JP2011074733A - Reinforcing structure of frame - Google Patents

Reinforcing structure of frame Download PDF

Info

Publication number
JP2011074733A
JP2011074733A JP2009230123A JP2009230123A JP2011074733A JP 2011074733 A JP2011074733 A JP 2011074733A JP 2009230123 A JP2009230123 A JP 2009230123A JP 2009230123 A JP2009230123 A JP 2009230123A JP 2011074733 A JP2011074733 A JP 2011074733A
Authority
JP
Japan
Prior art keywords
column
damper
joint
girder
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230123A
Other languages
Japanese (ja)
Other versions
JP5583381B2 (en
Inventor
Tsutomu Iiboshi
力 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2009230123A priority Critical patent/JP5583381B2/en
Publication of JP2011074733A publication Critical patent/JP2011074733A/en
Application granted granted Critical
Publication of JP5583381B2 publication Critical patent/JP5583381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing structure of a frame which can control the rupture of a damper and which can sufficiently make use of the energy-absorbing performance of the damper. <P>SOLUTION: The damper 5 is constructed in proximity to the column-girder joint part B constituted by joining a column 1 and a girder 2 together spreading over the column 1 and the girder 2, thus reinforcement is performed. The column 1 and the girder 2 have yield strength exceeding the entire plastic yield strength of the damper 5, and the column-girder joint part B is constituted by the retention yield strength joint between the column 1 and the girder 2. The girder 2 generates the maximum moment in the beam end part forming the column-girder joint part B by the increase in the further external force after the damper 5 is yielded ahead of the girder 2 by the action of the external force. A plasticization area 2h where plasticization resulting from the maximum moment is expected is provided in the beam end part, and the damper 5 is connected to the girder 2 on the side which is closer to the center of the span than to the plasticization area 2h of the beam end part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は柱と梁との接合部を効果的に補強する架構の補強構造に関するものである。   The present invention relates to a frame reinforcing structure that effectively reinforces a joint between a column and a beam.

従来から、鉄骨造の建物においては、柱と梁の接合部をピン接合とし、当該接合部の近傍に方杖材を設け、当該方杖材により地震等の水平力に抵抗するように構成する構成が採用されていることが知られている。
例えば特許文献1には、鋼製の柱梁と方杖ブレースとを有する柱梁仕口構造を有する架構において、梁が第1の接合部材を介して乾式接合で柱に接合されると共に、柱梁間に架設される方杖ブレースがその両端を第2の接合部材を介して乾式接合で柱および梁にそれぞれ接合されている構成が開示されている。
かかる構成によれば、当該架構に荷重が作用する場合でも、梁と柱との間で曲げモーメントと軸方向力とせん断力が伝達可能である。また、当該特許文献1の構成においては、接合部の曲げ強度が梁部材の曲げ強度よりも低く設定されている。
Conventionally, in steel-frame buildings, the joint between the column and the beam is a pin joint, and a cane material is provided in the vicinity of the joint, and the brace material is configured to resist horizontal forces such as earthquakes. It is known that a configuration is employed.
For example, in Patent Document 1, in a frame having a column beam joint structure having a steel column beam and a cane brace, the beam is bonded to the column by dry bonding via a first bonding member, and the column There is disclosed a configuration in which a cane brace installed between beams is bonded to a column and a beam by dry bonding at both ends thereof via a second bonding member.
According to such a configuration, even when a load is applied to the frame, a bending moment, an axial force, and a shearing force can be transmitted between the beam and the column. Moreover, in the structure of the said patent document 1, the bending strength of a junction part is set lower than the bending strength of a beam member.

特開2007−332682号公報JP 2007-332682 A

上記特許文献1の構成の如き接合部の曲げ強度を梁部材の曲げ強度より低いものとした架構では、想定する地震に対して、方杖材が降伏して地震エネルギーを吸収することにより、梁部材に作用する曲げモーメントをその梁部材の曲げ強度に到達させないことを前提としている。
ところで、近年観測される地震動は、その規模が年々大きくなっている。かかる点に鑑みると、上記特許文献1の如き構成においては、設計当初に想定していた地震を超える震度の地震が発生し、想定よりも大きな地震によるエネルギーが架構に作用することにより、方杖材が吸収できるエネルギーを超えて地震エネルギーが入力されると、方杖材は破断することとなり、その結果として梁部材に作用する曲げモーメントが大きくなり、当該曲げモーメントがその梁部材の曲げ強度に到達することが充分に予想される。
In a frame in which the bending strength of the joint as in the configuration of Patent Document 1 is lower than the bending strength of the beam member, the beam member yields and absorbs the earthquake energy with respect to the assumed earthquake. It is assumed that the bending moment acting on the member does not reach the bending strength of the beam member.
By the way, the magnitude of seismic motion observed in recent years is increasing year by year. In view of this point, in the configuration as described in Patent Document 1, an earthquake having a seismic intensity exceeding the earthquake assumed at the beginning of the design occurs, and energy from the earthquake larger than the assumption acts on the frame, so that the cane If seismic energy is input beyond the energy that the material can absorb, the cane material will break, and as a result, the bending moment acting on the beam member will increase, and the bending moment will be added to the bending strength of the beam member. It is fully expected to be reached.

しかしながら、特許文献1の構成においては、接合部の曲げ強度が梁部材の曲げ強度より低いため、方杖材が塑性変形した後にさらに過大な荷重が作用すると、梁の塑性変形に先んじて接合部が破壊してしまう虞がある。このため、結局のところ荷重作用時にエネルギー吸収を期待できるのは実質的に方杖材のみとなり、仮に想定外の地震等が発生して過大な荷重が入力されてダンパーが破断してしまうと、架構全体の層間変形が急増して倒壊の危険性が一気に向上してしまうという問題がある。
そこで、本発明は、上記従来技術の問題を解決し、方杖材の破断を抑制し、且つ、当該方杖材のエネルギー吸収能を充分に発揮させることができる架構の補強構造を提供することを目的とするものである。
However, in the configuration of Patent Document 1, since the bending strength of the joint portion is lower than the bending strength of the beam member, if an excessive load is applied after the brace material is plastically deformed, the joint portion precedes the plastic deformation of the beam. May be destroyed. For this reason, after all, it is only the cane material that can expect energy absorption at the time of load action, if an unexpected earthquake etc. occurs and an excessive load is input and the damper breaks, There is a problem that the deformation of the entire frame is rapidly increased and the risk of collapse is rapidly improved.
Accordingly, the present invention provides a frame reinforcing structure that solves the above-described problems of the prior art, suppresses breakage of the cane material, and can sufficiently exhibit the energy absorbing ability of the cane material. It is intended.

上記課題解決のための具体的手段として、本願発明は、
(1)鋼材からなる柱と梁とを接合してなる柱梁接合部の近傍に、前記柱と梁とに亘って方杖材を架設して補強された架構の補強構造であって、
前記柱及び梁が前記方杖材の全塑性耐力を上回る耐力を有し、
前記柱梁接合部は、前記柱と梁とを剛接合又は半剛接合して形成される共に、前記柱及び梁の全塑性耐力を上回る耐力を有する保有耐力接合とされており、
前記梁は、荷重により前記梁よりも先に前記方杖材を降伏させた後のさらなる荷重の増大によって、前記柱梁接合部を形成する梁端部で最大モーメントを発生させるものであり、
該梁端部には、該最大モーメントに起因して塑性化が予定される塑性化領域が設けられ、
前記方杖材は、当該梁端部の塑性化領域よりもスパン中央側にて前記梁に連結されている
ことを特徴としている。
As a specific means for solving the above problems, the present invention provides:
(1) A reinforcing structure for a frame that is reinforced by laying a cane material over the column and the beam in the vicinity of a column beam joint formed by joining a column made of steel and a beam,
The columns and beams have a yield strength that exceeds the total plastic yield strength of the cane material;
The column-beam joint is formed by rigidly or semi-rigidly joining the column and the beam, and is a retained proof joint having a proof strength exceeding the total plastic proof strength of the column and the beam,
The beam is to generate a maximum moment at the beam end forming the column beam joint by further increasing the load after yielding the cane material ahead of the beam due to the load,
The beam end is provided with a plasticized region where plasticization is expected due to the maximum moment,
The cane material is connected to the beam at the center side of the span from the plasticized region of the beam end.

これによれば、剛接合又は半剛接合である柱梁接合部に方杖材を設置して補強された架構は、ピン接合である柱梁接合部に方杖材を設置して補強された構造より、地震力や風などの水平力(荷重)に対する建物の剛性が高く、地震や暴風時の層間変形の応答を抑えることができる。この結果、内外装の損傷を抑えられ、災害時の復旧コストを低減させることができる。
また、方杖材を設置する柱梁接合部を、接合される柱及び梁の全塑性耐力を上回る耐力を有するようにした保有耐力接合とすることで以下のような効果が得られる。
耐震設計上想定している規模を上回る地震が発生し、当該地震によるエネルギーが方杖材の吸収可能なエネルギーを超えて架構に作用した場合、当該方杖材の吸収可能なエネルギーを超えるエネルギーは、架構に作用することとなるが、柱梁接合部は、接合される柱および梁の全塑性耐力を上回る耐力を有しているので、柱梁が塑性化してエネルギーを吸収しても壊れることはなく、当該エネルギーを柱梁を塑性化させることで吸収することができる。
According to this, the frame that was reinforced by installing the cane material at the column beam joint that is a rigid or semi-rigid connection was reinforced by installing the cane material at the column beam joint that is a pin connection. The structure has higher rigidity against horizontal forces (loads) such as seismic force and wind, and the response of inter-layer deformation during earthquakes and storms can be suppressed. As a result, damage to the interior and exterior can be suppressed, and the recovery cost during a disaster can be reduced.
Moreover, the following effects are acquired by making the column beam connection part which installs a cane material into possession proof stress joining which has the proof stress which exceeds the total plastic proof stress of the column and beam to be joined.
If an earthquake that exceeds the scale assumed in the earthquake-resistant design occurs and the energy from the earthquake exceeds the energy that can be absorbed by the cane material, the energy that exceeds the energy that can be absorbed by the cane material is However, since the beam-column joint has a proof strength that exceeds the total plastic proof strength of the columns and beams to be joined, it will break even if the beam is plasticized and absorbs energy. Rather, the energy can be absorbed by plasticizing the column beam.

また、方杖材を設置して補強しても、地震による外力の増大によって梁端部の塑性化が避けられない場合がある。この場合、梁端部で全塑性耐力に達すると、塑性ヒンジが形成され、梁端部に塑性化する領域が生じることとなり、かかる領域が塑性変形することで、地震エネルギーが吸収されることとなるのである。ここで、梁端部の塑性化領域にて方杖材と梁とを連結すると、方杖材が取り付く梁端部が塑性化した後は方杖材からの力が梁に十分に伝達されず、方杖材によるエネルギー吸収効果および補強効果を十分に発揮できず、架構の層間変形が急増することが考えられ、そうなると、梁端部の曲げモーメントはさらに上昇して、梁の損傷が増大する。これに対し、梁端部の塑性化領域よりスパン中央側にて梁と方杖材とを連結させておくと、梁端部に塑性化領域が形成されても、方杖材は、その梁端部の塑性変形の影響を受けない位置で梁に連結されているので、梁の塑性化後であっても方杖材による補強効果を十分に発揮させることができる。   In addition, even if a brace material is installed and reinforced, there is a case where plasticization of the beam end portion cannot be avoided due to an increase in external force due to an earthquake. In this case, when the total plastic yield strength is reached at the beam end, a plastic hinge is formed, and a plasticizing region is generated at the beam end, and the seismic energy is absorbed by plastic deformation of the region. It becomes. Here, if the cane material and the beam are connected in the plasticized region of the beam end, the force from the cane material is not sufficiently transmitted to the beam after the beam end to which the cane material is attached becomes plastic. It is considered that the energy absorption effect and reinforcement effect by the cane material cannot be fully exhibited, and the interlaminar deformation of the frame is considered to increase rapidly. Then, the bending moment at the beam end further increases and the damage to the beam increases. . On the other hand, if the beam and the cane material are connected on the center side of the span from the plasticized region at the beam end, the cane material will be attached to the beam even if the plasticized region is formed at the beam end. Since it is connected to the beam at a position that is not affected by the plastic deformation of the end portion, the reinforcing effect of the brace material can be sufficiently exerted even after the beam is plasticized.

(2)また、前記梁端部と前記柱とがボルト接合されることで前記柱梁接合部が形成されていることが好ましい。
これによれば、梁端部と柱梁接合部がボルト接合であることにより、ボルトの伸びによる塑性変形が生じる。その結果、梁端部を溶接により接合する場合に比べ、梁端部の塑性化領域は短くなる。部材を設置する自由度が高まる。
(3)また、前記方杖材は、前記柱、梁及び柱梁接合部に作用する荷重によるエネルギーを吸収するダンパーであることが好ましい。
これによれば、方杖材がエネルギーを吸収するダンパーとして機能することとなり、揺れの初期段階から効率よくエネルギーを吸収するので、建物の最大変形を抑え、損傷を小さくできる。
(4)また、前記方杖材を形成するダンパーは、低降伏点鋼を用いて形成されていることが好ましい。
これによれば、方杖材が低降伏点鋼からなるダンパーであるため、ゴムや樹脂等の粘弾性体と異なり、温度により性能が変化することなく、時間的安定性および耐久性も極めて高い。したがって、温度変化や時間経過(経年劣化)によらず、架構の耐震性を安定的に発揮させることができる。
(2) Moreover, it is preferable that the said beam-beam junction part is formed by the said beam end part and the said column being bolt-joined.
According to this, since the beam end and the column beam joint are bolt joints, plastic deformation due to the elongation of the bolts occurs. As a result, the plasticized region at the beam end becomes shorter than when the beam end is joined by welding. The degree of freedom to install the member is increased.
(3) Moreover, it is preferable that the said cane material is a damper which absorbs the energy by the load which acts on the said column, a beam, and a column beam junction part.
According to this, since the brace material functions as a damper that absorbs energy and efficiently absorbs energy from the initial stage of shaking, the maximum deformation of the building can be suppressed and damage can be reduced.
(4) Moreover, it is preferable that the damper which forms the said cane material is formed using low yield point steel.
According to this, since the brace material is a damper made of low yield point steel, unlike viscoelastic bodies such as rubber and resin, performance does not change with temperature, and temporal stability and durability are also extremely high. . Therefore, it is possible to stably exhibit the earthquake resistance of the frame regardless of temperature change and time passage (aging deterioration).

本発明によれば、方杖材の破断を抑制して当該方杖材のエネルギー吸収能を充分に発揮させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fracture | rupture of a cane material can be suppressed and the energy absorption capacity of the said cane material can fully be exhibited.

架構の平面的グリッド構成を示す図である。It is a figure which shows the planar grid structure of a frame. 架構の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a frame. 架構を構成する柱と大梁の接合状態を示す図である。It is a figure which shows the joining state of the pillar and the girder which comprise a frame. 架構を構成する柱と大梁の接合状態を示す図である。It is a figure which shows the joining state of the pillar and the girder which comprise a frame. ダンパーの構成を示す図である。It is a figure which shows the structure of a damper. ダンパーを付加した状態の柱と大梁の接合部を示す図である。It is a figure which shows the junction part of the column of a state which added the damper, and a big beam. 柱梁接合部周りの荷重の作用によるモーメントの変化を示す模式図である。It is a schematic diagram which shows the change of the moment by the effect | action of the load around a beam-column joint part.

次に、本発明の最も好ましい実施形態について図を参照して具体的に説明する。本実施形態は、鉄骨造3階建ての架構を有する工業化住宅における補強構造の例であり、図1は架構の平面的グリッド構成を示す図、図2は架構の全体構成を示す斜視図、図3、図4は架構を構成する柱と大梁の接合状態を示す図、図5はダンパーの構成を示す図、図6はダンパーを付加した状態の柱と大梁の接合部を示す図である。図7は柱梁接合部周りの荷重の作用によるモーメントの変化を示す模式図である。   Next, the most preferred embodiment of the present invention will be specifically described with reference to the drawings. This embodiment is an example of a reinforcing structure in an industrialized house having a three-storied steel frame structure, FIG. 1 is a diagram showing a planar grid configuration of the frame, FIG. 2 is a perspective view showing the overall configuration of the frame, FIG. 3 and 4 are diagrams showing the joining state between the pillars and the large beams constituting the frame, FIG. 5 is a diagram showing the construction of the dampers, and FIG. 6 is a diagram showing the joints between the pillars and the large beams with the dampers added. FIG. 7 is a schematic diagram showing a change in moment due to the action of a load around the beam-column joint.

図1、2に示すように、住宅Aは、妻方向が2スパンで合計6つの平面グリッドからなる3層の架構からなる。図2に示すように、住宅Aの架構は、1層から3層まで連続した通し柱形式の複数の柱1と、各階層において隣接する柱1どうしを連結する複数の大梁(梁)2と、大梁2の直下に格子状に形成された鉄筋コンクリート造の基礎3とで構成されている。なお、柱脚部は特開平01−203522号公報に開示された露出型固定柱脚工法にて基礎に接合されている。
この架構を構築したのち、相対する大梁2の間に小梁を適宜架け渡した上でALC(軽量気泡コンクリート)からなる床パネルを梁の上フランジに載置して床が構成され、外周部の大梁2にALCからなる壁パネルを取り付けることによって外壁が構成されて住宅Aの躯体が完成する。
As shown in FIGS. 1 and 2, the house A is composed of a three-layered frame composed of a total of six planar grids with a span of 2 spans. As shown in FIG. 2, the frame of the house A includes a plurality of columns 1 in the form of continuous columns from one layer to three layers, and a plurality of large beams (beams) 2 that connect adjacent columns 1 in each layer, It is composed of a reinforced concrete foundation 3 formed in a lattice shape immediately below the large beam 2. The column base is joined to the foundation by an exposed fixed column base method disclosed in Japanese Patent Laid-Open No. 01-203522.
After constructing this frame, the floor is constructed by placing a small beam between the opposing large beams 2 and placing a floor panel made of ALC (lightweight cellular concrete) on the upper flange of the beam. A wall panel made of ALC is attached to the large beam 2 to form an outer wall, and the housing of the house A is completed.

図3、図4に示すように、柱1は、外形寸法が150mm角の角形鋼管からなる通し柱となっており、柱脚プレート1aの接合部から中途部分に形成された柱・柱接合部1bまでの部分である下部柱1cは、22mmの肉厚を有する横断面内に溶接による継目が存在しない角型鋼管であり、長さ方向についても、柱部材を長さ方向に連結する節を有することなく構成されている。下部柱1cの上端部に連結されて上部の柱を構成する上部柱1dは、外形寸法が下部柱1cと同一の150mm角ではあるが、下部柱1cよりも薄い4.5mm〜6.0mmの肉厚を有する角形鋼管で構成されている。   As shown in FIGS. 3 and 4, the column 1 is a through column made of a square steel pipe having an outer dimension of 150 mm square, and a column / column junction 1b formed in the middle of the junction of the column base plate 1a. The lower column 1c, which is a part up to, is a square steel pipe having no welded seam in a cross section having a thickness of 22 mm, and also has a node that connects the column members in the length direction in the length direction. It is configured without. The upper column 1d connected to the upper end of the lower column 1c and constituting the upper column has a 150 mm square whose outer dimensions are the same as the lower column 1c, but is 4.5 mm to 6.0 mm thinner than the lower column 1c. It is composed of a square steel pipe having a wall thickness.

柱1は、各階層の標準的な階高(大梁上端面間の離間寸法)が2870mmとなるように大梁2の接合高さ位置が設定されており、当該高さ位置にて、柱1の各面には大梁2のエンドプレート2dの孔2eに対応する孔1fが複数個連続して穿たれており、これによって各階の大梁2を受ける梁受け部1eが形成されている。なお、各孔1fの内壁には、ネジが切られている。
梁受け部1eは、大梁2の孔2eと同様に、上部2段と最下段の計6個の孔1fが、大梁2と接合するボルト4を螺入する孔であり、下から2段目の孔2個は位置合わせ用の孔である。柱・柱接合部1bは、特開平6−180026号公報、特開平8−60740号公報等に記載された公知の接合部構造によって3階の大梁2との梁受け部1eの上方に形成されている。
The column 1 is set at the joint height position of the large beam 2 so that the standard floor height of each layer (the distance between the upper end surfaces of the large beam) is 2870 mm. A plurality of holes 1f corresponding to the holes 2e of the end plate 2d of the large beam 2 are continuously formed on each surface, thereby forming a beam receiving portion 1e for receiving the large beam 2 on each floor. The inner wall of each hole 1f is threaded.
In the same manner as the hole 2e of the large beam 2, the beam receiving portion 1e is a hole into which a total of six holes 1f in the upper two steps and the lowermost step are screwed into the bolts 4 to be joined to the large beam 2, and the second step from the bottom. These two holes are alignment holes. The column / column joint portion 1b is formed above the beam receiving portion 1e with the large beam 2 on the third floor by a known joint structure described in JP-A-6-180026, JP-A-8-60740, and the like. ing.

柱1の各面において、2階の大梁2を受ける梁受け部1eから下方向及び上方向に所定寸法離間した位置と、3階の大梁2を受ける梁受け部1eの下方向に所定方向離隔した位置には、後述するダンパー(方杖材)5をボルト接合する為の複数のボルト孔が穿たれてダンパー5を受けるダンパー受け部1gが形成されている。下部柱1cはシームレスパイプで構成されているのでダンパー受け部1gはボルト孔を穿設するだけで容易に形成することができ接合の高さを自由に設定することができる。なお、各ボルト孔の内壁には、ネジが切られている。   Each surface of the pillar 1 is spaced apart from the beam receiving portion 1e that receives the second-floor beam 2 by a predetermined distance and is spaced in a predetermined direction from the beam receiving portion 1e that receives the third-floor beam 2 to the lower direction. In this position, a damper receiving portion 1g for receiving a damper 5 is formed by drilling a plurality of bolt holes for bolting a damper (cane member) 5 to be described later. Since the lower column 1c is formed of a seamless pipe, the damper receiving portion 1g can be easily formed simply by drilling a bolt hole, and the joining height can be freely set. A screw is cut on the inner wall of each bolt hole.

このように、柱1のうち下部柱1bを横断面内に溶接による継目が存在しないシームレスパイプで構成したので、ダンパー5を受ける受け部として柱の所定位置にジョイントボックス等を溶接する必要がなく、溶接欠陥によって性能が低下する可能性がない。従って、耐震性能に対する柱1の信頼性を高めることができる。また、シームレスパイプで構成された範囲内においては、柱1の側面の任意の位置にボルト孔を設けるだけでダンパー5を接合することができるので、ダンパー5の接合高さの設定を、住宅Aに求められる構造耐力や有効な室内空間の広さ等に応じて容易に変更できる。   Thus, since the lower column 1b of the columns 1 is formed of a seamless pipe having no welded seam in the cross section, there is no need to weld a joint box or the like at a predetermined position of the column as a receiving portion for receiving the damper 5. There is no possibility of performance degradation due to welding defects. Therefore, the reliability of the pillar 1 with respect to seismic performance can be improved. Moreover, in the range comprised by the seamless pipe, since the damper 5 can be joined only by providing the bolt hole at an arbitrary position on the side surface of the column 1, the setting of the joining height of the damper 5 can be set in the house A. Can be easily changed according to the structural strength required, the size of an effective indoor space, and the like.

図3に示すごとく、大梁2は、一対のフランジ2a、2bをウェブ2cによって連結して形成されるH形鋼からなり、全ての階層における全ての大梁2は、梁成が250mm、上下のフランジ2a、2bの幅が125mm、厚みが9mm、ウェブ2cの厚みが6mmに統一されている。
大梁2の各端部には、柱1に接合されるエンドプレート2dが溶接により取り付けられている。該エンドプレート2dは、所定の厚さを有する平板状に形成されており、該エンドプレートには、横方向に中心から左右対称に2列、縦方向に等間隔に4段、同一径の孔2eが計8箇所穿たれている。孔2eのうち上部2段と最下段の計6個の孔が柱1との接合に使用するボルト4を挿通する為の孔である。
なお、下から2段目の孔2個は柱1に大梁2を取り付ける接合作業の際、「シノ」と称する挿嵌部材を挿し込んで位置合わせを行う為の孔であり、これら柱1と大梁2との接合には使用しない。このように柱1の梁受け部1eに大梁2のエンドプレート2dが重ね合わされ、これらを上述の如くボルト締結することにより、柱梁接合部Bが形成される。
As shown in FIG. 3, the girder 2 is made of an H-shaped steel formed by connecting a pair of flanges 2a and 2b by a web 2c, and all the girders 2 in all the layers have a beam formation of 250 mm and upper and lower flanges. The widths 2a and 2b are unified to 125 mm, the thickness is 9 mm, and the thickness of the web 2c is 6 mm.
An end plate 2d joined to the column 1 is attached to each end of the beam 2 by welding. The end plate 2d is formed in a flat plate shape having a predetermined thickness. The end plate has two rows symmetrically from the center in the horizontal direction, four rows at equal intervals in the vertical direction, and holes of the same diameter. A total of 8 holes 2e are drilled. A total of six holes in the upper 2 tiers and the lowermost tier of the holes 2 e are holes for inserting bolts 4 used for joining to the pillar 1.
The two holes in the second step from the bottom are holes for inserting and aligning an insertion member called “Shino” in the joining operation for attaching the large beam 2 to the column 1. It is not used for joining with the big beam 2. In this way, the end plate 2d of the large beam 2 is overlapped with the beam receiving portion 1e of the column 1, and these are fastened with bolts as described above, thereby forming the column beam joint B.

当該柱梁接合部Bは、大梁2端部のエンドプレート2dを柱1に高力ボルト4により締結する剛接合であり、また、荷重作用時に被接合材である大梁2及び柱1が塑性域に達するまで破断しない保有耐力接合として構成されている。
詳述すると、柱と梁との接合部を剛接合とする場合、梁は地震発生時に躯体に作用する地震エネルギーを塑性変形により吸収する構造要素となることが期待されている。大きな地震動を受けている間に亘って梁の塑性化によるエネルギー吸収機構を保持するためには、当該梁を保持する柱との接合部である梁両端の柱梁接合部が破断してはならない。このように、梁の塑性変形能を充分に発揮させるべく、梁の塑性変形よりも先に柱梁接合部を破断させない接合状態を保有耐力接合という。
The column beam joint B is a rigid joint in which the end plate 2d at the end of the large beam 2 is fastened to the column 1 with a high-strength bolt 4, and the large beam 2 and the column 1 that are the members to be joined when a load is applied are plastic regions. It is configured as a retained strength joint that does not break until it reaches.
More specifically, when the joint between the column and the beam is a rigid joint, the beam is expected to be a structural element that absorbs the seismic energy acting on the frame when an earthquake occurs by plastic deformation. In order to maintain the energy absorption mechanism by plasticizing the beam over a period of large earthquake motion, the beam-to-column joint at both ends of the beam, which is the junction with the column holding the beam, must not break. . Thus, in order to sufficiently exhibit the plastic deformability of the beam, a joint state in which the column beam joint is not broken prior to the plastic deformation of the beam is referred to as retained strength joint.

ここで、柱梁接合部を保有耐力接合とするためには、柱と梁との接合方法はもちろん、梁や柱の鋼材の材質や強度など多くの点が設計と関係するが、柱梁接合部の耐力に関しては、当該柱梁接合部の最大曲げ耐力が、梁の梁端部に作用する最大曲げモーメントを上回ることがもっとも主要な条件となる。
そこで、梁の終局耐力をその全塑性モーメントで評価すると、柱梁接合部の必要曲げ耐力は以下の式で規定される。
Here, in order to make the column beam connection part possessive strength joint, not only the method of joining the column and the beam, but also many points such as the material and strength of the steel material of the beam and the column are related to the design. Regarding the proof stress of the part, the most important condition is that the maximum bending proof strength of the column-beam joint exceeds the maximum bending moment acting on the beam end of the beam.
Therefore, if the ultimate strength of the beam is evaluated by its total plastic moment, the required bending strength of the beam-column joint is defined by the following equation.

また、大梁2の上下フランジ2a、2bには、各種部材をボルト固定する為の孔群2a1、2b1が柱1に接合した状態でモジュールに基づく基準線を中心にして穿たれている。この構成は寸法も含め全ての階層の全ての大梁2に共通している。
ところで、大地震に対する設計においては、柱梁接合部Bを形成する大梁2の梁端部に塑性化が生じることが想定される。梁や柱を線材に置換した解析においては、梁や柱の塑性化は、塑性ヒンジという仮想点を梁端縁部や柱端縁部に仮定し、当該仮想点の回転で代表されることが多いが、実際には、特に曲げモーメント分布が材軸方向に添って勾配を有する梁などにおいて、塑性回転を引き起こすためには、塑性化する領域である塑性化領域が梁端縁部のみならず材軸方向に拡げた位置にも設けられるものとなる。
Further, the upper and lower flanges 2a and 2b of the large beam 2 are formed with hole groups 2a1 and 2b1 for bolting various members around the reference line based on the module in a state where the hole groups 2a1 and 2b1 are joined to the column 1. This configuration is common to all the large beams 2 in all the layers including dimensions.
By the way, in the design for a large earthquake, it is assumed that the beam end portion of the large beam 2 forming the column beam joint B is plasticized. In an analysis in which a beam or column is replaced with a wire rod, the plasticization of the beam or column is represented by rotation of the virtual point assuming a virtual point called a plastic hinge at the beam edge or column edge. In many cases, however, in order to cause plastic rotation, especially in a beam whose bending moment distribution has a gradient along the material axis direction, the plasticized region, which is a region to be plasticized, is not limited to the beam edge. It is also provided at a position expanded in the material axis direction.

耐震設計上、当該塑性化領域は、柱と梁とを溶接接合により接合する場合、梁の長さをl、梁成をDとすると、柱梁接合部Bを形成する柱芯から梁のスパン中央方向に向けてl/10又は2Dの領域とされているが、本実施形態においては柱1と大梁2とを高力ボルト接合により接合しており、これによって、本実施形態においては、図6に示す如く、柱1の中心線から大梁2のスパン中央方向に向けてDまでの領域のうち、大梁2が占める領域が当該大梁2の塑性化領域2hとなり、該塑性化領域2hは、上記溶接接合により梁と柱を接合する構成よりも梁端部側に縮小されるものとなっているのである。
また、大梁2の上下フランジ2a、2bには、柱梁接合部Bを形成する梁端部からみて上記塑性化領域2hよりもスパン中央側となる位置に、各種部材をボルト固定する為の孔群2a1、2b1が設けられている。
In the seismic design, the plasticized area is defined as follows. When the column and beam are joined by welding, the length of the beam is 1 and the beam length is D, and the span of the beam from the column core that forms the column beam joint B is shown. Although it is set as 1/10 or 2D area | region toward the center direction, in this embodiment, the pillar 1 and the big beam 2 are joined by high-strength volt | bolt joining, and, by this, in FIG. 6, the region occupied by the large beam 2 in the region from the center line of the column 1 to D toward the center of the span of the large beam 2 is the plasticized region 2h of the large beam 2, and the plasticized region 2h is It is reduced to the beam end side rather than the configuration in which the beam and the column are joined by the welding joint.
The upper and lower flanges 2a and 2b of the large beam 2 have holes for fixing various members with bolts at positions closer to the center of the span than the plasticized region 2h when viewed from the beam ends forming the column beam joint B. Groups 2a1 and 2b1 are provided.

図5に示すダンパー5は、低降伏点鋼からなる芯部材5aと、該芯部材5aに圧縮力を作用させた際の座屈を防止する為の座屈防止部材5bとからなる。
芯部材5aは、矩形断面を有する扁平で長尺な棒板状の本体5a1と、該本体5a1の一端に溶接され大梁2のフランジ2bに接合される第1座部5a2と、該本体5a1の他端に溶接されて柱のダンパー受け部1gに接合される第2座部5a3とを備えている。
座屈防止部材5bは、一般構造用圧延鋼材からなる一対の平板5b1の間に一対の側板5b2を挟みこんで断面ロ字状とし、これらをボルト5b3により締結して構成され、当該座屈防止部材5bの中央の空隙部分に芯部材5aの本体5a1が配されている。座屈防止部材5bの一対の平板5b1の間隔は芯部材5aの厚さよりも僅かに大きいものとされると共に、一対の側板5b2の間隔は芯部材5aの幅よりも僅かに大きく形成されている。
The damper 5 shown in FIG. 5 includes a core member 5a made of low yield point steel and a buckling prevention member 5b for preventing buckling when a compressive force is applied to the core member 5a.
The core member 5a includes a flat and long rod-like body 5a1 having a rectangular cross section, a first seat 5a2 welded to one end of the body 5a1 and joined to the flange 2b of the large beam 2, and the body 5a1. And a second seat portion 5a3 welded to the other end and joined to the damper receiving portion 1g of the column.
The buckling prevention member 5b is formed by sandwiching a pair of side plates 5b2 between a pair of flat plates 5b1 made of a general structural rolled steel material and fastening them with bolts 5b3 to prevent the buckling. The main body 5a1 of the core member 5a is disposed in the central gap portion of the member 5b. The distance between the pair of flat plates 5b1 of the buckling prevention member 5b is slightly larger than the thickness of the core member 5a, and the distance between the pair of side plates 5b2 is slightly larger than the width of the core member 5a. .

これにより、座屈防止部材5bによって芯部材5aは弱軸まわりの面外曲げが規制されることとなり、これによって芯部材5aの座屈が規制されることとなっている。この結果、ダンパー5は引張力とともに圧縮力をも負担することができ、正負いずれの水平力に対しても抵抗することができるものとなっている。   As a result, the buckling prevention member 5b regulates out-of-plane bending of the core member 5a around the weak axis, thereby regulating the buckling of the core member 5a. As a result, the damper 5 can bear a compressive force as well as a tensile force, and can resist both positive and negative horizontal forces.

図6に示すように、ダンパー5は方杖型であり、第1座部5a2を大梁2の下フランジ2bにボルト接合し、第2座部5a3を柱1のダンパー受け部1gにボルト接合することによって、大梁2と柱1に亘って架設されている。大梁2は、該大梁2の下フランジ2bにモジュールに基づいて設けられた複数の孔群のうち、柱1の配置の基準となる基準線(通り芯)から305mm(モジュールの1倍)の位置にある孔群2b1及びその周囲をダンパー連結部2gとして設定されており、当該ダンパー連結部2gにダンパー5の第1座部5a2がボルト接合されている。ここで、該ダンパー連結部2kは、上記大梁の塑性化領域2hよりも大梁2のスパン中央方向となる位置に設けられており、かかる位置でダンパー5が大梁2に連結されることにより、ダンパー5は大梁2の梁端部の塑性変形の影響を受けることはない。   As shown in FIG. 6, the damper 5 is a cane type, and the first seat 5 a 2 is bolted to the lower flange 2 b of the large beam 2, and the second seat 5 a 3 is bolted to the damper receiving portion 1 g of the pillar 1. Thus, the bridge is constructed over the large beam 2 and the column 1. Of the plurality of hole groups provided on the lower flange 2b of the large beam 2 based on the module, the large beam 2 is positioned 305 mm (one time the module) from a reference line (core) serving as a reference for the arrangement of the pillar 1 The hole group 2b1 and the periphery thereof are set as a damper connecting portion 2g, and the first seat portion 5a2 of the damper 5 is bolted to the damper connecting portion 2g. Here, the damper connecting portion 2k is provided at a position that is in the center direction of the span of the large beam 2 rather than the plasticized region 2h of the large beam, and the damper 5 is connected to the large beam 2 at this position. 5 is not affected by the plastic deformation of the beam end of the large beam 2.

ここで、塑性化領域2hは、上述の如く柱芯から大梁2のスパン方向に向けて梁成Dの大きさに等しい領域における大梁2の占める領域とされており、当該塑性化領域よりもスパン中央側にダンパー連結部2gが設けられているが、これら各部材を線材と仮定し、柱芯と梁端部を一致させて耐震設計を行うことに鑑みれば、大梁2の中心線とダンパー5の中心線との交点が少なくとも大梁2の梁端部から大梁2のスパン中央方向に向けて梁成Dとして設定される塑性化領域2h’よりも大梁2のスパン中央側に設けられていることが好ましい。本実施形態においては、大梁2のダンパー連結部2gが柱1の中心線から梁成Dとして設定される塑性化領域2hよりも大梁2のスパン中央側に設けられ、且つ、大梁2の中心線とダンパー5の中心線の交点が梁端部(各部材を線材と仮定する耐震設計上は柱芯に一致する)から大梁2のスパン中央方向に向けて梁成Dとして設定される塑性化領域2h’よりもスパン中央側に設けられており、いずれにしても、大梁2の梁端部に生じる塑性変形の影響を受けない位置にて大梁2とダンパー5とが接続されるものとなっているのである。
また、本実施例においてダンパー5は、柱1と大梁2に接合した状態でダンパー5の中心線Y1と大梁2の長手方向の中心線X1とのなす角度θが70度となるように構成されている。
Here, the plasticized region 2h is a region occupied by the large beam 2 in a region equal to the size of the beam formation D from the column core toward the span direction of the large beam 2 as described above, and the span is larger than the plasticized region. A damper connecting portion 2g is provided on the center side. However, assuming that each of these members is a wire rod and the seismic design is performed by matching the column core and the beam end portion, the center line of the large beam 2 and the damper 5 are provided. The intersection with the center line of the beam 2 is provided at the center of the span of the large beam 2 from the plasticized region 2h ′ set as the beam formation D at least from the beam end of the beam 2 toward the center of the span of the beam 2. Is preferred. In the present embodiment, the damper connecting portion 2g of the large beam 2 is provided on the span center side of the large beam 2 with respect to the plasticized region 2h set as the beam formation D from the center line of the column 1, and the center line of the large beam 2 The plasticization region where the intersection of the center line of the damper 5 and the damper 5 is set as a beam formation D from the beam end (corresponding to the column core in the seismic design assuming each member is a wire) toward the center of the span of the large beam 2 2h 'is provided on the center side of the span, and in any case, the large beam 2 and the damper 5 are connected at a position not affected by the plastic deformation generated at the beam end of the large beam 2. It is.
Further, in the present embodiment, the damper 5 is configured such that the angle θ formed by the center line Y1 of the damper 5 and the center line X1 in the longitudinal direction of the large beam 2 is 70 degrees in a state where the damper 5 is joined to the column 1 and the large beam 2. ing.

なお、上述の如き孔群は、大梁2の長手方向に沿って所定の間隔で形成されており、塑性化領域2hとして規定されている範囲にも形成される場合があるが、その場合は、柱梁接合部Bを形成する大梁2の梁端部からみて当該塑性化領域2hよりもスパン中央側に位置する領域にて最も塑性化領域2hに近い位置に設けられている孔群又は当該孔群よりもさらにスパン中央側に設けられる孔群(本実施形態においては孔群2b1)からなるダンパー連結部2gを介してダンパー5が大梁2にボルト接合により連結されている。
また、ダンパー5と大梁2との連結位置を固定してダンパー受け部1gを柱梁接合部Bから離隔させていくと大梁2の長手方向とのなす角度が直角に近づいていき、大梁2の補剛効果を高めることができる。また、ダンパー5と大梁2の長手方向とのなす角度を変えずにダンパー5とのダンパー受け部1gを柱梁接合部Bから離隔させるとともにダンパー連結部2gをスパン中央方向に移動させた場合も、大梁2に作用する曲げモーメントを小さくすることができ、補強という点では有効である。
In addition, the hole group as described above is formed at a predetermined interval along the longitudinal direction of the large beam 2, and may be formed in a range defined as the plasticized region 2h. A group of holes provided at a position closest to the plasticizing region 2h in a region located on the center side of the span relative to the plasticizing region 2h when viewed from the beam end portion of the large beam 2 forming the column beam joint B or the hole The damper 5 is connected to the girder 2 by bolting via a damper connecting portion 2g formed of a hole group (in the present embodiment, a hole group 2b1) provided further to the center side of the span than the group.
Further, when the connecting position between the damper 5 and the large beam 2 is fixed and the damper receiving portion 1g is separated from the column beam joint B, the angle formed with the longitudinal direction of the large beam 2 approaches a right angle. The stiffening effect can be enhanced. Also, when the damper receiving portion 1g of the damper 5 is separated from the column beam joint B without changing the angle formed between the damper 5 and the longitudinal direction of the large beam 2, and the damper connecting portion 2g is moved in the center of the span. The bending moment acting on the large beam 2 can be reduced, which is effective in terms of reinforcement.

また、1本の柱1に対してダンパー5が取付け可能な位置(レベル)は、2階の大梁2のレベルにあっては大梁2の上下フランジ2a、2bであり、3階の大梁2のレベルでは下フランジ2bであり、夫々のレベルで4面(X、Y夫々の方向について2ヶずつ)取り付けることが可能である。
このように、柱梁接合部Bの近傍にダンパー5を設けることにより、本実施形態の架構Cが構成される。
Further, the position (level) where the damper 5 can be attached to one pillar 1 is the upper and lower flanges 2a and 2b of the large beam 2 at the level of the large beam 2 on the second floor, and the position of the large beam 2 on the third floor. The level is the lower flange 2b, and it is possible to attach four surfaces (two in each of the X and Y directions) at each level.
Thus, by providing the damper 5 in the vicinity of the column beam joint B, the frame C of the present embodiment is configured.

上記構成による作用について、図7を参照しつつ説明する。
上記構成によれば、想定される大地震の発生においては、架構に作用する水平力をダンパー5が負担し、ダンパー5が塑性変形域に達して変形することでエネルギーを吸収し、これによって地震に耐えるものとなっている。特にダンパー5を効かせている状態においては、ダンパー5を不存在とする一般的な架構に比べて大梁2に作用する最大の曲げモーメントを小さくすることができ、しかもそれを大梁2の柱1との連結部分ではなく母材部分に作用させることができるので構造耐力上有利となる。例えばスパンが4270mmの場合、大梁2に作用する曲げモーメントはダンパー連結部2gで最大となり、その値はダンパー5を設置しない状態での2階の大梁2の端部に作用する曲げモーメントの凡そ89%となる。
The operation of the above configuration will be described with reference to FIG.
According to the above configuration, in the occurrence of an assumed large earthquake, the damper 5 bears the horizontal force acting on the frame, and the damper 5 reaches the plastic deformation region and deforms to absorb energy, thereby causing the earthquake. It can withstand. In particular, in a state where the damper 5 is effective, the maximum bending moment acting on the large beam 2 can be reduced as compared with a general frame in which the damper 5 is not present, and the maximum bending moment can be reduced. It is advantageous in terms of structural strength because it can act on the base material portion instead of the connecting portion. For example, when the span is 4270 mm, the bending moment acting on the large beam 2 becomes the maximum at the damper connecting portion 2g, and the value is approximately 89 of the bending moment acting on the end portion of the second floor large beam 2 without the damper 5 installed. %.

そして、ごくまれに発生する巨大地震により想定を超える水平力が作用した場合、大梁2においては、大梁2とダンパー5のダンパー連結部2gにもっとも大きなモーメントが作用することとなり、当該モーメントがダンパー5の降伏耐力よりも大きなものとなると、大梁2や柱梁接合部Bに先行して先ずダンパー5が降伏し、塑性変形域に達する(図7のM1)。
この後、ダンパー5は塑性変形域に達しているものの、破断していない状態であるので、かかる状態において、ダンパー5は、それ以上の荷重を負担することはできないものの、塑性変形を生じさせるだけの一定の荷重を負担する。このため、この後に引き続き先ほどよりも大きな水平力が作用すると、ダンパー5は一定の荷重を負担しつつ塑性変形すると共に、徐々に柱梁接合部Bに作用する荷重が増大する。すなわち、当該梁柱接合部5まわりのモーメント分布は、柱梁接合部5に作用するモーメントよりもダンパー連結部2gでのモーメントの方を大とするものの、これらモーメントの差分を徐々に小さなものとして推移する(図7のS2)。
When a horizontal force exceeding the assumption is applied due to a huge earthquake that occurs very rarely, the largest moment is applied to the damper connecting portion 2g of the large beam 2 and the damper 5 in the large beam 2, and this moment is applied to the damper 5 When the yield strength is larger than that, the damper 5 first yields before the large beam 2 and the column beam joint B, and reaches the plastic deformation region (M1 in FIG. 7).
After this, the damper 5 has reached the plastic deformation range, but is not broken, so in this state, the damper 5 cannot bear more load but only causes plastic deformation. Bear a certain load. For this reason, if a larger horizontal force is applied subsequently, the damper 5 is plastically deformed while bearing a constant load, and the load acting on the beam-column joint B gradually increases. In other words, the moment distribution around the beam-column joint 5 is such that the moment at the damper connecting portion 2g is larger than the moment acting on the beam-column joint 5, but the difference between these moments is gradually reduced. It changes (S2 in FIG. 7).

そして、さらに水平力が増大することとなると、遂にはダンパー連結部2gのモーメントよりも柱梁接合部Bに作用するモーメントの方が大きなものとなり、これによって、柱梁接合部Bも塑性化することとなる。本実施形態においては、柱梁接合部Bは保有耐力接合として形成されているため、当該柱梁接合部Bの塑性化とは、実挙動においては大梁の梁端部に予め設けた塑性化領域2hが塑性化するものであって、これにより、大梁2は当該塑性化領域2hの塑性変形によって荷重を負担することとなるが、この状態においても、ダンパー5は大梁2の塑性化領域2hを外したスパン中央側にて大梁2に接続されているので、当該ダンパー5は、大梁2の塑性変形に伴って未だ塑性変形しつつ荷重(モーメント)を負担する。   When the horizontal force is further increased, the moment acting on the beam-column joint B is finally greater than the moment of the damper connecting portion 2g, and the beam-column joint B is also plasticized. It will be. In the present embodiment, since the column beam joint B is formed as a retained strength joint, the plasticization of the column beam joint B is a plasticized region provided in advance at the beam end of the large beam in actual behavior. 2h is plasticized, and thereby, the large beam 2 bears a load due to plastic deformation of the plasticized region 2h. Even in this state, the damper 5 reduces the plasticized region 2h of the large beam 2. Since it is connected to the large beam 2 at the removed span center side, the damper 5 bears a load (moment) while still being plastically deformed as the large beam 2 is plastically deformed.

これによって、上記実施形態においては、かかる終局的な局面においてもダンパー5をエネルギー吸収機構のメンバーとして加えることができる。また、大梁2の梁端部に塑性化領域2hが塑性化された状態であっても、ダンパー5が連結されている位置には塑性化が及ばないので、ダンパー5と大梁2間でダンパー5の降伏耐力に相当する力の伝達が可能となり、これによって、当該ダンパー5による柱梁接合部Bの補強効果を発揮させることも可能である。   Thereby, in the said embodiment, the damper 5 can be added as a member of an energy absorption mechanism also in this final situation. Further, even when the plasticized region 2 h is plasticized at the beam end portion of the large beam 2, since the plasticization does not reach the position where the damper 5 is connected, the damper 5 is placed between the damper 5 and the large beam 2. It is possible to transmit a force corresponding to the yield strength of the steel, and thereby it is possible to exert the reinforcing effect of the column beam joint B by the damper 5.

このように、ダンパー5は破断するまでエネルギー吸収メンバーとなるものであるが、本実施形態において、ダンパー5は低降伏点鋼により形成されているため、その塑性変形能は著しく大きく、上述の如き終局的な局面であっても早期には破断に至らず、充分なエネルギー吸収能を発揮するのである。
また、ダンパー5は、低降伏点鋼を用いて形成されているため、ゴムや樹脂等の粘弾性体によりかかるダンパーを形成する場合と異なり、日射による紫外線照射、温度や湿度等の周辺環境や経年により性能が変化することなく、時間的安定性および耐久性も極めて高い。したがって、温度変化や時間経過によらず、建物全体の構造躯体としての耐震性を安定的に発揮させるものとなる。
As described above, the damper 5 becomes an energy absorbing member until it breaks. However, in this embodiment, the damper 5 is made of low yield point steel, so that its plastic deformability is remarkably large, as described above. Even in the final phase, it does not break at an early stage and exhibits a sufficient energy absorption capability.
Moreover, since the damper 5 is formed using a low yield point steel, unlike the case where the damper is formed by a viscoelastic body such as rubber or resin, the surrounding environment such as ultraviolet irradiation, temperature and humidity due to solar radiation, It does not change its performance over time, and its temporal stability and durability are extremely high. Therefore, the seismic resistance as the structural frame of the entire building can be stably exhibited regardless of temperature change and time passage.

大梁2のエンドプレート2dと柱1とがボルト接合されることで柱梁接合部Bが形成されているので、エンドプレート2dの曲げ変形及びボルトの伸びによる塑性変形が生じる。その結果、梁端部を柱に溶接により接合する場合に比べ、大梁2の梁端部の塑性化領域2hは短くなり、当該大梁2の長さ方向に亘って部材を設置する自由度が高められている。   Since the end beam 2d of the large beam 2 and the column 1 are bolted together to form the column beam joint B, bending deformation of the end plate 2d and plastic deformation due to elongation of the bolt occur. As a result, compared with the case where the beam end is joined to the column by welding, the plasticized region 2h of the beam end of the large beam 2 is shortened, and the degree of freedom of installing the member along the length direction of the large beam 2 is increased. It has been.

なお、必要に応じて3階の大梁2のレベルにおいて上フランジ2aに取り付け可能にしてもよいし、R階の大梁2のレベルにおいて下フランジ2bに取り付け可能としてもよい。この場合、柱1の全てを長さ方向に継ぎ目のない1本のシームレスパイプで構成するのが好ましい。
また、純鉄骨造以外に鋼管柱にセメントミルクを充填したCFT造や鉄骨鉄筋コンクリート造にも適用可能である。また、本発明の構成は、柱と梁の接合部を半剛接合する構成においても、採用可能である。
If necessary, it may be attached to the upper flange 2a at the level of the third beam 2 and may be attached to the lower flange 2b at the level of the beam 2 on the R floor. In this case, it is preferable that all of the pillars 1 are constituted by one seamless pipe which is seamless in the length direction.
In addition to pure steel structures, it can also be applied to CFT structures and steel reinforced concrete structures in which steel pipe columns are filled with cement milk. The configuration of the present invention can also be employed in a configuration in which the column-beam junction is semi-rigidly joined.

A…住宅
B…柱梁接合部
C…架構
1…柱
1a…柱脚プレート
1b…柱・柱接合部
1c…下部柱
1d…上部柱
1e…大梁との接合部
1f…孔
1g…ダンパー受け部
2…大梁(梁)
2a…上フランジ
2a1…孔群
2b…下フランジ
2b1…孔群
2c…ウェブ
2d…エンドプレート
2e…孔
2h…塑性化領域
2g…ダンパー連結部
3…基礎
4…ボルト
5…ダンパー(方杖材)
5a…芯部材
5a1…本体
5a2…第1座部
5a3…第2座部
5b…座屈防止部材
5b1…平板
5b2…側板
5b3…ボルト
A ... Housing B ... Column beam joint C ... Frame 1 ... Column 1a ... Column base plate 1b ... Column / column joint 1c ... Lower column 1d ... Upper column 1e ... Joint 1f with large beam ... Hole 1g ... Damper receiving part 2 ... Large beam
2a ... Upper flange 2a1 ... Hole group 2b ... Lower flange 2b1 ... Hole group 2c ... Web 2d ... End plate 2e ... Hole 2h ... Plasticization region 2g ... Damper connecting part 3 ... Base 4 ... Bolt 5 ... Damper (cane material)
5a ... Core member 5a1 ... Main body 5a2 ... First seat 5a3 ... Second seat 5b ... Buckling prevention member 5b1 ... Flat plate 5b2 ... Side plate 5b3 ... Bolt

Claims (4)

鋼材からなる柱と梁とを接合してなる柱梁接合部の近傍に、前記柱と梁とに亘って方杖材を架設して補強された架構の補強構造であって、
前記柱及び梁が前記方杖材の全塑性耐力を上回る耐力を有し、
前記柱梁接合部は、前記柱と梁とを剛接合又は半剛接合して形成される共に、前記柱及び梁の全塑性耐力を上回る耐力を有する保有耐力接合とされており、
前記梁は、荷重により前記梁よりも先に前記方杖材を降伏させた後のさらなる荷重の増大によって、前記柱梁接合部を形成する梁端部で最大モーメントを発生させるものであり、
該梁端部には、該最大モーメントに起因して塑性化が予定される塑性化領域が設けられ、
前記方杖材は、当該梁端部の塑性化領域よりもスパン中央側にて前記梁に連結されている
ことを特徴とする架構の補強構造。
In the vicinity of a column-to-beam joint formed by joining a column made of steel and a beam, a reinforcing structure for a frame reinforced by laying a cane material over the column and the beam,
The columns and beams have a yield strength that exceeds the total plastic yield strength of the cane material;
The column-beam joint is formed by rigidly or semi-rigidly joining the column and the beam, and is a retained proof joint having a proof strength exceeding the total plastic proof strength of the column and the beam,
The beam is to generate a maximum moment at the beam end forming the column beam joint by further increasing the load after yielding the cane material ahead of the beam due to the load,
The beam end is provided with a plasticized region where plasticization is expected due to the maximum moment,
The reinforcing structure for a frame, wherein the cane material is connected to the beam at a center side of the span from a plasticized region of the beam end.
前記梁端部と前記柱とがボルト接合されることで前記柱梁接合部が形成されている
ことを特徴とする請求項1に記載の架構の補強構造。
The reinforcing structure for a frame according to claim 1, wherein the beam-to-column joint portion is formed by bolting the beam end portion and the column.
前記方杖材は、前記柱、梁及び柱梁接合部に作用する荷重によるエネルギーを吸収するダンパーである
ことを特徴とする請求項1又は請求項2に記載の架構の補強構造。
The reinforcing structure for a frame according to claim 1 or 2, wherein the brace material is a damper that absorbs energy due to a load acting on the column, the beam, and the beam-column joint.
前記方杖材を形成するダンパーは、低降伏点鋼を用いて形成されている
ことを特徴とする請求項3に記載の架構の補強構造。
The structure for reinforcing a frame according to claim 3, wherein the damper forming the brace material is formed using low yield point steel.
JP2009230123A 2009-10-02 2009-10-02 Reinforcement structure of frame Active JP5583381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230123A JP5583381B2 (en) 2009-10-02 2009-10-02 Reinforcement structure of frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230123A JP5583381B2 (en) 2009-10-02 2009-10-02 Reinforcement structure of frame

Publications (2)

Publication Number Publication Date
JP2011074733A true JP2011074733A (en) 2011-04-14
JP5583381B2 JP5583381B2 (en) 2014-09-03

Family

ID=44018988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230123A Active JP5583381B2 (en) 2009-10-02 2009-10-02 Reinforcement structure of frame

Country Status (1)

Country Link
JP (1) JP5583381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023409A (en) * 2014-07-16 2016-02-08 旭化成ホームズ株式会社 Steel structure
CN113463759A (en) * 2021-08-16 2021-10-01 任建利 Arch structure frame, multi-curved-cavity wall, power generation building and colorful power generation city

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311740A (en) * 1992-05-12 1993-11-22 Natl House Ind Co Ltd Connecting structure of beam and column
JP2007332682A (en) * 2006-06-15 2007-12-27 Taisei Corp Dry connection structure of steel column-beam
JP2008266964A (en) * 2007-04-19 2008-11-06 Asahi Kasei Homes Kk Pole, and pole and beam junction structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311740A (en) * 1992-05-12 1993-11-22 Natl House Ind Co Ltd Connecting structure of beam and column
JP2007332682A (en) * 2006-06-15 2007-12-27 Taisei Corp Dry connection structure of steel column-beam
JP2008266964A (en) * 2007-04-19 2008-11-06 Asahi Kasei Homes Kk Pole, and pole and beam junction structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023409A (en) * 2014-07-16 2016-02-08 旭化成ホームズ株式会社 Steel structure
CN113463759A (en) * 2021-08-16 2021-10-01 任建利 Arch structure frame, multi-curved-cavity wall, power generation building and colorful power generation city

Also Published As

Publication number Publication date
JP5583381B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP2006312859A (en) Aseismatic reinforcing structure and aseismatic reinforcing method for existing building
JP2013189762A (en) Wooden construction building structure skeleton
JP2013032696A (en) Reinforcement structure of rigid frame structure
JP2007239310A (en) Beam joint structure and structure
JP5583381B2 (en) Reinforcement structure of frame
JP2021085163A (en) Steel structure having triaxial compression column-beam joint part, and construction method thereof
JP2017082904A (en) Rod-like vibration isolation member
JP5558071B2 (en) Reinforcement structure of frame
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP4664997B2 (en) Buildings with joint hardware
JP2004300912A (en) Vibration control damper coping with habitability
JP5096979B2 (en) Reinforcement structure of ramen structure
JP5437009B2 (en) Reinforcement structure of frame
JP2011074732A (en) Frame reinforcement structure
JPH10131543A (en) Vibration-mitigating structural member
KR20200107929A (en) Earthquake yield type connection
Patil et al. Novel techniques for seismic performance of high rise structures in 21st century: state-of-the art review
JP3397220B2 (en) Damping device
JP5292881B2 (en) Vibration control panel
JP4931490B2 (en) Structure reinforcement structure and method of reinforcement
JP2005264713A (en) Earthquake-proof building wall and structure
JP4379732B2 (en) Seismic reinforcement method for buildings
Chakravarthy et al. Connections in structural steel joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350