JP2007115947A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor Download PDF

Info

Publication number
JP2007115947A
JP2007115947A JP2005306826A JP2005306826A JP2007115947A JP 2007115947 A JP2007115947 A JP 2007115947A JP 2005306826 A JP2005306826 A JP 2005306826A JP 2005306826 A JP2005306826 A JP 2005306826A JP 2007115947 A JP2007115947 A JP 2007115947A
Authority
JP
Japan
Prior art keywords
acid
phosphate
electrolytic solution
driving
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306826A
Other languages
Japanese (ja)
Inventor
Seitaro Onoe
清太朗 尾上
Akihiro Matsuda
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005306826A priority Critical patent/JP2007115947A/en
Publication of JP2007115947A publication Critical patent/JP2007115947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for driving an electrolytic capacitor which can obtain high reliability by suppressing the hydration reaction of an aluminum electrode foil, even if water is added to realize low specific resistance. <P>SOLUTION: In the electrolyte for driving an electrolytic capacitor, an acid such as an organic calboxylic acid or its salt and guanylurea phosphate are blended in a solvent in which 30-80 wt.% water is mixed into an organic solvent such as ethylene glycol. The amount of blending of the guanylurea phosphate is preferably 0.1-3.0 wt.%. The guanylurea phosphate suppresses deterioration of a dielectric coating of the surface of an electrode foil due to humidity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)に関するものである。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution).

アルミニウム電解コンデンサを製造するには、高純度のアルミニウム箔を電気化学的にエッチング処理して表面積を拡大させた後、ホウ酸アンモニウム水溶液、アジピン酸アンモニウム水溶液等の化成液中で化成処理を行い、エッチング箔表面に酸化皮膜を形成して陽極箔を得ている。また、アルミニウム箔をエッチング処理して陰極箔を得、陰極箔と陽極箔との間にセパレータを挿入し巻回してコンデンサ素子を作製する。
このようなコンデンサ素子は、電解液を含浸した後、金属製の筒状ケースに収納される。また、筒状ケースの開口部は、弾性ゴムにより封口され、封口した部位を絞り加工することにより封止される。
In order to manufacture an aluminum electrolytic capacitor, a high-purity aluminum foil is electrochemically etched to increase the surface area, and then subjected to a chemical conversion treatment in a chemical conversion solution such as an ammonium borate aqueous solution or an ammonium adipate aqueous solution. An oxide film is formed on the etching foil surface to obtain an anode foil. Also, the aluminum foil is etched to obtain a cathode foil, a separator is inserted between the cathode foil and the anode foil and wound to produce a capacitor element.
Such a capacitor element is impregnated with an electrolytic solution and then accommodated in a metal cylindrical case. Moreover, the opening part of a cylindrical case is sealed by elastic rubber, and it seals by drawing-processing the sealed site | part.

近年、電子部品のデジタル化が進む中で、電解コンデンサの低損失、低インピーダンス化への要求が高まっており、電解コンデンサに使用する電解液は、高電導度(低比抵抗)化に向けて開発が進められている。
従来、低圧用電解液にはエチレングリコールを主溶媒とし、アジピン酸、安息香酸等のアンモニウム塩を溶質とするものが使用されてきたが、近年では、電解液中の水分量を増加させて電解液の比抵抗を低減する方法が提案されている(例えば、特許文献1、2参照)。
特許第3366267号(第1−10頁) 特許第3366268号(第1−21頁)
In recent years, with the progress of digitalization of electronic components, there is an increasing demand for low loss and low impedance of electrolytic capacitors, and the electrolyte used for electrolytic capacitors is aimed at high conductivity (low specific resistance). Development is underway.
Conventionally, low pressure electrolytes have been made of ethylene glycol as the main solvent and ammonium salts such as adipic acid and benzoic acid as solutes. Recently, however, the amount of water in the electrolyte has been increased for electrolysis. A method for reducing the specific resistance of the liquid has been proposed (see, for example, Patent Documents 1 and 2).
Japanese Patent No. 3366267 (page 1-10) Japanese Patent No. 3366268 (page 1-21)

しかしながら、電解液中の水の配合量を増加させた場合、電解液中の水とアルミニウム電極箔とが水和反応を起こすため、電解コンデンサの電気特性や寿命を著しく低下させる。このような水和反応は、電解液中の水分量の増加に伴って顕著となるため、水の配合量を高めて電解液の低比抵抗化を図ろうとすると、信頼性を十分に維持することができないという問題点がある。   However, when the blending amount of water in the electrolytic solution is increased, the water in the electrolytic solution and the aluminum electrode foil cause a hydration reaction, so that the electrical characteristics and life of the electrolytic capacitor are significantly reduced. Since such a hydration reaction becomes conspicuous with an increase in the amount of water in the electrolytic solution, if the amount of water is increased to reduce the specific resistance of the electrolytic solution, the reliability is sufficiently maintained. There is a problem that can not be.

以上の問題に鑑みて、本発明の課題は、水を配合して低比抵抗化を図った場合でも、アルミニウム電極箔の水和反応を抑えることにより、高い信頼性を得ることができる電解液を提供することにある。   In view of the above problems, an object of the present invention is to provide an electrolytic solution that can obtain high reliability by suppressing the hydration reaction of the aluminum electrode foil even when water is mixed to reduce the specific resistance. Is to provide.

本発明は上記課題を解決するため、種々検討した結果到達し得た発明であり、リン酸グアニル尿素を電解液に利用しようとするものである。すなわち、本発明に係る電解コンデンサの駆動用電解液では、有機溶媒と水とを配合した溶媒に、少なくとも、カルボン酸またはその塩とリン酸グアニル尿素とを配合したことを特徴とする。   The present invention is an invention that has been achieved as a result of various studies in order to solve the above-described problems, and intends to use guanylurea phosphate as an electrolyte. That is, the electrolytic solution for driving an electrolytic capacitor according to the present invention is characterized in that at least a carboxylic acid or a salt thereof and guanylurea phosphate are blended in a solvent in which an organic solvent and water are blended.

本発明は、水の配合量を電解液全体に対して20〜80wt%とした電解液に適用することができる。   The present invention can be applied to an electrolytic solution in which the amount of water is 20 to 80 wt% with respect to the entire electrolytic solution.

本発明において、リン酸グアニル尿素の配合量は、電解液全体に対して0.1〜3.0wt%であることが好ましい。   In this invention, it is preferable that the compounding quantity of guanyl urea phosphate is 0.1 to 3.0 wt% with respect to the whole electrolyte solution.

本発明において、前記カルボン酸は、例えば、ギ酸、酢酸、プロピオン酸、安息香酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、フタル酸、アゼライン酸、クエン酸、およびホウ酸のうち、少なくとも1種である。   In the present invention, the carboxylic acid is, for example, formic acid, acetic acid, propionic acid, benzoic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, phthalic acid, azelaic acid, citric acid, and boric acid. , At least one.

本発明においては、さらに、電解液がオルトリン酸、亜リン酸、次亜リン酸、リン酸モノメチル、リン酸ジメチル、リン酸モノエチル、リン酸ジエチル、リン酸モノプロピル、リン酸ジプロピル、リン酸モノエチレングリコール、リン酸ジエチレングリコールのうち、少なくとも1種を含むことが好ましい。   In the present invention, the electrolytic solution further comprises orthophosphoric acid, phosphorous acid, hypophosphorous acid, monomethyl phosphate, dimethyl phosphate, monoethyl phosphate, diethyl phosphate, monopropyl phosphate, dipropyl phosphate, monophosphate. It is preferable to include at least one of ethylene glycol and diethylene glycol phosphate.

また、本発明に係る電解液には、漏れ電流の低減、耐電圧向上、ガス吸収等の目的でコンデンサ駆動用電解液として一般的に使用される種々の添加剤を加えることができる。添加剤の例として、グルコース、フルクトース、マンニトール、キシロース、ガラクトース等の糖類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール等の高分子化合物、ニトロフェノール、ニトロアセトフェノン、ニトロアニソール、ジニトロ安息香酸などのニトロ化合物等が挙げられる。   In addition, various additives generally used as an electrolyte for driving a capacitor can be added to the electrolyte according to the present invention for the purpose of reducing leakage current, improving withstand voltage, gas absorption, and the like. Examples of additives include sugars such as glucose, fructose, mannitol, xylose, galactose, polymer compounds such as polyvinyl alcohol, polyethylene glycol, polypropylene glycol, nitro compounds such as nitrophenol, nitroacetophenone, nitroanisole, dinitrobenzoic acid, etc. Is mentioned.

電解液にリン酸類を添加すると、電極箔と水とが水和反応を起こすのを抑制する効果があり、本発明では、リン酸類としてリン酸グアニル尿素を配合している。
このリン酸グアニル尿素は、アルミニウム電極箔と水とが水和反応を起こすのを抑制する効果が高いため、アルミニウム電極箔が水分によって劣化するのを確実に防止することができる。
それ故、電解コンデンサの電気特性の劣化や寿命低下を抑制することができ、信頼性の向上を図ることができる。
When phosphoric acids are added to the electrolytic solution, there is an effect of suppressing the hydration reaction between the electrode foil and water. In the present invention, guanyl urea phosphate is blended as phosphoric acids.
Since this guanylurea phosphate has a high effect of suppressing the hydration reaction between the aluminum electrode foil and water, the aluminum electrode foil can be reliably prevented from being deteriorated by moisture.
Therefore, it is possible to suppress deterioration of electrical characteristics and lifetime of the electrolytic capacitor and improve reliability.

以下、実施例に基づいて本発明をより具体的に説明する。まず、表1に示す組成で電解液を調合し、30℃における比抵抗を測定した。その結果を表1に示す。   Hereinafter, based on an Example, this invention is demonstrated more concretely. First, an electrolyte solution was prepared with the composition shown in Table 1, and the specific resistance at 30 ° C. was measured. The results are shown in Table 1.

Figure 2007115947
Figure 2007115947

次に、表1に示す電解液を使用して、定格6.3V−1500μF(φ10×12.5mmL)の電解コンデンサを各10個作製し、tanδ、漏れ電流について初期特性測定後、高温負荷試験(105℃、定格電圧3000時間印加)を行い、表2の結果を得た。   Next, 10 electrolytic capacitors each having a rating of 6.3 V-1500 μF (φ10 × 12.5 mmL) were prepared using the electrolyte shown in Table 1, and after initial characteristics measurement of tan δ and leakage current, high temperature load test (Applied at 105 ° C. and a rated voltage of 3000 hours) and the results shown in Table 2 were obtained.

Figure 2007115947
Figure 2007115947

表2において、水分の配合量が等しいもの同士、すなわち、水分量50wt%の従来例2と実施例3〜6を比較すると、リン酸グアニル尿素を添加した場合、高温負荷試験においてtanδ、漏れ電流の増大および弁膨張が抑制され、優れた特性を示している。   In Table 2, when the blending amounts of water are equal, that is, when Comparative Example 2 having a water content of 50 wt% and Examples 3 to 6 are compared, when guanylurea phosphate is added, tan δ and leakage current are measured in a high-temperature load test. Increase and valve expansion are suppressed, showing excellent characteristics.

ここで、リン酸グアニル尿素の配合量は、電解液全体に対して0.1wt%未満(実施例1、2)、または3.0wt%を超える(実施例7)と、弁膨張を抑制する効果が十分でない。よって、リン酸グアニル尿素の配合量は0.1〜3.0wt%の範囲が好ましい。また、水分の配合量は、電解液全体に対して20wt%未満では比抵抗が高く(実施例10)、配合量が80wt%を超えると、低比抵抗化は実現するものの、リン酸グアニル尿素による効果が低下することが分かる(実施例11)。よって、水分の配合量は20〜80wt%が好ましい。   Here, when the blending amount of guanylurea phosphate is less than 0.1 wt% (Examples 1 and 2) or more than 3.0 wt% (Example 7) with respect to the whole electrolyte solution, valve expansion is suppressed. The effect is not enough. Therefore, the blending amount of guanylurea phosphate is preferably in the range of 0.1 to 3.0 wt%. In addition, the specific amount of moisture is less than 20 wt% with respect to the total electrolyte solution (Example 10), and when the amount exceeds 80 wt%, the specific resistance is reduced, but guanyl urea phosphate is realized. It can be seen that the effect of is reduced (Example 11). Therefore, the blending amount of moisture is preferably 20 to 80 wt%.

また、上記実施例の他、ギ酸、酢酸、プロピオン酸、安息香酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、フタル酸、アゼライン酸、クエン酸、ホウ酸、またはそれらの塩を濃度を変えて配合した電解液でも、リン酸グアニル尿素によって、電気特性の劣化や寿命低下を抑制できる結果が得られた。
また、電解液に対して、他のリン酸類として、亜リン酸、次亜リン酸、リン酸モノメチル、リン酸ジメチル、リン酸モノエチル、リン酸ジエチル、リン酸モノプロピル、リン酸ジプロピル、リン酸モノエチレングリコール、リン酸ジエチレングリコールを配合した場合でも、リン酸グアニル尿素と組合わせることで、高温負荷試験におけるtanδ、漏れ電流の増大および弁膨脹を抑制できる効果が得られた。
In addition to the above examples, formic acid, acetic acid, propionic acid, benzoic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, phthalic acid, azelaic acid, citric acid, boric acid, or salts thereof Even with the electrolytes mixed at different concentrations, guanylurea phosphate was able to suppress the deterioration of electrical characteristics and the life reduction.
In addition, phosphoric acid, hypophosphorous acid, monomethyl phosphate, dimethyl phosphate, monoethyl phosphate, diethyl phosphate, monopropyl phosphate, dipropyl phosphate, phosphoric acid as other phosphoric acids for the electrolyte Even when monoethylene glycol and diethylene glycol phosphate were blended, an effect of suppressing tan δ, increase in leakage current and valve expansion in a high temperature load test was obtained by combining with guanyl urea phosphate.

なお、本発明は上記実施例に限定されるものではなく、先に例示した各種溶質を単独または複数溶解した電解液や、さらに、電解コンデンサの駆動用電解液に使用される一般的な添加剤を加えた電解液についても上記実施例と同等の効果があった。   In addition, this invention is not limited to the said Example, The general additive used for the electrolyte solution which melt | dissolved the various solutes illustrated previously individually or more than one, and also for the electrolytic solution for driving an electrolytic capacitor The electrolyte solution to which was added also had the same effect as the above example.

Claims (5)

有機溶媒と水とを配合した溶媒に、少なくとも、カルボン酸またはその塩とリン酸グアニル尿素とを配合したことを特徴とする電解コンデンサの駆動用電解液。   An electrolytic solution for driving an electrolytic capacitor, wherein at least a carboxylic acid or a salt thereof and guanylurea phosphate are blended in a solvent in which an organic solvent and water are blended. 請求項1において、水の配合量が電解液全体に対して20〜80wt%であることを特徴とする電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the amount of water is 20 to 80 wt% with respect to the entire electrolytic solution. 請求項1において、リン酸グアニル尿素の配合量が電解液全体に対して0.1〜3.0wt%であることを特徴とする電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the blending amount of guanylurea phosphate is 0.1 to 3.0 wt% with respect to the entire electrolytic solution. 請求項1において、前記カルボン酸は、ギ酸、酢酸、プロピオン酸、安息香酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、フタル酸、アゼライン酸、クエン酸、ホウ酸のうち、少なくとも1種であることを特徴とする電解コンデンサの駆動用電解液。   The carboxylic acid according to claim 1, wherein the carboxylic acid is at least one of formic acid, acetic acid, propionic acid, benzoic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, phthalic acid, azelaic acid, citric acid, and boric acid. An electrolytic solution for driving an electrolytic capacitor, which is one type. 請求項1〜4のいずれかにおいて、さらに、オルトリン酸、亜リン酸、次亜リン酸、リン酸モノメチル、リン酸ジメチル、リン酸モノエチル、リン酸ジエチル、リン酸モノプロピル、リン酸ジプロピル、リン酸モノエチレングリコール、リン酸ジエチレングリコールのうち、少なくとも1種を含むことを特徴とする電解コンデンサの駆動用電解液。   5. The method according to claim 1, further comprising orthophosphoric acid, phosphorous acid, hypophosphorous acid, monomethyl phosphate, dimethyl phosphate, monoethyl phosphate, diethyl phosphate, monopropyl phosphate, dipropyl phosphate, phosphorus An electrolytic solution for driving an electrolytic capacitor comprising at least one of acid monoethylene glycol and diethylene glycol phosphate.
JP2005306826A 2005-10-21 2005-10-21 Electrolyte for driving electrolytic capacitor Pending JP2007115947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306826A JP2007115947A (en) 2005-10-21 2005-10-21 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306826A JP2007115947A (en) 2005-10-21 2005-10-21 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2007115947A true JP2007115947A (en) 2007-05-10

Family

ID=38097860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306826A Pending JP2007115947A (en) 2005-10-21 2005-10-21 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2007115947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287639A (en) * 2017-07-11 2017-10-24 新疆金泰新材料技术有限公司 Formation method of electrode foil with high specific volume, high bending and low leakage current
CN114284071A (en) * 2021-12-29 2022-04-05 深圳奥凯普电容器有限公司 Capacitor electrolyte with prolonged service life and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225908A (en) * 1990-01-31 1991-10-04 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JP2004014666A (en) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225908A (en) * 1990-01-31 1991-10-04 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JP2004014666A (en) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287639A (en) * 2017-07-11 2017-10-24 新疆金泰新材料技术有限公司 Formation method of electrode foil with high specific volume, high bending and low leakage current
CN114284071A (en) * 2021-12-29 2022-04-05 深圳奥凯普电容器有限公司 Capacitor electrolyte with prolonged service life and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1006536B1 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2007142353A (en) Aluminum electrolytic capacitor
JP2007115947A (en) Electrolyte for driving electrolytic capacitor
JP4792145B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JPWO2011118234A1 (en) Electrolytic solution for electrolytic capacitors
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4582798B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4589218B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4571014B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP2005019773A (en) Aluminum electrolytic capacitor
JP4555163B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4582797B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4913670B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4653593B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4793956B2 (en) Electrolytic solution for driving aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP4405906B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4020780B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2010129933A (en) Driving electrolytic solution of electrolytic capacitor, and electrolytic capacitor using the same
JP2009054691A (en) Electrolytic solution for driving electrolytic capacitor
JP2009182268A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4668749B2 (en) Electrolytic solution for electrolytic capacitor drive
JP5012377B2 (en) Electrolytic capacitor
JP2008300711A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4571021B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2007184307A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080423

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A02 Decision of refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A02