JP2011072924A - Method for mounting constituent member of ultrapure water production system - Google Patents

Method for mounting constituent member of ultrapure water production system Download PDF

Info

Publication number
JP2011072924A
JP2011072924A JP2009227450A JP2009227450A JP2011072924A JP 2011072924 A JP2011072924 A JP 2011072924A JP 2009227450 A JP2009227450 A JP 2009227450A JP 2009227450 A JP2009227450 A JP 2009227450A JP 2011072924 A JP2011072924 A JP 2011072924A
Authority
JP
Japan
Prior art keywords
ultrapure water
production system
water production
ion exchange
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009227450A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hanaki
善浩 花木
Takeomi Oshikata
武臣 押方
Katsunobu Kitami
勝信 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009227450A priority Critical patent/JP2011072924A/en
Publication of JP2011072924A publication Critical patent/JP2011072924A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mounting the constituent member of an ultrapure water production system including an ion exchange apparatus and a membrane separation apparatus arranged downstream therefrom by which, when members such as pumps, heat exchangers, valves and instruments composing a water passing part upstream from the ion exchange apparatus, contamination in the system caused by the mounted member and deterioration in the water quality of the ultrapure water due to the contamination are prevented, and ultrapure water with high purity satisfying the water quality requirement can be stably produced. <P>SOLUTION: The method for mounting the constituent member of an ultrapure water production system includes the member which is precleaned, then is mounted to the ultrapure water production system so that the number of fine particles in ultrapure water passed to the member becomes a prescribed value or below, upon passing of ultrapure water to the member to be mounted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は超純水製造システムの構成部材の取付方法に係り、特に、イオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムのイオン交換装置よりも上流側の通水部を構成する部材、例えば、ポンプや熱交換器、弁類、計器類等の交換、修理、調整等の際に、これらの部材を超純水製造システムから一旦取り外し、再び超純水製造システムに取り付ける際に、取り付けた部材による系内汚染及びそれによる超純水の水質低下を防止して、要求水質を満たす高純度の超純水を安定に製造することができるようにする超純水製造システムの構成部材の取付方法に関する。   The present invention relates to a method for attaching components of an ultrapure water production system, and more particularly, an upstream side of an ion exchange device of an ultrapure water production system including an ion exchange device and a membrane separation device arranged downstream thereof. When replacing, repairing, adjusting, etc., the members that make up the water flow section, such as pumps, heat exchangers, valves, meters, etc., these members are temporarily removed from the ultrapure water production system, and again When attaching to a water production system, prevent contamination of the system by the attached components and the resulting deterioration in the quality of ultrapure water, so that high purity ultrapure water that meets the required water quality can be stably produced. The present invention relates to a method for attaching components of an ultrapure water production system.

ウェハ、LSI、液晶などの半導体製品の製造工程に用いられる超純水の製造には、被処理水(一次純水)を紫外線照射、イオン交換、膜分離、脱気などにより処理する超純水製造システムが用いられている。図1は、従来の超純水製造システムの一例を示すもので、この超純水製造システムは、貯留タンク1と、送液ポンプ2と、熱交換器3と、紫外線酸化装置5、イオン交換装置6及びUF(限外濾過)膜分離装置7からなる超純水製造ユニット4とを備えている。8は、超純水の送液ポンプ、9はユースポイントである。   For the production of ultrapure water used in the production process of semiconductor products such as wafers, LSIs, liquid crystals, etc., ultrapure water that treats treated water (primary pure water) by ultraviolet irradiation, ion exchange, membrane separation, deaeration, etc. A manufacturing system is used. FIG. 1 shows an example of a conventional ultrapure water production system. This ultrapure water production system includes a storage tank 1, a liquid feed pump 2, a heat exchanger 3, an ultraviolet oxidizer 5, an ion exchange. An ultrapure water production unit 4 including an apparatus 6 and a UF (ultrafiltration) membrane separation apparatus 7 is provided. 8 is an ultrapure water feed pump, and 9 is a use point.

この超純水製造システムでは、予めイオイオン交換などの処理により得られた一次純水(被処理水)を、ユースポイント9からの戻り水と共に、貯留タンク1に一時貯留した後、送液ポンプ2によって、熱交換器3を経て純水製造ユニット4に導入する。純水製造ユニット4においては、被処理水が紫外線酸化装置5で紫外線照射され、イオン交換装置6で脱塩処理され、UF膜分離装置7で濾過処理され、超純水が得られる。製造された超純水は、送液ポンプ8によってユースポイント9に供給される。ユースポイント9で使用されなかった残余の超純水は戻り水としてタンク1に返送され、一次純水と共に、循環処理される。   In this ultrapure water production system, primary pure water (treated water) obtained in advance by treatment such as ion exchange is temporarily stored in the storage tank 1 together with return water from the use point 9, and then the liquid feed pump 2. Then, it is introduced into the pure water production unit 4 through the heat exchanger 3. In the pure water production unit 4, the water to be treated is irradiated with ultraviolet rays by the ultraviolet oxidizer 5, desalted by the ion exchanger 6, and filtered by the UF membrane separator 7 to obtain ultrapure water. The produced ultrapure water is supplied to the use point 9 by the liquid feed pump 8. The remaining ultrapure water that has not been used at the use point 9 is returned to the tank 1 as return water, and is circulated together with the primary pure water.

このような半導体製品の製造工程で用いられる超純水としては、洗浄トラブルの原因となる微粒子、有機物や無機物を含まないことが要求され、例えば抵抗率:18.2MΩ・cm以上、微粒子数:1個/mL以下、生菌数:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、シリカ:1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、であることが要求水質となっている。   The ultrapure water used in the manufacturing process of such semiconductor products is required to be free of fine particles, organic substances and inorganic substances that cause cleaning trouble. For example, resistivity: 18.2 MΩ · cm or more, number of fine particles: 1 / mL or less, viable count: 1 / L or less, TOC (Total Organic Carbon): 1 μg / L or less, silica: 1 μg / L or less, metals: 1 ng / L or less, ions: 10 ng / L or less The water quality is required.

このため、このような要求水質を満たす超純水を製造するために、その製造条件について、また超純水を製造する超純水製造システム系内の洗浄方法等について種々検討がなされている。   For this reason, in order to produce ultrapure water that satisfies such required water quality, various studies have been made on the production conditions and a cleaning method in an ultrapure water production system that produces ultrapure water.

従来、超純水製造システムの洗浄方法には、超純水製造システムを構成する各部材を組み込んで超純水製造システムを完成させた後、部材を組み込んだ箇所のみ、或いはシステム全体を、超純水、又は必要に応じてTMAH(テトラメチルアンモニウムヒドロキサイド)若しくは過酸化水素を含む超純水で洗浄することが行われている(例えば特許文献1)。   Conventionally, in the cleaning method of the ultrapure water production system, after the ultrapure water production system is completed by incorporating each component constituting the ultrapure water production system, only the location where the member is incorporated or the entire system Washing with pure water or, if necessary, ultrapure water containing TMAH (tetramethylammonium hydroxide) or hydrogen peroxide is performed (for example, Patent Document 1).

また、超純水製造ユニットで使用されるイオン交換装置やUF膜分離装置などでは、それらから溶出する物質の超純水の純度に及ぼす影響が大きいため、従来、それぞれ各種の方法で洗浄した後超純水製造システムに組み込まれている。   In addition, in ion exchangers and UF membrane separators used in ultrapure water production units, substances that elute from them have a great influence on the purity of ultrapure water. Built into the ultrapure water production system.

しかしながら、ポンプや熱交換器、弁類、計器類といった構成部材については、一般にイオン交換装置やUF膜分離装置の上流側で用いられ、これらの部材から流出する汚染物質はイオン交換装置やUF膜分離装置で除去されることから、汚れが取れにくい油などに汚染されていない限り、超純水製造システムに組み込む前の特別な洗浄は行われておらず、上述したように超純水製造システムに組み込まれた後に、他の部材と共に洗浄されている。   However, components such as pumps, heat exchangers, valves, and instruments are generally used on the upstream side of ion exchange devices and UF membrane separation devices, and contaminants flowing out from these members are ion exchange devices and UF membranes. Since it is removed by the separator, unless it is contaminated with oil that is difficult to remove dirt, it is not specially cleaned before being incorporated into the ultrapure water production system. After being assembled, the other members are cleaned together.

しかし、近年の超純水に対する要求水質レベルの高まりの中、上記従来の洗浄法では十分に対応できなくなってきているのが現状である。
本発明者らは、この原因について検討した結果、イオン交換装置及びUF膜分離装置の上流側に組み込まれる構成部材であっても、十分な清澄性を有さない状態で超純水製造システムに組み込み、通水した場合、これらの構成部材から通水初期に汚れが排出されることになり、この排出された汚れが後段のイオン交換装置やUF膜分離装置を通過し、通過した汚れがUF膜分離装置からユースポイントに至る配管等に付着し、それが経時により少しづつ溶解するなどして製造された超純水中に混入することにより、水質低下が起こることを見出した。
However, under the recent increase in the required water quality level for ultrapure water, the above-described conventional cleaning method has become unable to adequately cope with it.
As a result of studying this cause, the present inventors have confirmed that the ultrapure water production system does not have sufficient clarification even if it is a component member incorporated upstream of the ion exchange device and the UF membrane separation device. When incorporated and passed, dirt is discharged from these components at the initial stage of passing water, and the discharged dirt passes through a subsequent ion exchange device or UF membrane separation device, and the passed dirt passes through the UF. It has been found that water quality deteriorates due to adhering to the piping from the membrane separation device to the use point, etc., and mixing into ultrapure water produced by dissolving it gradually with time.

なお、ポンプを原因とする金属汚染を防止するために、ポンプの接液部を合成樹脂材料とすること(特許文献2)や、ポンプ後段にイオン交換フィルタを設置すること(特許文献3)が提案されている。しかし、これらは、超純水製造システムに既に組み込まれた、ポンプなどの部材の接液部から、金属イオンや金属微粒子が少しづつ溶出ないし剥離することによって生じる超純水の汚染を防止するものであって、組み込まれた部材に付着して超純水製造システム内に持ち込まれた汚れ成分による超純水の水質低下を防止するものではない。   In order to prevent metal contamination caused by the pump, the liquid contact part of the pump is made of a synthetic resin material (Patent Document 2), and an ion exchange filter is installed at the rear stage of the pump (Patent Document 3). Proposed. However, these prevent contamination of ultrapure water caused by the elution or separation of metal ions and fine metal particles little by little from the wetted parts of pumps and other parts already built into the ultrapure water production system. However, it does not prevent deterioration of the quality of the ultrapure water due to the dirt components that are attached to the incorporated member and brought into the ultrapure water production system.

特開2000−317413号公報JP 2000-317413 A 特許第3956671号公報Japanese Patent No. 3956671 特開2000−10849号公報JP 2000-10849 A

本発明は上記従来の実状に鑑みてなされたものであって、イオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムのイオン交換装置よりも上流側の通水部を構成する、ポンプや熱交換器、弁類、計器類の部材を超純水製造システムに取り付ける際に、取り付けた部材による系内汚染及びそれによる超純水の水質低下を防止して、要求水質を満たす高純度の超純水を安定に製造するための超純水製造システムの構成部材の取付方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and the upstream side of the ion exchange device of the ultrapure water production system including the ion exchange device and the membrane separation device arranged on the downstream side thereof is provided. When installing pumps, heat exchangers, valves, and instruments that make up the water section to the ultrapure water production system, prevent contamination of the system by the installed members and the resulting deterioration in the quality of ultrapure water. Another object of the present invention is to provide a method for attaching components of an ultrapure water production system for stably producing high purity ultrapure water that satisfies the required water quality.

本発明者らは、上記課題を解決すべく鋭意検討した結果、従来、特別な洗浄を行うことなく超純水製造システムに取り付けられているイオン交換装置及び膜分離装置の上流側の構成部材を、予め超純水により所定の清浄度にまで洗浄した後に超純水製造システムに取り付けることにより、取り付けた部材により持ち込まれる汚れによる系内汚染を防止することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have conventionally found constituent members on the upstream side of an ion exchange apparatus and a membrane separation apparatus that are attached to an ultrapure water production system without performing special cleaning. The present inventors have found that contamination in the system due to dirt brought in by an attached member can be prevented by attaching to an ultrapure water production system after pre-cleaning with ultrapure water to a predetermined cleanliness.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 少なくともイオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムにおいて、前記イオン交換装置よりも上流側の通水部を構成する部材を該超純水製造システムに取り付る方法であって、該部材に超純水を通水した際に該部材に通水された超純水中の微粒子数が所定値以下となるように、予め該部材を洗浄した後に該超純水製造システムに取り付けることを特徴とする超純水製造システムの構成部材の取付方法。 [1] In an ultrapure water production system including at least an ion exchange device and a membrane separation device arranged on the downstream side thereof, a member constituting a water flow portion upstream of the ion exchange device is used as the ultrapure water. A method of attaching to a manufacturing system, wherein the member is previously set so that the number of fine particles in the ultrapure water passed through the member when the ultrapure water is passed through the member is equal to or less than a predetermined value. A method for attaching components of an ultrapure water production system, comprising: attaching to the ultrapure water production system after cleaning.

[2] [1]において、前記微粒子が粒径0.05μm以上の微粒子であることを特徴とする超純水製造システムの構成部材の取付方法。 [2] A method for attaching components of an ultrapure water production system according to [1], wherein the fine particles are fine particles having a particle diameter of 0.05 μm or more.

[3] [1]又は[2]において、前記部材に通水された超純水中の微粒子数が10000個/mL以下となるように予め該部材を洗浄した後に該超純水製造システムに取り付けることを特徴とする超純水製造システムの構成部材の取付方法。 [3] In [1] or [2], after the member is washed in advance so that the number of fine particles in the ultrapure water passed through the member is 10,000 / mL or less, the ultrapure water production system is used. A method for attaching a component of an ultrapure water production system, wherein the component is attached.

[4] [1]ないし[3]のいずれかにおいて、前記部材が、ポンプ、熱交換器、弁及び計器よりなる群から選ばれる1種又は2種以上であることを特徴とする超純水製造システムの構成部材の取付方法。 [4] Ultrapure water according to any one of [1] to [3], wherein the member is one or more selected from the group consisting of a pump, a heat exchanger, a valve, and a meter. A method for attaching components of the manufacturing system.

本発明の超純水製造システムの構成部材の取付方法によれば、イオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムのイオン交換装置よりも上流側の通水部を構成する、ポンプや熱交換器、弁類、計器類等の部材を取り付けるに際して、予め当該部材を超純水により所定の清浄度に洗浄してから取り付けることにより、取り付けられた部材による系内汚染及びそれによる超純水の水質低下を防止して、要求水質を満たす高純度の超純水を安定に製造することができる。
また、このように、要求水質を満たす高純度の超純水を半導体製造工程に安定に供給することが可能となることにより、半導体製造工程における超純水の水質低下による製品の不備を防止して、製品歩留りを高く維持することが可能となる。
According to the method for attaching the constituent members of the ultrapure water production system of the present invention, the upstream side of the ion exchange device of the ultrapure water production system comprising the ion exchange device and the membrane separation device arranged downstream thereof. When installing members such as pumps, heat exchangers, valves, instruments, etc. that constitute the water flow section, the members attached by washing the members with ultrapure water to a predetermined cleanliness beforehand. It is possible to stably produce high-purity ultrapure water that satisfies the required water quality by preventing contamination of the system and deterioration of the quality of ultrapure water.
In addition, in this way, it becomes possible to stably supply high-purity ultrapure water that satisfies the required water quality to the semiconductor manufacturing process, thereby preventing product deficiencies due to deterioration of the quality of ultrapure water in the semiconductor manufacturing process. Thus, the product yield can be kept high.

一般的な超純水製造システムの構成を示す系統図である。It is a systematic diagram which shows the structure of a general ultrapure water manufacturing system. 試験例1で製造された超純水の水質の経時変化を示すグラフである。3 is a graph showing the change over time of the quality of ultrapure water produced in Test Example 1. FIG.

以下に本発明の超純水製造システムの構成部材の取付方法の実施の形態を詳細に説明する。   Hereinafter, an embodiment of a method for attaching components of the ultrapure water production system of the present invention will be described in detail.

本発明の超純水製造システムの構成部材の取付方法は、少なくともイオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムにおいて、前記イオン交換装置よりも上流側の通水部を構成する部材を該超純水製造システムに取り付る方法であって、該部材に超純水を通水した際に該部材に通水された超純水中の微粒子数が所定値以下となるよう予め該部材を洗浄した後に該超純水製造システムに取り付けることを特徴とする。   The method of attaching the constituent members of the ultrapure water production system of the present invention is an ultrapure water production system comprising at least an ion exchange device and a membrane separation device arranged on the downstream side thereof, and more upstream than the ion exchange device. The number of fine particles in the ultrapure water that are passed through the member when the ultrapure water is passed through the member. Is attached to the ultrapure water production system after the member has been washed in advance so that is less than or equal to a predetermined value.

本発明が適用される超純水製造システムは、イオン交換装置とその下流側の膜分離装置とを有するものであれば良く、特に制限はない。一般的な超純水製造システムとしては、図1に示すようなものが挙げられ、そのイオン交換装置6としては、多床型イオン交換装置、混床式イオン交換装置、非再生型イオン交換装置、電気再生型イオン交換装置等を用いることができ、膜分離装置としては、UF膜分離装置7の他、精密濾過膜分離装置、逆浸透膜分離装置、或いはこれらの組み合わせを使用可能である。なお、純水製造ユニット4には、更に脱気装置(真空脱気塔、膜脱気器、窒素脱気塔、脱炭酸塔)を組み込むこともできる。   The ultrapure water production system to which the present invention is applied is not particularly limited as long as it has an ion exchange device and a membrane separation device on the downstream side. As a general ultrapure water production system, the one shown in FIG. 1 can be cited. As the ion exchange device 6, a multi-bed type ion exchange device, a mixed bed type ion exchange device, a non-regenerative ion exchange device can be used. In addition to the UF membrane separation device 7, a microfiltration membrane separation device, a reverse osmosis membrane separation device, or a combination of these can be used as the membrane separation device. The pure water production unit 4 may further include a deaeration device (vacuum deaeration tower, membrane deaerator, nitrogen deaeration tower, decarbonation tower).

このような超純水製造システムにおいて、本発明で取り付け対象とする、イオン交換装置よりも上流側の通水部を構成する部材とは、イオン交換装置に送給される水と接触する部材であって、特に制限はないが、例えば、図1におけるポンプ2及びその構成部材、熱交換器3及びその構成部材、その他図示しない弁や計器類が挙げられる。これらのうち、特に構造が複雑で洗浄し難いポンプ及びその構成部材に対して、本発明を適用することによる効果が有効に発揮される。   In such an ultrapure water production system, the member constituting the water flow section upstream of the ion exchange device to be attached in the present invention is a member that comes into contact with water supplied to the ion exchange device. Although there is no particular limitation, for example, the pump 2 and its constituent members in FIG. 1, the heat exchanger 3 and its constituent members, and other valves and instruments (not shown) may be mentioned. Among these, the effect by applying the present invention is effectively exhibited especially for a pump having a complicated structure and difficult to clean.

本発明は、これらの部材を超純水製造システムに新設する場合にも適用可能であるが、特に既存のこれらの部材を、交換、修理、保守点検、又は調整等のメンテナンスのために、超純水製造システムから一旦取り外し、再び取り付ける際に、メンテナンス期間中に当該部材に付着した汚れ成分が超純水製造システム内に持ち込まれることによる超純水製造システム系内及び製造される超純水の汚染防止に有効である。   The present invention can be applied to the case where these members are newly installed in the ultrapure water production system. In particular, these existing members are used for maintenance such as replacement, repair, maintenance, inspection or adjustment. Ultrapure water produced in the ultrapure water production system and the produced ultrapure water by removing dirt components adhering to the member during the maintenance period when it is once removed from the pure water production system and reattached. It is effective in preventing pollution.

本発明においては、これらの部材を超純水製造システムに取り付けるに先立ち、この部材に超純水を通水し、通水された超純水(以下、洗浄対象部材に通水された後、この部材から流出する超純水を「洗浄流出水」と称す場合がある。)中の微粒子が所定値以下となるように、予めこの部材を洗浄する。   In the present invention, prior to attaching these members to the ultrapure water production system, ultrapure water was passed through this member, and ultrapure water that was passed through (hereinafter, after being passed through the member to be cleaned, The ultrapure water flowing out from this member is sometimes referred to as “washing effluent.”) This member is cleaned in advance so that the fine particles in the member are below a predetermined value.

ここで、部材の洗浄に用いる超純水の水質としては、この部材を取り付ける超純水製造システムで製造される超純水と同等の水質であることが好ましく、例えば次のような水質であることが好ましい。   Here, the quality of the ultrapure water used for cleaning the member is preferably the same as that of the ultrapure water produced by the ultrapure water production system to which the member is attached, and for example, the following water quality It is preferable.

<超純水水質>
微粒子数(0.05μm以上):100個/mL以下
TOC :5μg/L以下
金属イオン :10ng/L以下
<Ultrapure water quality>
Number of fine particles (0.05 μm or more): 100 / mL or less TOC: 5 μg / L or less Metal ion: 10 ng / L or less

本発明においては、このような水質の超純水を用いて取り付け部材を洗浄し、洗浄流出水中の粒径0.05μm以上の微粒子数が、好ましくは、10000個/mL以下、例えば1000〜5000個/mL程度となるまで洗浄を行った後、超純水製造システムに取り付ける。洗浄流出水中の微粒子数がこの値よりも多いと、部材の清浄度が不足することから、この部材を超純水製造システムに取り付けた後、製造される超純水の水質が安定しない。ただし、この部材を過度に洗浄することは、洗浄のためのコストが高くつき好ましくない。従って、上記範囲の微粒子数の洗浄流出水が得られた時点で洗浄を終了する。更に好ましくは、洗浄流出水のTOC濃度が10μg/L以下、例えば5〜2μg/Lで、金属イオン濃度が10ng/L以下、例えば0.1〜3ng/Lとなるように洗浄を行なった後に超純水製造システムに取り付ける。   In the present invention, the attachment member is washed with such ultrapure water having a water quality, and the number of fine particles having a particle size of 0.05 μm or more in the washing effluent is preferably 10,000 / mL or less, for example, 1000 to 5000. After washing to about pcs / mL, attach to the ultrapure water production system. If the number of fine particles in the washing effluent is greater than this value, the cleanliness of the member will be insufficient. Therefore, after the member is attached to the ultrapure water production system, the quality of the produced ultrapure water is not stable. However, excessive cleaning of this member is not preferable because of high cost for cleaning. Accordingly, the cleaning is terminated when the cleaning effluent having the number of fine particles in the above range is obtained. More preferably, after washing so that the TOC concentration of the washing effluent is 10 μg / L or less, for example, 5 to 2 μg / L, and the metal ion concentration is 10 ng / L or less, for example, 0.1 to 3 ng / L. Install in the ultrapure water production system.

この洗浄には、超純水を部材に通水し、洗浄流出水の水質を評価し、この洗浄流出水の水質が所定値となるまで超純水の通水を繰り返すないしは継続することにより行うことができる。
この場合、ポンプや熱交換器のように、それ自体のみで通水が可能な部材を洗浄する場合は、この部材単独で超純水を通水して洗浄すれば良い。また、弁類や計器類或いはポンプや熱交換器の構成部材のように、それだけでは通水洗浄が困難なものは、例えば、ポンプや熱交換器に取り付けた状態で通水洗浄すれば良い。
This cleaning is performed by passing ultrapure water through the member, evaluating the quality of the washing effluent, and repeating or continuing the passage of ultrapure water until the quality of the washing effluent reaches a predetermined value. be able to.
In this case, when cleaning a member that allows water to flow by itself, such as a pump or a heat exchanger, ultrapure water may be passed by this member alone for cleaning. Moreover, what is difficult to wash with water only by itself, such as components of valves and instruments or pumps and heat exchangers, may be washed with water while attached to a pump or heat exchanger, for example.

また、この通水洗浄に際しては超純水のみならず、超純水にTMAHや過酸化水素のような、通常、超純水製造システムの系内洗浄に用いられる薬品による洗浄を行っても良く、この場合には、薬品洗浄後、超純水によるリンス(仕上げ)洗浄を行って、洗浄流出水の水質を評価する。   In addition, in this water cleaning, not only ultrapure water, but also ultrapure water may be cleaned with chemicals usually used for in-system cleaning of ultrapure water production systems such as TMAH and hydrogen peroxide. In this case, after chemical cleaning, rinse (finish) cleaning with ultrapure water is performed to evaluate the quality of the cleaning effluent.

なお、洗浄流出水の水質、即ち、微粒子数、TOC濃度、金属イオン濃度は、後掲の実施例の項に記載される方法で測定して、評価することができる。   The quality of the washed effluent water, that is, the number of fine particles, the TOC concentration, and the metal ion concentration can be measured and evaluated by the methods described in the Examples section below.

このように、超純水製造システムへの取り付けに先立ち、洗浄流出水の水質が所定のレベルよりも良好なものとなるまで超純水による洗浄を行った後は、当該部材を超純水製造システムに取り付ける。部材を超純水製造システムに取り付けた後は、常法に従って、超純水製造システム内の洗浄を行った後、超純水の製造を再開する。   In this way, prior to installation in the ultrapure water production system, after washing with ultrapure water until the quality of the washed effluent water is better than a predetermined level, the member is produced in ultrapure water. Attach to the system. After the member is attached to the ultrapure water production system, the production of the ultrapure water is resumed after cleaning the ultrapure water production system according to a conventional method.

前述の如く、従来、超純水製造システムのイオン交換装置よりも上流側の通水部材については、これを予め所定の清浄度に洗浄した後超純水製造システムに取り付けることは行われていなかった。
本発明によれば、このような部材を超純水製造システムに取り付けるに際して、洗浄の基準となる値が示されることにより、部材洗浄の過不足を防止して、必要最低減の洗浄操作で、超純水製造システムで製造される超純水の水質を高く維持することが可能となる。
As described above, conventionally, the water passage member upstream of the ion exchange device of the ultrapure water production system has not been attached to the ultrapure water production system after it has been previously cleaned to a predetermined cleanliness. It was.
According to the present invention, when such a member is attached to the ultrapure water production system, a value that serves as a reference for cleaning is indicated, so that excessive and insufficient cleaning of the member is prevented, and the cleaning operation with the minimum reduction is required. It becomes possible to maintain the quality of the ultrapure water produced by the ultrapure water production system high.

以下に試験例及び実施例を挙げて本発明をより具体的に説明する。
なお、以下において、超純水製造システムで製造される超純水の水質は、微粒子計測器(リオン株式会社製 液中パーティクルカウンタ KS17B)により、超純水中の0.05μm以上の微粒子数を測定することにより行った。
Hereinafter, the present invention will be described more specifically with reference to test examples and examples.
In the following, the quality of the ultrapure water produced by the ultrapure water production system is determined by measuring the number of fine particles of 0.05 μm or more in ultrapure water using a fine particle measuring instrument (particle counter KS17B manufactured by Rion Corporation). This was done by measuring.

[試験例1]
図1示す構成の超純水製造システムにおいて、ポンプ2のメンテナンスのために、超純水の製造を停止してポンプ2を取り外し、必要な保守点検を行った後、そのまま超純水製造システムに戻して取り付けた。
その後、超純水の製造を再開し、製造された超純水の水質の経時変化を調べ、結果を図2に示した。
[Test Example 1]
In the ultrapure water production system having the configuration shown in FIG. 1, for the maintenance of the pump 2, the production of ultrapure water is stopped, the pump 2 is removed, the necessary maintenance inspection is performed, and then the ultrapure water production system is used as it is. I put it back.
Thereafter, the production of ultrapure water was resumed, the change in the quality of the produced ultrapure water over time was examined, and the results are shown in FIG.

図2に示すように、この試験例1では、UF膜分離装置7の出口での0.05μm以上の微粒子数は、運転再開後1時間が経過し、ポンプ出口での0.05μm以上の微粒子の数が10000個/mLを下回ってから、安定して1個/mL以下となった。   As shown in FIG. 2, in Test Example 1, the number of fine particles of 0.05 μm or more at the outlet of the UF membrane separation device 7 is 1 hour after the restart of operation, and the fine particles of 0.05 μm or more at the pump outlet. Was less than 10,000 / mL, and stably became 1 / mL or less.

[実施例1]
試験例1において、ポンプ2の保守点検後、再び超純水製造システムに取り付けるに先立ち、ポンプに下記水質の超純水を通水して洗浄し、ポンプの洗浄流出水が以下の水質を満たすまで洗浄した。
[Example 1]
In Test Example 1, after maintenance and inspection of the pump 2, before attaching to the ultrapure water production system again, the ultrapure water of the following water quality is passed through the pump for cleaning, and the cleaning effluent of the pump satisfies the following water quality. Until washed.

<洗浄流出水>
微粒子数:1000〜5000個/mL
<Washing effluent>
Number of fine particles: 1000 to 5000 / mL

なお、微粒子数は、洗浄流出水中の粒径0.05μm以上の微粒子を試験例1で使用した微粒子計測器で計数することにより調べた。   The number of fine particles was examined by counting fine particles having a particle size of 0.05 μm or more in the washing effluent with the fine particle measuring instrument used in Test Example 1.

その結果、超純水の製造を再開し、1時間経過後のUF膜分離装置7出口の微粒子数は、1個/mL以下で安定した数値を示した。   As a result, the production of ultrapure water was resumed, and the number of fine particles at the outlet of the UF membrane separation device 7 after 1 hour was stable at 1 / mL or less.

これらの結果から、本発明によれば、イオン交換装置及び膜分離装置の上流側の構成部材の取り付けの際に持ち込まれる汚れ成分による超純水の水質の低下を防止して、高純度の超純水を安定に製造することができることが分かる。   From these results, according to the present invention, it is possible to prevent deterioration of the quality of ultrapure water due to dirt components brought in at the time of installation of components on the upstream side of the ion exchange apparatus and the membrane separation apparatus, It turns out that a pure water can be manufactured stably.

1 タンク
2 ポンプ
3 熱交換器
4 超純水製造ユニット
5 紫外線酸化装置
6 イオン交換装置
7 UF膜分離装置
8 ポンプ
9 ユースポイント
DESCRIPTION OF SYMBOLS 1 Tank 2 Pump 3 Heat exchanger 4 Ultrapure water production unit 5 Ultraviolet oxidizer 6 Ion exchanger 7 UF membrane separator 8 Pump 9 Use point

Claims (4)

少なくともイオン交換装置とその下流側に配置された膜分離装置とを備えた超純水製造システムにおいて、前記イオン交換装置よりも上流側の通水部を構成する部材を該超純水製造システムに取り付る方法であって、該部材に超純水を通水した際に該部材に通水された超純水中の微粒子数が所定値以下となるように、予め該部材を洗浄した後に該超純水製造システムに取り付けることを特徴とする超純水製造システムの構成部材の取付方法。   In an ultrapure water production system comprising at least an ion exchange device and a membrane separation device arranged on the downstream side thereof, a member constituting a water flow portion upstream of the ion exchange device is added to the ultrapure water production system. A method of mounting, after cleaning the member in advance so that the number of fine particles in the ultrapure water passed through the member when the ultrapure water is passed through the member is equal to or less than a predetermined value. A method for attaching components of an ultrapure water production system, wherein the component is attached to the ultrapure water production system. 請求項1において、前記微粒子が粒径0.05μm以上の微粒子であることを特徴とする超純水製造システムの構成部材の取付方法。   2. The method for attaching components of an ultrapure water production system according to claim 1, wherein the fine particles are fine particles having a particle diameter of 0.05 [mu] m or more. 請求項1又は2において、前記部材に通水された超純水中の微粒子数が10000個/mL以下となるように予め該部材を洗浄した後に該超純水製造システムに取り付けることを特徴とする超純水製造システムの構成部材の取付方法。   3. The ultrapure water production system according to claim 1 or 2, wherein the member is previously washed so that the number of fine particles in ultrapure water passed through the member is 10,000 / mL or less. A method for attaching components of the ultrapure water production system. 請求項1ないし3のいずれか1項において、前記部材が、ポンプ、熱交換器、弁及び計器よりなる群から選ばれる1種又は2種以上であることを特徴とする超純水製造システムの構成部材の取付方法。   The ultrapure water production system according to any one of claims 1 to 3, wherein the member is one or more selected from the group consisting of a pump, a heat exchanger, a valve, and a meter. A method for attaching the constituent members.
JP2009227450A 2009-09-30 2009-09-30 Method for mounting constituent member of ultrapure water production system Pending JP2011072924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227450A JP2011072924A (en) 2009-09-30 2009-09-30 Method for mounting constituent member of ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227450A JP2011072924A (en) 2009-09-30 2009-09-30 Method for mounting constituent member of ultrapure water production system

Publications (1)

Publication Number Publication Date
JP2011072924A true JP2011072924A (en) 2011-04-14

Family

ID=44017499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227450A Pending JP2011072924A (en) 2009-09-30 2009-09-30 Method for mounting constituent member of ultrapure water production system

Country Status (1)

Country Link
JP (1) JP2011072924A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361052A (en) * 2001-06-05 2002-12-17 Kurita Water Ind Ltd Ultrafilter membrane for manufacturing ultrapure water and its preliminary washing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361052A (en) * 2001-06-05 2002-12-17 Kurita Water Ind Ltd Ultrafilter membrane for manufacturing ultrapure water and its preliminary washing method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013012983; 膜の劣化とファウリング対策 初版第1刷, 20080905, 408-412頁, 株式会社エヌ・ティー・エス *
JPN6013012987; 大屋晴彦編: 膜利用技術ハンドブック 初版第1刷, 19780630, 204-215頁, 株式会社幸書房 *
JPN6013012990; 取扱説明書ヤマダダイアフラムポンプシリーズ Doc.No.NDP236U-00, 200710, 表紙、11頁及び裏表紙, 株式会社ヤマダコーポレーション *
JPN6013012993; 取扱説明書ヤマダダイアフラムポンプシリーズ Doc.No.NDP236U-01, 200811, 表紙及び裏表紙, 株式会社ヤマダコーポレーション *

Similar Documents

Publication Publication Date Title
JP5733482B1 (en) Ultrapure water production and supply system and cleaning method thereof
JP2004249168A (en) Operation method for water treatment device
TWI774733B (en) Method of cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device
JP2003205299A (en) Hydrogen dissolved water manufacturing system
US10109505B2 (en) Dual medium filter for ion and particle filtering during semiconductor processing
JP5087839B2 (en) Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method
TWI300404B (en) Super pure water producing system and a operation method for that
US6776172B2 (en) Method of cleaning ultrapure water supply system
JP2013111537A (en) Method and device for cleaning equipment
JP2003305465A (en) System for making pure water and method for monitoring water quality
Yang et al. Research on refurbishing of the used RO membrane through chemical cleaning and repairing with a new system
JP2009066589A (en) Wastewater treatment method and wastewater treatment apparatus
JP3620577B2 (en) Cleaning method for ultrapure water production system
JP2011072924A (en) Method for mounting constituent member of ultrapure water production system
JP4747659B2 (en) Cleaning method for ultrapure water production and supply equipment
JP4196222B2 (en) Cleaning device for membrane separator for ultrapure water production
JP4296469B2 (en) Cleaning method for membrane separator for ultrapure water production
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
JP2006130496A (en) Water treatment device and its operating method
TW202106630A (en) Ultrapure water production system and method for producing ultrapure water
JP6205865B2 (en) Operation management method for pure water production equipment
WO2022264563A1 (en) Water quality measurement device
JP4508469B2 (en) Manufacturing method of ultrapure water for electronic parts cleaning
JP5526892B2 (en) Operation method of ion exchanger
TW202216295A (en) Pure water production method and production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Effective date: 20130319

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A02 Decision of refusal

Effective date: 20130604

Free format text: JAPANESE INTERMEDIATE CODE: A02