JP2011074438A - Method for producing reduced iron with moving type hearth furnace - Google Patents

Method for producing reduced iron with moving type hearth furnace Download PDF

Info

Publication number
JP2011074438A
JP2011074438A JP2009226475A JP2009226475A JP2011074438A JP 2011074438 A JP2011074438 A JP 2011074438A JP 2009226475 A JP2009226475 A JP 2009226475A JP 2009226475 A JP2009226475 A JP 2009226475A JP 2011074438 A JP2011074438 A JP 2011074438A
Authority
JP
Japan
Prior art keywords
iron
carbon
furnace
raw material
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009226475A
Other languages
Japanese (ja)
Inventor
Natsuo Ishiwatari
夏生 石渡
Hiroyuki Hirohane
弘行 広羽
Masahiko Kajioka
正彦 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009226475A priority Critical patent/JP2011074438A/en
Publication of JP2011074438A publication Critical patent/JP2011074438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing reduced iron with which carbon content in the reduced iron can be controlled and also, the melting in a refining furnace is easy. <P>SOLUTION: The production of reduced iron with a moving type hearth furnace, is performed as the followings, that is, the iron-containing oxide is reduced by loading mixed raw material containing the iron-containing oxide, carbonaceous solid reducing material and slag-making material on the moving furnace hearth and heating, to reduce the iron-containing oxide, and also, when the reduced iron is produced by melting and introducing the separation of iron and slag, the reduced iron is produced by using the blended material so that the relation of the average grain diameter of the iron-containing oxide and the carbonaceous material ratio shown as the ratio between the oxygen concentration of the iron to be reduced and the carbon concentration in the mixed raw material, becomes 0.5 to 1.6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加熱炉内を移動する炉床上の原料を、この炉床が炉内を移動する過程で、その原料の加熱、還元を行うことのできる移動型炉床炉によって、例えば、鉄含有酸化物から還元鉄を製造する方法に関する。   In the present invention, the raw material on the hearth moving in the heating furnace is heated, and the raw material is heated and reduced in the process of moving the hearth in the furnace. The present invention relates to a method for producing reduced iron from an oxide.

代表的な粗鋼の製造方法としては、高炉−転炉による方法および電気炉法などによる方法がある。こられの方法のうち、電気炉法はスクラップや還元鉄を鉄原料として、これらを電気工ネルギーで加熱溶解し、場合によっては、さらに精錬して鋼にする方法である。現状では、スクラップを主な原料としているが、近年、スクラップ需給の逼迫化、電気炉法での製品の高級化が予想されることから、スクラップに換えて還元鉄の使用が検討されている。   Typical methods for producing crude steel include a method using a blast furnace-converter and a method using an electric furnace method. Among these methods, the electric furnace method is a method in which scrap or reduced iron is used as an iron raw material, and these are heated and melted by electric energy and, depending on the case, further refined into steel. At present, scrap is the main raw material. However, in recent years, demand for scrap is becoming tighter and products are expected to be upgraded by the electric furnace method, so the use of reduced iron instead of scrap is being considered.

還元金属に代表される還元鉄を製造する技術としては、特許文献1に開示されているような方法が知られている。この既知の方法としては、加熱炉内を水平方向に移動する移動炉床上に、鉄鉱石と固体還元材と積載し、その上方から輻射伝熱による加熱によって鉄鉱石を還元した後、その還元生成物を炉床上で溶融させて、スラグとメタルとを分離し、還元鉄とする移動型炉床炉法がよく知られている。   As a technique for producing reduced iron typified by a reduced metal, a method as disclosed in Patent Document 1 is known. As this known method, iron ore and a solid reducing material are loaded on a moving hearth moving in the horizontal direction in the heating furnace, and iron ore is reduced by heating by radiant heat from above, and then the reduction generation is performed. There is a well-known mobile hearth furnace method in which an object is melted on the hearth to separate slag and metal into reduced iron.

一般に、移動型炉床炉は、環状の軌道上を移動する回転移動形式をとるのが普通であり、それ故にこの形式の移動型炉床炉を、特に回転炉床炉と呼んでいる。図1は、代表的な回転炉床炉の例であり、予熱帯10a、還元帯10b、溶融帯10cおよび冷却帯10dに区画された加熱炉炉体10を有し、その炉体10内に移動炉床11が回転移動可能に配設された構造を有するものである。その移動炉床11の上には、例えば、鉄鉱石と固体還元材等からなる混合原料12が積載される。その混合原料12としては、粉状の他に炭材内装ペレットなどの塊状のものが用いられる。ここで、移動炉床11は、耐火物が内張りされた炉体10によって覆われているが、特許文献1に開示されているように、炉床耐火物の保護のためにさらに、原料層の下に、床材として炭材、即ち固体還元材を敷き詰めておく場合もある。また、この炉体10の上部側壁にはバーナー13が設置されており、このバーナー13を熱源として、移動炉床11上の鉄鉱石の還元を行う。なお、図1において、14は、混合原料を移動炉床11上に装入し積載するための装入装置、15は還元物を排出する排出装置である。加熱炉内の加熱雰囲気の温度は通常、1300℃前後に保持されるが、とくに、溶融帯については1500℃前後の高温にするのが普通である。   In general, a mobile hearth furnace usually takes the form of a rotational movement that moves on an annular track, and therefore this type of mobile hearth furnace is called a rotary hearth furnace. FIG. 1 shows an example of a typical rotary hearth furnace, which has a heating furnace body 10 partitioned into a pre-tropical zone 10a, a reduction zone 10b, a melting zone 10c, and a cooling zone 10d. The moving hearth 11 has a structure arranged so as to be rotatable. On the moving hearth 11, for example, a mixed raw material 12 made of iron ore and a solid reducing material is loaded. As the mixed raw material 12, in addition to powder, a lump of carbonaceous material interior pellets or the like is used. Here, the mobile hearth 11 is covered with a furnace body 10 lined with a refractory, but as disclosed in Patent Document 1, in order to protect the hearth refractory, the raw material layer is further protected. In some cases, a carbon material, that is, a solid reducing material is spread as a floor material. A burner 13 is installed on the upper side wall of the furnace body 10, and the iron ore on the moving hearth 11 is reduced using the burner 13 as a heat source. In FIG. 1, 14 is a charging device for charging and loading the mixed raw material on the moving hearth 11, and 15 is a discharging device for discharging the reduced product. The temperature of the heating atmosphere in the heating furnace is usually maintained at around 1300 ° C., but in particular, the melting zone is usually at a high temperature around 1500 ° C.

混合原料としての鉄含有酸化物、例えば鉄鉱石は通常、それの産地によって、量に差はあるものの多くの脈石成分を含んでいる。また、代表的な炭素系固体還元材である石炭や石炭チャー、コークスにもまた灰分が含まれている。そのために、加熱還元のみが進行する該移動型炉床炉法の操業では、製品である還元鉄に脈石の混入を避けることができず、さらには、製品に還元材からの灰分が混入するおそれもある。ただし、移動型炉床炉の操業では、還元後の原料を移動炉床上で溶融させるので、還元により生成したメタルと残滓であるスラグとは容易に分離させることができる。   Iron-containing oxides, such as iron ore, as a mixed raw material usually contain many gangue components, although the amount varies depending on the place of production. Also, ash is contained in coal, coal char, and coke, which are typical carbon-based solid reducing materials. For this reason, in the operation of the mobile hearth furnace method in which only heat reduction proceeds, it is not possible to avoid mixing gangue into the reduced iron that is the product, and further, ash from the reducing material is mixed into the product. There is also a fear. However, in the operation of the mobile hearth furnace, the reduced raw material is melted on the mobile hearth, so that the metal generated by the reduction and the slag as the residue can be easily separated.

メタルとスラグとの分離を促進させるための技術として、たとえば、特許文献2では、上記混合原料を塊状にして供給するという方法を提案している。   As a technique for promoting the separation of metal and slag, for example, Patent Document 2 proposes a method of supplying the mixed raw material in a lump form.

特開平11−172312号公報Japanese Patent Laid-Open No. 11-172121 特開2002−339009号公報JP 2002-339909 A

電気炉で還元鉄を使用する場合、炭素濃度の高い還元鉄を使用することが有利である。その理由は以下のとおりである。
(1)炭素を多く含む還元鉄は融点が低くなり、溶解が容易である。
(2)還元鉄中に含まれる炭素分は、製鋼工程で行われる酸素吹き込み時に、燃焼によって溶鋼を加熱する熱源として利用される。これにより高価な電力の原単位を引き下げる助けとなり、コスト削減に寄与できる。
When using reduced iron in an electric furnace, it is advantageous to use reduced iron with a high carbon concentration. The reason is as follows.
(1) Reduced iron containing a large amount of carbon has a low melting point and is easy to dissolve.
(2) The carbon contained in the reduced iron is used as a heat source for heating the molten steel by combustion when oxygen is blown in the steel making process. This helps to reduce the basic unit of expensive power and can contribute to cost reduction.

ところで、上掲の特許文献の開示を含め、従来の技術は、その多くが2〜4mass%未満の炭素を含有する還元鉄を製造する技術であり、また、その還元鉄の炭素濃度を制御することは全く想定していない技術である。   By the way, the conventional techniques including the disclosure of the above-mentioned patent documents are techniques for producing reduced iron containing a carbon content of less than 2 to 4 mass%, and control the carbon concentration of the reduced iron. This is a technology that is not supposed at all.

そこで、本発明の目的は、還元鉄中の炭素濃度をある程度制御することができるようにすると共に、精錬炉での溶解が容易な還元鉄を製造することにあり、特に、高炉の溶銑と同程度の炭素濃度、即ち、4mass%以上の炭素を含む還元鉄の製造技術を提案することにある。   Accordingly, an object of the present invention is to make it possible to control the carbon concentration in the reduced iron to some extent, and to produce reduced iron that can be easily dissolved in a smelting furnace. The object is to propose a technique for producing reduced iron containing carbon at a carbon concentration of about 4% by mass.

上記目的の実現に向けた研究の中で、発明者らは、下記の要旨構成に係る本発明に想到した。即ち、本発明は、移動型炉床炉の移動炉床上に、鉄含有酸化物、炭素系固体還元材および造滓材を含む混合原料を積載した状態で、その移動型炉床炉内を移動させながら加熱することにより、上記鉄含有酸化物を還元すると共に、溶融して銑滓分離を導くことにより、還元鉄を製造する方法において、上記混合原料として、鉄含有酸化物の平均粒径と、混合原料中の被還元酸素濃度および炭素濃度の比として表わされる炭材比と、の関係が下記式を満足するように配合したものを用いることを特徴とする移動型炉床炉による還元鉄の製造方法である。
0.5<(炭材比)<1.6 かつ
log(1/r)<(−2.0×(炭材比)+2.5)
r :鉄含有酸化物の半径
炭材比:(混合原料中の炭素濃度)/(混合原料中の被還元酸素濃度)/12×16
The inventors have arrived at the present invention according to the following summary configuration during research aimed at realizing the above object. That is, the present invention moves within a mobile hearth furnace in a state where a mixed raw material containing an iron-containing oxide, a carbon-based solid reducing material, and a slagging material is loaded on the mobile hearth of the mobile hearth furnace. In the method for producing reduced iron by reducing the iron-containing oxide by heating and reducing the iron-containing oxide and leading to soot separation, the average particle size of the iron-containing oxide and Reduced iron by a mobile hearth furnace characterized by using a carbonaceous material ratio expressed as a ratio of the oxygen concentration to be reduced and the carbon concentration in the mixed raw material so as to satisfy the following formula: It is a manufacturing method.
0.5 <(carbon material ratio) <1.6 and log (1 / r) <(− 2.0 × (carbon material ratio) +2.5)
r: Radius of iron-containing oxide Carbon material ratio: (carbon concentration in mixed raw material) / (reduced oxygen concentration in mixed raw material) / 12 × 16

本発明においては、
(1)前記移動型炉床炉の加熱に際し、炉内に空気もしくは酸素を付加した空気を吹き込むことにより、還元反応時に発生するCOやHを2次燃焼させること、
(2)移動炉床上にまず炭素含有物質を積載し、その上に粉状もしくは塊状の前記混合原料を積載して加熱還元を行うこと、
(3)前記鉄含有酸化物は、鉄鉱石、ダストあるいはスラッジのうちのいずれか1以上からなる粉状もしくは塊状のものを用いること、
(4)前記造滓材は、石灰石、ドロマイトおよび蛇紋岩のうちのいずれか1種以上を用いること、
が、より好ましい解決手段である。
In the present invention,
(1) When the mobile hearth furnace is heated, CO or H 2 generated during the reduction reaction is subjected to secondary combustion by blowing air or oxygen-added air into the furnace.
(2) First loading a carbon-containing substance on the moving hearth, loading the powdered or lump mixed raw material thereon, and performing heat reduction.
(3) The iron-containing oxide is a powder or lump made of one or more of iron ore, dust or sludge,
(4) The slag material is one or more of limestone, dolomite and serpentine,
Is a more preferable solution.

本発明によれば、混合原料中の炭素濃度と被還元酸素濃度とで表わされる炭材比、および混合原料中の鉄含有酸化物の平均粒径が一定の関係をもつようにすることにより、還元鉄の炭素濃度が4mass%以上の高炭素含有還元鉄を確実にかつ容易に製造することができるようになる。その結果、電気炉等での還元鉄の溶解が容易になり、製品コストの低下に寄与できる。   According to the present invention, by making the carbonaceous material ratio represented by the carbon concentration and the reducible oxygen concentration in the mixed raw material and the average particle diameter of the iron-containing oxide in the mixed raw material have a certain relationship, It becomes possible to reliably and easily produce reduced carbon-containing reduced iron having a reduced iron concentration of 4 mass% or more. As a result, it is easy to dissolve reduced iron in an electric furnace or the like, which can contribute to a reduction in product cost.

また、本発明によれば、移動炉床上の混合原料層の下に、炭素含有物質を積載し、炉内に空気や酸素富化空気等を吹き込んで加熱処理するので、還元反応で発生するCOやHを効率よく2次燃焼させることができ、エネルギーコストの低下に寄与する。 In addition, according to the present invention, a carbon-containing substance is loaded under the mixed raw material layer on the moving hearth, and heat treatment is performed by blowing air, oxygen-enriched air, or the like into the furnace, so that CO generated by the reduction reaction is generated. And H 2 can be efficiently subjected to secondary combustion, which contributes to a reduction in energy costs.

なお、本発明の作用効果は、直接、粉状原料を用いる場合だけでなく、ペレットやブリケットのような塊成化原料を使用する場合においても同様の効果を発揮する。   In addition, the effect of this invention exhibits the same effect not only when using a powder raw material directly, but also when using agglomerated raw materials, such as a pellet and a briquette.

回転炉床炉の模式図である。It is a schematic diagram of a rotary hearth furnace. シュミレーションに用いた電気炉の模式図である。It is a schematic diagram of the electric furnace used for simulation. 電気炉加熱時の炉温、試料温度の推移を示すグラフである。It is a graph which shows transition of the furnace temperature at the time of electric furnace heating, and sample temperature. 実験に用いた試料の概観および断面写真である。It is the external view and cross-sectional photograph of the sample used for experiment. 溶融還元反応時の試料断面の模式図である。It is a schematic diagram of the sample cross section at the time of a smelting reduction reaction. 炭素濃度と炭材比の関係を示すグラフである。It is a graph which shows the relationship between carbon concentration and carbonaceous material ratio. 炭素濃度と1350℃における還元率の関係を示すグラフである。It is a graph which shows the relationship between a carbon concentration and the reduction rate in 1350 degreeC. 還元率に与える炭材比と粒径(比表面積)との関係を示す図である。It is a figure which shows the relationship between the carbon material ratio given to a reduction rate, and a particle size (specific surface area). 実施例での炭素濃度推移を示すグラフである。It is a graph which shows carbon concentration transition in an Example.

始めに、発明者らは、本発明を着想するに到った実験の内容について説明する。この実験は、移動型炉床炉における還元鉄の製造過程をシミュレートできるようにした小型電気炉を用いて加熱還元する実験である。この実験に用いた20KW黒鉛電気炉の模式図を図2に示す。この電気炉は、円筒状の炉本体1内に、内径60mmの黒鉛るつぼ2とこれの昇降台3とを備え、炉本体1の外側にはヒーター4を配設してなるものである。この炉では、昇降台3を使ってるつぼ2が昇降(移動)し、たとえばこれを上昇させると、1500℃に加熱した電気炉本体1内に黒鉛るつぼ2が入るようになる。なお、このるつぼ2内には、るつぼ2内への酸素の侵入を防止するために、窒素を1.8Nm/Hで流通させた。 First, the inventors describe the contents of an experiment that led to the idea of the present invention. In this experiment, heat reduction is performed using a small electric furnace that can simulate the production process of reduced iron in a mobile hearth furnace. A schematic diagram of the 20 KW graphite electric furnace used in this experiment is shown in FIG. This electric furnace is provided with a graphite crucible 2 having an inner diameter of 60 mm and a lifting platform 3 in a cylindrical furnace body 1, and a heater 4 is disposed outside the furnace body 1. In this furnace, the crucible 2 using the lifting platform 3 moves up and down (moves). For example, when the crucible 2 is raised, the graphite crucible 2 enters the electric furnace body 1 heated to 1500 ° C. In this crucible 2, nitrogen was circulated at 1.8 Nm 3 / H in order to prevent oxygen from entering the crucible 2.

次に、この実験において用いた石炭と鉄鉱石の組成を表1に示す。直径70mm、高さ60mmの黒鉛るつぼ2内には、まず、下層に石炭5を10g敷いてから、その上に混合原料粉6を装入した。この実験では、鉄鉱石AおよびBに、石炭を配合すると共に、混合原料粉6中にはSiO濃度とCaO濃度の比である塩基度が1.2となるように石灰石を配合した。ここで、本発明において、炭材比は以下のように定義し、その炭材比が0.5以上1.6未満となるように、原料配合を行い、実験を試みた。
炭材比=(混合原料中の炭素濃度)/(混合原料中の被還元酸素濃度)/12×16
Next, Table 1 shows the composition of coal and iron ore used in this experiment. In a graphite crucible 2 having a diameter of 70 mm and a height of 60 mm, first, 10 g of coal 5 was laid on the lower layer, and then mixed raw material powder 6 was charged thereon. In this experiment, coal was blended with iron ores A and B, and limestone was blended in the mixed raw material powder 6 so that the basicity, which is the ratio of the SiO 2 concentration and the CaO concentration, was 1.2. Here, in the present invention, the carbon material ratio was defined as follows, and the raw material was blended so that the carbon material ratio was 0.5 or more and less than 1.6, and an experiment was attempted.
Carbon material ratio = (carbon concentration in mixed raw material) / (reduced oxygen concentration in mixed raw material) / 12 × 16

Figure 2011074438
Figure 2011074438

表2は、鉄鉱石の粒径について示すものである。ここでは、以下の方法で面積基準の平均粒径を求めて、評価に供した。

Figure 2011074438
Table 2 shows the particle size of iron ore. Here, the area-based average particle diameter was determined by the following method and used for evaluation.
Figure 2011074438

Figure 2011074438
Figure 2011074438

また、還元率は、試料の重量減少から、以下のようにして求めた.
(還元率)=1−(W−W’−Wmin)/(W−W’−Wmin
W’ :混合粉に含まれる水分、石炭揮発分、石灰石(CaCO)中のCO
: 加熱前試料の質量
min:900sec加熱後の試料の質量
The reduction rate was determined from the weight loss of the sample as follows.
(Reduction rate) = 1− (W−W′−W min ) / (W 0 −W′−W min )
W ′: moisture contained in mixed powder, coal volatile matter, CO 2 amount in limestone (CaCO 3 ) W 0 : mass of sample before heating W min : mass of sample after heating for 900 sec

図3は、この実験中に測定した試料温度の経時変化を示す図である。また、図4は、各時間の試料概観と断面の写真である。図4に示す写真からわかるように、実験開始後の5分間までは試料がそのまま混合物として存在しており、固体還元反応(ガス還元反応)が起こっていることがわかる。一方、7分後にはFeOが融解する1350℃を超えて、溶融分離が始まっている。そして、溶融分離したスラグとメタルとは、9分後の写真にあるように還元溶融しており、多数のCOガス気泡を発生させている様子が窺える。図5は、溶融還元反応時の試料中で観察される気泡発生時の模式図を示す図である。   FIG. 3 is a diagram showing the change over time of the sample temperature measured during this experiment. Moreover, FIG. 4 is a photograph of a sample overview and a cross section at each time. As can be seen from the photograph shown in FIG. 4, it can be seen that the sample exists as a mixture as it is for 5 minutes after the start of the experiment, and a solid reduction reaction (gas reduction reaction) occurs. On the other hand, after 7 minutes, the melting and separation start at a temperature exceeding 1350 ° C. at which FeO melts. The melted and separated slag and metal are reduced and melted as shown in the photograph after 9 minutes, and it can be seen that a large number of CO gas bubbles are generated. FIG. 5 is a diagram showing a schematic diagram at the time of bubble generation observed in the sample during the smelting reduction reaction.

このようにして得られた還元鉄のうち、15分後のメタルサンプルの一部を、化学分析に供し、炭素濃度を測定した。実験によって得られた炭材比と炭素濃度との関係について、表2に示す粒度と表1に示す鉱石銘柄(A、B)ごとに図6に示す。   Of the reduced iron thus obtained, a portion of the metal sample after 15 minutes was subjected to chemical analysis, and the carbon concentration was measured. FIG. 6 shows the relationship between the carbon ratio and the carbon concentration obtained by the experiment for each of the particle sizes shown in Table 2 and the ore brands (A, B) shown in Table 1.

図6からわかるように、炭材比が高く、粒径が小さい条件(分布1、2)ほど炭素濃度は低くなった。炭材比が高く粒径が小さい条件とは、いわゆる固体還元反応が良好に行われるという条件である。そこで、溶融分離によって溶融還元反応から還元反応が変化するまでの7分後、1350℃の還元率と炭素濃度との関係を図7に示す。   As can be seen from FIG. 6, the carbon concentration was lower as the carbon material ratio was higher and the particle size was smaller (distribution 1, 2). The condition that the carbon material ratio is high and the particle size is small is a condition that the so-called solid reduction reaction is favorably performed. Therefore, FIG. 7 shows the relationship between the reduction rate at 1350 ° C. and the carbon concentration after 7 minutes from the melt reduction reaction to the change of the reduction reaction by melt separation.

以上の実験によって、発明者らは、鉱石銘柄、粒径、炭材比が異なる条件であっても、1350℃での還元率が高いほど炭素濃度が低下することを発見した。このことから、1350℃に到達する時点での還元率を制御することができれば、還元鉄の炭素濃度を制御できることが推測できた。ただし、還元率が低いということは、溶融開始時のスラグ中FeO濃度が高いということである。それは、スラグ中のFeOというのは、メタル中に浸炭した炭素を消費するためメタル中の炭素濃度を低下させる原因物質と考えられており、ともすれば、今回の知見と相反するとも考えられる。   Through the above experiments, the inventors have found that the carbon concentration decreases as the reduction rate at 1350 ° C. increases even under different conditions of ore brand, particle size, and carbonaceous material ratio. From this, it can be inferred that the carbon concentration of the reduced iron can be controlled if the reduction rate at the time of reaching 1350 ° C. can be controlled. However, a low reduction rate means that the FeO concentration in the slag at the start of melting is high. This is because FeO in slag is considered to be a causative substance that lowers the carbon concentration in the metal because it consumes the carbon carburized in the metal.

そこで、このことに関し発明者らは、より詳しい観察を行った。その結果、溶融スラグは、図5に示すように、溶融還元反応によって発生する気泡7のために激しく泡立ち、かつ激しく流動する。そして、スラグ8が流動することにより、その下に存在している溶融メタル9が随伴流動することが観察された。   Therefore, the inventors made a more detailed observation regarding this. As a result, as shown in FIG. 5, the molten slag foams vigorously and flows vigorously due to the bubbles 7 generated by the melting reduction reaction. And it was observed that the molten metal 9 which exists under the slag 8 flows accompanying flow.

このことから、発明者らは、還元率と炭素濃度の関係について以下のような結論に達した。それは溶融メタル中への浸炭反応は、
(1)メタル−炭材界面での溶解過程、
(2)溶解した炭素原子が全体に拡散する拡散過程、
を経て進行すると考えられることから、
メタルの流動を伴う静置の状態に比べて、対流もしくは流動させた状態の方が拡散が促進されて、上記(2)の過程が飛躍的に促進されるということである。これにより、溶融還元反応による消費を上回る炭素原子が溶融金属中に供給されるようになり、メタル中の炭素濃度が上昇するものと考えられるである。
From this, the inventors reached the following conclusion regarding the relationship between the reduction rate and the carbon concentration. The carburization reaction in the molten metal
(1) Dissolution process at the metal-carbon material interface,
(2) Diffusion process in which dissolved carbon atoms diffuse throughout
Because it is thought that it will progress through
Compared to the stationary state with metal flow, diffusion is promoted in the convection or flow state, and the process (2) is dramatically accelerated. As a result, carbon atoms exceeding the consumption by the smelting reduction reaction are supplied into the molten metal, and the carbon concentration in the metal is considered to increase.

ところで、図7の関係について詳細に見ると、還元率90%以上と90%未満とでは還元率に対する炭素濃度の減少率がはっきりと変化していることがわかる。これは、還元率90%未満では炭素濃度は4mass%以上となり、炭素飽和濃度である5mass%近くまで到達したため、浸炭反応速度が低下したためであると考えられる。   By the way, when the relationship in FIG. 7 is seen in detail, it can be seen that the reduction rate of the carbon concentration with respect to the reduction rate clearly changes between the reduction rate of 90% or more and less than 90%. This is presumably because the carbon concentration became 4 mass% or more when the reduction rate was less than 90%, and reached a carbon saturation concentration close to 5 mass%, so that the carburization reaction rate decreased.

次に、発明者らは、1350℃における還元率90%以下を達成するための操業条件について検討した。その結果、前述したように1350℃まではいわゆる固体還元反応によって還元が進行する。その固体還元反応は、固体還元材である床材(炭素含有物質)のガス分解によるCOガスやNガスの生成工程と、鉄鉱石とのガス還元反応工程とによって起こる。なお、一般にはガス還元過程が律速過程であると言われている。 Next, the inventors examined the operating conditions for achieving a reduction rate of 90% or less at 1350 ° C. As a result, the reduction proceeds by a so-called solid reduction reaction up to 1350 ° C. as described above. The solid reduction reaction occurs by a CO gas or N 2 gas generation process by gas decomposition of a flooring material (carbon-containing substance) that is a solid reducing material, and a gas reduction reaction process with iron ore. In general, the gas reduction process is said to be a rate-determining process.

そこで、発明者らは、鉱石Aおよび鉱石Bについて、図8に示すように、炭材比(−)と比表面積log(1/r)とでマッピングを行った。この図8から明らかなように、還元率が90%未満と90%以上との領域は明らかに異なる。この実験結果から、還元率90%以下の領域として下記の領域を定めた。
log(1/r)<(−2.0×(炭材比)+2.5)
r:鉄含有酸化物の半径
(ただし、0.5<炭材比<1.6)
Accordingly, the inventors mapped ore A and ore B with the carbonaceous material ratio (−) and the specific surface area log (1 / r) as shown in FIG. 8. As is apparent from FIG. 8, the regions where the reduction rate is less than 90% and 90% or more are clearly different. From the experimental results, the following areas were defined as areas with a reduction rate of 90% or less.
log (1 / r) <(− 2.0 × (carbon material ratio) +2.5)
r: radius of the iron-containing oxide
(However, 0.5 <carbon material ratio <1.6)

このように前述の関係を満たすことにより、還元率を90%以下に抑えることが可能となり、それによって、生成する還元鉄の炭素濃度を4.0mass%以上とすることが可能となる。   By satisfying the above relationship as described above, the reduction rate can be suppressed to 90% or less, and thereby the carbon concentration of the produced reduced iron can be set to 4.0 mass% or more.

以上のことをまとめると、本発明方法のように、粒径や炭材比を適切に制御すれば、還元鉄の炭素濃度を制御することができるようになり、炭素濃度4mass%以上の還元鉄を安定的に製造することができる。   In summary, the carbon concentration of reduced iron can be controlled by appropriately controlling the particle size and the carbonaceous material ratio as in the method of the present invention, and the reduced iron having a carbon concentration of 4 mass% or more can be controlled. Can be stably produced.

本発明方法の有用性を確認するために、回転移動炉での実験操業を行った。
この操業には、表3に示す仕様の回転炉を用いた。鉱石および炭材は表1に示したものを用い、各鉄鉱石を整粒の上、表2に示す粒度ごとに配合した。回転移動炉には加熱中のサンプルを取る採取口を設け、全工程の50%移動(回転)した炉温1350℃の位置でサンプルを採取した。このサンプルの化学分析を行って、還元率を算出し、“工程50%還元率”として、表記した。
In order to confirm the usefulness of the method of the present invention, an experimental operation was conducted in a rotary transfer furnace.
A rotary furnace with the specifications shown in Table 3 was used for this operation. The ores and carbon materials shown in Table 1 were used, and each iron ore was blended for each particle size shown in Table 2 after sizing. The rotary moving furnace was provided with a sampling port for taking a sample during heating, and a sample was collected at a furnace temperature of 1350 ° C. that was moved (rotated) by 50% of the whole process. This sample was subjected to chemical analysis to calculate a reduction rate, and expressed as “50% reduction rate of the process”.

Figure 2011074438
Figure 2011074438

加熱工程を終了した後の還元鉄は、化学分析を行って炭素濃度を測定した。また、一部の原料は有機系バインダーを添加した上で、ブリケットマシーンで塊成化して使用した。加えて、移動炉床上には床材として50mmの石炭を積載し、その上に混合原料を装入する実験もあわせて行った。   The reduced iron after the heating step was subjected to chemical analysis to measure the carbon concentration. Some raw materials were used after agglomeration with a briquette machine after adding an organic binder. In addition, an experiment was carried out in which 50 mm of coal was loaded as a flooring material on the moving hearth and mixed raw materials were charged thereon.

表4と図9に操業結果を示す。本発明に適合する方法を用いることで還元鉄中の炭素濃度を常に4mass%以上と安定的に達成することができ、電気炉操業にて使いやすい還元鉄を提供できることがわかった。また、上記の実験操業の結果から、移動炉床上に炭素含有物質である石炭(床材)を積載した場合や粉末原料を塊成化した塊状混合原料であっても、効果を同じように発現させることが確かめられた。   Table 4 and FIG. 9 show the operation results. It has been found that by using a method suitable for the present invention, the carbon concentration in the reduced iron can always be stably achieved at 4 mass% or more, and reduced iron that is easy to use in electric furnace operation can be provided. In addition, from the results of the above-mentioned experimental operation, the same effect is achieved even when coal (floor material), which is a carbon-containing material, is loaded on the moving hearth, or even if it is a bulk mixed raw material obtained by agglomerating powder raw materials It was confirmed that

Figure 2011074438
Figure 2011074438

本発明は、移動型炉床炉、とくに回転炉床炉による還元鉄の製造技術として有用であるが、他の金属の還元技術としてもまた有効な方法である。   The present invention is useful as a technique for producing reduced iron using a mobile hearth furnace, particularly a rotary hearth furnace, but is also an effective method as a technique for reducing other metals.

1 炉本体
2 黒鉛るつぼ
3 昇降台
4 ヒーター
5 石炭
6 混合原料粉
7 気泡
8 スラグ
9 溶融メタル
10a 予熱帯
10b 還元帯
10c 溶融帯
10d 冷却帯
10 炉体
11 移動炉床
12 混合原料
13 バーナー
14 装入装置
15 排出装置
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Graphite crucible 3 Lifting stand 4 Heater 5 Coal 6 Mixed raw material powder 7 Bubble 8 Slag 9 Molten metal 10a Pre-tropical 10b Reduction zone 10c Melting zone 10d Cooling zone 10 Furnace body 11 Moving hearth 12 Mixed raw material 13 Burner 14 Installation Input device 15 Discharge device

Claims (5)

移動型炉床炉の移動炉床上に、鉄含有酸化物、炭素系固体還元材および造滓材を含む混合原料を積載した状態で、その移動型炉床炉内を移動させながら加熱することにより、上記鉄含有酸化物を還元すると共に、溶融して銑滓分離を導くことにより、還元鉄を製造する方法において、上記混合原料として、鉄含有酸化物の平均粒径と、混合原料中の被還元酸素濃度および炭素濃度の比として表わされる炭材比と、の関係が下記式を満足するように配合したものを用いることを特徴とする移動型炉床炉による還元鉄の製造方法。
0.5<(炭材比)<1.6 かつ
log(1/r)<(−2.0×(炭材比)+2.5)
r :鉄含有酸化物の半径
炭材比:(混合原料中の炭素濃度)/(混合原料中の被還元酸素濃度)/12×16
By heating while moving in the mobile hearth furnace with a mixed raw material containing iron-containing oxide, carbon-based solid reducing material and ironmaking material loaded on the mobile hearth of the mobile hearth furnace In the method for producing reduced iron by reducing the iron-containing oxide and melting and leading to soot separation, the mixed raw material includes an average particle size of the iron-containing oxide and a coating in the mixed raw material. A method for producing reduced iron using a mobile hearth furnace, characterized in that a carbonaceous material ratio expressed as a ratio of reduced oxygen concentration and carbon concentration is blended so as to satisfy the following formula.
0.5 <(carbon material ratio) <1.6 and log (1 / r) <(− 2.0 × (carbon material ratio) +2.5)
r: Radius of iron-containing oxide Carbon material ratio: (carbon concentration in mixed raw material) / (reduced oxygen concentration in mixed raw material) / 12 × 16
前記移動型炉床炉の加熱に際し、炉内に空気もしくは酸素付加空気を吹き込むことにより、還元反応時に発生するCOやHを2次燃焼させることを特徴とする請求項1に記載の移動型炉床炉による還元鉄の製造方法。 2. The mobile type according to claim 1, wherein when the mobile hearth furnace is heated, air or oxygen-added air is blown into the furnace to cause secondary combustion of CO or H 2 generated during the reduction reaction. A method for producing reduced iron using a hearth furnace. 移動炉床上にまず炭素含有物質を積載し、その上に粉状もしくは塊状の前記混合原料を積載して加熱還元を行うことを特徴とする請求項1または2に記載の移動型炉床炉による還元鉄の製造方法。 3. The mobile hearth furnace according to claim 1, wherein a carbon-containing substance is first loaded on a moving hearth, and the mixed raw material in powder or lump is loaded thereon to perform heat reduction. A method for producing reduced iron. 前記鉄含有酸化物は、鉄鉱石、ダストあるいはスラッジのうちのいずれか1以上からなる粉状もしくは塊状のものを用いることを特徴とする請求項1〜3のいずれか1に記載の移動型炉床炉による還元鉄の製造方法。 The mobile furnace according to any one of claims 1 to 3, wherein the iron-containing oxide is a powder or lump of iron ore, dust or sludge. A method for producing reduced iron using a floor furnace. 前記造滓材は、石灰石、ドロマイトおよび蛇紋岩のうちのいずれか1種以上を用いることを特徴とする請求項1〜4のいずれか1に記載の移動型炉床炉による還元鉄の製造方法。 The method for producing reduced iron by a mobile hearth furnace according to any one of claims 1 to 4, wherein the slagging material is one or more of limestone, dolomite, and serpentine. .
JP2009226475A 2009-09-30 2009-09-30 Method for producing reduced iron with moving type hearth furnace Pending JP2011074438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226475A JP2011074438A (en) 2009-09-30 2009-09-30 Method for producing reduced iron with moving type hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226475A JP2011074438A (en) 2009-09-30 2009-09-30 Method for producing reduced iron with moving type hearth furnace

Publications (1)

Publication Number Publication Date
JP2011074438A true JP2011074438A (en) 2011-04-14

Family

ID=44018719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226475A Pending JP2011074438A (en) 2009-09-30 2009-09-30 Method for producing reduced iron with moving type hearth furnace

Country Status (1)

Country Link
JP (1) JP2011074438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052555A (en) * 2013-09-09 2015-03-19 株式会社神戸製鋼所 Measurement method of inside of furnace refractory worn state
CN105605936A (en) * 2016-02-22 2016-05-25 山东滨州华创金属有限公司 Smelting stirring device used for refractory metal preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052555A (en) * 2013-09-09 2015-03-19 株式会社神戸製鋼所 Measurement method of inside of furnace refractory worn state
CN105605936A (en) * 2016-02-22 2016-05-25 山东滨州华创金属有限公司 Smelting stirring device used for refractory metal preparation

Similar Documents

Publication Publication Date Title
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
WO2010117008A1 (en) Method for producing metallic iron
CN1327072A (en) Method and device for making metal iron
US20120103136A1 (en) Apparatus and method for producing reduced iron from alkali-containing ironmaking dust serving as material
JP5297077B2 (en) Method for producing ferromolybdenum
JP2010111941A (en) Method for producing ferrovanadium
KR100210649B1 (en) Method for recovering zinc oxide from dust and apparatus therefor
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
JP2010265485A (en) Method for operating arc-furnace
CZ200975A3 (en) Refining technology of metalline zinc-containing waste in revolving furnace
AU2008301651B2 (en) Process for producing molten iron
US4756748A (en) Processes for the smelting reduction of smeltable materials
WO2015174450A1 (en) Production method of granular metallic iron
JPS6164807A (en) Melt reduction method of iron ore
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
JP2011074438A (en) Method for producing reduced iron with moving type hearth furnace
JP2004183070A (en) Method for producing molten iron
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
RU2678557C2 (en) Metallurgical furnace
JP5055794B2 (en) Method for producing reduced metal
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
JP2002241820A (en) Smelting reduction method for iron oxide using rotary kiln
JP2003105452A (en) Method for producing reduced metal