JP2011069307A - 蒸気タービンロータ、それを用いた蒸気タービン - Google Patents

蒸気タービンロータ、それを用いた蒸気タービン Download PDF

Info

Publication number
JP2011069307A
JP2011069307A JP2009221814A JP2009221814A JP2011069307A JP 2011069307 A JP2011069307 A JP 2011069307A JP 2009221814 A JP2009221814 A JP 2009221814A JP 2009221814 A JP2009221814 A JP 2009221814A JP 2011069307 A JP2011069307 A JP 2011069307A
Authority
JP
Japan
Prior art keywords
steam turbine
forging material
temperature
rotor
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009221814A
Other languages
English (en)
Inventor
Shinya Konno
晋也 今野
Hiroyuki Doi
裕之 土井
Jun Sato
順 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009221814A priority Critical patent/JP2011069307A/ja
Priority to EP10172758A priority patent/EP2305952A3/en
Priority to US12/862,954 priority patent/US20110076153A1/en
Publication of JP2011069307A publication Critical patent/JP2011069307A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium

Abstract

【課題】信頼性の高い蒸気タービンロータおよび蒸気タービンを提供する。
【解決手段】Ni基超合金鍛造品Aに中空構造の鍛造品Bを溶接接合し、内面の溶接裏並みを削除し内面を平滑化し鍛造材Cと鍛造材Bをボルトで締結することを特徴とする蒸気タービンロータ。
【選択図】 図1

Description

本発明は、蒸気タービンロータ、それを用いた蒸気タービンに関する。
蒸気タービン発電プラントの発電効率を向上させるためには、主蒸気温度の向上が有効である。主蒸気温度の向上に伴い、高温部品の温度が高くなるため、より耐用温度の高い耐熱材料が必要となる。蒸気タービンでは、これまで、12Cr鋼等の鉄鋼材料が用いられてきたが、タービンやボイラの高温部に、Ni基超合金を用いることで、主蒸気温度を大幅に向上させた高効率蒸気タービンの研究開発が行われている。Ni基超合金は、高温強度に優れ、鍛造材でも700℃以上の蒸気に耐えるが、大型鍛造品の製造性が悪いという問題点がある。蒸気タービンロータは、通常10tonを超える場合が多いが、Ni基超合金は、製造性に優れた鋼種でも、設備上の制約から10ton程度の重量が限界となる。蒸気タービンの高圧ロータは、入口側の温度は、主蒸気温度に近く、700℃級の蒸気タービンでは、700℃となる。出口側に近づくと温度は低下し、出口部の温度は400℃以下となる。そこで、温度が600℃以下の部分を従来のフェライト鋼、600℃以上の部分をNi基超合金とし、これらを溶接接合することで10tonを大幅に超える重量のロータを製作する試みがなされている。しかし、溶接後、内部に残留する裏並みが削除できず、内部に欠陥が残った状態となるという問題がある。また、Ni基合金は超音波透過性が悪く、粗粒となる溶接金属では、さらに超音波透過性が悪化する。Ni基合金とフェライト鋼の接合には、Ni基合金の溶接金属を用いることが一般的であることから、上記の溶接型ロータでは、内部の欠陥検出限界が下がり、裏並みの在留とともに信頼性低下の原因となる。溶接接合の他に、ボルトによる締結構造のロータも公知であるが、ボルト部には強い引張が作用するためボルト部の温度が高温になると、ボルトがクリープ変形を起こし、緩みが生じるため、ボルト締結部の温度に限界があり、500℃以上での信頼性確保は困難である。
特開2005−121023号公報
本発明の目的は、信頼性の高い蒸気タービンロータおよび蒸気タービンを提供することにある。
解決する手段は以下の通りである。耐用温度が700度以上のNi基超合金鍛造品Aに中空構造の鍛造品Bを溶接接合した後、内面の溶接裏並みを機械加工で削除し内面を平滑化し鍛造材Cと鍛造材Bをボルトで締結する。鍛造材Cと鍛造材Bをボルトで締結する前に、裏並みを除去した内面から、超音波検査を行うことで、外側からは検知できない微小な欠陥も検知し、裏並削除の効果と合わせ信頼性を向上させることが可能となる。鍛造品Aは、700℃以上のNi基超合金であるがFeを含むNiFe基超合金でも良い。鍛造品Bはコストの観点から溶接部の温度が600℃以下の場合、フェライト鋼であることが好ましいが、鍛造品BをNi基超合金とすることで、溶接部の温度を高い場合でも信頼性を確保できる。鍛造材Cは、500℃まで使用できる安価なフェライト鋼で良いが、軸受けとの磨耗に強いCrMoV鋼にすることが有功である。鍛造材に12Cr鋼を用いた場合、軸受けと接する軸部に、CrMoV鋼を肉盛する必要がある。本発明では、内面の溶接裏並みが全くなく、製造時の検査で信頼性を高められるが、定期検査等の際にボルトを外すことで、溶接部内面の再検査が可能であり、定期点検時の検査を行うことで、さらに長期的信頼性を確保することが可能である。
き裂基点となる内面の裏波を機械加工で平滑化でき、溶接部について内面からのX線検査,超音波検査が可能となる。ボルト締結部は、鍛造材Bの長さを調整することで500℃以下とすることが可能となる。これにより、信頼性の高いロータが提供できる。また、定期点検等で分解し、溶接部内面の検査補修が可能となる。
蒸気タービンプラントの構成例。 ロータ構成例。 ロータ構成例。 ロータ構成例。 ロータ構成例。 ロータが曝される蒸気温度。
以下、実施例を説明する。
表1に、本実施例で用いる鍛造材料の化学成分を示す。
Figure 2011069307
図1は、本発明を適用する蒸気タービンプラントの構成例を示す。主蒸気温度が700℃であり、主蒸気は高圧タービン(HP)で仕事をした後、約400℃まで温度が低下するが、この蒸気は、再びボイラに戻され、720℃まで再加熱され、再熱蒸気となる。再熱蒸気の圧力は、主蒸気よりも低下しているため、蒸気タービンの耐圧部材にかかる負担は、温度が20℃低い主蒸気側と同程度である。再熱蒸気は中圧タービンに入り、仕事をした後、400℃程度まで温度が下がり、低圧タービンで仕事をした後、室温まで温度が下がり復水器に入る。本発明が適用されるロータは、蒸気を受けて仕事をする翼が固定され、発電機を駆動する軸であり、タービンでは最も過酷な環境にさらされる部材である。図1に示す蒸気タービンプラントでは、高圧タービンと中圧タービンのロータに本発明は適用できるが、以下、高圧タービンロータに適用した場合の検討例を示す。
比較検討を行ったロータの構成例を表2に示す。
Figure 2011069307
図2−1〜図2−4は、これらのロータの特徴を示す。比較1は、従来の溶接型ロータであり、その特徴を図2−1に示す。この場合、溶接後、内部が閉じられるため、裏波の除去、内部からの超音波検査が不可能である。超合金の溶接部は超音波透過性が悪いため、外部からでは、内面の溶接欠陥の検出が困難である。また、裏波が残留するため、この部分がき裂の基点となる可能性があり、高い信頼性を得ることが困難である。比較2は、図2−2に示す特徴を有するロータである。この場合、鍛造材Bに中心孔が空けられているため、中心孔から、溶接部内面を観察することができ、著しい欠陥があれば、検知できるが、超音波を用いた検査、裏波の削除は困難である。比較3は、図2−3に示す特徴を有するロータである。Ni基合金からなる鍛造材Aに鍛造材Bと同材質のフェライト鋼製リングをNi基合金の溶接金属で溶接し、その後、フェライト鋼製のリングとフェライト鋼である鍛造材Bをフェライト鋼の溶接金属で溶接する。フェライト鋼製のリングとフェライト鋼を溶接する前に鍛造材Aとフェライト鋼性のリング材の溶接部について、裏波の除去、内面からの検査が可能である。しかし、フェライト鋼リングと鍛造材Bの溶接部については、裏波が残留し、内面からの検査が不可能である。フェライト鋼の溶接金属は、超合金の溶接金属と比較して、超音波透過性が良いため、比較1,比較2と比べると、比較3は信頼性に優れるが、裏波が残留し内面からの検査ができないフェライト鋼溶接部の信頼性が十分確保できない。また、鍛造材Bを溶接した後は、内面の検査が不可能であり、定期検査の際に内面を検査できず、長期的な信頼性確保に問題がある。比較4は、図2−4に示すロータの構造で、鍛造材Aに鍛造材Cが直接ボルト締結された構造である。図3は、ロータの出口から入口までの蒸気温度の変化および入口から出口までの積算重量を示す。比較4では、ロータ径が700mmΦのため、入口から出口までの積算重量が約10tonである。FX700では、10ton級の鍛造材が製造できることから、入口から出口までをモノブロックで製造できる。入口出口の両端は、温度が低いため、シャフトをボルト締結できる。しかし、ロータ径が800mmΦになると、蒸気出口からの距離/ガスパス長さの比が0.4以下になると、累積重量が10tonを超えるため、この部分よりも入口側で、他の鍛造材と接合する必要がある。また、0.4以上の部位では、蒸気温度が500℃を超えるため、ボルト接合の信頼性は低く、溶接により接合する必要がある。発明1は、本発明の一例であり、図2−4に示す特徴を持つ。ロータ径は800mmであり、鍛造材AはA263である。A263はFX700より高強度でありフェライトとの溶接に向いているが7ton程度までの鍛造品が製造限界のため、蒸気温度が550℃となる部分で、鍛造材Bと溶接接合している。鍛造材Bは、12Cr鋼(FE02)である。550℃となる部分から出口部までを鍛造材Bで構成し、400℃以下の部位で、鍛造材C(FE01)とボルト締結している。鍛造材Aと鍛造材BをNi基超合金の溶接材で接合した後、裏波を削除し、内面と外面の双方から超音波検査を実施した。その後、鍛造材Bに鍛造材Cをボルト締結するが、実機使用後の定期点検でも、ボルトを外すことにより、内面の検査や補修が可能である。発明2は、ロータ径が1000mmの場合で、より大型品の製造が可能なFX700を用いることで、発明1と同様にロータが構成できる。ロータ径が1200mmの発明3では、鍛造材Aの鍛造重量の制限(10ton)から溶接部の温度が600℃以上になる。このため、鍛造材Bをフェライト鋼にすると溶接部の信頼性が得られないため、鍛造材BをNi基超合金であるA141としている。A141は、FX700よりも線膨張係数がフェライト鋼に近いため、フェライト鋼とのボルト接合に適している。鍛造材Bに鍛造材Cをボルト締結するが、A141も10ton級の鍛造材の製造が可能であり、ボルト締結部の温度は、500℃まで落とすことが可能である。発明4はロータ径が700mmの場合であり、比較4のように、ボルト締結のみでロータを構成できるが、鍛造材Aで600℃以下となる部分をフェライト鋼である鍛造材Bとすることで、Ni基超合金の量が削減でき、低コスト化が図れる。

Claims (6)

  1. Ni基超合金鍛造品Aに中空構造の鍛造品Bを溶接接合し、内面の溶接裏並みを削除し内面を平滑化し鍛造材Cと鍛造材Bをボルトで締結することを特徴とする蒸気タービンロータ。
  2. 請求項1において、使用中に溶接部が曝される温度は500℃以上、ボルト締め部は500℃以下であることを特徴とする蒸気タービンロータ。
  3. 請求項2において、鍛造材BはNi基超合金、鍛造材Cは、CrMoV鋼であることを特徴とする蒸気タービンロータ。
  4. 請求項2において、鍛造材Bはフェライト鋼、鍛造材Cは、CrMoV鋼であることを特徴とする蒸気タービンロータ。
  5. 請求項3または4において、軸部に耐磨耗溶接肉盛あるいは耐磨耗溶射を施さないことを特徴とする蒸気タービンロータ。
  6. 請求項1乃至5のいずれか1項に記載された蒸気タービンロータを用いた蒸気タービン。
JP2009221814A 2009-09-28 2009-09-28 蒸気タービンロータ、それを用いた蒸気タービン Pending JP2011069307A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009221814A JP2011069307A (ja) 2009-09-28 2009-09-28 蒸気タービンロータ、それを用いた蒸気タービン
EP10172758A EP2305952A3 (en) 2009-09-28 2010-08-13 Steam turbine rotor and steam turbine using the same
US12/862,954 US20110076153A1 (en) 2009-09-28 2010-08-25 Steam turbine rotor and steam turbine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221814A JP2011069307A (ja) 2009-09-28 2009-09-28 蒸気タービンロータ、それを用いた蒸気タービン

Publications (1)

Publication Number Publication Date
JP2011069307A true JP2011069307A (ja) 2011-04-07

Family

ID=43066777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221814A Pending JP2011069307A (ja) 2009-09-28 2009-09-28 蒸気タービンロータ、それを用いた蒸気タービン

Country Status (3)

Country Link
US (1) US20110076153A1 (ja)
EP (1) EP2305952A3 (ja)
JP (1) JP2011069307A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239230B2 (ja) * 2012-12-05 2017-11-29 三菱日立パワーシステムズ株式会社 タービンロータの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240801A (ja) * 1984-04-27 1985-11-29 ゼネラル・エレクトリツク・カンパニイ タービンロータ軸の結合方法及び装置
JPH0371244U (ja) * 1989-11-15 1991-07-18
JPH05141202A (ja) * 1991-11-20 1993-06-08 Fuji Electric Co Ltd 蒸気タービンロータ
JPH08284603A (ja) * 1995-04-18 1996-10-29 Mitsubishi Heavy Ind Ltd 急速起動用蒸気タービンロータ
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2005344527A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 蒸気タービンロータおよびその製造方法
JP2007321630A (ja) * 2006-05-31 2007-12-13 Toshiba Corp 蒸気タービンロータ及び蒸気タービン
JP2008151013A (ja) * 2006-12-15 2008-07-03 Toshiba Corp タービンロータおよび蒸気タービン
JP2008261308A (ja) * 2007-04-13 2008-10-30 Hitachi Ltd 高温蒸気タービンプラント
JP2009144650A (ja) * 2007-12-17 2009-07-02 Hitachi Ltd 蒸気タービンロータ及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637521A (en) * 1949-03-01 1953-05-05 Elliott Co Gas turbine rotor and method of welding rotor disks together
JP3999402B2 (ja) * 1998-06-09 2007-10-31 三菱重工業株式会社 蒸気タービンの異材溶接ロータ
DE10052176B4 (de) * 1999-10-21 2004-07-08 Kabushiki Kaisha Toshiba, Kawasaki Dampfturbinenrotor und Verfahren zur Herstellung desselben
US6749518B2 (en) * 2002-04-08 2004-06-15 General Electric Company Inertia welded shaft and method therefor
DE50208002D1 (de) * 2002-07-01 2006-10-12 Alstom Technology Ltd Rotor für eine rotierende thermische Maschine sowie Verfahren zum Herstellen eines solchen Rotors
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
JP2007291966A (ja) * 2006-04-26 2007-11-08 Toshiba Corp 蒸気タービンおよびタービンロータ
JP2009103097A (ja) * 2007-10-25 2009-05-14 Mitsubishi Heavy Ind Ltd ガスタービン、及びガスタービン用ロータ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240801A (ja) * 1984-04-27 1985-11-29 ゼネラル・エレクトリツク・カンパニイ タービンロータ軸の結合方法及び装置
JPH0371244U (ja) * 1989-11-15 1991-07-18
JPH05141202A (ja) * 1991-11-20 1993-06-08 Fuji Electric Co Ltd 蒸気タービンロータ
JPH08284603A (ja) * 1995-04-18 1996-10-29 Mitsubishi Heavy Ind Ltd 急速起動用蒸気タービンロータ
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2005344527A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 蒸気タービンロータおよびその製造方法
JP2007321630A (ja) * 2006-05-31 2007-12-13 Toshiba Corp 蒸気タービンロータ及び蒸気タービン
JP2008151013A (ja) * 2006-12-15 2008-07-03 Toshiba Corp タービンロータおよび蒸気タービン
JP2008261308A (ja) * 2007-04-13 2008-10-30 Hitachi Ltd 高温蒸気タービンプラント
JP2009144650A (ja) * 2007-12-17 2009-07-02 Hitachi Ltd 蒸気タービンロータ及びその製造方法

Also Published As

Publication number Publication date
EP2305952A2 (en) 2011-04-06
US20110076153A1 (en) 2011-03-31
EP2305952A3 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US8911880B2 (en) Rotor of rotating machine and method of manufacturing the rotor
US8603265B2 (en) Ni-based alloy high-chrome steel structure and manufacturing method of the same
JP2007321630A (ja) 蒸気タービンロータ及び蒸気タービン
JP2007278064A (ja) 蒸気タービン溶接ロータとその製造方法及び蒸気タービンとその発電プラント
JP2000282808A (ja) 蒸気タービン設備
Lee et al. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature
Saito et al. Development of materials for use in A-USC boilers
JP2011069307A (ja) 蒸気タービンロータ、それを用いた蒸気タービン
Shige et al. Development of large-capacity, highly efficient welded rotor for steam turbines
Yoon et al. Failure analysis of the defect-induced blade damage of a compressor in the gas turbine of a cogeneration plant
JP5610445B2 (ja) タービン翼、それを用いたタービンロータ及び蒸気タービン
EP2698215A1 (en) Method for manufacturing high temperature steam pipes
JP2011196935A (ja) 余寿命評価方法
US20110100961A1 (en) Welding process for producing rotating turbomachinery
JP2011194458A (ja) 補修溶接方法
Nair et al. Newer materials for supercritical power plant components—A manufacturability study
Tanaka et al. Development of advanced USC technologies for 700 C class high temperature steam turbines
US11047260B2 (en) Turbine casing
JP5973870B2 (ja) 蒸気タービンロータの溶接方法
Suga et al. Development of Steam Turbine for A-USC Plant
Magoshi et al. Development of welded rotors for high-temperature steam turbines
Arrell Next generation engineered materials for ultra supercritical steam turbines
Harlow Paper 10: Metallurgical Experience with the Eddystone 5000 lb/in2 1200° F Unit No. 1
Franklin et al. Material developments and requirements for advanced boilers
deBarbadillo Age-Hardened Nickel-Base Alloys for Power Piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120910

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121207