JP2011078890A - Method for manufacturing catalyst - Google Patents

Method for manufacturing catalyst Download PDF

Info

Publication number
JP2011078890A
JP2011078890A JP2009232156A JP2009232156A JP2011078890A JP 2011078890 A JP2011078890 A JP 2011078890A JP 2009232156 A JP2009232156 A JP 2009232156A JP 2009232156 A JP2009232156 A JP 2009232156A JP 2011078890 A JP2011078890 A JP 2011078890A
Authority
JP
Japan
Prior art keywords
catalyst
liquid medium
precursor
fuel cell
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009232156A
Other languages
Japanese (ja)
Other versions
JP5370053B2 (en
Inventor
Toshihide Nakada
俊秀 中田
Sai Hayakawa
菜 早川
Hiroki Tsukamoto
宏樹 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009232156A priority Critical patent/JP5370053B2/en
Publication of JP2011078890A publication Critical patent/JP2011078890A/en
Application granted granted Critical
Publication of JP5370053B2 publication Critical patent/JP5370053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst which enables a flocculating of a catalyst obtained by supporting a metallic microparticle with a catalyst carrier material. <P>SOLUTION: This method for manufacturing a catalyst involves the following procedures: first, a catalyst precursor is prepared by allowing a metallic raw material microparticle to be supported by the catalyst carrier material dispersed in a liquid medium, and then, a sample composed of a mixture of the precursor and the liquid medium is freeze-dried to remove the liquid medium. Thus, the flocculation of the precursor during drying can be prevented from occurring. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、触媒の製造方法に関し、特に燃料電池用の触媒の製造方法の改良に関する。   The present invention relates to a method for producing a catalyst, and more particularly to an improvement in a method for producing a catalyst for a fuel cell.

燃料電池用の触媒は、一般的に、カーボン等の触媒用担体材料に白金等の金属微粒子を担持させてなる。かかる触媒は例えばコロイド法により製造される。このコロイド法では、PtOコロイドに対してカーボン担体を、水の存在下、徐々に混合する。これにより、触媒用担体材料としてのカーボン担体に金属微粒子として白金微粒子が担持され、燃料電池用触媒が得られる。
この燃料電池用触媒が得られた状態では媒体として水が存在しているので、これを加熱乾燥して除去し、更に還元して白金微粒子を活性化する。
A catalyst for a fuel cell is generally formed by supporting metal fine particles such as platinum on a catalyst carrier material such as carbon. Such a catalyst is produced, for example, by a colloid method. In this colloid method, a carbon carrier is gradually mixed with PtO 2 colloid in the presence of water. Thereby, platinum fine particles are supported as metal fine particles on a carbon carrier as a catalyst carrier material, and a fuel cell catalyst is obtained.
In the state where this fuel cell catalyst is obtained, water is present as a medium, which is removed by heating and drying, and further reduced to activate the platinum fine particles.

United States Patent 4,044,193United States Patent 4,044,193

上記従来の方法で得られた燃料電池用触媒は乾燥されているものの、カーボン担体を構成するカーボン粒子同士が強く結合して2次粒子、更には2次粒子をこえた多次粒子を構成することがある。これは、乾燥時に水が移動・蒸発する際に、毛管収縮等により、触媒どうしが強く凝集するためと考えられる。
その結果、還元工程において内部の白金微粒子を充分に還元できなくなるおそれがある。また、高分子電解質と触媒とを混合してペーストを得るときも、高分子電解質材料が触媒の内部まで浸透しなくなるおそれがある。従って、全ての白金微粒子が有効に機能しなくなる。
Although the fuel cell catalyst obtained by the above conventional method is dried, the carbon particles constituting the carbon support are strongly bonded to each other to form secondary particles, and further, multi-particles exceeding the secondary particles. Sometimes. This is considered to be because the catalysts strongly aggregate due to capillary contraction or the like when water moves and evaporates during drying.
As a result, there is a possibility that the platinum fine particles inside cannot be sufficiently reduced in the reduction step. Also, when a polymer electrolyte and a catalyst are mixed to obtain a paste, the polymer electrolyte material may not penetrate into the catalyst. Therefore, all platinum fine particles do not function effectively.

この発明は上記課題を解決すべくなされたものであり、その第1の局面は次のように規定される。即ち、
液状媒体に分散された触媒用担体材料へ金属原料微粒子を担持させて触媒の前駆体を調製する触媒調製ステップと、
前記液状媒体を昇華により除去する乾燥ステップと、
を含むことを特徴とする粉体状の触媒の製造方法である。
The present invention has been made to solve the above problems, and the first aspect thereof is defined as follows. That is,
A catalyst preparation step of preparing a catalyst precursor by supporting metal raw material fine particles on a catalyst support material dispersed in a liquid medium; and
A drying step of removing the liquid medium by sublimation;
Is a method for producing a powdery catalyst.

このように規定される第1の局面の触媒の製造方法によれば、乾燥ステップとして、液状媒体を昇華により除去する方法を採用する。このため、触媒調整ステップで得た触媒の前駆体を凝集させることなく乾燥できる。上記製造方法により得られる触媒であれば、例えば他の物質に対する分散性が向上する。
例えば、この方法で得られた燃料電池用触媒であれば、燃料電池の電極用ペースト中において良好な分散性を確保できる。
上記乾燥ステップにおける液状媒体の昇華の方法としては、真空凍結法を採用することができる(第2の局面)。真空凍結法により乾燥させることで、さらに凝集の少ない触媒を得ることが可能である。
本発明の製造方法において、前記液状媒体として水を、前記触媒用担体材料としてカーボン粒子を採用することができる。
また、触媒は、用いられる触媒用担体材料の粒子が小さいほど、凝集しやすい性質を持つため、本発明の製造方法の効果がより発揮されることとなる。
According to the method for producing a catalyst of the first aspect thus defined, a method of removing the liquid medium by sublimation is employed as the drying step. For this reason, the catalyst precursor obtained in the catalyst adjustment step can be dried without agglomeration. If it is a catalyst obtained by the said manufacturing method, the dispersibility with respect to another substance will improve, for example.
For example, the fuel cell catalyst obtained by this method can ensure good dispersibility in the fuel cell electrode paste.
As a method for sublimation of the liquid medium in the drying step, a vacuum freezing method can be employed (second aspect). It is possible to obtain a catalyst with less aggregation by drying by a vacuum freezing method.
In the production method of the present invention, water can be used as the liquid medium, and carbon particles can be used as the catalyst support material.
In addition, since the catalyst has a property of being more easily aggregated as the particles of the catalyst carrier material used are smaller, the effect of the production method of the present invention is more exhibited.

本発明の製造方法において、前記触媒調製ステップと前記乾燥ステップとの間に、不純物除去ステップを介在することができる(第3の局面)。   In the production method of the present invention, an impurity removal step can be interposed between the catalyst preparation step and the drying step (third aspect).

図1は本発明の実施例の真空凍結乾燥装置の概念図である。FIG. 1 is a conceptual diagram of a vacuum freeze-drying apparatus according to an embodiment of the present invention.

以下、燃料電池用触媒を例に採り、本発明の具体化した実施形態を詳細に説明する。
<触媒調製ステップ>
触媒用担体材料へ金属原料微粒子を担持させて燃料電池用触媒の前駆体とする。
ここに触媒用担体材料は電気化学的に安定で、単位体積当たりの広い面積を有し、かつ導電性を備えることが好ましい。かかる触媒用担体材料として、カーボン粒子の他、導電性セラミックス、導電性酸化物、導電性樹脂等を挙げることができる。
燃料電池用触媒の金属微粒子は燃料電池反応の活性点を提供し、白金やルテニウム及びこれらの合金等の微粒子を用いることができる。
触媒用担体材料へ金属微粒子を担持させる方法は両者の材質や触媒の用途等に応じて、含浸法、コロイド法及び析出沈殿法等の周知の方法のなかから適宜選択する。
Hereinafter, a specific embodiment of the present invention will be described in detail by taking a fuel cell catalyst as an example.
<Catalyst preparation step>
Metal raw material fine particles are supported on a catalyst carrier material to form a fuel cell catalyst precursor.
Here, the catalyst support material is preferably electrochemically stable, has a wide area per unit volume, and has conductivity. Examples of the catalyst support material include carbon particles, conductive ceramics, conductive oxides, conductive resins, and the like.
The metal fine particles of the fuel cell catalyst provide an active site for the fuel cell reaction, and fine particles of platinum, ruthenium, and alloys thereof can be used.
The method for supporting the metal fine particles on the catalyst carrier material is appropriately selected from well-known methods such as impregnation method, colloid method and precipitation-precipitation method according to the material of both materials and the application of the catalyst.

なお、担持方法によっては、金属微粒子をそのまま金属の状態で担体材料に担持させる場合と、金属酸化物等の金属化合物のかたちで担体材料に担持させる場合がある。後者の場合は、液状媒体を除去した後、還元等により金属に結合している原子を除去して金属単体の微粒子とする。
この明細書では、液状媒体の下で担体材料に金属微粒子や金属化合物の微粒子が担持されたものを「燃料電池用触媒の前駆体」とよぶ。また、この前駆体において金属微粒子や金属化合物微粒子を「金属原料微粒子」という。
Depending on the loading method, there are a case where the metal fine particles are supported on the carrier material in a metal state as it is, and a case where the metal fine particles are supported on the carrier material in the form of a metal compound such as a metal oxide. In the latter case, after removing the liquid medium, atoms bonded to the metal are removed by reduction or the like to form fine particles of a single metal.
In this specification, a material in which metal fine particles or metal compound fine particles are supported on a carrier material under a liquid medium is called a “precursor of a fuel cell catalyst”. In this precursor, metal fine particles and metal compound fine particles are referred to as “metal raw material fine particles”.

燃料電池用触媒の前駆体は液状媒体中に存在するので、媒体の量の調整や分散剤の添加や、超音波等の外部エネルギーの供給等により、これを分散させることは比較的容易に行える。液状媒体中において高い分散状態を得ることにより、液状媒体を昇華した後において、より細かい粒子の燃料電池用触媒を得ることができる。
燃料電池用触媒の高い分散性を得るには、担持材料自体の凝集を解いて液状媒体中に高分散状態とし、これに金属原料微粒子を担持させることが好ましい。また、担持材料へ金属原料微粒子を担持させた後に担持材料の凝集を解いて液状媒体中に高分散状態とすることもできる。
いずれの場合も、液状媒体が存在するので、湿式粉砕を利用できる。湿式粉砕としてボールミル法やビーズミル法を用いられる。
Since the precursor of the fuel cell catalyst exists in the liquid medium, it can be relatively easily dispersed by adjusting the amount of the medium, adding a dispersant, supplying external energy such as ultrasonic waves, and the like. . By obtaining a highly dispersed state in the liquid medium, a finer particle fuel cell catalyst can be obtained after sublimation of the liquid medium.
In order to obtain high dispersibility of the fuel cell catalyst, it is preferable to break the agglomeration of the support material itself so that it is in a highly dispersed state in the liquid medium and to support the metal raw material fine particles thereon. Further, after the metal raw material fine particles are supported on the support material, the support material can be agglomerated to be in a highly dispersed state in the liquid medium.
In either case, wet pulverization can be used because a liquid medium is present. A ball mill method or a bead mill method is used as the wet pulverization.

上記ボールミル法、ビーズミル法において、触媒用担体材料を微粉砕するためのエネルギーは、粉砕回転数、粉砕時間、メディアの径及び数、触媒用担体材料と液体とメディアの比率等を幅広く変化させることにより制御することができる。   In the above ball mill method and bead mill method, the energy for finely pulverizing the catalyst carrier material can vary widely, such as the number of grinding revolutions, the grinding time, the diameter and number of media, and the ratio between the catalyst carrier material and the liquid to media Can be controlled.

なお、燃料電池用触媒の前駆体を調製する際に種々の不純物が混入し、また担体材料自体に吸着された不純物が排出される場合がある。特に、担体材料や前駆体へ湿式粉砕を施したとき、担体材料に吸着された不純物が排出されることがある。
そこで、得られた燃料電池用触媒の前駆体を洗浄し、不純物を除去する必要が生じる。
かかる洗浄の際に媒体と同一若しくは同種の液体を用いることが好ましいが、不純物の種類によっては媒体を交換することもできる。例えば、触媒調製時には水を媒体として用い、洗浄時には有機系の媒体を採用して油性の不純物を溶解除去する。
In preparing the fuel cell catalyst precursor, various impurities may be mixed and impurities adsorbed on the carrier material itself may be discharged. In particular, when wet pulverization is performed on the support material or precursor, impurities adsorbed on the support material may be discharged.
Therefore, it is necessary to clean the obtained fuel cell catalyst precursor to remove impurities.
It is preferable to use the same or the same type of liquid as that used for the cleaning, but the medium can be exchanged depending on the type of impurities. For example, water is used as a medium during catalyst preparation, and an organic medium is used during washing to dissolve and remove oily impurities.

<乾燥ステップ>
上記触媒調製ステップで作製し、必要に応じて不純物を除去して得た試料(燃料電池用触媒の前駆体と液状媒体との混合物)から液状媒体を昇華により除去する。
通常の乾燥、例えば、大気中60℃で加熱乾燥等行うと、乾燥時に試料中を液体が移動する際、あるいは、試料から液体が蒸発する際に、毛管収縮現象等により燃料電池用触媒の前駆体の粒子が強い結合力で凝集するため、分散状態を維持したまま燃料電池用触媒を得ることが困難である。
昇華により液状媒体を除去すれば、試料中の余分な液状媒体は固体の状態から昇華により気体となって除去されるので、液体の移動を伴わない。よって、何ら凝集することなく燃料電池用触媒の前駆体を乾燥させて、粉体の燃料電池用触媒を得ることができる。
<Drying step>
The liquid medium is removed by sublimation from the sample (mixture of the precursor of the fuel cell catalyst and the liquid medium) prepared by the catalyst preparation step and obtained by removing impurities as necessary.
When performing normal drying, for example, heat drying at 60 ° C. in the atmosphere, when the liquid moves in the sample during drying or when the liquid evaporates from the sample, the precursor of the fuel cell catalyst is caused by a capillary contraction phenomenon or the like. Since the body particles aggregate with a strong binding force, it is difficult to obtain a fuel cell catalyst while maintaining a dispersed state.
If the liquid medium is removed by sublimation, the excess liquid medium in the sample is removed from the solid state as a gas by sublimation, so that the liquid does not move. Therefore, the fuel cell catalyst precursor can be dried without agglomeration to obtain a powdered fuel cell catalyst.

上記乾燥ステップは、媒体の移動を実質的に伴わない昇華により液状媒体を除去できればよい。
かかる昇華の方法として減圧下での凍結乾燥が挙げられる。凍結や減圧の条件は媒体や触媒の材質等により任意に選択できる。
例えば、カーボン粒子を担体として、かつ水を媒体として選択した場合、真空条件は、温度によって異なるが、水が凍結し、固体から気体に昇華できるような圧力、すなわち水の昇華曲線より低い圧力であることが必要である。
凍結条件は0℃以下であれば特に限定されないが、触媒の凝集を防ぐために急速冷凍することが好ましい。
また、凍結する前、必要量を超えた部分の媒体をろ過や、加熱等の方法で除去しておくこと好ましい。
The drying step is not limited as long as the liquid medium can be removed by sublimation without substantial movement of the medium.
An example of such a sublimation method is lyophilization under reduced pressure. Freezing and decompression conditions can be arbitrarily selected depending on the material of the medium and the catalyst.
For example, when carbon particles are selected as a carrier and water is selected as a medium, the vacuum condition varies depending on the temperature, but at a pressure at which water can be frozen and sublimated from a solid to a gas, that is, a pressure lower than the water sublimation curve. It is necessary to be.
The freezing condition is not particularly limited as long as it is 0 ° C. or lower, but it is preferable to perform quick freezing in order to prevent aggregation of the catalyst.
Moreover, before freezing, it is preferable to remove the part of the medium that exceeds the required amount by a method such as filtration or heating.

凍結乾燥する際に、試料と真空ポンプの間に、液体窒素トラップ等のコールドトラップを設置してもよい。コールドトラップの設置により、より真空度を上げることが可能であるため、乾燥速度を向上することができるからである。乾燥速度を向上させるための手段として、試料の入った容器をヒーター等により加熱することにより、試料温度を適度に上昇させることとしても良い。これらの乾燥速度を向上させるための手段は、いずれか一つを採用しても良いし、併用しても良い。
上記凍結乾燥後の触媒、後述する電極用ペーストを作製する際に、水等の液体との混合割合を厳密に制御することが望まれるため、確実に乾燥させることが必要である。
When freeze-drying, a cold trap such as a liquid nitrogen trap may be installed between the sample and the vacuum pump. This is because the vacuum rate can be further increased by installing a cold trap, so that the drying rate can be improved. As a means for improving the drying rate, the sample temperature may be appropriately increased by heating the container containing the sample with a heater or the like. Any one of these means for improving the drying speed may be employed or may be used in combination.
Since it is desired to strictly control the mixing ratio with a liquid such as water when preparing the catalyst after lyophilization and the electrode paste described later, it is necessary to dry it reliably.

以下、本発明の実施例について説明する。
(実施例)
コロイド法を実行して金属原料微粒子として、コロイド状のPtOを得る。即ち、塩化白金酸を出発原材料とし、水を媒体としてNaHSOを加え、撹拌する。得られたHPt(SOOHの水溶液へNaCOを混合し、さらに過酸化水素水と水酸化ナトリウム水溶液を加えてコロイド状のPtOを得る。
このPtOに対して水を媒体としてカーボン粒子を混合すると、カーボン粒子にPtOが吸着し、担持される(燃料電池用触媒の前駆体)。
このとき、カーボン粒子に不純物が吸着されていることがあるため、かかる前駆体を純水で洗浄する。
Examples of the present invention will be described below.
(Example)
A colloidal method is executed to obtain colloidal PtO 2 as metal raw material fine particles. That is, NaHSO 3 is added using chloroplatinic acid as a starting raw material and water as a medium, and stirred. To the obtained aqueous solution of H 3 Pt (SO 3 ) 2 OH, Na 2 CO 3 is mixed, and hydrogen peroxide solution and aqueous sodium hydroxide solution are further added to obtain colloidal PtO 2 .
When carbon particles are mixed with PtO 2 using water as a medium, PtO 2 is adsorbed and supported on the carbon particles (a precursor of a catalyst for a fuel cell).
At this time, since impurities may be adsorbed to the carbon particles, the precursor is washed with pure water.

なお、カーボン粒子自体が凝集していると、凍結乾燥を実行してもその凝集が解けるわけではないので、カーボン粒子自体を粉砕することが好ましい。この粉砕はPtOコロイドと接触する前であっても、また後であってもよい。
カーボン粒子の粉砕は、媒体である水とともに、ボールミル法やビーズミル法等の湿式粉砕することが好ましい。これにより、微細粉末化が徹底されるとともに、カーボン粒子に付着した不純物を除去できるからである。
If the carbon particles themselves are aggregated, the aggregation is not solved even when freeze drying is performed. Therefore, it is preferable to pulverize the carbon particles themselves. This grinding may be before or after contact with the PtO 2 colloid.
The carbon particles are preferably pulverized together with water as a medium by wet pulverization such as a ball mill method or a bead mill method. This is because fine powdering is thoroughly performed and impurities attached to the carbon particles can be removed.

次に、上記触媒調製ステップで作製した前駆体を真空凍結乾燥法により乾燥させる。図1に、本実施例で行った真空凍結乾燥装置1の概略を示す。
上記触媒調製ステップで作製した前駆体と純水とを含む試料をステンレス製容器に入れ、恒温・真空チャンバー2内に設置する。本実施例では、試料が自然乾燥して前駆体が凝集することのないように、前駆体の調製後、適量の純水(例えば担持体重量に対して約100重量%)を加えることができる。
Next, the precursor produced in the catalyst preparation step is dried by a vacuum freeze-drying method. In FIG. 1, the outline of the vacuum freeze-drying apparatus 1 performed in the present Example is shown.
A sample containing the precursor and pure water produced in the catalyst preparation step is put in a stainless steel container and placed in a constant temperature / vacuum chamber 2. In this example, an appropriate amount of pure water (for example, about 100% by weight with respect to the weight of the support) can be added after the preparation of the precursor so that the sample is not naturally dried and the precursor is aggregated. .

まず、常圧の状態で、チャンバー2内を0℃以下の温度に設定し、試料を完全に凍結させる。続いて、チャンバー2と接続された真空ポンプ3を用いて、チャンバー2内を減圧し、氷の昇華による乾燥を実施する。なお、本実施例では、真空度を上げて乾燥速度を向上させるため、チャンバー2と真空ポンプ3の間にコールドトラップ4として液体窒素トラップを設置する。また、さらに乾燥速度を向上させるため、チャンバー2の下部に設置したヒーター5で加熱し、試料温度を適度に上昇させる。
この凍結乾燥法により、試料中の純水は全て昇華により除去され、触媒調製ステップで作製された燃料電池用触媒の前駆体(カーボン粒子に金属原料微粒子を担持させたもの)を凝集することなく、粉体状態で回収する。
最後に、得られた前駆体を水素気流中において170℃で3時間熱処理を施すことで、カーボン表面に担持された白金酸化物微粒子を金属白金微粒子に還元する。この還元工程を行うことによって、白金触媒の機能を発現させることができる。
燃料電池用触媒の前駆体において担持材料に担持される金属原料微粒子が金属そのものからなるものである場合は当該還元工程は不要である。
First, in a normal pressure state, the inside of the chamber 2 is set to a temperature of 0 ° C. or lower, and the sample is completely frozen. Subsequently, using the vacuum pump 3 connected to the chamber 2, the inside of the chamber 2 is depressurized and drying by sublimation of ice is performed. In this embodiment, a liquid nitrogen trap is installed as a cold trap 4 between the chamber 2 and the vacuum pump 3 in order to increase the degree of vacuum and improve the drying speed. Further, in order to further improve the drying rate, the sample 5 is heated appropriately by the heater 5 installed at the lower part of the chamber 2 to raise the sample temperature appropriately.
By this freeze-drying method, all the pure water in the sample is removed by sublimation, and the precursor of the fuel cell catalyst produced by the catalyst preparation step (carbon particles carrying metal raw material fine particles) is not agglomerated. Collect in powder form.
Finally, the obtained precursor is heat-treated at 170 ° C. for 3 hours in a hydrogen stream, thereby reducing the platinum oxide fine particles supported on the carbon surface to metal platinum fine particles. By performing this reduction step, the function of the platinum catalyst can be expressed.
When the metal raw material particles supported on the support material in the precursor of the fuel cell catalyst are made of the metal itself, the reduction step is not necessary.

上記方法により製造された燃料電池用触媒は、凝集されることなく微粒子の状態を保つこととなる。このような燃料電池用触媒は、電極用ペースト作製の際に、溶媒や電解質溶液等単に混合、あるいはさらに超音波等のエネルギーを適度に加えることで、速やかに液体中で分散して、凝集のない高分散な電極用ペーストを製造することが可能となる。
また、このような電極用ペーストを用いることで、より均質な構造の燃料電池用電極を作製することができ、電極性能を向上させることができる。
The fuel cell catalyst produced by the above method maintains a fine particle state without being agglomerated. Such a fuel cell catalyst can be quickly dispersed in a liquid and aggregated by simply mixing a solvent, an electrolyte solution, etc., or further applying energy such as ultrasonic waves when producing an electrode paste. This makes it possible to produce a highly dispersed electrode paste.
Moreover, by using such an electrode paste, a fuel cell electrode having a more uniform structure can be produced, and the electrode performance can be improved.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

1 真空凍結乾燥装置
2 恒温・真空チャンバー
3 真空ポンプ
4 コールドトラップ
5 ヒーター
1 Vacuum freeze-drying device 2 Constant temperature / vacuum chamber 3 Vacuum pump 4 Cold trap 5 Heater

Claims (3)

液状媒体に分散された触媒用担体材料へ金属原料微粒子を担持させて触媒の前駆体を調製する触媒調製ステップと、
前記液状媒体を昇華により除去する乾燥ステップと、
を含むことを特徴とする粉体状の触媒の製造方法。
A catalyst preparation step of preparing a catalyst precursor by supporting metal raw material fine particles on a catalyst support material dispersed in a liquid medium; and
A drying step of removing the liquid medium by sublimation;
A process for producing a powdery catalyst, comprising:
前記乾燥ステップにおける前記液状媒体の昇華は真空凍結法による、ことを特徴とする請求項1に記載の触媒の製造方法。   The method for producing a catalyst according to claim 1, wherein sublimation of the liquid medium in the drying step is performed by a vacuum freezing method. 前記触媒調製ステップと前記乾燥ステップとの間に、不純物除去ステップが介在される、ことを特徴とする請求項1又は2に記載の触媒の製造方法。   The method for producing a catalyst according to claim 1, wherein an impurity removal step is interposed between the catalyst preparation step and the drying step.
JP2009232156A 2009-10-06 2009-10-06 Catalyst production method Expired - Fee Related JP5370053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232156A JP5370053B2 (en) 2009-10-06 2009-10-06 Catalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232156A JP5370053B2 (en) 2009-10-06 2009-10-06 Catalyst production method

Publications (2)

Publication Number Publication Date
JP2011078890A true JP2011078890A (en) 2011-04-21
JP5370053B2 JP5370053B2 (en) 2013-12-18

Family

ID=44073534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232156A Expired - Fee Related JP5370053B2 (en) 2009-10-06 2009-10-06 Catalyst production method

Country Status (1)

Country Link
JP (1) JP5370053B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845512A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for phosphoric acid type fuel cell
JPH08185867A (en) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Electrode for solid high polymer type fuel cell and its manufacture
JPH08236123A (en) * 1994-12-28 1996-09-13 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH09199138A (en) * 1996-01-19 1997-07-31 Toyota Motor Corp Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2003086190A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell and method of manufacture
JP2004018361A (en) * 2002-06-20 2004-01-22 Toshiba Corp Metal grain-supporting compound oxide sintered compact and method of producing the same
JP2005519755A (en) * 2001-09-21 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode electrode catalyst for coating substrate used in fuel cell
JP2005528981A (en) * 2002-06-12 2005-09-29 スルザー メテコ(カナダ)インコーポレイテッド Hydrometallurgical process for the production of supported catalysts
JP2007311354A (en) * 2006-05-16 2007-11-29 Samsung Sdi Co Ltd Catalyst coated membrane, method of manufacturing membrane electrode assembly containing the same and fuel cell using membrane electrode assembly
JP2008251413A (en) * 2007-03-30 2008-10-16 Gunma Univ Manufacturing method of metal-oxide carrying carbon
JP2009059600A (en) * 2007-08-31 2009-03-19 Equos Research Co Ltd Paste for electrode of fuel cell, electrode, and membrane electrode assembly as well as manufacturing method of fuel cell system
JP2009117069A (en) * 2007-11-02 2009-05-28 Equos Research Co Ltd Paste for electrode of fuel cell, membrane electrode assembly, and method of manufacturing paste for electrode
JP2009137795A (en) * 2007-12-06 2009-06-25 Tanaka Chemical Corp Method for producing nickel oxide

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845512A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for phosphoric acid type fuel cell
JPH08185867A (en) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Electrode for solid high polymer type fuel cell and its manufacture
JPH08236123A (en) * 1994-12-28 1996-09-13 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH09199138A (en) * 1996-01-19 1997-07-31 Toyota Motor Corp Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2003086190A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell and method of manufacture
JP2005519755A (en) * 2001-09-21 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode electrode catalyst for coating substrate used in fuel cell
JP2005528981A (en) * 2002-06-12 2005-09-29 スルザー メテコ(カナダ)インコーポレイテッド Hydrometallurgical process for the production of supported catalysts
JP2004018361A (en) * 2002-06-20 2004-01-22 Toshiba Corp Metal grain-supporting compound oxide sintered compact and method of producing the same
JP2007311354A (en) * 2006-05-16 2007-11-29 Samsung Sdi Co Ltd Catalyst coated membrane, method of manufacturing membrane electrode assembly containing the same and fuel cell using membrane electrode assembly
JP2008251413A (en) * 2007-03-30 2008-10-16 Gunma Univ Manufacturing method of metal-oxide carrying carbon
JP2009059600A (en) * 2007-08-31 2009-03-19 Equos Research Co Ltd Paste for electrode of fuel cell, electrode, and membrane electrode assembly as well as manufacturing method of fuel cell system
JP2009117069A (en) * 2007-11-02 2009-05-28 Equos Research Co Ltd Paste for electrode of fuel cell, membrane electrode assembly, and method of manufacturing paste for electrode
JP2009137795A (en) * 2007-12-06 2009-06-25 Tanaka Chemical Corp Method for producing nickel oxide

Also Published As

Publication number Publication date
JP5370053B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2021083023A1 (en) Method for preparing supported metal nano-particles
JP4787968B2 (en) High-efficiency manufacturing method of activated carbon supported with nanometal or metal oxide
JP6198930B2 (en) Nitrogen-containing carbon material, production method thereof, slurry, ink, and fuel cell electrode
CN100572457C (en) Bortz powder method of modifying and modified device
JP2007517760A (en) Carbon nanotube paste and method of use
CN105271170B (en) Preparation method of nano carbon and composite material of nano carbon
CN105498649A (en) Graphene nano particle compound aerogel microspheres and preparation method thereof
CN103449427A (en) Preparation method of porous graphene-ferric oxide composite material
CN108658038B (en) Based on LiAlH4Hydrogen storage material and method for producing the same
CN108723382A (en) A kind of freeze drying process of preparing same of ultrafine yttria doping tungsten composite powder
CN103482615A (en) Preparation method of foamed graphene-ZnO composite material
CN114196970B (en) Oxygen evolution catalyst and preparation method thereof
CN113600223B (en) Fe (Fe) 2 P/nitrogen vacancy g-C 3 N 4 Preparation method and application of nanosheet photocatalyst
JP4728142B2 (en) Method for producing carbon airgel powder
CN109772342A (en) A kind of preparation method of hydrogenation of carbon dioxide methanol catalyst
JP5370053B2 (en) Catalyst production method
JP3885905B2 (en) Electric double layer capacitor
JP5272994B2 (en) Method for treating catalyst-carrying carbon and electrode for fuel cell
TWI693194B (en) Modification method of graphene oxide materials with different morphologies and its application in energy storage system
CN113161161A (en) Nano carbon composite resin hard carbon electrode material and preparation method and application thereof
CN106602085B (en) A kind of preparation method of anode of fuel cell palladium ruthenium nanocatalyst
JP2009059694A (en) Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
CN115970540A (en) Preparation method of active carbon composite material loaded with nano metal or metal oxide
JP4996016B2 (en) Niobium oxide slurry, niobium oxide powder and production method thereof
CN109158098A (en) Expanded graphite solid catalyst carrier, preparation method and complex solid catalyst and preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5370053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees