JP2011078958A5 - - Google Patents

Download PDF

Info

Publication number
JP2011078958A5
JP2011078958A5 JP2010039195A JP2010039195A JP2011078958A5 JP 2011078958 A5 JP2011078958 A5 JP 2011078958A5 JP 2010039195 A JP2010039195 A JP 2010039195A JP 2010039195 A JP2010039195 A JP 2010039195A JP 2011078958 A5 JP2011078958 A5 JP 2011078958A5
Authority
JP
Japan
Prior art keywords
water
voltage
electrodes
electrode
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039195A
Other languages
English (en)
Other versions
JP2011078958A (ja
JP4868618B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2010039195A priority Critical patent/JP4868618B2/ja
Priority claimed from JP2010039195A external-priority patent/JP4868618B2/ja
Publication of JP2011078958A publication Critical patent/JP2011078958A/ja
Publication of JP2011078958A5 publication Critical patent/JP2011078958A5/ja
Application granted granted Critical
Publication of JP4868618B2 publication Critical patent/JP4868618B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

図48は、可溶性吸収性膜、又不溶性吸収性膜25で微粒子活性炭24を挟み微粒子金属電極A20、B21、D23を可溶性吸収性膜、又不溶性吸収性膜25の表面、裏面に離間し固着、上、下面を微粒子活性炭24で挟み平行キャパシタとする浄化体を示す。
本発明者が行った実験で、撮影場所は全暗にしてカメラを設置、亜鉛板(トタン板)、銅板、銀板(T10004)の3積層電極間に炭クロスを挿入、3積層電極を少し大きい炭クロスに固着、3積層電極はガラス容器(7l)に水道水(3.5l)を入れ透明の○30×50mm台に設置、電極を浸漬させると電場形成、静電気、電圧、電流が発生し、電圧、電流を電気二重層キャパシタに電気エネルギーを貯蔵、許容電圧を超えると放電する発光現象を写真に撮影、電極の形状は図50に示す通りである。カメラはキャノンEOS1、レンズはキャノンマクロ100mm、F2.8、バルブ(長時間露出)機能付き、フィルムはFUJIFILM ナチュラル1600、現像時点の感度は3200。以上の写真撮影の結果を図49に示す。
この実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10001)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と電解液(純水50ml)をプラスチック容器に入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えてその後又減少する「充電、放電」を純水が有る限り長期に渡り繰り返す亜鉛電池になり、測定値は表20に示す通りであり、電極形状は図2に示す通りである。

更に、亜鉛板、銀板、銅板の電極間に布を挿入し3積層電極とし(T−10002)3日間を測定すると亜鉛電池になり放電、充電を繰り返し続けて測定値は表21―1に示す通りである。

表21−2〜4は、新潟県工業技術総合研究所発行の試験成績書である。
試験成績書
第22−0016号
(1)電流、電圧、抵抗の測定
(2)遠赤外線放射量の測定

更に実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10003)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、遠赤外線を測定、測定波長は1.3μm〜14.5μm、有効波長が3.0μm〜14.5μmであり遠赤外線を亜鉛板から放射を確認、測定値は表21−2〜4に示す通りであり、電極形状は図2に示す通りである。以上の実験結果の詳細を表22に示す。表22は、図51に示す亜鉛板、ステンレス、アルミニウム板、銀板(T10005)を4積層した際に発生する静電気、電圧、電流値の測定値である。

実験で、図51に示すように、亜鉛板、ステンレス、アルミニウム板、銀板(T10005)を4積層にし、その間に布又炭クロスを挿入、少し大きい布又炭クロスに固着した4積層電極は水蒸気が存在する状態(空気中)で電場形成、静電気、電圧、電流を発生、外部からの電気化学的腐食反応促進として太陽光を電極表面に当てると温度上昇、又電解溶液、温水、海水、氷の浮かぶ海水に浸漬、又氷の中に電極を閉じ込めると電気化学的反応(電気化学的腐食反応)が更に活発になり、電場形成し、静電気、電圧、電流値を大きく生じる。
(遠赤外線の力)
起電力の異なる金属電極を2組以上組み合わせた浄化体より電極表面から発生する遠赤外線の力で身体の細胞を深層から温める作用により血流の流れが良くなり温熱作用により身の冷え症、神経痛、筋肉痛、肩凝り、腰痛などの痛みが改善される。
(還元水)
起電力の異なる金属電極を2組以上組み合わせた浄化体を電解溶液の中に浸漬すると電気化学反応(電気化学的腐食反応)で電解溶液が酸化還元作用を持ち、酸化還元電位計で測定すると酸化還元電位が降順し還元水になり体の中のさまざま病気の原因となる活性酸素を消去し遺伝子の本体であるDNAを損傷、過酸化脂肪が血管壁の内膜に付着する動脈硬化、眼球レンズの内膜に付着する白内障、老化、癌、高血圧を防ぐ。
(防錆)
原油、鉱物油類の油中の水分を浄化体の微弱電流の放電により電気分解を起こすることにより、マイナスイオン量の増加、油分中の硫化物による変質酸化上昇を抑え鉄の防錆効果を高め、防錆を行う。
(ダクトの空気の抗菌、抗カビ対策)
老人施設や病棟へ空調ダクトから空気がつねに出ているが、ダクトの解体清掃、防カビ処理が困難で、噴出す空気の中に細菌、カビ、酵母が含まれ、高齢者や入院患者は肺炎の原因になる細菌、カビ、酵母が室内に舞って、口、鼻から侵入し病気を誘発、又傷を悪化させる。そのため起電力の異なる金属電極を2組以上組み合わせた浄化体で静電気発生、電場形成で浮遊する細菌、カビ、酵母を陰極、又陽極に集菌、金属表面より溶け出た金属の毒性、静電放電、金属イオン、電圧放電、電流放電で抗菌、抗カビを滅菌する。
(静電気)
起電力の異なる金属電極を2組以上組み合わせた浄化体は、太陽の光を受けて発熱、空気、空気中の湿気(水蒸気)、水、海水に浸り静電気発生、電場形成で車、列車、船舶、飛行機、宇宙船、ロケットの本体側面と外部の接触面の間に静電気、電場形成の膜で空気、水、海水、宇宙空間の接触抵抗を減少させる。
(宇宙船の電源供給)
ロケット、宇宙船の船体に起電力の異なる金属を2組以上組み合わせた浄化体を固着、飛行中に船体にあたる太陽光により静電気、電場形成、電圧、電流の発生により電源として利用する。
実験で、起電力の異なる金属電極を2組以上組み合わせた浄化体を電解溶液に浸漬すると電極電位差を原動力として電気化学反応(電気化学的腐食)が起こし、発生電圧、電流を布又炭クロスの電気二重層キャパシタに蓄積、水の電気分解を起こす電圧1.4V付近に達し放電で水の電気分解を起こし、陰極の金属表面に水素ガスの泡が発生、陽極の金属表面に酸素ガスが発生により酸化することを確認する。
実験で、起電力の異なる金属電極の銀線とアルミニウム線を離間し炭クロスに固着、電解溶液に浸漬すると電位差で電気化学反応が起こり、静電気が発生、電場形成、電解溶液中に分散の大腸菌群は陰極の銀線に集菌、更に単一電池(1.5V)で銀線とアルミニウム線に印加すると銀線電極の表面に集菌し12時間経過する大腸菌群が集積死滅し検査で殺菌が検出されない。
電極上で培養したHeLa細胞について、−0.2V〜+1.2V定電位を印加したときの細胞の形態および増殖に及ぼす電気効果を示す。細胞膜表面はマイナスに帯電しているため−0.2Vから+0.4Vで細胞は電位に応じて、本来の紡錘形から球状へと形態変化が観察されるものの死に至ることはない。+0.7Vでは徐々に死滅し、+1.2Vではすべての細胞が1時間以内で死滅する。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、細胞制御技術、P339
「電解圧以下の電圧でつくられる水の電気分解」水の分子は電場が加わっていない時でもH2O→ + + OH- で表せる平衡状態にあり、水は電場がかかっていない時でも、各イオンの反対符号の電極面に向かって移動し、電極間に電流が流れる。この場合の電気分解は図52のDより左の部分に当たり(電解圧以下の電圧)、負極面での水素ガスの発生はあっても、正極面における酸素ガスの発生はない。水素イオンH+と水酸イオンOH-は各々水分子と水和結合して、H3+(ヒドロニウムイオン)とH32 -(ヒドロキシルイオン)になる。これらのイオンの水の中での移動は隣の水分子にH+またはOH-だけを受け渡し、結果としてイオンが移動する、いわゆる「ホッピング・モデル」による。H+イオンの移動速度に比べて2倍程度早いのと、H+イオンの放電電位が低く、電極面で容易に放電してH2になりガスとなって水から失われ、一方のOH-イオンのほうは電極面での放電電位が大きいため電荷をもったイオンのまま水流の中に拡散される。
水の電気分解
2O → ← H+ + OH-
水 水素イオン 水酸イオン
+ + H2O → H3+ [水素イオンの一部はH2ガス(水素ガス)になる]
水素イオン 水 ヒドロニウムイオン
OH- + H2O → H32 +
水酸イオン 水 ヒドロキシルイオン
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P304
「水の電気分解と活性酸素(フリーラジカル)」、電解圧以上で電気分解された水の場合、カソード(陰極)からの水素の発生とともにアノード(陽極)から酸素が発生する。電極面から発生する酸素は空気中の酸素のように安定で活性の穏やかなものだけでなく、発生機の酸素と呼ばれる原子の酸素(O)や最近、活性酸素と呼ばれ医学および生化学において大きな問題になっている極めて活性の強い分子状の酸素、および酸素化合物がつくられる。この活性酸素は、金属類を烈しく腐食し、生体細胞の組織を攻撃・破壊して人間の老化や多くの病気の原因になることが明らかになっている。
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P307
腐食とは、金属が化学的あるいは電気化学的反応により劣化損傷する現象で、金属イオンを溶出するとともに表面になんらかの反応被膜(腐食生成物)を形成する反応である。人体中でも腐食は起こり、金属材料の毒性や破壊の原因となる。
(非特許文献)▲塙▼隆夫・米山隆之共著、「金属バイオマテリアル」、コロナ社、2007年9月28日、P53
すき間腐食は、物資移動が妨げられる過程で、溶液側が局部的に酸性高塩化物濃度になる場合に起きる。このとき、不動態皮膜は不安定になり電気化学的に溶解する。ボーンプレートとスクリュートとの固定部の近傍、ボーンプレートと骨のすき間などで、皮膜の破壊と再生が繰り返されると、局部的にH+濃度が高くなり、すき間腐食が起こりうる。また、細胞が付着した金属表面もすき間腐食のサイトとなりうる。
(非特許文献)▲塙▼隆夫・米山隆之共著、「金属バイオマテリアル」、コロナ社、2007年9月28日、P120
細胞膜は細胞内外の液と比較して抵抗が、1,000倍以上も高く(109Ω・cm-1)、コンデンサとしてみなすことができる。細胞を溶液に入れ、平行電極間におき、細胞膜の力学的耐性の臨界値を超えるようなパルス電位を印加すると、放電の際に膜の一部が可逆的に破壊され、細胞に瞬時に穴が開くことから、エレクトロボレーションや細胞融合、殺菌などへ利用されている。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、電極による生物制御、P337
JP2010039195A 2009-09-14 2010-02-24 浄化装置 Expired - Fee Related JP4868618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039195A JP4868618B2 (ja) 2009-09-14 2010-02-24 浄化装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009234618 2009-09-14
JP2009234618 2009-09-14
JP2010039195A JP4868618B2 (ja) 2009-09-14 2010-02-24 浄化装置

Publications (3)

Publication Number Publication Date
JP2011078958A JP2011078958A (ja) 2011-04-21
JP2011078958A5 true JP2011078958A5 (ja) 2011-07-14
JP4868618B2 JP4868618B2 (ja) 2012-02-01

Family

ID=44073597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039195A Expired - Fee Related JP4868618B2 (ja) 2009-09-14 2010-02-24 浄化装置

Country Status (1)

Country Link
JP (1) JP4868618B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622294B2 (ja) * 2012-12-26 2014-11-12 和弘 林 電解液中の電極間の物質移動過程は電圧印加で促進
CN107758969A (zh) * 2017-11-22 2018-03-06 广州市澳万生物科技有限公司 一种带发光提醒的杀菌沐浴净化器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071198A (ja) * 1996-08-29 1998-03-17 Tokyo Film Kako Kk イオン抗菌テープ

Similar Documents

Publication Publication Date Title
JP5522798B2 (ja) バラスト水浄化方法
Zhang et al. Control of electro-chemical processes using energy harvesting materials and devices
JP3910095B2 (ja) オゾン発生用の電解槽
JP2006519090A (ja) 高電界電解セル
US20120186980A1 (en) Methods and systems for separating ions from fluids
WO2016134618A1 (zh) 一种可控制电解水酸碱性的无膜电解水新方法
WO2016134619A1 (zh) 一种采用两组电解电极组件控制电解水性能的新方法
Zhou et al. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system
Zhou et al. Locally enhanced electric field treatment (LEEFT) for water disinfection
US20110108437A1 (en) Disinfection method and disinfection device
JP5764474B2 (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
Sangwai Nanotechnology for energy and environmental engineering
JP2011078958A5 (ja)
WO2015154711A1 (zh) 净水器辅助清理装置
JP5557804B2 (ja) 電極体
Yoon et al. Antibacterial activity and photocatalysis of electrosprayed titania films
EP2508482A1 (en) Apparatus and method for electrolytic production of reducing water
JP5483464B2 (ja) 発電電極体
TW201321310A (zh) 產生殺生物劑之方法
Ciobotaru et al. The Electrochemical Generation of Ozone using an Autonomous Photovoltaic System
JP2021012863A (ja) 水から取り出した酸素を利用する発電システム
Shaarawy et al. Electrolytic generation of nickel hydroxide and nickel oxide nanoparticles for advanced applications
WO2001090443A1 (en) Capacitive deionization cell structure for control of electrolysis
JP5622294B2 (ja) 電解液中の電極間の物質移動過程は電圧印加で促進
KR20080088010A (ko) 이온수기 전해조용 전극 및 도금방법