動を容易に検出すること
ができる。When a quartz crystal Z plate is used as the vibrator, the X- or Z-direction vibration of the vibrating reed can be easily detected by appropriately arranging the detecting electrodes on the vibrating reed.
【0009】振動子は、基部から前記第1振動片と同軸
に−Yの向きに突出した第3振動片と、基部から第2振
動片と同軸に−Yの向きに突出した第4振動片と、第3
振動片および第4振動片にそれぞれ連結片を介して連結
する第2重り部とをさらに有し、励振手段は重り部だけ
でなく第2重り部もY方向に逆相で振動するように第1
〜第4振動片を励振するものであることが望ましい。The vibrator has a third vibrating reed projecting coaxially with the first vibrating reed from the base in the -Y direction, and a fourth vibrating reed protruding from the base coaxially with the second vibrating reed in the -Y direction. And the third
A second weight portion connected to the vibrating piece and the fourth vibrating piece via a connecting piece, respectively, wherein the exciting means is configured to vibrate not only the weight portion but also the second weight portion so that the second weight portion vibrates in a reverse phase in the Y direction. 1
It is desirable to excite the fourth resonator element.
【0010】このように構成すると、励振したときの振
動子の重心の移動がなくなり、基部から被検出体への励
振振動の漏れが減少する。With this configuration, the center of gravity of the vibrator does not move when excited, and leakage of the excited vibration from the base to the object to be detected is reduced.
【0011】[0011]
【発明の実施の形態】図1は本発明の一実施形態である
角速度センサの振動子を示す斜視図である。この振動子
1は、図示したXYZ三次元空間座標において、XY平
面に沿って配置されている。振動子1は、X軸方向に延
在する振動子基体(基部)2と、振動子基体2から+Y
の向きに延びる第1振動片5および第2振動片6と、振
動子基体2からそれぞれ第1振動片5および第2振動片
6と同軸に−Yの向きに延びる第3振動片7および第4
振動片8を備える。なお、第1〜第4振動片の寸法は全
て同じである。また、各振動片には、振動片をX方向に
励振するための励振電極と、振動片のX方向振動および
Z方向振動の両方を検出する検出電極とが設けられてい
る。励振電極および検出電極の配置等については後述す
る。FIG. 1 is a perspective view showing a vibrator of an angular velocity sensor according to an embodiment of the present invention. The vibrator 1 is arranged along the XY plane in the illustrated XYZ three-dimensional space coordinates. The vibrator 1 includes a vibrator base (base) 2 extending in the X-axis direction and a + Y
And the third vibrating piece 7 and the second vibrating piece 6 extending from the vibrator base 2 coaxially with the first vibrating piece 5 and the second vibrating piece 6 in the -Y direction. 4
A vibration piece 8 is provided. The dimensions of the first to fourth vibrating bars are all the same. Each vibrating bar is provided with an excitation electrode for exciting the vibrating bar in the X direction and a detection electrode for detecting both the X-direction vibration and the Z-direction vibration of the vibrating bar. The arrangement of the excitation electrodes and the detection electrodes will be described later.
【0012】振動子基体2にはX方向両側に支持棒1
6、17を介して固定板3および4が連結されており、
この固定板3および4が回転角速度を検出したい対象物
に直接または間接的に固定されることにより、この振動
子1が被検出対象物に対して浮いた状態で支持される。A support rod 1 is provided on both sides of the vibrator base 2 in the X direction.
The fixing plates 3 and 4 are connected via 6, 17;
Since the fixed plates 3 and 4 are directly or indirectly fixed to the object whose rotational angular velocity is to be detected, the vibrator 1 is supported in a floating state with respect to the object to be detected.
【0013】第1振動片5および第2振動片6の先端に
は連結片10および11を介して重り部12が連結され
ている。連結片10および11は、ほぼ中央で折れ曲が
ったV字形状を有し、その折れ曲がり部はX方向外向き
に突出している。第1および第2振動片5および6と重
り部12とがこのように連結されているので、第1およ
び第2振動片5および6が、音叉のようにX方向に同一
振動数かつ互いに逆相で励振されると、重り部12は励
振振動数と同じ振動数でY方向に振動する。A weight 12 is connected to the distal ends of the first vibrating piece 5 and the second vibrating piece 6 via connecting pieces 10 and 11. Each of the connecting pieces 10 and 11 has a V-shape bent at substantially the center, and the bent portion protrudes outward in the X direction. Since the first and second vibrating bars 5 and 6 and the weight portion 12 are connected in this manner, the first and second vibrating bars 5 and 6 have the same frequency in the X direction and are opposite to each other like a tuning fork. When excited in a phase, the weight 12 vibrates in the Y direction at the same frequency as the excitation frequency.
【0014】同様に、第3振動片7および第4振動片8
の先端にはV字形状の連結片13および14を介して重
り部15が連結されており、第3および第4振動片7お
よび8がX方向に同一振動数かつ互いに逆相で励振され
ると、重り部15は励振振動数と同じ振動数でY方向に
振動する。Similarly, the third vibrating piece 7 and the fourth vibrating piece 8
A weight portion 15 is connected to the tip of the pair via V-shaped connecting pieces 13 and 14, and the third and fourth vibrating pieces 7 and 8 are excited in the X direction at the same frequency and in mutually opposite phases. Then, the weight portion 15 vibrates in the Y direction at the same frequency as the excitation frequency.
【0015】以上のように構成された振動子1は、水晶
の単結晶基板で一体に構成されている。The vibrator 1 configured as described above is integrally formed of a single crystal substrate of quartz.
【0016】ここで、水晶の結晶軸について簡単に説明
する。天然の水晶は、一般に柱状結晶であり、この柱状
結晶の縦方向の中心軸すなわち<0001>結晶軸はZ
軸または光軸と規定され、Z軸を通り柱状結晶の各表面
に垂直に交わる線はY軸または機械軸と規定される。ま
た、Z軸を通りこの柱状結晶の縦方向の稜線と直交する
線はX軸または電気軸と規定される。Here, the crystal axis of quartz will be briefly described. Natural quartz is generally a columnar crystal, and the longitudinal central axis of the columnar crystal, that is, the <0001> crystal axis is Z
An axis or optical axis is defined, and a line passing through the Z axis and perpendicular to each surface of the columnar crystal is defined as a Y axis or a mechanical axis. A line passing through the Z axis and orthogonal to the vertical ridge line of the columnar crystal is defined as an X axis or an electric axis.
【0017】振動子1に用いられている単結晶基板はZ
板と呼ばれる基板であり、Z軸に垂直ないし略垂直な面
で切り出された単結晶基板である。したがって、本実施
形態においては、結晶方位のZ軸と、図面上の振動子1
の配置方向を示す上述したZ軸とは一致している。ま
た、水晶のX軸およびY軸は互いに直交するものが3組
あり、そのうちの一組と図面上の振動子1の配置方向を
示すX軸およびY軸とが一致している。なお、振動子1
には結晶構造が天然の水晶と同じである人工水晶のZ板
が用いられている。The single crystal substrate used for the vibrator 1 is Z
This is a substrate called a plate, and is a single crystal substrate cut out in a plane perpendicular or substantially perpendicular to the Z axis. Therefore, in the present embodiment, the Z axis of the crystal orientation and the vibrator 1
Coincides with the above-described Z axis indicating the disposition direction of. In addition, there are three sets of the X axis and the Y axis of the crystal which are orthogonal to each other, and one of the sets matches the X axis and the Y axis indicating the arrangement direction of the vibrator 1 on the drawing. The vibrator 1
Uses a Z plate of artificial quartz having the same crystal structure as natural quartz.
【0018】図2は、第1〜第4振動片5〜8にそれぞ
れ設けられたZ方向の振動を検出する検出電極の配置、
並びに各電極間の結線を示す図である。同図に示す第1
振動片5および第2振動片6は図1のIIa−IIa断
面図であり、第3振動片7および第4振動片8は図1の
IIb−IIb断面図である。第1振動片5には検出電
極21a〜21dが、第2振動片6には検出電極22a
〜22dが、第3振動片7には検出電極23a〜23d
が、第4振動片8には検出電極24a〜24dがそれぞ
れ設けられており、検出電極は全て図示のように振動片
の角部に配置されている。FIG. 2 shows the arrangement of detection electrodes for detecting vibrations in the Z direction provided on the first to fourth vibrating bars 5 to 8, respectively.
FIG. 3 is a diagram showing connections between electrodes. The first shown in FIG.
The vibrating bar 5 and the second vibrating bar 6 are sectional views taken along the line IIa-IIa in FIG. 1, and the third vibrating bar 7 and the fourth vibrating bar 8 are sectional views taken along the line IIb-IIb in FIG. The first vibrating reed 5 has the detecting electrodes 21a to 21d, and the second vibrating reed 6 has the detecting electrodes 22a to 22d.
To 22d, the detection electrodes 23a to 23d
However, detection electrodes 24a to 24d are provided on the fourth vibrating reed 8, respectively, and all the detecting electrodes are arranged at the corners of the vibrating reed as shown in the figure.
【0019】検出電極は、各振動片において互いに対向
するもの同士が接続され、それらがさらに出力端子25
または26のいずれかに接続されている。すなわち、検
出電極21a、21b、22a、22b、23a、23
b、24a、24bは出力端子25に接続され、検出電
極21c、21d、22c、22d、23c、23d、
24c、24dは出力端子25に接続されている。As for the detecting electrodes, those which oppose each other in each vibrating piece are connected to each other.
Or 26. That is, the detection electrodes 21a, 21b, 22a, 22b, 23a, 23
b, 24a, 24b are connected to the output terminal 25, and the detection electrodes 21c, 21d, 22c, 22d, 23c, 23d,
24c and 24d are connected to the output terminal 25.
【0020】図3は、第1〜第4振動片5〜8にそれぞ
れ設けられたX方向の振動を検出する検出電極およびX
方向に励振する励振電極の配置、並びに各電極間の結線
を示す図である。同図に示す第1振動片5および第2振
動片6は図1のIIIa−IIIa断面図であり、第3
振動片7および第4振動片8は図1のIIIb−III
b断面図である。第1振動片5には励振電極31a〜3
1cと検出電極31d〜31fが、第2振動片6には励
振電極32a〜32cと検出電極32d〜32fが、第
3振動片7には励振電極33a〜33cと検出電極33
d〜33fが、第4振動片8には励振電極34a〜34
cと検出電極34d〜34fがそれぞれ図示のように設
けられている。すなわち、各振動片の外側の3電極(側
面および上下面)が励振電極であり、内側の3電極(側
面および上下面)が検出電極である。FIG. 3 shows a detection electrode provided on each of the first to fourth vibrating bars 5 to 8 for detecting vibration in the X direction, and X
It is a figure which shows the arrangement | positioning of the excitation electrode which excites in a direction, and the connection between each electrode. The first vibrating reed 5 and the second vibrating reed 6 shown in FIG. 3 are sectional views taken along the line IIIa-IIIa of FIG.
The vibrating bar 7 and the fourth vibrating bar 8 correspond to IIIb-III in FIG.
It is b sectional drawing. Excitation electrodes 31a to 3
1c and the detecting electrodes 31d to 31f, the second vibrating piece 6 has the exciting electrodes 32a to 32c and the detecting electrodes 32d to 32f, and the third vibrating piece 7 has the exciting electrodes 33a to 33c and the detecting electrode 33.
d to 33f are provided on the fourth vibrating reed 8 by the excitation electrodes 34a to 34f.
c and detection electrodes 34d to 34f are provided as shown in the drawing. That is, the outer three electrodes (side surfaces and upper and lower surfaces) of each resonator element are excitation electrodes, and the inner three electrodes (side surfaces and upper and lower surfaces) are detection electrodes.
【0021】励振電極31b、31c、32a、33
b、33c、34aは励振信号の一方入力端子37に接
続され、励振電極31a、32b、32c、33a、3
4b、34cは励振信号の他方の入力端子38に接続さ
れている。また、検出電極31e、31f、32e、3
2f、33d、34dは出力端子35に接続され、検出
電極31d、32d、33e、33f、34e、34f
は出力端子36に接続されている。Excitation electrodes 31b, 31c, 32a, 33
b, 33c, 34a are connected to one input terminal 37 of the excitation signal, and the excitation electrodes 31a, 32b, 32c, 33a, 3a
4b and 34c are connected to the other input terminal 38 of the excitation signal. The detection electrodes 31e, 31f, 32e, 3
2f, 33d, 34d are connected to the output terminal 35, and the detection electrodes 31d, 32d, 33e, 33f, 34e, 34f
Are connected to the output terminal 36.
【0022】図4は本実施形態の角速度センサに用いら
れる励振回路50、検出回路60および角速度演算回路
70を示す。励振回路50は振動片5〜8に設けられた
励振電極と共に励振手段を構成し、検出回路60は振動
片5〜8に設けられた検出電極と共に検出手段を構成す
る。FIG. 4 shows an excitation circuit 50, a detection circuit 60 and an angular velocity calculation circuit 70 used in the angular velocity sensor of the present embodiment. The excitation circuit 50 forms excitation means together with the excitation electrodes provided on the vibrating bars 5 to 8, and the detection circuit 60 forms detection means together with the detection electrodes provided on the vibrating bars 5 to 8.
【0023】励振回路50は発振回路51からなり、発
振回路51は所定の振幅で所定の繰り返し周波数のパル
ス波を励振信号として出力端子37、38間に出力する
とともに、その出力信号と90度位相のずれた信号を同
期検波回路607、608の検波信号として出力する回
路である。発振回路51で作られた励振信号が図3に示
す入力端子37、38に与えられると、各振動片の励振
電極で囲まれた部分にX方向の電界の変化が生じ、その
部分は水晶の逆圧電効果により励振信号に同期してY方
向に伸び縮みする。The excitation circuit 50 comprises an oscillation circuit 51. The oscillation circuit 51 outputs a pulse wave having a predetermined amplitude and a predetermined repetition frequency as an excitation signal between the output terminals 37 and 38, and outputs a 90-degree phase with the output signal. Is a circuit that outputs the shifted signal as a detection signal of the synchronous detection circuits 607 and 608. When the excitation signal generated by the oscillating circuit 51 is applied to the input terminals 37 and 38 shown in FIG. 3, a change in the electric field in the X direction occurs in a portion surrounded by the excitation electrode of each vibrating element, and the portion is formed of quartz. It expands and contracts in the Y direction in synchronization with the excitation signal due to the inverse piezoelectric effect.
【0024】たとえば、第1振動片5において励振電極
31a〜31cにより囲まれた部分がY方向(図3では
紙面に垂直な方向)に伸び縮みする。一方、その反対側
の部分、すなわち検出電極31d〜31fにより囲まれ
た部分にはY方向に伸縮する力は何ら加わらない。これ
により、振動片内部に歪み応力が発生し、第1振動片5
はX方向に揺動する。同様に、第2振動片6〜8も励振
信号に同期してそれぞれX方向に揺動する。そして、各
励振電極を本実施形態のように結線すると、第1振動片
5と第2振動片6は互いに逆相に、第3振動片7と第4
振動片8は互いに逆相に、さらに、第1振動片5と第3
振動片8は同相に励振される。For example, the portion of the first vibrating reed 5 surrounded by the excitation electrodes 31a to 31c expands and contracts in the Y direction (in FIG. 3, the direction perpendicular to the paper). On the other hand, no force for expanding and contracting in the Y direction is applied to the opposite portion, that is, the portion surrounded by the detection electrodes 31d to 31f. As a result, strain stress is generated inside the resonator element, and the first resonator element 5
Swings in the X direction. Similarly, the second vibrating bars 6 to 8 also swing in the X direction in synchronization with the excitation signal. When the excitation electrodes are connected as in the present embodiment, the first vibrating reed 5 and the second vibrating reed 6 are in opposite phases to each other, and the third vibrating reed 7 and the fourth
The vibrating bar 8 is in the opposite phase to the first vibrating bar 5 and the third vibrating bar 5
The resonator element 8 is excited in the same phase.
【0025】すなわち、第1振動片5が−Xの向きに屈
曲するときは、第2振動片6は+Xの向きに、第3振動
片7は−Xの向きに、第4振動片8は+Xの向きにそれ
ぞれ屈曲し、逆に、第1振動片5が+Xの向きに屈曲す
るときは、第2振動片6は−Xの向きに、第3振動片7
は+Xの向きに、第4振動片8は−Xの向きにそれぞれ
屈曲する。ここで、前者の状態を第1屈曲状態、後者の
状態を第2屈曲状態と呼ぶことにする。That is, when the first vibrating bar 5 bends in the -X direction, the second vibrating bar 6 is in the + X direction, the third vibrating bar 7 is in the -X direction, and the fourth vibrating bar 8 is When the first vibrating reed 5 bends in the + X direction, on the contrary, the second vibrating reed 6 moves in the −X direction and the third vibrating reed 7
Are bent in the direction of + X, and the fourth vibrating piece 8 is bent in the direction of -X. Here, the former state is referred to as a first bent state, and the latter state is referred to as a second bent state.
【0026】第1屈曲状態、すなわち、第1振動片5〜
第4振動片8がすべて内側に屈曲した状態では、重り部
12が+Yの向きに、また、重り部15が−Yの向きに
それぞれ押し出される。第2屈曲状態、すなわち、第1
振動片5〜第4振動片8がすべて外側に屈曲した状態で
は、重り部12が−Yの向きに、また、重り部15が+
Yの向きにそれぞれ引き込まれる。したがって、各振動
片の励振電極に励振信号が与えられると、重り部12と
重り部15は互いに逆相でY方向に励振周波数で振動す
る。The first bending state, that is, the first vibrating reed 5 to 5
When all the fourth vibrating bars 8 are bent inward, the weight portion 12 is pushed out in the + Y direction, and the weight portion 15 is pushed out in the -Y direction. The second bent state, that is, the first
In a state where all of the vibrating bars 5 to the fourth vibrating bars 8 are bent outward, the weight portion 12 is oriented in the −Y direction, and the weight portion 15 is positioned in the + direction.
Each is drawn in the direction of Y. Therefore, when an excitation signal is applied to the excitation electrode of each vibrating reed, the weights 12 and 15 vibrate in the Y direction at an excitation frequency in opposite phases.
【0027】この励振状態で振動子1がX軸周りに角速
度Ωで回転すると、重り部12および15にF=2mV
×Ωで表されるコリオリの力FがZ方向に発生する。こ
こに、mは重り部の質量、Vは重り部の振動速度であ
る。このコリオリの力によって、重り部12および15
は励振周波数で互いに逆相で振動する。すなわち、重り
部12が+Zの向きに振れたとき、重り部15は−Zの
向きに振れる。このZ方向の振動は、連結片10、1
1、13、14を介して第1振動片5〜第4振動片8に
効率よく伝達される。したがって、第1振動片5と第2
振動片6が同相で、第3振動片7と第4振動片8が同相
で、第1振動片5と第3振動片7が逆相で、それぞれZ
方向に振動する。なお、上述したコリオリの力Fの式か
ら導かれることであるが、位相は励振信号と90度ずれ
ている。When the vibrator 1 rotates at an angular velocity Ω around the X axis in this excited state, F = 2 mV is applied to the weights 12 and 15.
A Coriolis force F represented by × Ω is generated in the Z direction. Here, m is the mass of the weight, and V is the vibration speed of the weight. The weights 12 and 15 are generated by the Coriolis force.
Vibrate in opposite phases at the excitation frequency. That is, when the weight portion 12 swings in the + Z direction, the weight portion 15 swings in the -Z direction. The vibration in the Z direction is caused by the connecting pieces 10, 1,
The vibration is efficiently transmitted to the first to fourth vibrating bars 5 to 8 via 1, 13, and 14. Therefore, the first vibrating reed 5 and the second
The vibrating bar 6 has the same phase, the third vibrating bar 7 and the fourth vibrating bar 8 have the same phase, and the first vibrating bar 5 and the third vibrating bar 7 have the opposite phases.
Vibrates in the direction. The phase is shifted from the excitation signal by 90 degrees, which is derived from the above-described equation of the Coriolis force F.
【0028】また、振動子1がZ軸周りに角速度Ωで回
転すると、重り部12および15にF=2mV×Ωで表
されるコリオリの力FがX方向に発生し、重り部12お
よび15は互いに逆相で振動する。すなわち、重り部1
2が+Xの向きに振れたとき、重り部15は−Xの向き
に振れる。このX方向の振動も、連結片10、11、1
3、14を介して第1振動片5〜第4振動片8に効率よ
く伝達され、第1振動片5と第2振動片6が同相で、第
3振動片7と第4振動片8が同相で、第1振動片5と第
3振動片7が逆相で、それぞれX方向に振動する。この
振動の位相も、励振信号と90度ずれている。When the vibrator 1 rotates around the Z axis at an angular velocity Ω, a Coriolis force F expressed by F = 2 mV × Ω is generated in the weights 12 and 15 in the X direction, and the weights 12 and 15 Vibrate in opposite phases. That is, the weight 1
When 2 swings in the + X direction, the weight 15 swings in the -X direction. The vibration in the X direction is also caused by the connecting pieces 10, 11, 1
The first vibrating bar 5 and the second vibrating bar 6 are efficiently transmitted to the first vibrating bar 5 to the fourth vibrating bar 8 via the third and 14th, and the third vibrating bar 7 and the fourth vibrating bar 8 are in phase. The first vibrating reed 5 and the third vibrating reed 7 vibrate in the X direction in opposite phases, respectively. The phase of this vibration is also shifted by 90 degrees from the excitation signal.
【0029】このようなコリオリの力に基づく振動片の
X方向振動およびZ方向振動は、その振幅がそれぞれZ
軸周りの角速度およびX軸周りの角速度が大きくなれば
増大するように変化する。したがって、これらの振動振
幅を検出すれば、Z軸周りの角速度およびX軸周りの角
速度を求めることができる。The X-direction vibration and the Z-direction vibration of the resonator element based on the Coriolis force have amplitudes of Z
It changes so as to increase as the angular velocity around the axis and the angular velocity around the X axis increase. Therefore, by detecting these vibration amplitudes, the angular velocity around the Z axis and the angular velocity around the X axis can be obtained.
【0030】そこでつぎに、振動片のコリオリの力に基
づくX方向振動およびZ方向振動の検出動作を図2およ
び図3に示す検出電極および図4に示す検出回路と共に
説明する。Next, the operation of detecting the X-direction vibration and the Z-direction vibration based on the Coriolis force of the vibrating reed will be described together with the detection electrodes shown in FIGS. 2 and 3 and the detection circuit shown in FIG.
【0031】検出回路60はX方向振動検出用の電流電
圧変換回路601、602、差動増幅回路605、同期
検波回路607、増幅オフセット除去回路609と、Z
方向振動検出用の電流電圧変換回路603、604、差
動増幅回路606、同期検波回路608、増幅オフセッ
ト除去回路610とを備えている。The detection circuit 60 includes current-voltage conversion circuits 601 and 602 for X-direction vibration detection, a differential amplifier circuit 605, a synchronous detection circuit 607, an amplification offset removal circuit 609, and Z
It includes current-voltage conversion circuits 603 and 604 for detecting directional vibration, a differential amplification circuit 606, a synchronous detection circuit 608, and an amplification offset removal circuit 610.
【0032】まず、Z方向の振動を第1振動片5を例に
して説明する。第1振動片5が振動により+Zの向きに
屈曲すると、振動片5の上側の半分がY方向に縮み、下
側の半分がY方向に伸びる。水晶の圧電効果により、Y
方向に縮むとX方向の誘電分極が生じ、Y方向に伸びる
と逆向きのX方向の誘電分極が生じる。そして、誘電分
極の強さは伸縮の大きさに依存するので上面または下面
において強く現れ、中間部に向かうほど弱い。したがっ
て、誘電分極は振動片5の4つの角部に集中して現れ、
この誘電分極によって角部に設けられた各検出電極21
a〜21dに正または負の電荷が集まる。検出電極21
aと21bが同じ極性となり、検出電極21cと21d
がこれらと逆の極性となる。振動片5が下側に振れる
と、同様の原理に基づいて上述したものと全く逆の極性
が現れる。First, the vibration in the Z direction will be described using the first vibrating piece 5 as an example. When the first resonator element 5 bends in the + Z direction due to vibration, the upper half of the resonator element 5 contracts in the Y direction, and the lower half extends in the Y direction. Due to the piezoelectric effect of quartz, Y
When contracted in the direction, dielectric polarization occurs in the X direction, and when extended in the Y direction, dielectric polarization occurs in the opposite X direction. Since the strength of dielectric polarization depends on the magnitude of expansion and contraction, it appears strongly on the upper or lower surface, and becomes weaker toward the middle. Therefore, the dielectric polarization appears concentrated at the four corners of the resonator element 5,
Each detection electrode 21 provided at a corner by this dielectric polarization
Positive or negative charges are collected at a to 21d. Detection electrode 21
a and 21b have the same polarity, and the detection electrodes 21c and 21d
Have opposite polarities. When the resonator element 5 swings downward, a polarity completely opposite to that described above appears based on the same principle.
【0033】上述したX方向励振を行ったときの、第1
振動片5〜第4振動片8のコリオリの力に基づくZ方向
振動の位相は既に述べたとおり、第1振動片5に対して
第2振動片6は同相、第3振動片7および第4振動片は
逆相となる。図2に示す検出電極間の配線はこの位相関
係を考慮してなされたものであり、Z方向の屈曲に対し
て同一の極性の電荷が集まる電極同士をまとめてそれぞ
れ出力端子25および26に接続している。When the above-described X-direction excitation is performed, the first
As described above, the phase of the Z-direction vibration based on the Coriolis force of the vibrating bars 5 to the fourth vibrating bars 8 is the same as that of the first vibrating bars 5, the second vibrating bars 6 are in phase, and the third vibrating bars 7 and 4 The vibrating reed has a reversed phase. The wiring between the detection electrodes shown in FIG. 2 is made in consideration of this phase relationship, and the electrodes in which electric charges of the same polarity collect with respect to bending in the Z direction are collectively connected to output terminals 25 and 26, respectively. doing.
【0034】検出回路60のZ方向振動用の回路である
電流電圧変換回路603、604、差動増幅回路60
6、同期検波回路608、増幅オフセット除去回路61
0は、このようにして発生した各振動片の各検出電極に
おけるトータルの電荷の変化量を検出し、振動片の振動
振幅に応じた電圧信号を出力端子612に出力する。The current-voltage conversion circuits 603 and 604, which are circuits for the Z-direction vibration of the detection circuit 60, and the differential amplifier circuit 60
6. Synchronous detection circuit 608, amplification offset removal circuit 61
0 detects the amount of change in the total charge in each detection electrode of each vibrating bar generated in this way, and outputs a voltage signal corresponding to the vibration amplitude of the vibrating bar to the output terminal 612.
【0035】電流電圧変換回路603、604は励振電
極での電荷の変化量を電圧値に変換する回路であり、オ
ペアンプを用いた一般的な電荷アンプなどが利用でき
る。差動増幅回路606は電流電圧変換回路603およ
び604のそれぞれの出力信号を入力し、両信号の電位
差を増幅する回路であり、この出力信号の振幅は各振動
片5〜8のZ方向の振動振幅に対応している。The current-voltage conversion circuits 603 and 604 are circuits for converting the amount of change in charge at the excitation electrode into a voltage value, and a general charge amplifier using an operational amplifier can be used. The differential amplifier circuit 606 is a circuit that receives the output signals of the current-voltage conversion circuits 603 and 604 and amplifies the potential difference between the two signals. The amplitude of the output signal is the vibration of the vibrating pieces 5 to 8 in the Z direction. Corresponds to amplitude.
【0036】同期検波回路608は差動増幅回路606
から出力された交流電圧信号を発振回路51からの励振
信号に対して90度位相のずれたパルス信号を検波信号
として用いて同期検波を行った後、積分処理を行うもの
であり、通常の同期検波回路に積分回路が付加された回
路である。図5はこのときの同期検波を示す波形図であ
る。The synchronous detection circuit 608 is a differential amplification circuit 606
After performing synchronous detection using a pulse signal having a phase shift of 90 degrees with respect to the excitation signal from the oscillation circuit 51 using the AC voltage signal output from the oscillator circuit 51 as a detection signal, integration processing is performed. This is a circuit in which an integration circuit is added to a detection circuit. FIG. 5 is a waveform diagram showing the synchronous detection at this time.
【0037】増幅オフセット除去回路610は振動子の
特性や振動方法等に基づくオフセット成分を除去する回
路であり、必要に応じて設けられる。The amplification offset removing circuit 610 is a circuit for removing an offset component based on the characteristics of the vibrator, the vibration method, and the like, and is provided as necessary.
【0038】つぎに、X方向の振動の検出について説明
する。X方向については、励振振動とコリオリの力に基
づく検出すべき振動が合成されている。したがって、検
出振動を励振振動から分離する必要があるが、その点に
ついては後述することにして、まず、X方向振動の検出
原理を第1振動片5を例にして説明する。Next, detection of vibration in the X direction will be described. In the X direction, the excitation vibration and the vibration to be detected based on the Coriolis force are combined. Therefore, it is necessary to separate the detected vibration from the excitation vibration, which will be described later. First, the principle of detecting the X-direction vibration will be described using the first vibrating piece 5 as an example.
【0039】第1振動片5が振動により+Xの向きに屈
曲すると、振動片5の+X側の半分がY方向に縮み、−
X側の半分がY方向に伸びる。水晶の圧電効果により、
Y方向に縮むとX方向の誘電分極が生じ、Y方向に伸び
ると逆向きのX方向の誘電分極が生じる。このような誘
電分極の結果、側面の電極31dと上下面の電極31
e、31fとの間に電位差が生じ、正または負の電荷が
集まる。振動片5が−Xの向きに屈曲すると、同様の原
理に基づいて逆の極性が現れる。When the first vibrating bar 5 bends in the + X direction due to vibration, half of the + X side of the vibrating bar 5 contracts in the Y direction, and −
The half on the X side extends in the Y direction. Due to the piezoelectric effect of quartz,
Contraction in the Y direction causes dielectric polarization in the X direction, and extension in the Y direction causes dielectric polarization in the opposite X direction. As a result of such dielectric polarization, the side electrodes 31d and the upper and lower electrodes 31d are formed.
A potential difference is generated between e and 31f, and positive or negative charges are collected. When the resonator element 5 bends in the -X direction, an opposite polarity appears based on the same principle.
【0040】さて、上述したX方向励振を行ったとき
の、第1振動片5〜第4振動片8のコリオリの力に基づ
くX方向振動の位相は既に述べたとおり、第1振動片5
に対して第2振動片6は同相、第3振動片7および第4
振動片8は逆相となる。また、X方向励振振動の位相
は、第1振動片5に対して第2振動片6は逆相、第3振
動片7は同相、第4振動片8は逆相となる。When the above-described X-direction excitation is performed, the phase of the X-direction vibration based on the Coriolis force of the first vibrating piece 5 to the fourth vibrating piece 8 is, as described above, the phase of the first vibrating piece 5.
On the other hand, the second vibrating reed 6 has the same phase, the third vibrating reed 7 and the fourth
The vibrating reed 8 has a reversed phase. Further, the phases of the X-direction excitation vibration are opposite to those of the first vibrating piece 5, that of the second vibrating piece 6, that of the third vibrating piece 7, and that of the fourth vibrating piece 8 are opposite.
【0041】図3に示す検出電極間の配線はこの位相関
係を考慮してなされたものであり、コリオリの力に基づ
くX方向の振動について、同一の極性の電荷が集まる電
極同士をまとめてそれぞれ出力端子35および36に接
続している。The wiring between the detection electrodes shown in FIG. 3 is made in consideration of this phase relationship. For the vibration in the X direction based on the Coriolis force, the electrodes having the same polarity are collected together. It is connected to output terminals 35 and 36.
【0042】この電極間の接続は、同時に励振振動に基
づいてX方向用検出電極に直接的に生じる電荷を相互に
相殺する構成となっている。たとえば、検出電極33e
と34eに着目すると、コリオリの力に基づくX方向振
動による電荷は同じ極性のものとなり、励振振動による
電荷は互いに異なる極性のものとなる。したがって、両
電極を本実施形態のように接続すれば、コリオリの力に
基づくX方向振動については加算され、励振振動に基づ
くX方向振動は相互に相殺される。他の検出電極もこの
ように接続されているので、全体として出力端子35お
よび36にはコリオリの力に基づくX方向振動のみを示
す信号が現れる。This connection between the electrodes simultaneously cancels out the electric charge generated directly on the X-direction detection electrode based on the excitation vibration. For example, the detection electrode 33e
And 34e, the charges due to the X-direction vibration based on the Coriolis force have the same polarity, and the charges due to the excitation vibration have different polarities. Therefore, if both electrodes are connected as in the present embodiment, the X-direction vibration based on the Coriolis force is added, and the X-direction vibration based on the excitation vibration cancels each other. Since the other detection electrodes are also connected in this manner, a signal indicating only the X-direction vibration based on the Coriolis force appears on the output terminals 35 and 36 as a whole.
【0043】このようにして得られたコリオリの力に基
づくX方向振動を示す信号は、検出回路60のZ方向振
動用の回路である電流電圧変換回路601、602、差
動増幅回路605、同期検波回路607、増幅オフセッ
ト除去回路609で、Z方向振動の検出処理と同様に処
理され、振動片のコリオリの力に基づくX方向の振動振
幅に応じた電圧信号が出力端子611に現れる。The signal indicating the X-direction vibration based on the Coriolis force obtained in this manner is supplied to the current-voltage conversion circuits 601 and 602, which are the circuits for the Z-direction vibration of the detection circuit 60, the differential amplifier circuit 605, and the synchronous amplifier. The detection circuit 607 and the amplification offset removal circuit 609 perform the same processing as the detection processing of the Z-direction vibration, and a voltage signal corresponding to the X-direction vibration amplitude based on the Coriolis force of the resonator element appears at the output terminal 611.
【0044】このように検出回路60で処理された振動
片のコリオリの力に基づくX方向振動振幅およびZ方向
振動振幅に応じた電圧信号は、それぞれ出力端子611
および612を介して角速度演算回路70に与えられ
る。The voltage signals corresponding to the X-direction vibration amplitude and the Z-direction vibration amplitude based on the Coriolis force of the resonator element processed by the detection circuit 60 are output from the output terminal 611, respectively.
And 612 to the angular velocity calculation circuit 70.
【0045】角速度演算回路70は、出力端子611の
信号からX方向のコリオリの力を求め、前述した角速度
とコリオリの力との関係式とから、振動子1のZ軸周り
の回転角速度Ωzを算出する。また、出力端子612の
信号からZ方向のコリオリの力を求め、角速度とコリオ
リの力との関係式とから、振動子1のX軸周りの回転角
速度Ωxを算出する。The angular velocity calculation circuit 70 calculates the Coriolis force in the X direction from the signal of the output terminal 611, and calculates the rotational angular velocity Ωz of the vibrator 1 about the Z axis from the above-described relational expression between the angular velocity and the Coriolis force. calculate. Further, the Coriolis force in the Z direction is obtained from the signal of the output terminal 612, and the rotational angular velocity Ωx of the vibrator 1 around the X axis is calculated from the relational expression between the angular velocity and the Coriolis force.
【0046】本実施形態では、振動子1として圧電結晶
材料である水晶のZ板から切り出したものを用いている
が、金属などの非圧電材料からなる振動子を用いてもよ
い。その場合には、励振電極および検出電極に代えて、
例えばPZTを2枚の電極で挟んだ励振用振動板および
振動検出板を用いる。In this embodiment, the vibrator 1 is cut out from a Z plate of quartz, which is a piezoelectric crystal material. However, a vibrator made of a non-piezoelectric material such as metal may be used. In that case, instead of the excitation electrode and the detection electrode,
For example, an excitation diaphragm and a vibration detection plate in which PZT is sandwiched between two electrodes are used.
【0047】図6は本発明の第2の実施形態に適用する
振動子を示す平面図である。この振動子60は、XYZ
三次元空間座標において、X軸方向に延在する振動子基
体(基部)2と、振動子基体2から+Yの向きに延びる
第1振動片5および第2振動片6と、振動子基体2から
それぞれ第1振動片5および第2振動片6と同軸に−Y
の向きに延びる第3振動片7および第4振動片8を備え
る。また、振動子基体2にはX方向両側に支持棒16、
17を介して固定板3および4が連結されている。第1
振動片5および第2振動片6の先端には連結片61およ
び62を介して重り部12が連結され、第3振動片7お
よび第4振動片8の先端には連結片63および64を介
して重り部15が連結されている。連結片61〜64
は、重り部12および15からX方向に延びる励振片6
1a〜64aを備えている。FIG. 6 is a plan view showing a vibrator applied to the second embodiment of the present invention. The vibrator 60 has an XYZ
In three-dimensional space coordinates, a vibrator base (base) 2 extending in the X-axis direction, a first vibrating piece 5 and a second vibrating piece 6 extending from the vibrator base 2 in the + Y direction, -Y coaxially with the first vibrating piece 5 and the second vibrating piece 6, respectively.
A third vibrating piece 7 and a fourth vibrating piece 8 extending in the directions of. The support base 16 is provided on both sides of the vibrator base 2 in the X direction.
The fixing plates 3 and 4 are connected to each other via the reference numeral 17. First
The weight portion 12 is connected to the distal ends of the vibrating bar 5 and the second vibrating bar 6 via connecting bars 61 and 62, and to the distal ends of the third vibrating bar 7 and the fourth vibrating bar 8 via connecting bars 63 and 64. The weight part 15 is connected. Connecting pieces 61 to 64
Are the excitation pieces 6 extending from the weights 12 and 15 in the X direction.
1a to 64a.
【0048】このように構成される振動子60は、非圧
電材料たとえばステンレス材で構成されており、連結片
の励振片61a〜64aには励振片をY方向に振動させ
る圧電素子が設けられ、第1〜第4振動片5〜8のそれ
ぞれには、振動片のX方向振動およびZ方向振動を検出
する圧電素子が設けられている。The vibrator 60 thus configured is made of a non-piezoelectric material, for example, a stainless steel material, and the excitation elements 61a to 64a of the connecting pieces are provided with a piezoelectric element for vibrating the excitation element in the Y direction. Each of the first to fourth vibrating bars 5 to 8 is provided with a piezoelectric element for detecting X-direction vibration and Z-direction vibration of the vibrating bar.
【0049】この振動子60は、励振片61a〜64a
を振動させて重り部12および15をY方向に励振させ
る。この状態で振動子60がX軸周りに回転すると第1
実施形態と同様に重り部12および15がコリオリの力
によりZ方向に振動し、その振動が振動片5〜8に伝達
され、Z軸周りに回転すると振動片5〜8がX方向に振
動する。したがって、各振動片のZ方向振動とX方向振
動を検出すればX軸周りの角速度およびZ軸周りの角速
度を求めることができる。The vibrator 60 includes excitation pieces 61a to 64a
To excite the weights 12 and 15 in the Y direction. When the vibrator 60 rotates around the X axis in this state, the first
As in the embodiment, the weight portions 12 and 15 vibrate in the Z direction due to the Coriolis force, and the vibration is transmitted to the vibrating pieces 5 to 8. When the vibrating pieces rotate around the Z axis, the vibrating pieces 5 to 8 vibrate in the X direction. . Therefore, the angular velocity around the X axis and the angular velocity around the Z axis can be obtained by detecting the Z-direction vibration and the X-direction vibration of each resonator element.
【0050】この振動子60を用いた角速度センサによ
れば、励振を連結片で行い、コリオリの力によるX方向
振動およびZ方向振動の検出を振動片で行うため、振動
片の振動には励振振動が含まれておらず、コリオリの力
による振動のみを検出しやすい。According to the angular velocity sensor using the vibrator 60, the excitation is performed by the connecting piece, and the X-direction vibration and the Z-direction vibration by the Coriolis force are detected by the vibrating piece. Vibration is not included, and it is easy to detect only vibration due to Coriolis force.
【0051】ただし、この振動子60の場合、振動子自
身を水晶のZ板で構成しても、Y方向の励振とX方向振
動およびZ方向振動の検出とを振動子自身の圧電効果を
利用して行うことはできない。However, in the case of the vibrator 60, even if the vibrator itself is constituted by a quartz Z plate, excitation in the Y direction and detection of the X-direction vibration and the Z-direction vibration utilize the piezoelectric effect of the vibrator itself. You can't do that.
【0052】なお、上述した第1および第2実施形態の
振動子1および60では、振動片および重り部が振動子
基体を通るX軸を中心として対称に設けられている。こ
れは、このように構成した2つの重り部を互いに逆相に
励振することにより、励振に伴う重心の移動を抑制し、
重心移動に伴う振動漏れを防止するためである。したが
って、逆に、振動漏れを無視できれば、あるいは、振動
漏れを他の方法で抑制できれば、片側の振動片および重
り部だけでもよい。たとえば、振動子1から、第3振動
片7、第4振動片8、連結片13、14、および重り部
15を除去した構造の振動子を用いることもできる。In the vibrators 1 and 60 of the first and second embodiments described above, the vibrating reed and the weight portion are provided symmetrically about the X axis passing through the vibrator base. This suppresses the movement of the center of gravity due to the excitation by exciting the two weight portions configured as described above in phases opposite to each other.
This is to prevent vibration leakage due to the movement of the center of gravity. Therefore, conversely, if the vibration leakage can be ignored or the vibration leakage can be suppressed by another method, only the vibrating piece and the weight portion on one side may be used. For example, a vibrator having a structure in which the third vibrating piece 7, the fourth vibrating piece 8, the connecting pieces 13, 14, and the weight 15 are removed from the vibrator 1 may be used.
【0053】[0053]
【発明の効果】以上説明したように、本発明の角速度セ
ンサによれば、互いに直交する2つの回転軸の周りの回
転角速度を、単一の振動子で感度よく検出することがで
きる。As described above, according to the angular velocity sensor of the present invention, it is possible to detect the rotational angular velocity around two rotational axes orthogonal to each other with high sensitivity with a single vibrator.
【図1】本発明の一実施形態である角速度センサの振動
子を示す斜視図。FIG. 1 is a perspective view showing a vibrator of an angular velocity sensor according to an embodiment of the present invention.
【図2】第1〜第4振動片5〜8にそれぞれ設けられた
Z方向の振動を検出する検出電極の配置、並びに各電極
間の結線を示す図。FIG. 2 is a view showing the arrangement of detection electrodes for detecting vibrations in the Z direction provided on first to fourth vibrating pieces 5 to 8, and connections between the electrodes.
【図3】第1〜第4振動片5〜8にそれぞれ設けられた
X方向の振動を検出する検出電極およびX方向に励振す
る励振電極の配置、並びに各電極間の結線を示す図。FIG. 3 is a diagram showing an arrangement of detection electrodes for detecting vibration in the X direction and excitation electrodes for exciting in the X direction, provided on the first to fourth vibrating pieces 5 to 8, and a connection between the electrodes;
【図4】本実施形態の角速度センサに用いられる励振回
路50、検出回路60および角速度演算回路70を示す
回路図。FIG. 4 is a circuit diagram showing an excitation circuit 50, a detection circuit 60, and an angular velocity calculation circuit 70 used in the angular velocity sensor of the embodiment.
【図5】検出回路60での信号検波処理を説明するため
の図。FIG. 5 is a diagram for explaining signal detection processing in a detection circuit 60;
【図6】本発明の第2の実施形態に用いる振動子を示す
平面図。FIG. 6 is a plan view showing a vibrator used in a second embodiment of the present invention.
1、60…振動子、2…振動子基体、3、4…固定板、
5…第1振動片、6…第2振動片、7…第3振動片、8
…第4振動片、10、11、13、14、61〜64…
連結片、12、15…重り部、50…励振回路、60…
検出回路、70…角速度演算回路。1, 60: vibrator, 2: vibrator base, 3, 4: fixed plate,
5: first vibrating bar, 6: second vibrating bar, 7: third vibrating bar, 8
... the fourth vibrating reed, 10, 11, 13, 14, 61 to 64 ...
Connecting pieces, 12, 15, weight parts, 50, excitation circuit, 60,
Detection circuit, 70: angular velocity calculation circuit.
Claims (2)
を検出すべき物体に固定される基部と、この基部から+
Yの向きに互いに離れて突出した第1振動片および第2
振動片と、この第1振動片および第2振動片にそれぞれ
連結片を介して連結する重り部とを備える振動子と、 前記振動子の重り部がY方向に振動するように前記第1
振動片および第2振動片を励振する励振手段と、 前記励振された重り部がZ軸を中心として回転したとき
に発生するコリオリの力に基づくX方向振動と、前記励
振された重り部がX軸を中心として回転したときに発生
するコリオリの力に基づくZ方向振動とを検出する検出
手段と、 前記検出手段が検出したX方向振動に基づいてZ軸を中
心とする回転の角速度を演算し、前記検出手段が検出し
たZ方向振動にも基づいてX軸を中心とする回転の角速
度を演算する角速度演算手段とを備えた角速度センサ。1. A base fixed to an object whose angular velocity is to be detected in an XYZ three-dimensional coordinate space, and +
A first vibrating reed and a second protruding piece protruding apart from each other in the direction of Y;
A vibrator comprising: a vibrating reed; and a weight portion connected to the first vibrating reed and the second vibrating reed via a connecting piece, respectively; and the first vibrating portion vibrates in the Y direction.
Exciting means for exciting the vibrating piece and the second vibrating piece; X-direction vibration based on Coriolis force generated when the excited weight portion rotates about the Z-axis; Detecting means for detecting a Z-direction vibration based on the Coriolis force generated when rotating about an axis; and calculating an angular velocity of rotation about the Z-axis based on the X-direction vibration detected by the detecting means. An angular velocity calculating means for calculating an angular velocity of rotation about the X axis based on the Z-direction vibration detected by the detecting means.
動片と同軸に−Yの向きに突出した第3振動片と、前記
基部から前記第2振動片と同軸に−Yの向きに突出した
第4振動片と、前記第3振動片および第4振動片にそれ
ぞれ連結片を介して連結する第2重り部とを有し、 前記励振手段は前記重り部および前記第2重り部をY方
向に互いに逆相に振動するように前記第1〜第4振動片
を励振するものであることを特徴とする請求項1に記載
の角速度センサ。2. The vibrator includes a third vibrating reed protruding from the base in the direction of -Y coaxially with the first vibrating reed, and a vibrator extending in the direction of -Y coaxially with the second vibrating reed from the base. A protruding fourth vibrating reed, and a second weight portion connected to the third vibrating reed and the fourth vibrating reed via a connecting piece, respectively, wherein the excitation unit includes the weight portion and the second weight portion. The angular velocity sensor according to claim 1, wherein the first to fourth vibrating pieces are excited so as to vibrate in opposite phases in the Y direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02797297A JP3336605B2 (en) | 1997-02-12 | 1997-02-12 | Angular velocity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02797297A JP3336605B2 (en) | 1997-02-12 | 1997-02-12 | Angular velocity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10227642A true JPH10227642A (en) | 1998-08-25 |
JP3336605B2 JP3336605B2 (en) | 2002-10-21 |
Family
ID=12235801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02797297A Expired - Lifetime JP3336605B2 (en) | 1997-02-12 | 1997-02-12 | Angular velocity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3336605B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153514A (en) * | 2004-11-25 | 2006-06-15 | Matsushita Electric Works Ltd | Gyro sensor and angular velocity detection method |
JP2007529013A (en) * | 2004-03-12 | 2007-10-18 | トムソン ライセンシング | Vibration rotation rate sensor and operation method thereof |
JP2008046058A (en) * | 2006-08-21 | 2008-02-28 | Matsushita Electric Ind Co Ltd | Inertial force sensor |
JP2009150815A (en) * | 2007-12-21 | 2009-07-09 | Toyota Central R&D Labs Inc | Angular velocity sensor |
JPWO2008023566A1 (en) * | 2006-08-21 | 2010-01-07 | パナソニック株式会社 | Angular velocity sensor |
CN102200438A (en) * | 2010-03-26 | 2011-09-28 | 精工爱普生株式会社 | Physical quantity detection element, physical quantity detection device, and electronic apparatus |
EP1947420A4 (en) * | 2006-01-24 | 2013-07-31 | Panasonic Corp | Inertial force sensor |
EP2876411A1 (en) * | 2010-02-18 | 2015-05-27 | Panasonic Corporation | Angular speed sensor and composite sensor for detecting angular speed |
JP2015166748A (en) * | 2015-06-30 | 2015-09-24 | パナソニックIpマネジメント株式会社 | Angular velocity sensor element and angular velocity sensor |
USRE46514E1 (en) | 2008-10-07 | 2017-08-15 | Panasonic Corporation | Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit |
-
1997
- 1997-02-12 JP JP02797297A patent/JP3336605B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007529013A (en) * | 2004-03-12 | 2007-10-18 | トムソン ライセンシング | Vibration rotation rate sensor and operation method thereof |
JP2006153514A (en) * | 2004-11-25 | 2006-06-15 | Matsushita Electric Works Ltd | Gyro sensor and angular velocity detection method |
JP4654667B2 (en) * | 2004-11-25 | 2011-03-23 | パナソニック電工株式会社 | Gyro sensor and angular velocity detection method |
EP1947420A4 (en) * | 2006-01-24 | 2013-07-31 | Panasonic Corp | Inertial force sensor |
US10408618B2 (en) | 2006-01-24 | 2019-09-10 | Panasonic Intellectual Property Management Co., Ltd. | Angular velocity sensor |
US9605963B2 (en) | 2006-01-24 | 2017-03-28 | Panasonic Intellectual Property Management Co., Ltd. | Inertial force sensor |
US8966976B2 (en) | 2006-01-24 | 2015-03-03 | Panasonic Intellectual Property Management Co., Ltd. | Inertial force sensor |
US8844356B2 (en) | 2006-01-24 | 2014-09-30 | Panasonic Corporation | Inertial force sensor |
JPWO2008023566A1 (en) * | 2006-08-21 | 2010-01-07 | パナソニック株式会社 | Angular velocity sensor |
JP5206409B2 (en) * | 2006-08-21 | 2013-06-12 | パナソニック株式会社 | Angular velocity sensor |
JP2008046058A (en) * | 2006-08-21 | 2008-02-28 | Matsushita Electric Ind Co Ltd | Inertial force sensor |
JP2009150815A (en) * | 2007-12-21 | 2009-07-09 | Toyota Central R&D Labs Inc | Angular velocity sensor |
USRE46514E1 (en) | 2008-10-07 | 2017-08-15 | Panasonic Corporation | Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit |
EP2876411A1 (en) * | 2010-02-18 | 2015-05-27 | Panasonic Corporation | Angular speed sensor and composite sensor for detecting angular speed |
US9091543B2 (en) | 2010-02-18 | 2015-07-28 | Panasonic Intellectual Property Management Co., Ltd. | Angular speed sensor for detecting angular speed |
US9448068B2 (en) | 2010-02-18 | 2016-09-20 | Panasonic Intellectual Property Management Co., Ltd. | Angular velocity sensor |
CN102200438A (en) * | 2010-03-26 | 2011-09-28 | 精工爱普生株式会社 | Physical quantity detection element, physical quantity detection device, and electronic apparatus |
JP2015166748A (en) * | 2015-06-30 | 2015-09-24 | パナソニックIpマネジメント株式会社 | Angular velocity sensor element and angular velocity sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3336605B2 (en) | 2002-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3973742B2 (en) | Vibrating gyroscope | |
JP3805837B2 (en) | Angular velocity detector | |
JPH11281372A (en) | Vibrator, vibration gyroscope, linear accelerator, and method for measuring rotary angular velocity | |
US20120024058A1 (en) | Microelectromechanical gyroscopes and related apparatus and methods | |
JPWO2006075764A1 (en) | Vibrating gyroscope | |
JPH10170275A (en) | Vibratory angular velocity sensor | |
JP3336605B2 (en) | Angular velocity sensor | |
JP2000046560A (en) | Angular velocity sensor | |
JP4911690B2 (en) | Vibrating gyro vibrator | |
JPH08152328A (en) | Angular speed sensor and its using method | |
JP3674013B2 (en) | Angular velocity detector | |
JP4777806B2 (en) | Quartz crystal oscillator and angular velocity sensor | |
JPH10260043A (en) | Angular velocity detecting device | |
JPH10267658A (en) | Vibration-type angular velocity sensor | |
JPH08327362A (en) | Vibration type gyro scope | |
JP2000146592A (en) | Oscillatory detector | |
JPH10318755A (en) | Acceleration angular velocity sensor | |
JPH1114374A (en) | Vibration gyroscope | |
JP3028999B2 (en) | Vibrating gyro | |
JPH10170271A (en) | Angular velocity detector | |
JP3136544B2 (en) | Gyro device | |
JP3356012B2 (en) | Vibrating gyro | |
JPH1054724A (en) | Angular velocity detecting device | |
JP2004151001A (en) | Inflection vibration arm of vibrator, vibrator, and physical quantity measuring apparatus | |
Tamura et al. | Triaxial quartz gyrosensor using a threefold rotatory symmetric form vibrator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070809 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120809 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130809 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |