JP2009066589A - Wastewater treatment method and wastewater treatment apparatus - Google Patents

Wastewater treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2009066589A
JP2009066589A JP2008173587A JP2008173587A JP2009066589A JP 2009066589 A JP2009066589 A JP 2009066589A JP 2008173587 A JP2008173587 A JP 2008173587A JP 2008173587 A JP2008173587 A JP 2008173587A JP 2009066589 A JP2009066589 A JP 2009066589A
Authority
JP
Japan
Prior art keywords
activated sludge
concentration
wastewater treatment
polyvalent cation
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173587A
Other languages
Japanese (ja)
Other versions
JP5053940B2 (en
Inventor
Daisuke Okamura
大祐 岡村
Tomotaka Hashimoto
知孝 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008173587A priority Critical patent/JP5053940B2/en
Publication of JP2009066589A publication Critical patent/JP2009066589A/en
Application granted granted Critical
Publication of JP5053940B2 publication Critical patent/JP5053940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method which enables the proper evaluation of a clogging risk before a membrane is clogged and the stable and efficientle solid-liquid separation of activated sludge and a treated liquid by taking a necessarily sufficient measure. <P>SOLUTION: In the wastewater treatment method using a membrane separation activated sludge method, the activated sludge or organic wastewater is brought into contact with a multivalent cation capturing means when the concentration of a uronic acid unit in the activated sludge becomes a predetermined value or above or when a value, which is obtained by multiplying the concentration of the uronic acid unit in the activated sludge by the concentration of the multivalent cation in the organic wastewater becomes a predetermined value or above before subjected to solid-liquid separation by a separation membrane device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機性廃水の処理をする膜分離活性汚泥法による廃水の処理方法に関する。   The present invention relates to a method for treating wastewater by a membrane separation activated sludge process for treating organic wastewater.

廃水処理方法の一つとして、活性汚泥槽に膜カートリッジを浸漬し、ろ過により活性汚泥と処理液との固液分離を行う膜分離活性汚泥法がある。この方法は活性汚泥濃度(MLSS:Mixed Liquor Suspended Solid)を5000から20000mg/Lと極めて高くして固液分離を行えるため、活性汚泥槽の容積を小さくできる、あるいは活性汚泥槽内での反応時間を短縮できるという利点を有する。また膜によるろ過のため、処理水中には浮遊物質(SS:Suspended Solid)が混入しないので、最終沈殿槽が不要となり処理施設の敷地面積を減らすことができること、活性汚泥沈降性の良否を問わず固液分離ができるため、活性汚泥管理も軽減されることなど多くのメリットがあり、近年急速に普及している。   As one of the wastewater treatment methods, there is a membrane separation activated sludge method in which a membrane cartridge is immersed in an activated sludge tank and solid-liquid separation between the activated sludge and the treatment liquid is performed by filtration. In this method, the activated sludge concentration (MLSS: Mixed Liquor Suspended Solid) can be made extremely high from 5000 to 20000 mg / L for solid-liquid separation, so the volume of the activated sludge tank can be reduced, or the reaction time in the activated sludge tank. Can be shortened. In addition, suspended solids (SS: Suspended Solid) are not mixed in the treated water because of filtration through a membrane, so the final sedimentation tank is not required and the site area of the treatment facility can be reduced, regardless of whether activated sludge sedimentation is good or bad. Since solid-liquid separation can be performed, there are many advantages such as reduced activated sludge management, and it has been rapidly spreading in recent years.

膜カートリッジとしては平膜や中空糸膜が用いられている。膜分離活性汚泥法では、活性汚泥中の微生物が代謝する生物由来ポリマーや、活性汚泥自体、原水から持ち込まれる夾雑物などが膜面に付着することによって有効な膜面積が減少し、ろ過効率が低下するため、長期間の安定なろ過ができない場合がある。   As the membrane cartridge, a flat membrane or a hollow fiber membrane is used. The membrane-separated activated sludge method reduces the effective membrane area and reduces the filtration efficiency by attaching to the membrane surface biological polymers that metabolize microorganisms in activated sludge, activated sludge itself, and contaminants brought in from raw water. Since it decreases, long-term stable filtration may not be possible.

膜表面の付着物を除去する方法として、ろ過方向とは逆方向にろ過水等の媒体を噴出させる逆洗がある。   As a method for removing deposits on the membrane surface, there is backwashing in which a medium such as filtered water is ejected in the direction opposite to the filtration direction.

また、従来、膜表面及び膜の間への活性汚泥や夾雑物等の蓄積を避けるために膜カートリッジの下部から空気等のばっ気を行い、膜の振動効果と気泡の上方への移動による撹拌効果によって、膜表面及び膜の間への活性汚泥凝集物や原水から持ち込まれる夾雑物などを剥離させている。例えば特開2000−157846号公報(特許文献1)には、ろ過装置の中空糸膜カートリッジにおいて、カートリッジヘッドとスカートが分離されており、カートリッジヘッド側の中空糸膜端部の中空部が開口し、スカート側の中空糸膜端部の中空部が封止され、かつスカート側接着固定層に複数の貫通穴が設けられている構成が開示されている。このような構成によれば、ろ過装置におけるエアーバブリング運転時に、中空糸膜の外表面に堆積した懸濁物の剥離作用を大きくすると共に、剥離された懸濁物を中空糸膜カートリッジ外に排除しやすい。   Conventionally, air is aerated from the lower part of the membrane cartridge in order to avoid accumulation of activated sludge and contaminants between the membrane surface and between the membranes, and the vibration effect of the membrane and the stirring by the upward movement of bubbles Due to the effect, activated sludge aggregates between the membrane surface and between the membranes, and contaminants brought in from the raw water are peeled off. For example, in Japanese Patent Laid-Open No. 2000-157846 (Patent Document 1), in a hollow fiber membrane cartridge of a filtration device, a cartridge head and a skirt are separated, and a hollow portion at the end of the hollow fiber membrane on the cartridge head side is opened. A configuration is disclosed in which the hollow portion at the end portion of the hollow fiber membrane on the skirt side is sealed, and a plurality of through holes are provided in the skirt side adhesive fixing layer. According to such a configuration, during the air bubbling operation in the filtration apparatus, the separation action of the suspension deposited on the outer surface of the hollow fiber membrane is increased, and the separated suspension is excluded from the hollow fiber membrane cartridge. It's easy to do.

しかしながら、活性汚泥槽へ流入する有機性廃水の組成によっては、活性汚泥処理条件を適切に設定しないと微生物は膜をつまらせる成分を多く分泌するためか、ばっ気や逆洗を行っても安定な固液分離ができなくなってしまうことがある。   However, depending on the composition of the organic wastewater that flows into the activated sludge tank, microorganisms secrete a large amount of components that can trap the membrane unless the activated sludge treatment conditions are set appropriately. It may become impossible to perform solid-liquid separation.

一方、膜ろ過流束を低く設定することによって、目づまりを生じにくくすることができるが、このような方法を過度に行うと、廃水処理の効率が低下するという問題もある。   On the other hand, clogging can be made difficult to occur by setting the membrane filtration flux low, but if such a method is excessively performed, there is a problem that the efficiency of wastewater treatment is reduced.

また、特開2004−290765号公報(特許文献2)には、膜分離活性汚泥法において、処理槽または溶解性有機物含有液に抗生物質、アンカップラー、キレート剤からなる群から選ばれた少なくとも1種類を添加する方法が提案されている。実施例においては、抗生物質及び/又はアンカップラーを添加した場合に汚泥液の粘度が改善されたことが示されているが、キレート剤を添加する場合の詳細な条件については記載がない。   Japanese Patent Application Laid-Open No. 2004-290765 (Patent Document 2) discloses that at least one selected from the group consisting of antibiotics, uncouplers, and chelating agents in a treatment tank or a soluble organic substance-containing liquid in a membrane separation activated sludge method. Methods for adding types have been proposed. In the Examples, it is shown that the viscosity of the sludge liquid is improved when an antibiotic and / or an uncoupler is added, but there is no description about the detailed conditions when a chelating agent is added.

特開2000−265193号公報(特許文献3)には、発酵食品用部材の洗浄廃水に所定のキレート化合物を添加して、活性汚泥処理する方法が開示されている。当該方法で用いられるキレート化合物は生分解しやすいため、活性汚泥による分解処理の際、負担を軽減することができる。しかしながら、キレート剤として汎用されているEDTAを添加した比較例では(実施例4)、14日後もほとんど生分解されておらず、環境負荷が大きい。
特開2000−157846号公報 特開2004−290765号公報 特開2000−265193号公報
Japanese Unexamined Patent Publication No. 2000-265193 (Patent Document 3) discloses a method of treating activated sludge by adding a predetermined chelate compound to washing wastewater for fermented food components. Since the chelate compound used in the method is easily biodegradable, the burden can be reduced during the decomposition treatment with activated sludge. However, in the comparative example to which EDTA, which is widely used as a chelating agent, was added (Example 4), it was hardly biodegraded after 14 days and the environmental load was large.
Japanese Patent Laid-Open No. 2000-157846 JP 2004-290765 A JP 2000-265193 A

上述のとおり、キレート剤には生分解性に劣るものもあり、過剰に添加すると環境負荷が大きくなるという問題があるため、必要十分に添加することが重要である。   As described above, some chelating agents are inferior in biodegradability, and there is a problem that the environmental burden increases when added in excess, so it is important to add the necessary and sufficient amount.

そこで、本発明は、膜が目づまりする前に目づまりのリスクを適切に評価し、必要十分な対策をとることによって、活性汚泥と処理液との固液分離を安定的且つ効率よく行うことができるようにする方法を提供することを目的とする。   Therefore, the present invention can stably and efficiently perform solid-liquid separation between activated sludge and treatment liquid by appropriately evaluating the risk of clogging before the membrane is clogged and taking necessary and sufficient measures. The object is to provide a way to make it possible.

本発明者らは、鋭意検討の結果、膜外表面に付着してろ過を阻害する物質がウロン酸を主成分とし、分子量が数十万から数百万の生物由来ポリマーであるウロン酸含有ポリマーであることを見いだした。さらにそのウロン酸中のカルボン酸同士がCa2+やMg2+などの多価陽イオンによって分子間架橋を呈し、数多くの分子鎖が架橋して嵩高くなることによって分離膜が目づまりを起こすことを見いだした。そして、架橋の原因となる多価陽イオンを除去すれば、架橋された分子鎖同士をほぐすことができ、分離膜表面でつまることなく分離膜の細孔を通り抜けて系外へ排出されてゆくことを確認した。この際、活性汚泥水槽中のウロン酸ユニット濃度および/または有機性廃水中の多価陽イオン濃度を測定して目づまりのリスクを評価し、リスクが高くなった段階で多価陽イオンを除去すれば、必要十分に処理を行うことができることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that a substance that adheres to the outer surface of the membrane and inhibits filtration is mainly composed of uronic acid and has a molecular weight of several hundreds of thousands to several millions of uronic acid-containing polymer. I found out. Furthermore, the carboxylic acids in the uronic acid are intermolecularly cross-linked by polyvalent cations such as Ca 2+ and Mg 2+ , and many molecular chains cross-link and become bulky, causing clogging of the separation membrane. I found. If the polyvalent cations that cause crosslinking are removed, the cross-linked molecular chains can be loosened, passing through the pores of the separation membrane and being discharged out of the system without being clogged on the separation membrane surface. It was confirmed. At this time, measure the clogging risk by measuring the uronic acid unit concentration in the activated sludge tank and / or the polyvalent cation concentration in the organic wastewater, and remove the polyvalent cation when the risk becomes high. As a result, the present inventors have found that necessary and sufficient processing can be performed and have completed the present invention.

即ち、本発明は、
〔1〕活性汚泥を収容した活性汚泥槽に有機性廃水を流入させ、該有機性廃水を該活性汚泥によって生物処理し、該活性汚泥槽又はその後段に設置した分離膜装置によって該活性汚泥を固液分離する、膜分離活性汚泥装置による、廃水の処理方法であって、前記活性汚泥の水相中のウロン酸ユニット濃度が所定の値以上になったときに、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させてから、前記分離膜装置による固液分離を行う、廃水処理方法;
〔2〕前記ウロン酸ユニット濃度(mg/L)が、20以上になったときに、前記活性汚泥または前記有機性廃水を前記多価陽イオン捕捉手段と接触させる、上記〔1〕に記載の廃水処理方法;
〔3〕活性汚泥を収容した活性汚泥槽に有機性廃水を流入させ、該有機性廃水を該活性汚泥によって生物処理し、該活性汚泥槽又はその後段に設置した分離膜装置によって該活性汚泥を固液分離する、膜分離活性汚泥装置による、廃水の処理方法であって、前記活性汚泥の水相中のウロン酸ユニット濃度(mg/L)に前記有機性廃水中の多価陽イオン濃度(mg/L)を乗じた値が所定の値以上になった時に、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させてから、前記分離膜装置による固液分離を行う、廃水処理方法;
〔4〕前記ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600以上になった時に、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させる、上記〔3〕記載の廃水処理方法;
〔5〕前記多価陽イオン捕捉手段が、キレート剤またはイオン交換樹脂である、上記〔1〕から〔4〕のいずれか1項に記載の廃水処理方法;
〔6〕前記固液分離の途中で、多価陽イオン捕捉手段を含む洗浄液で前記分離膜装置を洗浄する工程を含む、上記〔1〕から〔5〕のいずれか1項に記載の廃水処理方法;
〔7〕活性汚泥が収容され、有機性廃水を生物処理する活性汚泥槽と、前記活性汚泥槽中またはその後段に設置され、前記活性汚泥による処理液から前記活性汚泥を固液分離する分離膜装置と、を含む廃水処理装置であって、前記活性汚泥の水相中のウロン酸ユニット濃度および/または前記有機性廃水中の多価イオン濃度の測定手段と、前記活性汚泥または前記有機性廃水から多価陽イオンを除去する多価陽イオン捕捉手段とを備える、廃水処理装置。
〔8〕前記多価陽イオン捕捉手段が、キレート剤添加手段である、上記〔7〕に記載の廃水処理装置;
〔9〕前記多価陽イオン捕捉手段が、イオン交換樹脂塔である、上記〔7〕に記載の廃水処理装置;および
〔10〕さらに、前記ウロン酸ユニット濃度(mg/L)が所定の値以上となったとき、または、前記ウロン酸ユニット濃度(mg/L)に前記多価陽イオン濃度(mg/L)を乗じた値が所定の値以上になったときに、多価陽イオン捕捉手段を自動的に機能させる制御手段を備える、上記〔7〕から〔9〕のいずれか1項に記載の廃水処理装置、に関する。
That is, the present invention
[1] Organic wastewater is allowed to flow into an activated sludge tank containing activated sludge, the organic wastewater is biologically treated with the activated sludge, and the activated sludge is separated by the activated sludge tank or a separation membrane device installed in the subsequent stage. A method for treating wastewater by a membrane-separated activated sludge apparatus for solid-liquid separation, wherein the activated sludge or the organic property is obtained when the uronic acid unit concentration in the aqueous phase of the activated sludge becomes a predetermined value or more. A wastewater treatment method in which wastewater is brought into contact with a polyvalent cation capturing means and then solid-liquid separation is performed by the separation membrane device;
[2] The above-mentioned [1], wherein when the uronic acid unit concentration (mg / L) becomes 20 or more, the activated sludge or the organic waste water is brought into contact with the polyvalent cation capturing means. Wastewater treatment method;
[3] Organic wastewater is allowed to flow into an activated sludge tank containing activated sludge, the organic wastewater is biologically treated with the activated sludge, and the activated sludge is separated by the activated sludge tank or a separation membrane device installed in the subsequent stage. A method for treating wastewater by a membrane-separated activated sludge apparatus for solid-liquid separation, wherein the concentration of polyvalent cations in the organic wastewater (mg / L) is increased to the uronic acid unit concentration (mg / L) in the aqueous phase of the activated sludge. When the value multiplied by mg / L) becomes a predetermined value or more, the activated sludge or the organic waste water is brought into contact with the polyvalent cation capturing means, and then the solid-liquid separation is performed by the separation membrane device. Wastewater treatment method;
[4] When the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) becomes 600 or more, the activated sludge or the organic waste water is captured by the polyvalent cation. The wastewater treatment method according to [3] above, which is brought into contact with means;
[5] The wastewater treatment method according to any one of [1] to [4], wherein the polyvalent cation capturing means is a chelating agent or an ion exchange resin;
[6] The wastewater treatment according to any one of [1] to [5], including a step of washing the separation membrane device with a washing liquid containing a polyvalent cation trapping means in the middle of the solid-liquid separation. Method;
[7] An activated sludge tank that contains activated sludge and biologically treats organic wastewater, and a separation membrane that is installed in or at the subsequent stage of the activated sludge tank and that separates the activated sludge from the treatment liquid by the activated sludge A wastewater treatment apparatus comprising: a means for measuring a uronic acid unit concentration in the aqueous phase of the activated sludge and / or a polyvalent ion concentration in the organic wastewater; and the activated sludge or the organic wastewater. A wastewater treatment apparatus comprising a polyvalent cation trapping means for removing polyvalent cations from water.
[8] The wastewater treatment apparatus according to [7], wherein the polyvalent cation capturing unit is a chelating agent addition unit;
[9] The wastewater treatment apparatus according to [7], wherein the polyvalent cation capturing means is an ion exchange resin tower; and [10] Further, the uronic acid unit concentration (mg / L) is a predetermined value. Or when the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeds a predetermined value The present invention relates to the waste water treatment apparatus according to any one of [7] to [9], comprising control means for automatically functioning the means.

本発明によれば、活性汚泥中のウロン酸ユニット濃度および/または有機性廃水中の多価陽イオン濃度を測定して膜に目づまりが生じる前に目づまりのリスクを評価し、必要十分に多価陽イオンを捕捉して目づまりを防ぐことができる。本発明によれば、必要以上にキレート剤を添加して、環境負荷を増大させるといった問題も生じることなく、長期間安定に固液分離を行うことができる。   According to the present invention, the uronic acid unit concentration in activated sludge and / or the polyvalent cation concentration in organic wastewater is measured to evaluate the risk of clogging before the membrane is clogged. Capturing cations can prevent clogging. According to the present invention, solid-liquid separation can be performed stably for a long period of time without causing the problem of adding a chelating agent more than necessary to increase the environmental load.

以下に、本発明に係る廃水処理方法の好ましい実施の形態を説明する。   Below, preferable embodiment of the waste water treatment method which concerns on this invention is described.

まず、図1に示される一般的な膜分離活性汚泥装置を使用した廃水処理方法について説明する。図1において、膜分離活性汚泥槽内に流入する有機性廃水1は、細目スクリーンやドラムスクリーンなどの前処理設備2によって夾雑物を除去した後に流量調節槽3に一旦貯留される。その後、有機性廃水1は、分離膜装置における膜ろ過流束を一定に保つため、流量調節槽3から一定の流量で膜分離活性汚泥槽(ばっ気槽)4に供給される。   First, a wastewater treatment method using the general membrane separation activated sludge apparatus shown in FIG. 1 will be described. In FIG. 1, the organic waste water 1 flowing into the membrane separation activated sludge tank is temporarily stored in the flow rate adjusting tank 3 after removing impurities by a pretreatment facility 2 such as a fine screen or a drum screen. Thereafter, the organic waste water 1 is supplied from the flow rate control tank 3 to the membrane separation activated sludge tank (aeration tank) 4 at a constant flow rate in order to keep the membrane filtration flux in the separation membrane device constant.

膜分離活性汚泥槽4では、活性汚泥中の微生物によって有機性廃水1中の有機物(BOD成分)が分解除去される。膜分離活性汚泥槽4における活性汚泥混合液の固液分離は槽内に浸漬された浸漬型分離膜装置5で行い、そのろ過液9は必要に応じて滅菌槽10で消毒後、処理水11として得られる。膜分離活性汚泥槽4では微生物は有機性廃水1中のBOD成分を分解するとともに増殖する。   In the membrane separation activated sludge tank 4, the organic matter (BOD component) in the organic wastewater 1 is decomposed and removed by the microorganisms in the activated sludge. Solid-liquid separation of the activated sludge mixed liquid in the membrane separation activated sludge tank 4 is performed by an immersion type separation membrane apparatus 5 immersed in the tank, and the filtrate 9 is sterilized in a sterilization tank 10 as necessary, and then treated water 11 As obtained. In the membrane separation activated sludge tank 4, the microorganisms proliferate while decomposing the BOD component in the organic wastewater 1.

本発明者らは上述のように、活性汚泥中の多価陽イオンを除去することで分離膜が目づまりするのを抑制できることを見いだした。特に、多価陽イオンによって架橋されるのは、ウロン酸含有ポリマーのカルボン酸の部分であるので、活性汚泥中のウロン酸濃度を測定し、所定の濃度を超えたときに、多価陽イオンを捕捉することによって、必要十分に目づまりのリスクを回避することができる。多価陽イオンは、ウロン酸濃度が20mg/L、好ましくは30mg/Lを超えたときに捕捉することが好ましい。   As described above, the present inventors have found that the separation membrane can be prevented from being clogged by removing the polyvalent cation in the activated sludge. In particular, since it is the carboxylic acid portion of the uronic acid-containing polymer that is cross-linked by the polyvalent cation, the uronic acid concentration in the activated sludge is measured, and when the concentration exceeds a predetermined concentration, the polyvalent cation By catching, the risk of clogging can be avoided sufficiently. The polyvalent cation is preferably captured when the uronic acid concentration exceeds 20 mg / L, preferably 30 mg / L.

また、活性汚泥中のウロン酸ユニット濃度とともに有機性廃水中の多価陽イオン濃度を測定し、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が所定の値以上となったときに多価陽イオンを捕捉することによっても、必要十分に目詰まりのリスクを回避することができる。多価陽イオンは、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が、600以上になったときに捕捉することが好ましい。   Moreover, the polyvalent cation concentration in organic wastewater is measured together with the uronic acid unit concentration in the activated sludge, and the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) is The risk of clogging can be avoided sufficiently and sufficiently also by capturing the polyvalent cation when the value exceeds a predetermined value. The polyvalent cation is preferably captured when the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) is 600 or more.

ウロン酸ユニット濃度を測定する場合には、活性汚泥を、ろ紙など分離膜装置の分離膜より大きな孔径を有するろ材によってろ過し、汚泥ろ液を得てから測定することが好ましい。この操作によって、活性汚泥中の浮遊物のみが当該ろ材に捕捉され、ウロン酸成分はろ紙を通過する。したがってそのろ液中のウロン酸ユニット濃度を測定すれば膜の目詰まり物質となるウロン酸含有ポリマーの濃度をより正確に測定することができる。   When measuring the uronic acid unit concentration, it is preferable to measure the activated sludge after filtration through a filter medium having a larger pore size than the separation membrane of the separation membrane device such as filter paper to obtain a sludge filtrate. By this operation, only the suspended matter in the activated sludge is captured by the filter medium, and the uronic acid component passes through the filter paper. Therefore, if the uronic acid unit concentration in the filtrate is measured, the concentration of the uronic acid-containing polymer that becomes the clogging substance of the membrane can be measured more accurately.

この時のろ材の孔径は、分離膜装置に備えられた分離膜孔径の好ましくは5倍以上、さらに好ましくは10倍以上である。また、分離膜装置に備えられた分離膜の孔径の約100倍以下を上限とし、10μm以下であることがより好ましい。ろ材の素材は、ウロン酸成分の吸着が少ない親水性のものであることが好ましい。このようなろ材としては、例えば、セルロースを素材とするろ紙を用いることができる。   The pore diameter of the filter medium at this time is preferably 5 times or more, more preferably 10 times or more the separation membrane pore diameter provided in the separation membrane device. Further, the upper limit is about 100 times or less the pore size of the separation membrane provided in the separation membrane device, and it is more preferably 10 μm or less. The material of the filter medium is preferably a hydrophilic material with little adsorption of the uronic acid component. As such a filter medium, for example, a filter paper made of cellulose can be used.

ウロン酸ユニット濃度は、NELLY BLUMENKRANTZ,GUSTAV ASBOE−HANSEN著「New Method for Quantitative Determination of Uronic Acid」ANALYTICAL BIOCHEMISTRY54巻、484〜489貢(1973年発行)に記載の方法に従い、ポリウロン酸の一つであるポリガラクツロン酸を用いて作成した検量線により測定することができる。具体的には下記の手順で行えばよい。
1)0.5mLの汚泥ろ液および既知濃度のポリガラクツロン酸水溶液を試験管にとり、各々に3.0mLの0.0125MのNa247濃硫酸溶液を加える。
2)1)の各液をよく振とうし、沸騰湯浴中で5分間温め、その後氷水中で20分間冷やす。
3)2)の各液に50μLの0.15%m−ヒドロキシジフェニルの0.5%NaOH溶液を加える。
4)3)の各液をよく撹拌した後5分放置し、これらの520nm吸光度を測定し、既知濃度のポリガラクツロン酸水溶液の値と、汚泥ろ液の値とを比較して濃度を求める。
Concentration of uronic acid unit is according to NELLY BLUMENKRANTZ, GUSTAV ASBOE-HANSEN, “New Method for Quantitative Acid of Aid” published by ANALITICAL BIOCHEMISTRY Vol. It can be measured by a calibration curve prepared using polygalacturonic acid. Specifically, the following procedure may be performed.
1) Take 0.5 mL of sludge filtrate and a known concentration of polygalacturonic acid aqueous solution into a test tube, and add 3.0 mL of 0.0125 M Na 2 B 4 O 7 concentrated sulfuric acid solution to each.
2) Shake each solution of 1) well, warm in a boiling water bath for 5 minutes, and then cool in ice water for 20 minutes.
3) Add 50 μL of 0.15% m-hydroxydiphenyl in 0.5% NaOH to each solution of 2).
4) Each solution of 3) is stirred well and allowed to stand for 5 minutes. The absorbance at 520 nm is measured, and the concentration of the polygalacturonic acid aqueous solution having a known concentration is compared with the value of the sludge filtrate to determine the concentration.

一方、有機性廃水中の多価陽イオンを測定する方法は特に限定されず、当業者であれば公知の方法やそれに準ずる方法を用いて容易に測定することができる。中でも活性汚泥槽4に流入する前の有機性廃水を、誘導結合プラズマ(ICP)発光分析法や、ICP−質量分析(MS)法によって分析することが好ましく、これらの方法によれば何種類もの陽イオンを一度に分析できるので有利である。   On the other hand, the method for measuring the polyvalent cation in the organic wastewater is not particularly limited, and those skilled in the art can easily measure using a known method or a method equivalent thereto. In particular, it is preferable to analyze the organic wastewater before flowing into the activated sludge tank 4 by inductively coupled plasma (ICP) emission spectrometry or ICP-mass spectrometry (MS). Advantageously, cations can be analyzed at once.

多価陽イオンを捕捉する手段としては、活性汚泥槽4へ流入する有機性廃水1中の陽イオンの元素分析をあらかじめ行っておき、その元素に適したキレート剤を選択することができる。キレート剤としては、例えば、エチレンジアミン四酢酸(EDTA)やグリコールエーテルジアミン四酢酸(EGTA)が挙げられる。また、キレート剤が生分解性であるとさらに好ましい。キレート剤は、活性汚泥槽に投入してもよく、活性汚泥槽投入前の有機性廃水に投入してもよい。   As means for capturing the polyvalent cation, elemental analysis of the cation in the organic wastewater 1 flowing into the activated sludge tank 4 is performed in advance, and a chelating agent suitable for the element can be selected. Examples of the chelating agent include ethylenediaminetetraacetic acid (EDTA) and glycol etherdiaminetetraacetic acid (EGTA). Further, it is more preferable that the chelating agent is biodegradable. The chelating agent may be charged into the activated sludge tank or may be charged into the organic waste water before the activated sludge tank is charged.

有機性廃水中の多価陽イオン濃度に基づいてキレート剤の添加量を決めることによって、より効率よく必要十分に多価陽イオンを捕捉することができる。例えば、有機性廃水1中に含まれる多価陽イオンがMg2+やCa2+である場合、キレート剤をMg2+及びCa2+のモル濃度の1〜3倍、好ましくは約2倍当量程度の量を活性汚泥槽4へ添加すると、Mg2+やCa2+が効率的にキレート剤と結合するので好ましい。このように、キレート剤の添加量を決定することにより、過剰なキレート剤を添加して環境負荷が大きくなるのを防ぐことができる。 By determining the addition amount of the chelating agent based on the polyvalent cation concentration in the organic wastewater, the polyvalent cation can be captured more efficiently and necessary. For example, when the polyvalent cation contained in the organic waste water 1 is Mg 2+ or Ca 2+ , the chelating agent is 1 to 3 times, preferably about 2 times the molar concentration of Mg 2+ and Ca 2+. It is preferable to add an equivalent amount to the activated sludge tank 4 because Mg 2+ and Ca 2+ efficiently bind to the chelating agent. Thus, by determining the addition amount of a chelating agent, it can prevent adding an excessive chelating agent and increasing an environmental load.

また、多価陽イオンを捕捉する手段として、イオン交換樹脂も使用できる。イオン交換樹脂の場合は、有機性廃水1をイオン交換樹脂に接触させてMg2+やCa2+などの多価陽イオンをあらかじめ除去してから活性汚泥槽4へ流入させる方法や、イオン交換樹脂を活性汚泥槽4中へ分散させる方法がある。この場合も、有機性廃水中の多価陽イオン濃度に基づいて、イオン交換樹脂を導入する量を決めることによって、効率よく必要十分に多価陽イオンを捕捉することができる。イオン交換樹脂としては、例えば三菱化学製ダイアイオンSK1B(Na)やオルガノ製アンバーライトIR120B(Na)を用いることができる。 An ion exchange resin can also be used as a means for capturing the polyvalent cation. In the case of an ion exchange resin, the organic waste water 1 is brought into contact with the ion exchange resin to remove polyvalent cations such as Mg 2+ and Ca 2+ in advance and then flow into the activated sludge tank 4 or ion exchange. There is a method of dispersing the resin in the activated sludge tank 4. Also in this case, it is possible to efficiently and sufficiently capture the polyvalent cation efficiently and sufficiently by determining the amount of the ion exchange resin introduced based on the polyvalent cation concentration in the organic waste water. As the ion exchange resin, for example, Diaion SK1B (Na) manufactured by Mitsubishi Chemical and Amberlite IR120B (Na) manufactured by Organo can be used.

この他、イオン交換膜を用いた電気透析装置も用いることができる。このとき特に2価以上の陽イオンを選択的に濃縮できるイオン交換膜電気透析装置を用いるのが好ましい。   In addition, an electrodialyzer using an ion exchange membrane can also be used. In this case, it is particularly preferable to use an ion exchange membrane electrodialyzer capable of selectively concentrating divalent or higher cation.

さらに、分離膜に目づまりが生じた場合には、多価陽イオン捕捉手段を含む液でウロン酸含有ポリマーの嵩高さを小さくすることによって膜面を洗浄することもできる。この場合、ろ過水や水道水などに多価陽イオン捕捉手段を添加して洗浄液とし、ろ過とは逆方向に当該洗浄液を分離膜装置へ流し込むことが好ましい。また、ろ過水や水道水などに多価陽イオン捕捉手段を添加した液を作製し、この液中に分離膜装置を浸すことがより好ましい。ここで、膜分離活性汚泥槽4が脱窒のために好気槽−無酸素槽である場合にも本発明は適用できる。また、分離膜装置は活性汚泥槽の後段に設けられる場合でも本発明を適用することができる。   Furthermore, when clogging occurs in the separation membrane, the membrane surface can be washed by reducing the bulk of the uronic acid-containing polymer with a liquid containing a polyvalent cation trapping means. In this case, it is preferable to add a polyvalent cation capturing means to filtered water or tap water to obtain a cleaning liquid, and to flow the cleaning liquid into the separation membrane device in the opposite direction to the filtration. It is more preferable to prepare a solution obtained by adding a polyvalent cation capturing means to filtered water or tap water, and immerse the separation membrane device in this solution. Here, this invention is applicable also when the membrane separation activated sludge tank 4 is an aerobic tank-an oxygen-free tank for denitrification. Further, the present invention can be applied even when the separation membrane device is provided in the subsequent stage of the activated sludge tank.

本発明はまた、上述した本発明に係る廃水処理方法を好適に実施することができる廃水処理装置も提供する。本発明に係る廃水処理装置は、活性汚泥が収容され、有機性廃水を生物処理する活性汚泥槽と、活性汚泥槽中またはその後段に設置され、活性汚泥による処理液から活性汚泥を固液分離する分離膜装置とを含み、活性汚泥の水相中のウロン酸ユニット濃度および多価陽イオン濃度の測定手段と、活性汚泥または有機性廃水から多価陽イオンを除去する多価陽イオン捕捉手段とを備えることを特徴とする。   The present invention also provides a wastewater treatment apparatus that can suitably carry out the above-described wastewater treatment method according to the present invention. The wastewater treatment apparatus according to the present invention contains activated sludge and is installed in or in the activated sludge tank for biological treatment of organic wastewater, and the activated sludge is solid-liquid separated from the treatment liquid by activated sludge. Means for measuring uronic acid unit concentration and polyvalent cation concentration in the aqueous phase of activated sludge, and multivalent cation trapping means for removing polyvalent cations from activated sludge or organic wastewater It is characterized by providing.

本発明に係る廃水処理装置の例を、図4および図5を参照して説明する。   An example of the wastewater treatment apparatus according to the present invention will be described with reference to FIGS. 4 and 5.

ウロン酸ユニット濃度測定手段は、例えば図に示されるウロン酸ユニット測定装置13とすることができ、活性汚泥槽4に取り付けて、活性汚泥槽4の水相中のウロン酸ユニット濃度を設定した時間ごとに自動で測定する。ウロン酸ユニット測定手段13は、例えば、液体クロマトグラフィーとすることができる。また、上述のとおり、ウロン酸ユニット濃度を測定するためには、活性汚泥をろ材でろ過することが好ましいので、ウロン酸ユニット測定装置13が、かかるろ材を備えることも好ましい。   The uronic acid unit concentration measuring means can be, for example, the uronic acid unit measuring device 13 shown in the figure, attached to the activated sludge tank 4, and the time when the uronic acid unit concentration in the aqueous phase of the activated sludge tank 4 is set. Measure automatically every time. The uronic acid unit measuring means 13 can be, for example, liquid chromatography. Moreover, since it is preferable to filter activated sludge with a filter medium in order to measure a uronic acid unit density | concentration as above-mentioned, it is also preferable that the uronic acid unit measuring apparatus 13 is equipped with this filter medium.

多価陽イオン濃度の測定手段は、例えば図中の陽イオン測定装置14とすることができ、流量調節槽3と活性汚泥槽4との間の流路を通過する有機性廃水の濃度を測定できるように配置することができる。多価陽イオン濃度の測定手段14は、例えば、誘導結合プラズマ(ICP)発光分析装置や、ICP質量分析計(ICP−MS)とすることができる。陽イオン測定装置14は、図に示されるように流量調節槽3と活性汚泥槽4の間に配置してもよいし、流量調節槽3よりも上流に配置してもよい。   The means for measuring the polyvalent cation concentration can be, for example, the cation measuring device 14 in the figure, and measures the concentration of organic waste water that passes through the flow path between the flow control tank 3 and the activated sludge tank 4. It can be arranged as possible. The measuring means 14 of the polyvalent cation concentration can be, for example, an inductively coupled plasma (ICP) emission spectrometer or an ICP mass spectrometer (ICP-MS). As shown in the figure, the cation measuring device 14 may be disposed between the flow rate control tank 3 and the activated sludge tank 4 or may be disposed upstream of the flow rate control tank 3.

多価陽イオン捕捉手段は、キレート剤添加手段や、イオン交換樹脂塔とすることができる。キレート剤添加手段は、例えば、図4に示されるEDTA添加装置15とすることができるが、これに限定されず、他の種類のキレート剤を投入するものであってもよいし、複数種類のキレート剤を用意し、多価陽イオンの種類によって異なるキレート剤を、適量投入できる構成とすることも好ましい。また、図4のようにキレート剤を活性汚泥槽に投入できるよう設置してもよいし、活性汚泥槽流入前の廃水にキレート剤を投入できるところ(例えば、流動調節槽3)に設置してもよい。   The polyvalent cation capturing means can be a chelating agent adding means or an ion exchange resin tower. The chelating agent addition means can be, for example, the EDTA addition device 15 shown in FIG. 4, but is not limited to this, and other types of chelating agents may be introduced, or a plurality of types of chelating agents may be added. It is also preferable to prepare a chelating agent so that an appropriate amount of a chelating agent different depending on the type of polyvalent cation can be added. Further, as shown in FIG. 4, the chelating agent may be installed in the activated sludge tank, or installed in a place where the chelating agent can be introduced into the waste water before flowing into the activated sludge tank (for example, the flow control tank 3). Also good.

多価陽イオン捕捉手段としてイオン交換樹脂塔を用いる場合は、例えば、図5に示される陽イオン交換樹脂塔16とすることができる。イオン交換樹脂塔は、流量調節槽と活性汚泥槽の間に通常のラインと並列に配置することができる。このような構成により、必要に応じてラインを切り替え、流量調節槽の有機性廃水をイオン交換樹脂塔経由で活性汚泥槽に流入させることが可能となる。   When an ion exchange resin tower is used as the polyvalent cation trapping means, for example, the cation exchange resin tower 16 shown in FIG. 5 can be used. The ion exchange resin tower can be arranged in parallel with a normal line between the flow control tank and the activated sludge tank. With such a configuration, it is possible to switch the line as necessary, and to flow the organic waste water in the flow rate control tank into the activated sludge tank via the ion exchange resin tower.

また、このときイオン交換樹脂塔の代わりにイオン交換膜を使った電気透析装置も用いることができる。   At this time, an electrodialyzer using an ion exchange membrane can be used instead of the ion exchange resin tower.

また、本発明に係る廃水処理装置は、ウロン酸ユニット濃度が所定の値以上となったとき、または、ウロン酸ユニット濃度及びウロン酸ユニット濃度(mg/L)に有機性廃水中の多価陽イオン濃度(mg/L)を乗じた値が所定の値以上になったときに、多価陽イオン捕捉手段を自動的に機能させる制御手段を備えることも好ましい。ここで、自動的に機能させるとは、例えば、多価陽イオン捕捉手段がキレート剤添加手段である場合には、適したキレート剤を選択して活性汚泥槽等に適量添加することを意味し、多価陽イオン捕捉手段がイオン交換樹脂塔である場合には、通常のラインからイオン交換樹脂塔にラインを切り替えることを意味する。   In addition, the wastewater treatment apparatus according to the present invention provides a polyvalent cation in the organic wastewater when the uronic acid unit concentration is equal to or higher than a predetermined value, or when the uronic acid unit concentration and the uronic acid unit concentration (mg / L). It is also preferable to provide a control means for automatically functioning the polyvalent cation capturing means when the value obtained by multiplying the ion concentration (mg / L) becomes a predetermined value or more. Here, automatically functioning means, for example, when the polyvalent cation capturing means is a chelating agent adding means, selecting a suitable chelating agent and adding an appropriate amount to an activated sludge tank or the like. When the polyvalent cation capturing means is an ion exchange resin tower, it means that the line is switched from a normal line to an ion exchange resin tower.

本発明の実施例を以下に説明するが、それによって本発明が限定されることはない。   Examples of the present invention will be described below, but the present invention is not limited thereby.

以下の方法により、本発明に係る廃水処理方法によれば膜ろ過圧力が安定に推移することを確認した。   According to the following method, it was confirmed that the membrane filtration pressure was stably changed according to the wastewater treatment method of the present invention.

まず有機性廃水を含む活性汚泥を、1μmの孔径を有するろ紙(アドバンテック社、セルロース製、5C(商品名))でろ過し、得られたろ液(以下、「汚泥ろ液」と呼ぶ)を、0.1μmの孔径を有する中空糸膜(旭化成ケミカルズ社製、PVDF製、膜面積(外表面)0.02m2、有効膜長さ15cm、内径/外径:0.6/1.2mm)で、9分間ろ過、1分間逆洗を1サイクルとして7サイクル行った。 First, the activated sludge containing organic wastewater is filtered through a filter paper (Advantech, made of cellulose, 5C (trade name)) having a pore size of 1 μm, and the obtained filtrate (hereinafter referred to as “sludge filtrate”), A hollow fiber membrane having a pore size of 0.1 μm (Asahi Kasei Chemicals, PVDF, membrane area (outer surface) 0.02 m 2 , effective membrane length 15 cm, inner diameter / outer diameter: 0.6 / 1.2 mm) 9 cycles of filtration and 1 minute of backwashing were performed for 7 cycles.

ろ過抵抗Rcと、膜間差圧Pn等の間には、下記式(I)のような関係がある。上記の膜ろ過実験の結果得られた値(膜間差圧、粘度、Flux)をプロットして、Pn/(μJ)とnとの関係の近似線を描き、その傾きからRcを求めた。   There is a relationship such as the following formula (I) between the filtration resistance Rc and the transmembrane pressure difference Pn. The values (transmembrane pressure difference, viscosity, Flux) obtained as a result of the above membrane filtration experiment were plotted, an approximate line of the relationship between Pn / (μJ) and n was drawn, and Rc was obtained from the slope.

Pn/(μJ)=n×Rc………(I)
式(I)において、nはろ過サイクル数、Pnはnサイクル目の膜間差圧の平均値[Pa]、μは膜ろ過水の粘度[Pa・s]、JはFlux[m/D]を表す。
Pn / (μJ) = n × Rc (I)
In the formula (I), n is the number of filtration cycles, Pn is the average value of the transmembrane pressure difference at the nth cycle [Pa], μ is the viscosity of the membrane filtrate [Pa · s], and J is the flux [m / D]. Represents.

汚泥ろ液は2つ用意した。この汚泥ろ液中のウロン酸ユニット濃度はどちらも35mg/Lであった。一方の汚泥ろ液に最終濃度が0.5mMになるようにEDTAを添加した。もう一方は、何も加えずにろ過抵抗を測定した。   Two sludge filtrates were prepared. Both uronic acid unit concentrations in this sludge filtrate were 35 mg / L. EDTA was added to one sludge filtrate so that the final concentration was 0.5 mM. The other measured the filtration resistance without adding anything.

70分経過後、EDTAを加えていない方の汚泥ろ液では、ろ過抵抗値が6.1×1011であるのに対し(図2)、EDTAを加えた方はろ過抵抗値が2.8×1011に維持された(図3)。このように、多価陽イオンを捕捉することによってろ過抵抗値を低下させることができることを確認した。 After 70 minutes, the sludge filtrate to which EDTA has not been added has a filtration resistance value of 6.1 × 10 11 (FIG. 2), whereas the addition of EDTA has a filtration resistance value of 2.8. It was maintained at × 10 11 (FIG. 3). Thus, it was confirmed that the filtration resistance value can be reduced by capturing the polyvalent cation.

図1の系の膜分離活性汚泥装置を3台用意し、1台(以下、「膜分離活性装置A」という。)は図1のフローのままとした。もう1台(以下、「膜分離活性装置B」という。)には、図4に示されるように、流量調節槽3と活性汚泥槽4の間に多価陽イオン測定手段としてICP発光分光装置14(ICPS−7000、島津製作所製)を取り付けるとともに、活性汚泥槽4にEDTA自動添加装置15を取り付け、活性汚泥槽4にウロン酸ユニット濃度測定手段として液体クロマトグラフィー13を取り付けた。そして、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600を超えると、EDTA自動添加装置が作動して多価陽イオン濃度の2倍当量のEDTAが、流動調節槽3内の有機性廃水に自動的に添加されるよう設定した。   Three membrane separation activated sludge apparatuses of the system of FIG. 1 were prepared, and one (hereinafter referred to as “membrane separation activation apparatus A”) was kept in the flow of FIG. In another unit (hereinafter referred to as “membrane separation activation device B”), as shown in FIG. 4, an ICP emission spectrometer as a multivalent cation measuring means is provided between the flow rate control tank 3 and the activated sludge tank 4. 14 (ICPS-7000, manufactured by Shimadzu Corporation) was attached, the EDTA automatic addition device 15 was attached to the activated sludge tank 4, and the liquid chromatography 13 was attached to the activated sludge tank 4 as a uronic acid unit concentration measuring means. When the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeds 600, the EDTA automatic addition device is activated and the double cation concentration is doubled. EDTA was set to be automatically added to the organic wastewater in the flow control tank 3.

また、もう1台(以下、「膜分離活性装置C」という。)には、図5に示されるように、流量調節槽3と活性汚泥槽4の間に多価陽イオン測定手段14を設置するとともに、流量調節槽3から活性汚泥槽4への既存の配管に加え、イオン交換樹脂塔16(三菱化学製ダイアイオンSK1B(Na))を通るラインを新たに取り付けた。また、活性汚泥槽4には、ウロン酸ユニット濃度測定手段として、液体クロマトグラフィー13を取り付けた。そして、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600を超えると、イオン交換樹脂塔を経由するラインに配管が自動的に切り替わり、活性汚泥槽4に流入する前に多価陽イオンが捕捉されるよう設定した。   Further, as shown in FIG. 5, the other unit (hereinafter referred to as “membrane separation activation device C”) is provided with a polyvalent cation measuring means 14 between the flow rate control tank 3 and the activated sludge tank 4. In addition to the existing piping from the flow control tank 3 to the activated sludge tank 4, a line passing through the ion exchange resin tower 16 (Mitsubishi Chemical Diaion SK1B (Na)) was newly attached. The activated sludge tank 4 was provided with a liquid chromatography 13 as a uronic acid unit concentration measuring means. When the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeds 600, the piping is automatically switched to a line passing through the ion exchange resin tower, and activated sludge. It was set so that polyvalent cations were captured before flowing into the tank 4.

膜分離活性汚泥装置A〜Cで、BODが750mg/Lの製糖工場廃水を処理した。当初、廃水中の糖濃度およびウロン酸ユニット濃度は、それぞれ30mg/Lおよび0mg/Lであった。   In the membrane separation activated sludge apparatuses A to C, sugar factory wastewater having a BOD of 750 mg / L was treated. Initially, the sugar concentration and uronic acid unit concentration in the wastewater were 30 mg / L and 0 mg / L, respectively.

いずれの膜分離活性汚泥装置においても、孔径0.1μmの精密ろ過中空糸膜をモジュール化した分離膜装置(旭化成ケミカルズ社製、PVDF製、膜面積0.015m2、有効膜長さ15cm、内径/外径:0.6/1.2mm)を、有効容積10Lの活性汚泥槽に浸漬させた。膜へのばっ気は、空気を膜モジュールの下部から200NL/hの流量で送気した。 In any membrane separation activated sludge device, a separation membrane device in which a microfiltration hollow fiber membrane having a pore size of 0.1 μm is modularized (Asahi Kasei Chemicals, PVDF, membrane area 0.015 m 2 , effective membrane length 15 cm, inner diameter / Outer diameter: 0.6 / 1.2 mm) was immersed in an activated sludge tank having an effective volume of 10 L. For aeration to the membrane, air was fed from the lower part of the membrane module at a flow rate of 200 NL / h.

MLSS濃度は10g/Lで一定とし、活性汚泥槽4における廃水の滞留時間は18時間とした。活性汚泥の液量は常に一定とし、1系列の分離膜装置を設置してろ過Fluxは0.6m/Dに設定し、ろ液は全量活性汚泥槽外に排出した。初期の膜ろ過圧力はいずれも5kPaであった。運転15日目に前述の方法で活性汚泥の水相中のウロン酸ユニット濃度を測定するといずれも30mg/Lで同じであった。このとき膜ろ過圧力はいずれも9kPaであった。   The MLSS concentration was constant at 10 g / L, and the residence time of the wastewater in the activated sludge tank 4 was 18 hours. The amount of activated sludge was always constant, a series of separation membrane devices were installed, the filtration flux was set to 0.6 m / D, and the entire amount of filtrate was discharged out of the activated sludge tank. The initial membrane filtration pressure was 5 kPa. On the 15th day of operation, the uronic acid unit concentration in the aqueous phase of the activated sludge was measured by the above-mentioned method, and all were the same at 30 mg / L. At this time, the membrane filtration pressure was 9 kPa.

また、製糖工場廃水中(流量調節槽3中)の多価陽イオンを調べると、いずれの膜分離活性汚泥装置においても、ほとんどがCa2+およびMg2+であり、合計濃度は22mg/Lであった。 Further, when the polyvalent cations in the sugar mill wastewater (in the flow control tank 3) were examined, most of the membrane separation activated sludge apparatuses were Ca 2+ and Mg 2+ , and the total concentration was 22 mg / L. Met.

膜分離活性汚泥装置Aは、運転20日目に膜ろ過圧力が25kPaに達し、分離膜の洗浄が必要になった。   In the membrane separation activated sludge apparatus A, the membrane filtration pressure reached 25 kPa on the 20th day of operation, and it was necessary to clean the separation membrane.

膜分離活性汚泥装置Bでは、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600を超えた15日目から、EDTAが毎日自動的に添加された。運転20日目の膜ろ過圧力は12kPaで、安定に固液分離を達成できた。   In the membrane separation activated sludge apparatus B, EDTA is automatically added every day from the 15th day when the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeds 600. It was. The membrane filtration pressure on the 20th day of operation was 12 kPa, and solid-liquid separation could be achieved stably.

膜分離活性汚泥装置Cでは、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600を超えた15日目で、製糖工場廃水が陽イオン交換樹脂塔(三菱化学製ダイアイオンSK1B(Na))を経由するように流量調節槽から活性汚泥槽への配管を切り替え、て多価陽イオン濃度を5mg/Lに下げてから活性汚泥槽へ導入した。運転20日目の膜ろ過圧力は12kPaで、安定に固液分離を達成できた。   In the membrane-separated activated sludge apparatus C, the sugar factory wastewater is converted to a cation exchange resin on the 15th day when the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeds 600. The pipe from the flow control tank to the activated sludge tank was switched so as to pass through the tower (Mitsubishi Chemical Diaion SK1B (Na)), and the polyvalent cation concentration was lowered to 5 mg / L, and then introduced into the activated sludge tank. . The membrane filtration pressure on the 20th day of operation was 12 kPa, and solid-liquid separation could be achieved stably.

このように目安としてウロン酸ユニット濃度(mg/L)が30mg/Lを超え、ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600を超えたときに多価陽イオンを捕捉することで分離膜の目づまりを防ぐことができた。   Thus, as a guideline, the uronic acid unit concentration (mg / L) exceeded 30 mg / L, and the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) exceeded 600. Occasionally, clogging of the separation membrane could be prevented by capturing polyvalent cations.

本発明に係る有機性廃水の処理方法の一例を示すブロック図である。矢印は流体の流れの方向を示す。It is a block diagram which shows an example of the processing method of the organic wastewater which concerns on this invention. Arrows indicate the direction of fluid flow. 汚泥ろ液を使ってろ過抵抗を測定した時の、ろ過圧力の経時変化を表す図である。It is a figure showing the time-dependent change of filtration pressure when measuring filtration resistance using a sludge filtrate. EDTAを添加した汚泥ろ液を使ってろ過抵抗を測定した時の、ろ過圧力の経時変化を表す図である。It is a figure showing the time-dependent change of filtration pressure when filtration resistance is measured using the sludge filtrate which added EDTA. 本発明に係る廃水処理装置の一例を示すブロック図である。矢印は流体の流れの方向を示す。It is a block diagram which shows an example of the waste water treatment apparatus which concerns on this invention. Arrows indicate the direction of fluid flow. 本発明に係る廃水処理装置の一例を示すブロック図である。矢印は流体の流れの方向を示す。It is a block diagram which shows an example of the waste water treatment apparatus which concerns on this invention. Arrows indicate the direction of fluid flow.

符号の説明Explanation of symbols

1…有機性廃水、2…前処理設備、3…流量調節槽、4…膜分離活性汚泥槽(ばっ気槽)、5…中空糸膜型分離膜装置、6…スカート、7…ブロワー、8…吸引ポンプ、9…ろ過液、10…滅菌槽、11…処理水、12…汚泥引き抜きポンプ、13…ウロン酸ユニット測定装置、14…多価陽イオン測定装置、15…EDTA自動添加装置、16…陽イオン交換樹脂塔 DESCRIPTION OF SYMBOLS 1 ... Organic waste water, 2 ... Pretreatment equipment, 3 ... Flow control tank, 4 ... Membrane separation activated sludge tank (aeration tank), 5 ... Hollow fiber membrane type separation membrane apparatus, 6 ... Skirt, 7 ... Blower, 8 DESCRIPTION OF SYMBOLS ... Suction pump, 9 ... Filtrate, 10 ... Sterilization tank, 11 ... Treated water, 12 ... Sludge extraction pump, 13 ... Uronic acid unit measuring device, 14 ... Multivalent cation measuring device, 15 ... EDTA automatic addition device, 16 ... Cation exchange resin tower

Claims (10)

活性汚泥を収容した活性汚泥槽に有機性廃水を流入させ、該有機性廃水を該活性汚泥によって生物処理し、該活性汚泥槽又はその後段に設置した分離膜装置によって該活性汚泥を固液分離する、膜分離活性汚泥装置による、廃水の処理方法であって、
前記活性汚泥の水相中のウロン酸ユニット濃度が所定の値以上になったときに、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させてから、前記分離膜装置による固液分離を行う、廃水処理方法。
Organic wastewater is allowed to flow into an activated sludge tank containing activated sludge, the organic wastewater is biologically treated with the activated sludge, and the activated sludge is solid-liquid separated by a separation membrane device installed in the activated sludge tank or in the subsequent stage. A wastewater treatment method using a membrane separation activated sludge device,
When the uronic acid unit concentration in the aqueous phase of the activated sludge becomes a predetermined value or more, the activated sludge or the organic waste water is brought into contact with the polyvalent cation trapping means, and then the solidified by the separation membrane device. Wastewater treatment method for liquid separation.
前記ウロン酸ユニット濃度(mg/L)が、20以上になったときに、前記活性汚泥または前記有機性廃水を前記多価陽イオン捕捉手段と接触させる、請求項1に記載の廃水処理方法。   The wastewater treatment method according to claim 1, wherein when the uronic acid unit concentration (mg / L) is 20 or more, the activated sludge or the organic wastewater is brought into contact with the polyvalent cation capturing means. 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させ、該有機性廃水を該活性汚泥によって生物処理し、該活性汚泥槽又はその後段に設置した分離膜装置によって該活性汚泥を固液分離する、膜分離活性汚泥装置による、廃水の処理方法であって、
前記活性汚泥の水相中のウロン酸ユニット濃度(mg/L)に前記有機性廃水中の多価陽イオン濃度(mg/L)を乗じた値が所定の値以上になったときに、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させてから、前記分離膜装置による固液分離を行う、廃水処理方法。
Organic wastewater is allowed to flow into an activated sludge tank containing activated sludge, the organic wastewater is biologically treated with the activated sludge, and the activated sludge is solid-liquid separated by a separation membrane device installed in the activated sludge tank or in the subsequent stage. A wastewater treatment method using a membrane separation activated sludge device,
When the value obtained by multiplying the uronic acid unit concentration (mg / L) in the aqueous phase of the activated sludge by the polyvalent cation concentration (mg / L) in the organic waste water is a predetermined value or more, A wastewater treatment method in which activated sludge or the organic wastewater is brought into contact with a polyvalent cation capturing means, and then solid-liquid separation is performed by the separation membrane device.
前記ウロン酸ユニット濃度(mg/L)に多価陽イオン濃度(mg/L)を乗じた値が600以上になった時に、前記活性汚泥または前記有機性廃水を多価陽イオン捕捉手段と接触させる、請求項3に記載の廃水処理方法。   When the value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L) reaches 600 or more, the activated sludge or the organic waste water is brought into contact with the polyvalent cation capturing means. The wastewater treatment method according to claim 3. 前記多価陽イオン捕捉手段が、キレート剤またはイオン交換樹脂である、請求項1から4のいずれか1項に記載の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 4, wherein the polyvalent cation capturing means is a chelating agent or an ion exchange resin. 前記固液分離の途中で、多価陽イオン捕捉手段を含む洗浄液で前記分離膜装置を洗浄する工程を含む、請求項1から5のいずれか1項に記載の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 5, comprising a step of cleaning the separation membrane device with a cleaning liquid including a polyvalent cation trapping means in the middle of the solid-liquid separation. 活性汚泥が収容され、有機性廃水を生物処理する活性汚泥槽と、
前記活性汚泥槽中またはその後段に設置され、前記活性汚泥による処理液から前記活性汚泥を固液分離する分離膜装置と、を含む廃水処理装置であって、
前記活性汚泥の水相中のウロン酸ユニット濃度の測定手段および/または前記有機性廃水中の多価イオン濃度の測定手段と、前記活性汚泥または前記有機性廃水から多価陽イオンを除去する多価陽イオン捕捉手段と、を備える廃水処理装置。
An activated sludge tank containing activated sludge and biologically treating organic wastewater;
A wastewater treatment apparatus that includes a separation membrane device that is installed in or at a subsequent stage of the activated sludge tank and separates the activated sludge from the treatment liquid by the activated sludge.
Means for measuring the concentration of uronic acid units in the aqueous phase of the activated sludge and / or means for measuring the concentration of polyvalent ions in the organic wastewater, and for removing polyvalent cations from the activated sludge or the organic wastewater. A wastewater treatment apparatus comprising: a valence cation capturing means.
前記多価陽イオン捕捉手段が、キレート剤添加手段である、請求項7に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 7, wherein the polyvalent cation capturing means is a chelating agent addition means. 前記多価陽イオン捕捉手段が、イオン交換樹脂塔である、請求項7に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 7, wherein the polyvalent cation capturing means is an ion exchange resin tower. さらに、前記ウロン酸ユニット濃度(mg/L)が所定の値以上となったとき、または、前記ウロン酸ユニット濃度(mg/L)に前記多価陽イオン濃度(mg/L)を乗じた値が所定の値以上になったときに、多価陽イオン捕捉手段を自動的に機能させる制御手段を備える、請求項7から9のいずれか1項に記載の廃水処理装置。   Further, when the uronic acid unit concentration (mg / L) is a predetermined value or more, or a value obtained by multiplying the uronic acid unit concentration (mg / L) by the polyvalent cation concentration (mg / L). The wastewater treatment apparatus according to any one of claims 7 to 9, further comprising control means for automatically functioning the polyvalent cation trapping means when the value becomes equal to or greater than a predetermined value.
JP2008173587A 2007-08-21 2008-07-02 Waste water treatment method and waste water treatment apparatus Expired - Fee Related JP5053940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173587A JP5053940B2 (en) 2007-08-21 2008-07-02 Waste water treatment method and waste water treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007215236 2007-08-21
JP2007215236 2007-08-21
JP2008173587A JP5053940B2 (en) 2007-08-21 2008-07-02 Waste water treatment method and waste water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2009066589A true JP2009066589A (en) 2009-04-02
JP5053940B2 JP5053940B2 (en) 2012-10-24

Family

ID=40446783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173587A Expired - Fee Related JP5053940B2 (en) 2007-08-21 2008-07-02 Waste water treatment method and waste water treatment apparatus

Country Status (2)

Country Link
JP (1) JP5053940B2 (en)
CN (1) CN101372375B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043232A1 (en) * 2009-10-05 2011-04-14 旭化成ケミカルズ株式会社 Additive used in a membrane-separation activated sludge process
JP2011240326A (en) * 2010-05-14 2011-12-01 Jiangxi Jdl Environmental Protection Research Ltd Solid-liquid separation system and solid-liquid separation method of heavy metal waste water after chemical precipitation
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548906A (en) * 2009-09-30 2012-07-04 栗田工业株式会社 Ion-exchange device, column therefor, and water treatment device
CN104804977B (en) * 2015-04-21 2017-08-22 北京大元蓝地投资有限公司 Biomass processing systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149761A (en) * 1999-12-01 2001-06-05 Ebara Corp Solid/liquid separation method and solid/liquid separation device
JP2004216207A (en) * 2003-01-09 2004-08-05 Kuraray Co Ltd Wastewater treatment method
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259098A (en) * 1988-08-24 1990-02-28 Kubota Ltd Activated sludge treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149761A (en) * 1999-12-01 2001-06-05 Ebara Corp Solid/liquid separation method and solid/liquid separation device
JP2004216207A (en) * 2003-01-09 2004-08-05 Kuraray Co Ltd Wastewater treatment method
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043232A1 (en) * 2009-10-05 2011-04-14 旭化成ケミカルズ株式会社 Additive used in a membrane-separation activated sludge process
AU2010304445B2 (en) * 2009-10-05 2013-11-07 Asahi Kasei Chemicals Corporation Additive used in a membrane-separation activated sludge process
TWI415803B (en) * 2009-10-05 2013-11-21 Asahi Kasei Chemicals Corp Additive for use in membrane separation activated sludge method
JP5788327B2 (en) * 2009-10-05 2015-09-30 旭化成ケミカルズ株式会社 Additives used in membrane separation activated sludge process
JP2011240326A (en) * 2010-05-14 2011-12-01 Jiangxi Jdl Environmental Protection Research Ltd Solid-liquid separation system and solid-liquid separation method of heavy metal waste water after chemical precipitation
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment

Also Published As

Publication number Publication date
CN101372375A (en) 2009-02-25
CN101372375B (en) 2011-09-21
JP5053940B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
Ping Chu et al. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JP5053940B2 (en) Waste water treatment method and waste water treatment apparatus
JP5467793B2 (en) Operation method of submerged membrane separator
JP4309633B2 (en) Water treatment method
JP5399065B2 (en) Wastewater treatment method
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
CN109499378B (en) Cleaning method for organic dirt blockage of hollow fiber ultrafiltration membrane
WO2018043154A1 (en) Method for operating membrane separation device, and membrane separation device
JPH09122460A (en) Cleaning method for membrane module
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
Ladewig et al. Fouling in membrane bioreactors
JP6613323B2 (en) Water treatment apparatus and water treatment method
AU2012324220B2 (en) Fresh water generation system
JPWO2008035710A1 (en) Wastewater treatment method
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP3620577B2 (en) Cleaning method for ultrapure water production system
Srisukphun et al. Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
KR20010109804A (en) Treatment of concentrated organic wastewater with a reverse osmosis process
JP4156984B2 (en) Cleaning method for separation membrane module
JP2006130496A (en) Water treatment device and its operating method
JP6973565B1 (en) Reverse osmosis membrane treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees