JP2011071228A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor Download PDF

Info

Publication number
JP2011071228A
JP2011071228A JP2009219603A JP2009219603A JP2011071228A JP 2011071228 A JP2011071228 A JP 2011071228A JP 2009219603 A JP2009219603 A JP 2009219603A JP 2009219603 A JP2009219603 A JP 2009219603A JP 2011071228 A JP2011071228 A JP 2011071228A
Authority
JP
Japan
Prior art keywords
electrolyte
boric acid
electrolytic solution
electrolytic
butyrolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009219603A
Other languages
Japanese (ja)
Other versions
JP5387279B2 (en
Inventor
Shingo Takeuchi
慎吾 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009219603A priority Critical patent/JP5387279B2/en
Publication of JP2011071228A publication Critical patent/JP2011071228A/en
Application granted granted Critical
Publication of JP5387279B2 publication Critical patent/JP5387279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for an electrolytic capacitor leading to an electrolytic capacitor hardly causing characteristic degradation even after long-term use at high temperature without causing a problem such as electrolyte leakage, in an electrolyte for an electrolytic capacitor high in sparking voltage and low in a specific resistance value. <P>SOLUTION: In this electrolyte for an electrolytic capacitor prepared by dissolving phthalic acid tertiary amine salt, boric acid and sugar alcohol as essential components in a mixed solvent of γ-butyrolactone and sulfolane, when the γ-butyrolactone and the sulfolane are included in the range of 80:20 to 95:5 in mass ratio, the boric acid and the sugar alcohol are included in the range of 1:1 to 1:1.3 in a mass ratio, and the total volume of the boric acid and the sugar alcohol is set to 8-15 mass% in the overall electrolyte, the electrolyte high in a sparking voltage and low in a specific resistance value at low temperature can be obtained. An electrolytic capacitor using the electrolyte is small in variation of capacitance and impedance and extremely small in leakage current even after passage of 2,000 hours of a load test at 125°C and 100 V. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、火花電圧が高く、高温使用条件下でも特性劣化の少ない電解コンデンサを与える電解コンデンサ用電解液に関する。   The present invention relates to an electrolytic solution for an electrolytic capacitor that provides an electrolytic capacitor having a high spark voltage and little characteristic deterioration even under high temperature use conditions.

電解コンデンサは、陽・陰極とこれらの間に配置された電解液を保持したセパレータとが密封ケース内に収容された構造を有しており、巻回型、積層型等の形状のものが広く使用されている。そして、上記電解コンデンサの電解液として、エチレングリコールを主溶媒とし、アジピン酸、安息香酸などのカルボン酸のアンモニウム塩などを電解質とした電解液が従来から用いられてきた。   An electrolytic capacitor has a structure in which a positive / cathode and a separator holding an electrolytic solution disposed therebetween are accommodated in a sealed case, and a wide variety of shapes such as a wound type and a laminated type are used. in use. As an electrolytic solution for the electrolytic capacitor, an electrolytic solution using ethylene glycol as a main solvent and an ammonium salt of a carboxylic acid such as adipic acid or benzoic acid as an electrolyte has been conventionally used.

ところで、近年の電子機器の小型化、高温化に伴い、電解コンデンサには低インピーダンス特性と高温使用条件下での特性安定性が要求されている。しかしながら、上述したエチレングリコールを主溶媒とした電解液には、低温での比抵抗値が高く、高温領域での安定性に欠けるという問題があった。そこで、エチレングリコールよりも沸点が高い上に粘性の低いγ−ブチロラクトンを主溶媒とし、これにマレイン酸塩やフタル酸塩を溶解させた電解液が検討されてきた。   By the way, with recent miniaturization and higher temperatures of electronic devices, electrolytic capacitors are required to have low impedance characteristics and characteristic stability under high temperature use conditions. However, the above-described electrolyte solution using ethylene glycol as a main solvent has a problem in that it has a high specific resistance value at a low temperature and lacks stability in a high temperature region. Therefore, an electrolytic solution in which γ-butyrolactone, which has a higher boiling point than ethylene glycol and has a low viscosity, is used as a main solvent and maleate and phthalate are dissolved therein has been studied.

このような電解液として、特許文献1(特開昭61−70711号公報)は、溶媒としてのγ−ブチロラクトンにフタル酸とトリエチルアミンとの塩を添加した電解コンデンサ用電解液を開示している。この電解液によると、低温領域での比抵抗値と高温領域での安定性が改善されるものの、火花電圧が低くなるため、この電解液の用途は50WV級以下の低圧用コンデンサに限定されていた。   As such an electrolytic solution, Patent Document 1 (Japanese Patent Laid-Open No. 61-70711) discloses an electrolytic solution for an electrolytic capacitor in which a salt of phthalic acid and triethylamine is added to γ-butyrolactone as a solvent. According to this electrolytic solution, although the specific resistance value in the low temperature region and the stability in the high temperature region are improved, the spark voltage is lowered. Therefore, the use of this electrolytic solution is limited to a low voltage capacitor of 50 WV class or less. It was.

これに対し、電解液の溶質としてホウ酸又はホウ酸と糖アルコールとの組み合わせを使用することにより、或いは、γ−ブチロラクトンより高沸点を有するスルホランを溶媒の一部として使用することにより、電解液の低温領域での低い比抵抗値と高温領域での高い安定性を維持したままで火花電圧を改善する方法が提案されている。   On the other hand, by using boric acid or a combination of boric acid and sugar alcohol as the solute of the electrolytic solution, or by using sulfolane having a higher boiling point than γ-butyrolactone as part of the solvent, the electrolytic solution A method has been proposed for improving the spark voltage while maintaining a low specific resistance value in the low temperature region and high stability in the high temperature region.

特許文献2(特開昭63−261823号公報)は、γ−ブチロラクトン或いはγ−ブチロラクトンとエチレングリコールとの混合物に、マレイン酸テトラメチルアンモニウム塩或いはテトラエチルアンモニウム塩と、ホウ酸と、ヘキシットとを添加した電解コンデンサ用電解液を開示している。ホウ酸及びヘキシットは、それぞれ単独ではγ−ブチロラクトンに溶解しにくいものの、併用により溶解性に優れたヘキシットのホウ素錯体が生成し、電解液の比抵抗値をあまり上昇させずに火花電圧を上昇させることができる   Patent Document 2 (Japanese Patent Application Laid-Open No. 63-261823) adds γ-butyrolactone or a mixture of γ-butyrolactone and ethylene glycol to tetramethylammonium maleate or tetraethylammonium salt, boric acid, and hexit. An electrolytic solution for an electrolytic capacitor is disclosed. Boric acid and hexit are difficult to dissolve in γ-butyrolactone alone, but combined use produces a hexit boron complex with excellent solubility, increasing the spark voltage without significantly increasing the specific resistance of the electrolyte. be able to

特許文献3(特開平2−156620号公報)は、γ−ブチロラクトンとエチレングリコールとの混合溶媒に有機酸のアミン塩を溶解させた液に、火花電圧を向上させる目的でリン酸或いは亜リン酸とリンタングステン酸或いはケイタングステン酸とを添加し、さらにホウ酸とマンニット等の糖アルコールとを添加した電解コンデンサ用電解液を開示している。ホウ酸と糖アルコールとは、火花電圧を高く維持したまま高温安定性を向上させるために添加されている。   Patent Document 3 (Japanese Patent Laid-Open No. 2-156620) discloses phosphoric acid or phosphorous acid for the purpose of improving spark voltage in a solution obtained by dissolving an amine salt of an organic acid in a mixed solvent of γ-butyrolactone and ethylene glycol. An electrolytic solution for electrolytic capacitors is disclosed in which phosphotungstic acid or silicotungstic acid is added, and boric acid and sugar alcohol such as mannitol are further added. Boric acid and sugar alcohol are added to improve high-temperature stability while maintaining a high spark voltage.

特許文献4(特開平3−181114号公報)は、γ−ブチロラクトンとエチレングリコールとからなる溶媒に、フタル酸のテトラメチルアンモニウム塩と、ホウ酸と、長寿命化のためのp−ニトロフェノール或いはP−ニトロ安息香酸とを添加した電解コンデンサ用電解液を開示している。ホウ酸はγ−ブチロラクトンには溶解しにくいため、ホウ酸を予めエチレングリコールに溶解させることによりホウ酸とエチレングリコールとのエステル化物を形成させ、この液をフタル酸のテトラメチルアンモニウム塩を含むγ−ブチロラクトン液と混合している。   Patent Document 4 (Japanese Patent Laid-Open No. 3-181114) discloses that a solvent comprising γ-butyrolactone and ethylene glycol, tetramethylammonium salt of phthalic acid, boric acid, and p-nitrophenol for extending the life or An electrolytic solution for an electrolytic capacitor to which P-nitrobenzoic acid is added is disclosed. Since boric acid is difficult to dissolve in γ-butyrolactone, boric acid is dissolved in ethylene glycol in advance to form an esterified product of boric acid and ethylene glycol, and this liquid is converted to γ containing tetramethylammonium salt of phthalic acid. -Mixed with butyrolactone solution.

特許文献5(特開2002−217068号公報)は、スルホランとγ−ブチロラクトン等の非プロトン性有極性溶媒との混合溶媒に、フタル酸三級アミン塩等のフタル酸塩と、電極材料の水和劣化とを抑制するためのジ亜リン酸アンモニウムとを溶解させた電解コンデンサ用電解液を開示している。非プロトン性有極性溶媒として、γ−ブチロラクトンが高温寿命及び高電導度の点で優れていることが記載されている。高沸点を有するスルホランと非プロトン性有極性溶媒との混合溶媒にすることにより、高温条件下において安定でフタル酸塩との化学反応が抑制される。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2002-217068) discloses a mixed solvent of sulfolane and an aprotic polar solvent such as γ-butyrolactone, a phthalate such as a tertiary amine salt of phthalic acid, and water of an electrode material. Disclosed is an electrolytic solution for an electrolytic capacitor in which ammonium diphosphite for suppressing Japanese deterioration is dissolved. As an aprotic polar solvent, it is described that γ-butyrolactone is excellent in terms of high temperature life and high electrical conductivity. By using a mixed solvent of a sulfolane having a high boiling point and an aprotic polar solvent, the chemical reaction with the phthalate is stable under high temperature conditions.

特開昭61−70711号公報JP-A-61-70711 特開昭63−261823号公報JP-A-63-261823 特開平2−156620号公報Japanese Patent Laid-Open No. 2-156620 特開平3−181114号公報JP-A-3-181114 特開2002−217068号公報Japanese Patent Laid-Open No. 2002-217068

しかしながら、電解コンデンサに対し、低インピーダンス特性と高温使用条件下での特性安定性に対するさらなる改善が要求されている。特に、自動車産業分野における自動車性能の高性能化に伴い、エンジンの燃料噴出装置の制御回路用の電解コンデンサなどには、125℃使用下における100WV級の動作保証と−40℃における低いインピーダンス特性が求められ、その上、125℃での長期使用後においても静電容量やインピーダンス特性などの劣化が少なく、液漏れなどの問題もないコンデンサが求められている。   However, electrolytic capacitors are required to further improve the low impedance characteristics and the characteristic stability under high temperature use conditions. In particular, as the performance of automobiles in the automobile industry increases, electrolytic capacitors for control circuits of engine fuel injection devices, etc., have 100 WV class operation guarantee at 125 ° C. and low impedance characteristics at −40 ° C. In addition, there is a demand for a capacitor that has little deterioration in capacitance and impedance characteristics after long-term use at 125 ° C. and that does not have problems such as liquid leakage.

しかしながら、特許文献2の電解液のようにマレイン酸テトラメチルアンモニウム塩或いはテトラエチルアンモニウム塩のようなカルボン酸の四級アンモニウム塩を使用すると、電解コンデンサの液漏れが生じるという問題点があった。また、火花電圧の向上効果も、125℃使用下における100WV級の動作保証のためには満足のいくものではなかった。   However, when a quaternary ammonium salt of carboxylic acid such as tetramethylammonium maleate or tetraethylammonium salt is used as in the electrolyte solution of Patent Document 2, there is a problem that the electrolytic capacitor leaks. Further, the effect of improving the spark voltage was not satisfactory for guaranteeing 100 WV class operation under the use of 125 ° C.

また、特許文献2〜4に記載されているように、エチレングリコールを溶媒の一部として使用すると、ホウ酸及び糖アルコールの混合溶媒に対する溶解性は向上するものの、火花電圧の向上効果は、125℃使用下における100WV級の動作保証のためには満足のいくものではなく、また、フタル酸等のカルボン酸とエチレングリコールとのエステル化反応が生じるため、この電解液を用いた電解コンデンサを長期間使用すると、電解液の比抵抗値が徐々に上昇するという問題があった。したがって、電解コンデンサの特性の長期安定化のためには、溶媒にエチレングリコールを含まないようにするのが好ましい。   Moreover, as described in Patent Documents 2 to 4, when ethylene glycol is used as a part of the solvent, although the solubility in a mixed solvent of boric acid and sugar alcohol is improved, the effect of improving the spark voltage is 125. It is not satisfactory for guaranteeing 100WV class operation under the use of ℃, and since an esterification reaction between carboxylic acid such as phthalic acid and ethylene glycol occurs, an electrolytic capacitor using this electrolytic solution is long. When used for a period, there was a problem that the specific resistance value of the electrolyte gradually increased. Therefore, in order to stabilize the characteristics of the electrolytic capacitor for a long period of time, it is preferable that the solvent does not contain ethylene glycol.

さらに、特許文献5のγ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩を溶解させた電解液は、低温領域での比抵抗値と高温領域での安定性には問題がないが、この電解液の火花電圧は特許文献1の電解液と同様に低かった。   Furthermore, the electrolytic solution in which a tertiary amine salt of phthalic acid is dissolved in a mixed solvent of γ-butyrolactone and sulfolane described in Patent Document 5 has no problem in specific resistance value in a low temperature region and stability in a high temperature region. The spark voltage of this electrolytic solution was as low as the electrolytic solution of Patent Document 1.

したがって、従来の電解液では、上述のエンジンの燃料噴出装置の制御回路用の電解コンデンサなどに求められる要求を満足させることができない。   Therefore, the conventional electrolyte cannot satisfy the requirements for the electrolytic capacitor for the control circuit of the fuel injection device of the engine described above.

そこで、本発明の目的は、上述の要求に答えることができる電解コンデンサへと導くことが可能な電解コンデンサ用電解液を提供することである。   Accordingly, an object of the present invention is to provide an electrolytic solution for an electrolytic capacitor that can be led to an electrolytic capacitor that can meet the above-described requirements.

γ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩を溶解させた電解液に、ホウ酸及び糖アルコールを添加すると、電解液の低温領域での低い比抵抗値と高温領域での高い安定性を維持した上で電解液の火花電圧を改善することができるように考えられる。しかしながら、ホウ酸及び糖アルコールはγ−ブチロラクトン及びスルホランに難溶性であるため、このような電解液は実現し難いように思われていた。特許文献5にも、γ−ブチロラクトンとスルホランとの混合溶媒を使用した電解液に対するホウ酸と糖アルコールとの溶解条件はなんら示唆されていない。   When boric acid and sugar alcohol are added to an electrolyte solution in which a tertiary amine salt of phthalic acid is dissolved in a mixed solvent of γ-butyrolactone and sulfolane, a low specific resistance value in the low temperature region and a high value in the high temperature region are obtained. It is considered that the spark voltage of the electrolyte can be improved while maintaining the stability. However, since boric acid and sugar alcohol are sparingly soluble in γ-butyrolactone and sulfolane, such an electrolytic solution seems to be difficult to achieve. Patent Document 5 also does not suggest any conditions for dissolving boric acid and sugar alcohol in an electrolytic solution using a mixed solvent of γ-butyrolactone and sulfolane.

発明者らは、鋭意検討した結果、γ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩を溶解させた電解液において、ホウ酸と糖アルコールとを特定の質量比で併用すると、意外にも、エチレングリコールを溶媒の一部として使用しなくても、ホウ酸と糖アルコールとが良好に溶解し、そしてγ−ブチロラクトンとスルホランとの質量比を特定の範囲にし、さらにホウ酸と糖アルコールとの電解液における溶解量を特定の範囲にすることにより、上述の目的が達成されることを発見した。   As a result of intensive studies, the inventors have unexpectedly discovered that when boric acid and sugar alcohol are used in a specific mass ratio in an electrolyte solution in which a tertiary amine salt of phthalic acid is dissolved in a mixed solvent of γ-butyrolactone and sulfolane. Even if ethylene glycol is not used as a part of the solvent, boric acid and sugar alcohol dissolve well, and the mass ratio of γ-butyrolactone and sulfolane is within a specific range. It has been found that the above-described object can be achieved by setting the amount of the alcohol dissolved in the electrolyte to a specific range.

したがって、本発明の電解コンデンサ用電解液は、γ−ブチロラクトンとスルホランとの混合溶媒に、フタル酸三級アミン塩、ホウ酸、及び糖アルコールを必須成分として溶解させた電解コンデンサ用電解液であって、γ−ブチロラクトンとスルホランとの質量比が80:20〜95:5の範囲であり、ホウ酸と糖アルコールとの質量比が1:1.1〜1:1.3の範囲であり、且つ、ホウ酸と糖アルコールとの合計量が電解液全体の8〜15質量%であることを特徴とする。   Therefore, the electrolytic solution for electrolytic capacitors of the present invention is an electrolytic solution for electrolytic capacitors in which a tertiary amine salt of phthalic acid, boric acid, and a sugar alcohol are dissolved as essential components in a mixed solvent of γ-butyrolactone and sulfolane. The mass ratio of γ-butyrolactone and sulfolane is in the range of 80:20 to 95: 5, and the mass ratio of boric acid to sugar alcohol is in the range of 1: 1.1 to 1: 1.3, And the total amount of boric acid and sugar alcohol is 8-15 mass% of the whole electrolyte solution, It is characterized by the above-mentioned.

フタル酸三級アミン塩をγ−ブチロラクトンとスルホランとの混合溶媒に溶解させた液に、ホウ酸と糖アルコールとを質量比で1:1.1〜1:1.3の範囲で溶解させると、意外にも、ホウ酸と糖アルコールとを合計量で電解液全体の15質量%まで溶解させることができ、そして、γ−ブチロラクトンとスルホランとを質量比で80:20〜95:5の範囲にすることにより、火花電圧が高く、高温放置試験においても比抵抗値が変化しにくい電解液が得られる。さらに、ホウ酸と糖アルコールとの合計量を電解液全体の8〜15質量%にすることにより、液漏れなどの問題もない電解コンデンサを与える電解液が得られる。   When boric acid and sugar alcohol are dissolved in a mass ratio of 1: 1.1 to 1: 1.3 in a solution in which a tertiary amine salt of phthalic acid is dissolved in a mixed solvent of γ-butyrolactone and sulfolane. Surprisingly, boric acid and sugar alcohol can be dissolved in a total amount up to 15% by mass of the total electrolyte, and γ-butyrolactone and sulfolane can be dissolved in a mass ratio of 80:20 to 95: 5. By doing so, an electrolytic solution having a high spark voltage and a resistance value that is difficult to change even in a high temperature standing test can be obtained. Furthermore, by making the total amount of boric acid and sugar alcohol 8 to 15% by mass of the entire electrolytic solution, an electrolytic solution that provides an electrolytic capacitor free from problems such as liquid leakage can be obtained.

本発明の電解コンデンサ用電解液におけるフタル酸の三級アミン塩の含有量は、−40℃程度の低温での比抵抗値が十分に低ければ問題がないが、電解液全体の10〜20質量%が好ましく、14〜16質量%であるのが特に好ましい。   The content of the tertiary amine salt of phthalic acid in the electrolytic solution for electrolytic capacitors of the present invention is not a problem if the specific resistance value at a low temperature of about −40 ° C. is sufficiently low, but 10 to 20 mass of the entire electrolytic solution. % Is preferable, and 14 to 16% by mass is particularly preferable.

本発明の電解液の使用により、125℃の使用条件下において100WV級の動作を保証することができ、−40℃でもインピーダンス特性が良好で、さらに125℃での長期使用後においても静電容量やインピーダンス特性などの劣化が少なく、液漏れなどの問題もない電解コンデンサを提供することができる。   By using the electrolytic solution of the present invention, it is possible to guarantee 100 WV class operation under the use condition of 125 ° C., good impedance characteristics even at −40 ° C., and capacitance after long-term use at 125 ° C. In addition, it is possible to provide an electrolytic capacitor in which there is little deterioration in the impedance characteristics and the like, and there is no problem of liquid leakage.

本発明の電解コンデンサ用電解液は、γ−ブチロラクトンとスルホランとの混合溶媒に、フタル酸三級アミン塩、ホウ酸、及び糖アルコールを必須成分として溶解させた電解コンデンサ用電解液である。   The electrolytic solution for electrolytic capacitors of the present invention is an electrolytic solution for electrolytic capacitors in which a tertiary amine salt of phthalic acid, boric acid, and a sugar alcohol are dissolved as essential components in a mixed solvent of γ-butyrolactone and sulfolane.

本発明の電解液は、カルボン酸電解質としてフタル酸三級アミン塩を含む。フタル酸は、熱安定性に優れる上に電解液の比抵抗値の上昇を抑制するのに好適である。フタル酸より分子量の大きいカルボン酸を使用すると電解液の比抵抗値が上昇し、フタル酸より分子量の小さいカルボン酸を使用すると耐圧が悪化する。また、マレイン酸は電解液中で使用中にフマル酸に変化し、その結果電解液の比抵抗が上昇するため好ましくない。そして、フタル酸の三級アミン塩は、二級アミン塩或いはアンモニウム塩と比較すると、熱安定性に優れているため好適である。   The electrolytic solution of the present invention contains a phthalic acid tertiary amine salt as a carboxylic acid electrolyte. Phthalic acid is excellent in thermal stability and suitable for suppressing an increase in the specific resistance value of the electrolytic solution. When a carboxylic acid having a molecular weight higher than that of phthalic acid is used, the specific resistance value of the electrolyte increases, and when a carboxylic acid having a molecular weight lower than that of phthalic acid is used, the pressure resistance deteriorates. Further, maleic acid is not preferable because it changes into fumaric acid during use in the electrolytic solution, and as a result, the specific resistance of the electrolytic solution increases. A tertiary amine salt of phthalic acid is preferable because it is superior in thermal stability compared to a secondary amine salt or ammonium salt.

本発明の電解液において使用するフタル酸との塩を構成する三級アミンの例としては、トリアルキルアミン、例えば、トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミン、ジメチルn−プロピルアミン、ジメチルイソプロピルアミン、メチルエチルn−プロピルアミン、メチルエチルイソプロピルアミン、ジエチルn−プロピルアミン、ジエチルイソプロピルアミン、トリn−プロピルアミン、トリイソプロピルアミン、トリn−ブチルアミン、トリt−ブチルアミン;フェニル基含有アミン、例えば、ジメチルフェニルアミン、メチルエチルフェニルアミン、ジエチルフェニルアミン、トリフェニルアミン;1,8−ジアザビシクロ(5,4,0)−ウンデセン−7等を挙げることができる。これらの化合物は、それぞれ単独で使用してもよく、2種以上を混合して使用してもよい。トリアルキルアミンを使用するのが好ましく、特に、トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミンを使用すると、電解液の低温における比抵抗値が低くなるため好ましい。   Examples of the tertiary amine constituting the salt with phthalic acid used in the electrolytic solution of the present invention include trialkylamines such as trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyl n-propylamine, dimethylisopropylamine, Methylethyl n-propylamine, methylethylisopropylamine, diethyl n-propylamine, diethylisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-t-butylamine; phenyl group-containing amines such as dimethyl Examples include phenylamine, methylethylphenylamine, diethylphenylamine, triphenylamine; 1,8-diazabicyclo (5,4,0) -undecene-7. These compounds may be used alone or in combination of two or more. Trialkylamine is preferably used, and trimethylamine, dimethylethylamine, methyldiethylamine, and triethylamine are particularly preferable because the specific resistance value at a low temperature of the electrolytic solution is reduced.

本発明の電解コンデンサ用電解液におけるフタル酸三級アミン塩の含有量は、電解液の比抵抗値が許容範囲であれば特に限定がないが、電解液全体の10〜20質量%が好ましく、14〜16質量%であるのが特に好ましい。   The content of the tertiary amine phthalate salt in the electrolytic solution for electrolytic capacitors of the present invention is not particularly limited as long as the specific resistance value of the electrolytic solution is within an allowable range, but is preferably 10 to 20% by mass of the entire electrolytic solution, It is particularly preferably 14 to 16% by mass.

本発明の電解液において使用する糖アルコールの例としては、テトリット(エリトリット、トレイット)、ペンチット(アラビット、アドニット、キシリット)、ヘキシット(ソルビット、マンニット、イジット、ズルシット、アリット、タリット)等を挙げることができる。これらの化合物は、それぞれ単独で使用してもよく、2種以上を混合して使用してもよい。ヘキシットを使用するのが好ましい。   Examples of sugar alcohols used in the electrolytic solution of the present invention include tetrit (erythritol, trait), pentet (arabit, adnit, xylit), hexit (sorbite, mannit, exit, sulcit, alit, tarit) and the like. Can do. These compounds may be used alone or in combination of two or more. It is preferred to use hexit.

本発明の電解コンデンサ用電解液における溶媒は、γ−ブチロラクトンとスルホランとの混合溶媒である。   The solvent in the electrolytic solution for electrolytic capacitors of the present invention is a mixed solvent of γ-butyrolactone and sulfolane.

以下に示す表1は、γ−ブチロラクトンとスルホランとフタル酸トリエチルアミン塩とを質量比で90:10:20の割合で混合した混合液に、ホウ酸とマンニットとの質量比を変化させて溶解させた電解液における、ホウ酸とマンニットとの最大溶解率(ホウ酸とマンニットとの合計量の電解液全体に対する質量%)を示している。   Table 1 shown below is dissolved in a mixed liquid in which γ-butyrolactone, sulfolane, and triethylamine phthalate are mixed at a mass ratio of 90:10:20 while changing the mass ratio of boric acid and mannitol. It shows the maximum dissolution rate of boric acid and mannitol (mass% of the total amount of boric acid and mannitol with respect to the entire electrolytic solution) in the electrolyte solution.

Figure 2011071228
Figure 2011071228

表1より明らかなように、ホウ酸とマンニットとを質量比で1:1.1〜1:1.3の範囲で併用すると、上記電解液に最大15質量%まで溶解する。ホウ酸とマンニットとが質量比で1:1.4〜1:1.8の範囲でも、上記電解液に最大13質量%まで溶解する。しかしながら、ホウ酸に対するマンニットの割合が質量比で1以下、或いは2以上の範囲では、上記電解液に溶解しなかった。したがって、ホウ酸と糖アルコールとを特定の割合(ホウ酸と糖アルコールが質量比で1:1.1〜1:1.8)にすることにより、γ−ブチロラクトンとスルホランとの混合溶媒に対し、エチレングリコールを使用することなしに、ホウ酸と糖アルコールとを高濃度で溶解させることができることがわかる。   As is clear from Table 1, when boric acid and mannitol are used in a mass ratio of 1: 1.1 to 1: 1.3, the maximum amount is 15% by mass in the electrolyte solution. Even when boric acid and mannitol are in the range of 1: 1.4 to 1: 1.8 in terms of mass ratio, they dissolve in the electrolytic solution up to 13 mass%. However, when the ratio of mannitol to boric acid was 1 or less or 2 or more in terms of mass ratio, it did not dissolve in the electrolytic solution. Therefore, by making boric acid and sugar alcohol into a specific ratio (boric acid and sugar alcohol in a mass ratio of 1: 1.1 to 1: 1.8), a mixed solvent of γ-butyrolactone and sulfolane is used. It can be seen that boric acid and sugar alcohol can be dissolved at a high concentration without using ethylene glycol.

本発明の電解液において、γ−ブチロラクトンとスルホランとの割合は、質量比で80:20〜95:5の範囲である。スルホランが上述の範囲より多いと、低温での比抵抗値が上昇し、高温放置後の比抵抗の増加が著しくなる。また、γ−ブチロラクトンが上述の範囲より多いと、初期における低温での比抵抗値には問題がないものの、高温放置後に火花電圧が低下し、比抵抗の増加も著しくなる。   In the electrolytic solution of the present invention, the ratio of γ-butyrolactone and sulfolane is in the range of 80:20 to 95: 5 by mass ratio. When the amount of sulfolane is larger than the above range, the specific resistance value at low temperature increases, and the specific resistance after standing at high temperature becomes remarkable. On the other hand, when the amount of γ-butyrolactone is larger than the above range, there is no problem in the specific resistance value at low temperature in the initial stage, but the spark voltage is lowered after standing at high temperature and the specific resistance is remarkably increased.

そして、γ−ブチロラクトンとスルホランとを質量比で80:20〜95:5の範囲で混合した混合溶媒に、フタル酸三級アミン塩と共にホウ酸と糖アルコールとを質量比で1:1.1〜1:1.3の範囲で溶解させ、且つホウ酸と糖アルコールとの合計量を電解液全体の8〜15質量%の範囲にすると、火花電圧が高く、−40℃においても低い比抵抗値を示し、125℃での放置試験において安定した火花電圧と比抵抗値を示す電解液が得られる。また、この電解液を使用した電解コンデンサは、125℃100V負荷試験においても、極めて安定な静電容量とインピーダンスを示す。   Then, boric acid and sugar alcohol, together with a tertiary amine salt of phthalic acid, in a mixed solvent in which γ-butyrolactone and sulfolane are mixed in a mass ratio of 80:20 to 95: 5 in a mass ratio of 1: 1.1. When dissolved in the range of ˜1: 1.3 and the total amount of boric acid and sugar alcohol is in the range of 8 to 15% by mass of the total electrolyte, the spark voltage is high and the specific resistance is low even at −40 ° C. An electrolytic solution showing a value and a stable spark voltage and specific resistance value in a standing test at 125 ° C. is obtained. In addition, an electrolytic capacitor using this electrolytic solution exhibits extremely stable capacitance and impedance even in a 125 ° C. 100 V load test.

これに対し、理由は明らかではないが、ホウ酸に対する糖アルコールの割合が上述の範囲(ホウ酸と糖アルコールとを質量比で1:1.1〜1:1.3)より多いと、初期における電解液の比抵抗値が上昇する上に、高温放置後の比抵抗値の増加が著しくなる。また、ホウ酸と糖アルコールとの合計量が電解液全体の8質量%を下回ると、電解液の火花電圧が急激に低下し、またこの電解液を使用した電解コンデンサの漏れ電流が急激に増加し、高温負荷試験中にショート不良が発生するようになる。   On the other hand, although the reason is not clear, when the ratio of sugar alcohol to boric acid is larger than the above-mentioned range (1: 1.1 to 1: 1.3 by mass ratio of boric acid and sugar alcohol), In addition to an increase in the specific resistance value of the electrolytic solution, the increase in the specific resistance value after standing at high temperature becomes significant. In addition, when the total amount of boric acid and sugar alcohol is less than 8% by mass of the total electrolyte, the spark voltage of the electrolyte rapidly decreases, and the leakage current of electrolytic capacitors using this electrolyte increases rapidly. In addition, short circuit defects occur during the high temperature load test.

本発明のγ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩、ホウ酸、及び糖アルコールを必須成分として溶解させた電解コンデンサ用電解液において、本発明の効果を損なわない範囲で、フタル酸三級アミン塩、ホウ酸、及び糖アルコール以外の溶質を使用することができる。使用可能な溶質としては、リン酸、ケイ酸、炭酸等の無機酸電解質、耐電圧を向上させるためのノニオン界面活性剤、コロイダルシリカ、ポリオキシエチレングリセリン、電解コンデンサ内部で発生しうる水素を吸収するためのp−ニトロフェノール、p−ニトロ安息香酸などのニトロ化合物、電極箔の水和劣化を防止するためのメチルリン酸エステル、エチルリン酸エステル等のリン酸エステル化合物などが挙げられる。   In an electrolytic solution for an electrolytic capacitor in which a tertiary amine salt of phthalic acid, boric acid, and a sugar alcohol are dissolved as essential components in a mixed solvent of γ-butyrolactone and sulfolane of the present invention, as long as the effect of the present invention is not impaired, Solutes other than tertiary amine salts of phthalic acid, boric acid, and sugar alcohols can be used. Solvents that can be used include inorganic acid electrolytes such as phosphoric acid, silicic acid, and carbonic acid, nonionic surfactants for improving withstand voltage, colloidal silica, polyoxyethylene glycerin, and hydrogen that can be generated inside electrolytic capacitors. Examples thereof include nitro compounds such as p-nitrophenol and p-nitrobenzoic acid, and phosphate compounds such as methyl phosphate and ethyl phosphate for preventing hydration deterioration of the electrode foil.

以下に実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されない。   The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

1:電解液の調製
以下の表2に示されている、組成の異なる電解液を調製した。実施例1〜8は、γ−ブチロラクトンとスルホランが質量比で80:20〜95:5の範囲であり、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であり、且つ、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%である電解液の例である。比較例1は、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であり、且つ、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%であるものの、スルホランに対するγ−ブチロラクトンの質量比が80/20より少ない電解液の例であり、比較例2は、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であり、且つ、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%であるものの、スルホランに対するγ−ブチロラクトンの質量比が95/5より多い(スルホランを含有しない)電解液の例である。また、比較例3,4は、γ−ブチロラクトンとスルホランが質量比で80:20〜95:5の範囲であり、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%であるものの、ホウ酸に対するマンニットの質量比が1.3/1より多い電解液の例であり、比較例5は、γ−ブチロラクトンとスルホランが質量比で80:20〜95:5の範囲であり、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であるものの、ホウ酸とマンニットとの合計量が電解液全体の8質量%より少ない電解液の例である。また、従来例1は、γ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩を溶解させたがホウ酸とマンニットとを溶解させない電解液の例(特許文献5参照)であり、従来例2は、スルホランの代わりにエチレングリコールを使用した電解液の例(特許文献3参照)であり、従来例3は、スルホランを使用せず且つフタル酸三級アミン塩の代わりにマレイン酸四級アンモニウム塩を使用した電解液の例(特許文献2参照)である。
1: Preparation of Electrolytic Solution Electrolytic solutions having different compositions shown in Table 2 below were prepared. In Examples 1 to 8, γ-butyrolactone and sulfolane are in a mass ratio of 80:20 to 95: 5, and boric acid and mannitol are in a mass ratio of 1: 1.1 to 1: 1.3. And an example of an electrolytic solution in which the total amount of boric acid and mannitol is 8 to 15% by mass of the entire electrolytic solution. In Comparative Example 1, boric acid and mannitol are in the range of 1: 1.1 to 1: 1.3 by mass ratio, and the total amount of boric acid and mannitol is 8 to 15 mass of the entire electrolyte. %, But is an example of an electrolytic solution in which the mass ratio of γ-butyrolactone to sulfolane is less than 80/20. In Comparative Example 2, boric acid and mannitol are in a mass ratio of 1: 1.1 to 1: 1. 3 and the total amount of boric acid and mannitol is 8 to 15% by mass of the total electrolyte, but the mass ratio of γ-butyrolactone to sulfolane is greater than 95/5 (does not contain sulfolane) ) An example of an electrolytic solution. In Comparative Examples 3 and 4, γ-butyrolactone and sulfolane are in a mass ratio of 80:20 to 95: 5, and the total amount of boric acid and mannitol is 8 to 15% by mass of the whole electrolyte solution. Although it is an example of an electrolytic solution having a mass ratio of mannitol to boric acid of more than 1.3 / 1, Comparative Example 5 is a γ-butyrolactone and sulfolane in the range of 80:20 to 95: 5 by mass ratio. The total amount of boric acid and mannitol is less than 8% by mass of the total electrolyte solution, although boric acid and mannitol are in the range of 1: 1.1 to 1: 1.3 by mass ratio. It is an example. Conventional Example 1 is an example of an electrolytic solution in which a tertiary amine salt of phthalic acid is dissolved in a mixed solvent of γ-butyrolactone and sulfolane but boric acid and mannitol are not dissolved (see Patent Document 5). Conventional Example 2 is an example of an electrolytic solution using ethylene glycol in place of sulfolane (see Patent Document 3), and Conventional Example 3 does not use sulfolane and instead of tertiary phthalic acid tertiary amine salt. It is an example (refer patent document 2) of the electrolyte solution which uses a quaternary ammonium salt.

Figure 2011071228
Figure 2011071228

2:電解液の特性評価
得られた各電解液について、30℃と125℃において火花電圧を測定し、30℃と−40℃において比抵抗値を測定した。次いで、各電解液をガラスアンプル内に封入し、125℃で500時間放置した。放置後の各電解液について、再び、30℃と125℃における火花電圧と、30℃と−40℃における比抵抗値を測定した。測定結果を表3に示す。
2: Characteristic evaluation of electrolyte solution About each obtained electrolyte solution, the spark voltage was measured in 30 degreeC and 125 degreeC, and the specific resistance value was measured in 30 degreeC and -40 degreeC. Next, each electrolytic solution was sealed in a glass ampoule and allowed to stand at 125 ° C. for 500 hours. With respect to each electrolytic solution after being left, the spark voltage at 30 ° C. and 125 ° C. and the specific resistance value at 30 ° C. and −40 ° C. were measured again. Table 3 shows the measurement results.

Figure 2011071228
Figure 2011071228

初期特性において、実施例1〜8及び比較例1〜4は、125℃においても150V以上の火花電圧を示した。実施例1〜8の電解液の比抵抗値は従来例1〜3の電解液の比抵抗値に比較してわずかに上昇したが、−40℃においても十分に低い値を示した。これに対し、ホウ酸とマンニットとの合計量が電解液全体の8質量%より少ない比較例5及び従来例1〜3の電解液の125℃における火花電圧は150Vより低かった。特に、従来例1の電解液の火花電圧は著しく低かった。したがって、比較例5及び従来例1〜3の電解液は100WV級の動作を保証する電解コンデンサのための電解液としては不都合であった。また、スルホランに対するγ−ブチロラクトンの質量比が80/20より少ない比較例1、及びホウ酸に対するマンニットの質量比が1.3/1より多い比較例3,4の電解液の比抵抗値、特に−40℃における比抵抗値は、実施例1〜8の電解液の比抵抗値に比較して上昇していた。   In the initial characteristics, Examples 1 to 8 and Comparative Examples 1 to 4 showed a spark voltage of 150 V or higher even at 125 ° C. Although the specific resistance values of the electrolyte solutions of Examples 1 to 8 slightly increased compared to the specific resistance values of the electrolyte solutions of Conventional Examples 1 to 3, the values were sufficiently low even at −40 ° C. On the other hand, the spark voltage at 125 ° C. of the electrolytes of Comparative Example 5 and Conventional Examples 1 to 3 in which the total amount of boric acid and mannitol was less than 8% by mass of the entire electrolyte solution was lower than 150V. In particular, the spark voltage of the electrolyte solution of Conventional Example 1 was extremely low. Therefore, the electrolytic solutions of Comparative Example 5 and Conventional Examples 1 to 3 are inconvenient as electrolytic solutions for electrolytic capacitors that guarantee 100 WV class operation. In addition, the specific resistance values of the electrolyte solutions of Comparative Example 1 in which the mass ratio of γ-butyrolactone to sulfolane is less than 80/20, and Comparative Examples 3 and 4 in which the mass ratio of mannitol to boric acid is greater than 1.3 / 1, In particular, the specific resistance value at −40 ° C. was higher than the specific resistance values of the electrolyte solutions of Examples 1 to 8.

125℃、500時間放置後には、スルホランに対するγ−ブチロラクトンの質量比が95/5より多い(スルホランを含有しない)比較例2の電解液において、火花電圧が125℃で150V以下に低下し、比較例1〜4及び従来例2,3において、比抵抗値、特に−40℃における比抵抗値が大幅に上昇した。   After standing at 125 ° C. for 500 hours, in the electrolytic solution of Comparative Example 2 in which the mass ratio of γ-butyrolactone to sulfolane is greater than 95/5 (containing no sulfolane), the spark voltage drops to 150 V or less at 125 ° C. In Examples 1 to 4 and Conventional Examples 2 and 3, the specific resistance value, particularly the specific resistance value at −40 ° C. increased significantly.

以上の結果より、実施例1〜8で示される、γ−ブチロラクトンとスルホランが質量比で80:20〜95:5の範囲であり、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であり、且つ、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%である本発明の電解液は、火花電圧が150Vより高く、したがってこの電解液を使用した電解コンデンサの125℃使用下における100WV級での動作保証を可能にし、比抵抗値、特に−40℃における比抵抗値が低く、したがってこの電解液を使用した電解コンデンサの低温領域での低インピーダンス性を保証し、その上高温放置後も安定な特性を示し、高い火花電圧と低い比抵抗値を維持したことが分かる。   From the above results, γ-butyrolactone and sulfolane shown in Examples 1 to 8 are in a mass ratio of 80:20 to 95: 5, and boric acid and mannitol are in a mass ratio of 1: 1.1 to The electrolyte solution of the present invention having a range of 1: 1.3 and the total amount of boric acid and mannitol being 8 to 15% by mass of the entire electrolyte solution has a spark voltage higher than 150 V, and thus this electrolytic It is possible to guarantee the operation at 100 WV class of an electrolytic capacitor using a liquid at a temperature of 125 ° C., and a specific resistance value, particularly a specific resistance value at −40 ° C. is low. It can be seen that the low impedance characteristic of the battery is assured, and that it exhibits stable characteristics even after being left at a high temperature, maintaining a high spark voltage and a low specific resistance value.

3:電解コンデンサの作成
アルミニウム箔をエッチング処理して実効表面積を拡大させ、表面に陽極酸化により誘電体酸化アルミニウム皮膜を形成した陽極箔と、アルミニウム箔をエッチング処理した陰極箔とを、セパレータを介して巻回することによりコンデンサ素子を構成し、このコンデンサ素子に実施例1〜8、比較例1〜5及び従来例1〜3の電解液を含浸させるとともに、このコンデンサ素子を金属ケース内に封止して、定格電圧が100V、定格静電容量が100μF、直径がφ12.5mmで長さが20mmのアルミニウム電解コンデンサを各20個製造した。
3: Preparation of electrolytic capacitor An aluminum foil was etched to increase the effective surface area, and an anode foil having a dielectric aluminum oxide film formed on the surface by anodic oxidation and a cathode foil obtained by etching the aluminum foil via a separator. The capacitor element is formed by winding the capacitor element, and the capacitor element is impregnated with the electrolytic solutions of Examples 1 to 8, Comparative Examples 1 to 5, and Conventional Examples 1 to 3, and the capacitor element is sealed in a metal case. 20 aluminum electrolytic capacitors each having a rated voltage of 100 V, a rated capacitance of 100 μF, a diameter of 12.5 mm, and a length of 20 mm were manufactured.

4:電解コンデンサの特性評価
得られた各電解コンデンサについて、静電容量、インピーダンス、及び漏れ電流を測定した。次いで、各電解コンデンサについて、125℃で定格電圧の100Vを2000時間印加する高温負荷試験を行い、試験後に再び静電容量、インピーダンス、及び漏れ電流を測定した。測定結果を表4に示す。
4: Characteristic evaluation of electrolytic capacitor About each obtained electrolytic capacitor, an electrostatic capacitance, an impedance, and a leakage current were measured. Next, each electrolytic capacitor was subjected to a high-temperature load test in which a rated voltage of 100 V was applied at 125 ° C. for 2000 hours, and the capacitance, impedance, and leakage current were measured again after the test. Table 4 shows the measurement results.

従来例1のγ−ブチロラクトンとスルホランとの混合溶媒にフタル酸三級アミン塩を溶解させたがホウ酸とマンニットとを溶解させない電解液は、表3から明らかなように火花電圧が極端に低く、エージング途中で全数ショート不良を起こし、コンデンサの製品化が不可能であった。従来例2の電解液を使用した電解コンデンサでは、エージング中に2個、試験中に5個のコンデンサにショート不良が認められ、従来例3の電解液を使用した電解コンデンサでは、エージング中に7個、試験中に8個のコンデンサにショート不良が認められた上に、5個に液漏れが認められた。したがって、電解液においてマレイン酸の四級アンモニウム塩を使用すると、コンデンサの液漏れが生じやすいことが分かる。また、ホウ酸とマンニットとの合計量が電解液全体の8質量%より少ない比較例5の電解液を使用した電解コンデンサにおいても、試験中に1個のコンデンサにショート不良が認められた。   The electrolyte solution in which the tertiary amine salt of phthalic acid was dissolved in the mixed solvent of γ-butyrolactone and sulfolane of Conventional Example 1, but boric acid and mannitol were not dissolved, as shown in Table 3, has an extremely high spark voltage. Low, causing short circuit failure during aging, making it impossible to produce capacitors. In the electrolytic capacitor using the electrolytic solution of the conventional example 2, short-circuit defects were observed in two capacitors during aging and five capacitors during the test, and in the electrolytic capacitor using the electrolytic solution of the conventional example 3, 7 shorts were observed during aging. During the test, short-circuit defects were observed in 8 capacitors, and liquid leakage was observed in 5 capacitors. Therefore, it can be seen that when a quaternary ammonium salt of maleic acid is used in the electrolytic solution, liquid leakage of the capacitor is likely to occur. Further, even in the electrolytic capacitor using the electrolytic solution of Comparative Example 5 in which the total amount of boric acid and mannitol is less than 8% by mass of the entire electrolytic solution, a short defect was observed in one capacitor during the test.

Figure 2011071228
Figure 2011071228

初期特性において、ホウ酸とマンニットとの合計量が電解液全体の8質量%より少ない比較例5の電解液を使用した電解コンデンサ、及び従来例2,3の電解液を用いた電解コンデンサの漏れ電流は著しく大きかった。また、高温負荷試験後は、比較例1〜4の電解液を使用した電解コンデンサにおいて、インピーダンスの著しい増加が認められ、比較例2,5及び従来例2,3の電解液を使用した電解コンデンサにおいて、漏れ電流の著しい増加が認められた。   In an initial characteristic, an electrolytic capacitor using the electrolytic solution of Comparative Example 5 in which the total amount of boric acid and mannitol is less than 8% by mass of the entire electrolytic solution, and an electrolytic capacitor using the electrolytic solution of Conventional Examples 2 and 3 The leakage current was extremely large. Further, after the high temperature load test, in the electrolytic capacitors using the electrolytic solutions of Comparative Examples 1 to 4, a significant increase in impedance was observed, and the electrolytic capacitors using the electrolytic solutions of Comparative Examples 2 and 5 and Conventional Examples 2 and 3 , A significant increase in leakage current was observed.

これに対し、実施例1〜8のγ−ブチロラクトンとスルホランが質量比で80:20〜95:5の範囲であり、ホウ酸とマンニットが質量比で1:1.1〜1:1.3の範囲であり、且つ、ホウ酸とマンニットとの合計量が電解液全体の8〜15質量%である本発明の電解液を使用した電解コンデンサは、低インピーダンス特性を示した上に、125℃100V2000時間の負荷試験後においても、静電容量、インピーダンス、漏れ電流のいずれの値も安定していた。   On the other hand, γ-butyrolactone and sulfolane of Examples 1 to 8 are in a mass ratio of 80:20 to 95: 5, and boric acid and mannitol are in a mass ratio of 1: 1.1 to 1: 1. In addition, the electrolytic capacitor using the electrolytic solution of the present invention in which the total amount of boric acid and mannitol is 8 to 15% by mass of the entire electrolytic solution is in a range of 3, and exhibits low impedance characteristics. Even after a load test at 125 ° C. and 100 V for 2000 hours, all values of capacitance, impedance, and leakage current were stable.

本発明の電解コンデンサ用電解液は、125℃使用下において100WV級の動作を保証し、−40℃においても低いインピーダンス特性を示し、その上、125℃での長期使用後においても静電容量やインピーダンス特性などの劣化が少なく、液漏れなどの問題もないコンデンサを与える。したがって、本発明の電解コンデンサ用電解液は、自動車のエンジンの燃料噴出装置の制御回路用の電解コンデンサなどのための電解液として極めて好適である。   The electrolytic solution for an electrolytic capacitor of the present invention guarantees 100 WV class operation at 125 ° C., shows low impedance characteristics even at −40 ° C., and also has a capacitance and capacity after long-term use at 125 ° C. Capacitors with little degradation of impedance characteristics and no problems such as liquid leakage. Therefore, the electrolytic solution for an electrolytic capacitor of the present invention is extremely suitable as an electrolytic solution for an electrolytic capacitor for a control circuit of a fuel injection device for an automobile engine.

Claims (1)

γ−ブチロラクトンとスルホランとの混合溶媒に、フタル酸三級アミン塩、ホウ酸、及び糖アルコールを必須成分として溶解させた電解コンデンサ用電解液であって、
γ−ブチロラクトンとスルホランとの質量比が80:20〜95:5の範囲であり、
ホウ酸と糖アルコールとの質量比が1:1.1〜1:1.3の範囲であり、且つ、ホウ酸と糖アルコールとの合計量が電解液全体の8〜15質量%である
ことを特徴とする電解コンデンサ用電解液。
An electrolytic solution for an electrolytic capacitor in which a tertiary amine salt of phthalic acid, boric acid, and a sugar alcohol are dissolved as essential components in a mixed solvent of γ-butyrolactone and sulfolane,
the mass ratio of γ-butyrolactone to sulfolane is in the range of 80:20 to 95: 5;
The mass ratio of boric acid and sugar alcohol is in the range of 1: 1.1 to 1: 1.3, and the total amount of boric acid and sugar alcohol is 8 to 15% by mass of the entire electrolyte. Electrolytic solution for electrolytic capacitors characterized by
JP2009219603A 2009-09-24 2009-09-24 Electrolytic solution for electrolytic capacitors Active JP5387279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219603A JP5387279B2 (en) 2009-09-24 2009-09-24 Electrolytic solution for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219603A JP5387279B2 (en) 2009-09-24 2009-09-24 Electrolytic solution for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2011071228A true JP2011071228A (en) 2011-04-07
JP5387279B2 JP5387279B2 (en) 2014-01-15

Family

ID=44016239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219603A Active JP5387279B2 (en) 2009-09-24 2009-09-24 Electrolytic solution for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP5387279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789903A (en) * 2012-01-06 2012-11-21 华东理工大学 Preparation process, electrolyte and electrochemical element of electrolytic salt
CN107887165A (en) * 2016-09-29 2018-04-06 松下知识产权经营株式会社 Electrolytic capacitor and its manufacture method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217068A (en) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same
JP2004311482A (en) * 2003-04-02 2004-11-04 Sanyo Chem Ind Ltd Electrolytic solution for electrolytic capacitor
JP2006114540A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2006245041A (en) * 2005-02-28 2006-09-14 Rubycon Corp Electrolyte for driving electrolytic capacitor and electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217068A (en) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same
JP2004311482A (en) * 2003-04-02 2004-11-04 Sanyo Chem Ind Ltd Electrolytic solution for electrolytic capacitor
JP2006114540A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2006245041A (en) * 2005-02-28 2006-09-14 Rubycon Corp Electrolyte for driving electrolytic capacitor and electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789903A (en) * 2012-01-06 2012-11-21 华东理工大学 Preparation process, electrolyte and electrochemical element of electrolytic salt
CN107887165A (en) * 2016-09-29 2018-04-06 松下知识产权经营株式会社 Electrolytic capacitor and its manufacture method
CN107887165B (en) * 2016-09-29 2022-01-25 松下知识产权经营株式会社 Electrolytic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP5387279B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6403006B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2007142353A (en) Aluminum electrolytic capacitor
JP5387279B2 (en) Electrolytic solution for electrolytic capacitors
JP5630049B2 (en) Electrolytic solution for electrolytic capacitors
JP5900325B2 (en) Electrolytic solution for electrolytic capacitors
JP4925219B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4792145B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2005019773A (en) Aluminum electrolytic capacitor
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
JP3176611B2 (en) Electrolyte for electrolytic capacitors
JPH08335533A (en) Electrolyte for driving electrolytic capacitor
JP6566305B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4637683B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2017112389A (en) Driving electrolyte of electrolytic capacitor and electrolytic capacitor using the same
JP2007115947A (en) Electrolyte for driving electrolytic capacitor
JP2008244346A (en) Electrolyte for electrolytic capacitor
JP2008300684A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JPH01154509A (en) Electrolyte for electrolytic capacitor
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP6201172B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2022053328A (en) Electrolytic capacitor
JP4653595B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6459432B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP5689635B2 (en) Electrolytic solution for electrolytic capacitors
JP3979104B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5387279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150