[第1実施形態]
本発明の第1実施形態を以下に説明する。まず、図1〜図6を参照して、本実施形態における全方向移動車両の構造を説明する。
以下、本発明に係る実施形態を図面に基づいて説明する。
図1は電動車両を前側から見た斜視図であり、図2は後側から見た斜視図である。
図1,図2に示すように、本実施形態の電動車両1は、車体2と、車体2の前後に取り付けられた全方向移動車両である前輪(第2の車輪)3及び後輪(第1の車輪)4と、後輪4の上方に配置され乗員(利用者)Dが電動車両1の前向きに着座可能な着座部5とを備えている。
ここで、本実施形態の説明では、「前後方向」、「左右方向」は、それぞれ、着座部5に標準的な姿勢で搭乗した乗員の上体の前後方向、左右方向に一致もしくはほぼ一致する方向を意味する。なお、「標準的な姿勢」は、着座部5に関して設計的に想定されている姿勢であり、乗員の上体の体幹軸を概ね上下方向に向け、且つ、上体を捻ったりしていない姿勢である。また、本実施形態の説明では、参照符号に付する添え字「R」,「L」は、それぞれ車両1の右側、左側に対応するものという意味で使用する。
車体2は、前輪3及び後輪4間を架け渡すように形成されたステップフロア9と、前輪3及び後輪4を構成する前輪フェンダー7及び後輪フェンダー8と、後輪フェンダー8と着座部5とを連結する連結部10とを備えている。
ステップフロア9は、路面Tとの間に間隔を空けた状態で路面Tと平行に延在する平板状の部材であり、その上面に乗員Dの足部や荷物等を載置可能に構成されている。そして、ステップフロア9の前端部には、前輪3の前輪フェンダー7が連結される一方、後端部には後輪4の後輪フェンダー8が連結されている。
連結部10は、上方に向かって延在する円柱状の部材であり、下端が後輪フェンダー8の上部に連結される一方、上端に着座部5が連結されている。
着座部5は、乗員Dが乗車するための側面視L字状のシート部12と、シート部12及び上述した連結部10を連結するベース部14とを備えている。シート部12は、前後方向に延在して乗員Dの尻部及び大腿部を支持する座面部13と、座面部13の後端部から上方に向かって延在して乗員Dの背部を支持するシートバック15とを備えている。
シートバック15の左右方向両端部には、高さ方向中間部から前方に向かって延出する一対のアームレスト16が設けられている。これらアームレスト16は、シートバック15に対してピッチ軸(前後方向に直交する軸)周りに回動可能に支持されている。なお、アームレスト16の先端には、電動車両1の移動動作を乗員Dの手で操舵するためのコントローラ6が設置されている。また、シートバック15の上端部には、左右方向に沿って延在する手すり18が設けられており、この手すり18にバック等の荷物が掛止できるようになっている。また、シートバック15の後側には、可倒式の荷台17が設けられている。この荷台17は、シートバック15の下端側にピッチ軸周りに傾動可能に支持されている。具体的に、荷台17は未使用時においてはシートバック15と略平行に延在するように配置される(図2参照)一方、使用時においてはシートバック15に略直交する位置まで傾動して(図1参照)、その上面に荷物等を載置できるようになっている。
ベース部14は、その上端部が座面部13の下面に連結される一方、下端部が図示しない駆動機構を介して連結部10の上端に連結されている。そして、着座部5は、駆動機構によってヨー軸(路面T(図3参照)の法線)周りに回転可能に構成されている(図1中矢印M参照)。
図3は後輪の拡大断面図であり、図4は後輪の斜視図である。また、図5は主輪の斜視図であり、図6は主輪とフリーローラとの配置関係を示す図である。なお、前輪と後輪とはともに同様の構成であるため、以下の説明では後輪を例として説明する。また、図3では後輪フェンダー及び主輪の一部のみを断面図として示している。
図3〜図6に示すように、後輪4は、ゴム状弾性材等により円環状に形成された主輪20を有し、この主輪20はほぼ円形の横断面形状を有する。主輪20は、その弾性変形によって、図5及び図6の矢印Y1で示すように、円形の横断面の中心C1(具体的には、円形の横断面中心C1を通って、主輪20の軸心と同心となる円周線)の周りに回転可能となっている。
主輪20は、その軸心C2(主輪20全体の直径方向に直交する軸心C2)が電動車両1の左右方向に一致した状態で、後輪フェンダー8の内側に配置され、主輪20の外周面の下端部にて路面Tに接地している。なお、後輪フェンダー8は、側面視で円形状に形成されるとともに、下方に向けて開口するドーム状の部材であり、後輪4における下端部を除くほぼ全体を覆うように配置されている。
そして、主輪20は、アクチュエータ装置19による駆動(詳細は後述する)によって、図5の矢印Y2で示すように主輪20の軸心C2の周りに回転する動作(路面T上を輪転する動作)と、主輪20の横断面中心C1の周りに回転する動作とを行なうことが可能である。その結果、主輪20は、それらの回転動作の複合動作によって、路面T上を全方向に移動することが可能となっている。
アクチュエータ装置19は、主輪20と後輪フェンダー8の右側壁21Rとの間に介装される回転部材27R及びフリーローラ29Rと、主輪20と後輪フェンダー8の左側壁21Lとの間に介装される回転部材27L及びフリーローラ29Lと、回転部材27R及びフリーローラ29Rの上方に配置されたアクチュエータとしての電動モータ31Rと、回転部材27L及びフリーローラ29Lの上方に配置されたアクチュエータとしての電動モータ31Lとを備えている。
電動モータ31R,31Lは、それぞれのハウジングが後輪フェンダー8の両側壁21R,21Lに各々取付けられている。なお、図示は省略するが、電動モータ31R,31Lの電源(蓄電器)は、車体2の適所に搭載されている。
回転部材27Rは、左右方向の軸心を有する支軸33Rを介して右側壁21Rに回転可能に支持されている。同様に、回転部材27Lは、左右方向の軸心を有する支軸33Lを介して左側壁21Lに回転可能に支持されている。この場合、回転部材27Rの回転軸心(支軸33Rの軸心)と、回転部材27Lの回転軸心(支軸33Lの軸心)とは同軸心である。
回転部材27R,27Lは、それぞれ電動モータ31R,31Lの出力軸に、減速機としての機能を含む動力伝達機構を介して接続されており、電動モータ31R,31Lからそれぞれ伝達される動力(トルク)によって回転駆動される。各動力伝達機構は、例えばプーリ・ベルト式のものである。すなわち、図3に示すように、回転部材27Rは、プーリ35Rとベルト37Rとを介して電動モータ31Rの出力軸に接続されている。同様に、回転部材27Lは、プーリ35Lとベルト37Lとを介して電動モータ31Lの出力軸に接続されている。
なお、上述した動力伝達機構は、例えば、スプロケットとリンクチェーンとにより構成されるもの、あるいは、複数のギヤにより構成されるものであってもよい。また、例えば、電動モータ31R,31Lを、それぞれの出力軸が各回転部材27R,27Lと同軸心になるように各回転部材27R,27Lに対向させて配置し、電動モータ31R,31Lのそれぞれの出力軸を回転部材27R,27Lに各々、減速機(遊星歯車装置等)を介して連結するようにしてもよい。
各回転部材27R,27Lは、主輪20側に向かって縮径する円錐台と同様の形状に形成されており、その外周面がテーパ外周面39R,39Lとなっている。
回転部材27Rのテーパ外周面39Rの周囲には、回転部材27Rと同心の円周上に等間隔で並ぶようにして、複数のフリーローラ29Rが配列されている。そして、これらのフリーローラ29Rは、それぞれ、ブラケット38Rを介してテーパ外周面39Rに取付けられ、ブラケット38Rに回転可能に支承されている。
同様に、回転部材27Lのテーパ外周面39Lの周囲には、回転部材27Lと同心の円周上に等間隔で並ぶようにして、複数(フリーローラ29Rと同数)のフリーローラ29Lが配列されている。そして、これらのフリーローラ29Lは、それぞれ、ブラケット38Lを介してテーパ外周面39Lに取付けられ、ブラケット38Lに回転可能に支承されている。
主輪20は、回転部材27R側のフリーローラ29Rと、回転部材27L側のフリーローラ29Lとの間に挟まれるようにして、回転部材27R,27Lと同軸心に配置されている。
この場合、図6に示すように、各フリーローラ29R,29Lは、その軸心C3が主輪20の軸心C2に対して傾斜するとともに、主輪20の直径方向(主輪20をその軸心C2の方向で見たときに、軸心C2と各フリーローラ29R,29Lとを結ぶ径方向)に対して傾斜する姿勢で配置されている。そして、このような姿勢で、各フリーローラ29R,29Lのそれぞれの外周面が主輪20の内周面に斜め方向に圧接されている。
より一般的に言えば、右側のフリーローラ29Rは、回転部材27Rが軸心C2の周りに回転駆動されたときに、主輪20との接触面で、軸心C2周りの方向の摩擦力成分(主輪20の内周の接線方向の摩擦力成分)と、主輪20の横断面中心C1の周り方向の摩擦力成分(円形の横断面の接線方向の摩擦力成分)とを主輪20に作用させ得るような姿勢で、主輪20の内周面に圧接されている。左側のフリーローラ29Lについても同様である。
なお、前輪3は、上述した後輪4と同一の構成からなり、前輪3及び後輪4は、互いの主輪20の軸心(回転軸)C2が平行になるように配置されている(図1,図2参照)。そして、前輪3及び後輪4の電動モータ31R,31Lによりそれぞれ、回転部材27R,27Lを同方向に等速度で回転駆動させた場合には、各主輪20が回転部材27R,27Lと同方向に軸心C2の周りに回転することとなる。これにより、各主輪20が路面T上を前後方向に輪転して、電動車両1の全体が前後方向に移動することとなる。なお、この場合は、主輪20は、その横断面中心C1の周りには回転しない。
また、例えば回転部材27R,27Lを互いに逆方向に同じ大きさの速度で回転駆動させた場合には、各主輪20は、その横断面中心C1の周りに回転することとなる。これにより、各主輪20がその軸心C2の方向(すなわち左右方向)に移動し、ひいては、電動車両1の全体が左右方向に移動することとなる。なお、この場合は、主輪20は、その軸心C2の周りには回転しない。
さらに、回転部材27R,27Lを、互いに異なる速度(方向を含めた速度)で、同方向又は逆方向に回転駆動させた場合には、各主輪20は、その軸心C2の周りに回転すると同時に、その横断面中心C1の周りに回転することとなる。
この時、これらの回転動作の複合動作(合成動作)によって、前後方向及び左右方向に対して傾斜した方向に主輪20が移動し、ひいては、電動車両1の全体が主輪20と同方向に移動することとなる。この場合の主輪20の移動方向は、回転部材27R,27Lの回転方向を含めた回転速度(回転方向に応じて極性が定義された回転速度ベクトル)の差に依存して変化するものとなる。
以上のように各主輪20の移動動作が行なわれるので、電動モータ31R,31Lのそれぞれの回転速度(回転方向を含む)を制御し、ひいては回転部材27R,27Lの回転速度を制御することによって、電動車両1の移動速度及び移動方向を制御できることとなる。
ここで、電動車両1の概略的な動作制御を説明すると、基本的に本実施形態の電動車両1では、シート部12に着座した乗員Dがその上体を傾けた場合(具体的には、乗員Dと電動車両1とを合わせた全体の重心点Gの位置(水平面に投影した位置)を動かすように上体を傾けた場合)に、上体を傾けた側に車体2がシート部12とともに傾動する。そして、この時、車体2が傾いた側に電動車両1が移動するように、主輪20の移動動作が制御される。すなわち、本実施形態では、乗員Dが上体を動かし、ひいては、シート部12とともに車体2を傾動させるという動作が、電動車両1に対する1つの基本的な操縦操作(電動車両1の動作要求)とされ、その操縦操作に応じて主輪20の移動動作がアクチュエータ装置19を介して制御される。
具体的には、電動車両1(及び乗員Dの全体)の重心点が、前輪3及び後輪4それぞれの接地面を結ぶ線分のほぼ真上に位置するような車体2の姿勢を目標姿勢とし、基本的には車体2の実際の姿勢を目標姿勢に収束させるように、前輪3及び後輪4の移動動作が制御される。具体的に、目標姿勢に対して重心点が前後方向に移動したと判断された場合には、上述した前輪3及び後輪4の主輪20を軸心C2周りに回転させて電動車両1を前後方向に移動させる。一方、目標姿勢に対して重心点が左右方向に移動したと判断された場合には、各主輪20を中心C1周りに回転させて電動車両1を左右方向に移動させる。または、これらの回転動作の複合動作によって、車体2の姿勢が目標姿勢に収束される。したがって、電動車両1を移動させたい場合には、乗員D自身の重心点を進行方向に向けて傾ける。すると、電動車両100は、目標姿勢を保とうとして進行方向に移動することになる。
以上の動作を行うために、本実施形態ではマイクロコンピュータや電動モータ31R,31Lのドライブ回路ユニットなどを含む電子回路ユニットにより構成された制御ユニット50や、座面部13やベース部14等の車体2の所定の部位の鉛直方向(重力方向)に対する傾斜角θb及びその変化速度(=dθb/dt)を計測するための傾斜センサ52、電動車両1に乗員Dが搭乗しているか否かを検知するための荷重センサ54、電動モータ31R,31Lのそれぞれの出力軸の回転角度及び回転角速度を検出するための角度センサとしてのロータリーエンコーダ56R,56L(図3参照)等がそれぞれ、電動車両1の適所に搭載されている。また、以上の動作は、アームレスト16に設置されたコントローラ6を操舵することによっても行うことができる。具体的には、コントローラ6を電動車両1の進行方向に向けて操作することで、制御ユニット50に向けて電動車両1の動作信号が出力され、この動作信号に基づいてアクチュエータ装置19が制御される。
上記傾斜センサ52は、より詳しくは、加速度センサとジャイロセンサ等のレートセンサ(角速度センサ)とから構成され、これらのセンサの検出信号を制御ユニット50に出力する。そして、制御ユニット50が、傾斜センサ52の加速度センサ及びレートセンサの出力を基に、所定の計測演算処理(これは公知の演算処理でよい)を実行することによって、傾斜センサ52を搭載した部位の、鉛直方向に対する傾斜角度θbの計測値とその変化速度(微分値)である傾斜角速度θbdotの計測値とを算出する。
この場合、計測する傾斜角度θb(以降、基体傾斜角度θbということがある)は、より詳しくは、それぞれ、Y軸周り方向(ピッチ方向)の成分θb_xと、X軸周り方向(ロール方向)の成分θb_yとから成る。同様に、計測する傾斜角速度θbdot(以降、基体傾斜角速度θbdotということがある)も、Y軸周り方向(ピッチ方向)の成分θbdot_x(=dθb_x/dt)と、X軸周り方向(ロール方向)の成分θbdot_y(=dθb_y/dt)とから成る。なお、傾斜角度θb及び傾斜角速度θbdotのY軸周り方向の成分は、コントローラ6の傾斜角度及び傾斜角速度として計測されても良い。
なお、本実施形態の説明では、上記基体傾斜角度θbなど、X軸及びY軸の各方向(又は各軸周り方向)の成分を有する運動状態量等の変数、あるいは、該運動状態量に関連する係数等の変数に関しては、その各成分を区別して表記する場合に、該変数の参照符号に、添え字“_x”又は“_y”を付加する。
この場合において、並進速度等の並進運動に係わる変数については、そのX軸方向の成分に添え字“_x”を付加し、Y軸方向の成分に添え字“_y”を付加する。
一方、角度、回転速度(角速度)、角加速度など、回転運動に係わる変数については、並進運動に係わる変数と添え字を揃えるために、便宜上、Y軸周り方向の成分に添え字“_x”を付加し、X軸周り方向の成分に添え字“_y”を付加する。
さらに、X軸方向の成分(又はY軸周り方向の成分)と、Y軸方向の成分(又はX軸周り方向の成分)との組として変数を表記する場合には、該変数の参照符号に添え字“_xy”を付加する。例えば、上記基体傾斜角度θbを、Y軸周り方向の成分θb_xとX軸周り方向の成分θb_yの組として表現する場合には、「基体傾斜角度θb_xy」というように表記する。
前記荷重センサ54は、乗員が座面部13に着座した場合に該乗員の重量による荷重を受けるように座面部13に内蔵され、その荷重に応じた検出信号を制御ユニット50に出力する。そして、制御ユニット50が、この荷重センサ54の出力により示される荷重の計測値に基づいて、車両1に乗員が搭乗しているか否かを判断する。
なお、荷重センサ54の代わりに、例えば、乗員が座面部13に着座したときにONとなるようなスイッチ式のセンサを用いてもよい。
ロータリーエンコーダ56Rは、電動モータ31Rの出力軸が所定角度回転する毎にパルス信号を発生し、このパルス信号を制御ユニット50に出力する。そして、制御ユニット50が、そのパルス信号を基に、電動モータ31Rの出力軸の回転角度を計測し、さらにその回転角度の計測値の時間的変化率(微分値)を電動モータ31Rの回転角速度として計測する。電動モータ31L側のロータリーエンコーダ56Lについても同様である。
制御ユニット50は、上記の各計測値を用いて所定の演算処理を実行することによって、電動モータ31R,31Lのそれぞれの回転角速度の目標値である速度指令を決定し、その速度指令に従って、電動モータ31R,31Lのそれぞれの回転角速度をフィードバック制御する。
なお、電動モータ31Rの出力軸の回転角速度と、回転部材27Rの回転角速度との間の関係は、該出力軸と回転部材27Rとの間の一定値の減速比に応じた比例関係になるので、本実施形態の説明では、便宜上、電動モータ31Rの回転角速度は、回転部材27Rの回転角速度を意味するものとする。同様に、電動モータ31Lの回転角速度は、回転部材27Lの回転角速度を意味するものとする。
以下に、制御ユニット50の制御処理をさらに詳細に説明する。
制御ユニット50は、所定の制御処理周期で図7のフローチャートに示す処理(メインルーチン処理)を実行する。
まず、ステップS1において、制御ユニット50は、傾斜センサ52の出力を取得する。
次いで、ステップS2に進んで、制御ユニット50は、取得した傾斜センサ52の出力を基に、基体傾斜角度θbの計測値θb_xy_sと、基体傾斜角速度θbdotの計測値θbdot_xy_sとを算出する。
なお、以降の説明では、上記計測値θb_xy_sなど、変数(状態量)の実際の値の観測値(計測値又は推定値)を参照符号により表記する場合に、該変数の参照符号に、添え字“_s”を付加する。
次いで、制御ユニット50は、ステップS3において、荷重センサ54の出力を取得した後、ステップS4の判断処理を実行する。この判断処理においては、制御ユニット50は、取得した荷重センサ54の出力が示す荷重計測値があらかじめ設定された所定値よりも大きいか否かによって、車両1に乗員が搭乗しているか否か(座面部13に乗員が着座しているか否か)を判断する。
そして、制御ユニット50は、ステップS4の判断結果が肯定的である場合には、基体傾斜角度θbの目標値θb_xy_objを設定する処理と、車両1の動作制御用の定数パラメータ(各種ゲインの基本値など)の値を設定する処理とを、それぞれステップS5、6で実行する。
ステップS5においては、制御ユニット50は、基体傾斜角度θbの目標値θb_xy_objとして、あらかじめ定められた搭乗モード用の目標値を設定する。
ここで、「搭乗モード」は、車両1に乗員が搭乗している場合での車両1の動作モードを意味する。この搭乗モード用の目標値θb_xy_objは、車両1と座面部13に着座した乗員との全体の重心点(以降、車両・乗員全体重心点という)が前輪3及び後輪4それぞれの接地面を結ぶ線分(以下、接地線という)のほぼ真上の所定箇所に位置する状態となる車体2の姿勢において、傾斜センサ52の出力に基づき計測される基体傾斜角度θbの計測値θb_xy_sに一致又はほぼ一致するようにあらかじめ設定されている。なお、上記所定箇所のX軸方向の位置は、前輪3及び後輪4それぞれの接地面の間であれば良く、例えば両接地面の略中間点であっても良い。
また、ステップS6においては、制御ユニット50は、車両1の動作制御用の定数パラメータの値として、あらかじめ定められた搭乗モード用の値を設定する。なお、定数パラメータは、後述するhx,hy,Ki_a_x,Ki_b_x,Ki_a_y,Ki_b_y(i=1,2,3)等である。
一方、ステップS4の判断結果が否定的である場合には、制御ユニット50は、基体傾斜角度θb_xyの目標値θb_xy_objを設定する処理と、車両1の動作制御用の定数パラメータの値を設定する処理とを、ステップS7、8で実行する。
ステップS7においては、制御ユニット50は、傾斜角度θbの目標値θb_xy_objとして、あらかじめ定められた自立モード用の目標値を設定する。
ここで、「自立モード」は、車両1に乗員が搭乗していない場合での車両1の動作モードを意味する。この自立モード用の目標値θb_xy_objは、車両1単体の重心点(以降、車両単体重心点という)が接地線のほぼ真上に位置する状態となる車体2の姿勢において、傾斜センサ52の出力に基づき計測される基体傾斜角度θbの計測値θb_xy_sに一致又はほぼ一致するようにあらかじめ設定されている。この自立モード用の目標値θb_xy_objは、搭乗モード用の目標値θb_xy_objと一般的には異なる。
また、ステップS8においては、制御ユニット50は、車両1の動作制御用の定数パラメータの値として、あらかじめ定められた自立モード用の値を設定する。この自立モード用の定数パラメータの値は、搭乗モード用の定数パラメータの値と異なる。
搭乗モードと自立モードとで、上記定数パラメータの値を異ならせるのは、それぞれのモードで上記重心点の高さや、全体質量等が異なることに起因して、制御入力に対する車両1の動作の応答特性が互いに異なるからである。
以上のステップS4〜8の処理によって、搭乗モード及び自立モードの動作モード毎に個別に、基体傾斜角度θb_xyの目標値θb_xy_objと定数パラメータの値とが設定される。
なお、ステップS5,6の処理、又はステップS7,8の処理は、制御処理周期毎に実行することは必須ではなく、ステップS4の判断結果が変化した場合にだけ実行するようにしてもよい。
補足すると、搭乗モード及び自立モードのいずれにおいても、基体傾斜角速度θbdotのY軸周り方向の成分θbdot_xの目標値とX軸周り方向の成分θbdot_yの目標値とは、いずれも“0”である。このため、基体傾斜角速度θbdot_xyの目標値を設定する処理は不要である。
以上の如くステップS5,6の処理、又はステップS7,8の処理を実行した後、制御ユニット50は、次にステップS9において、車両制御演算処理を実行することによって、電動モータ31R,31Lのそれぞれの速度指令を決定する。この車両制御演算処理の詳細は後述する。
次いで、ステップS10に進んで、制御ユニット50は、ステップS9で決定した速度指令に応じて電動モータ31R,31Lの動作制御処理を実行する。この動作制御処理では、制御ユニット50は、ステップS9で決定した電動モータ31Rの速度指令と、ロータリーエンコーダ56Rの出力に基づき計測した電動モータ31Rの回転速度の計測値との偏差に応じて、該偏差を“0”に収束させるように電動モータ31Rの出力トルクの目標値(目標トルク)を決定する。そして、制御ユニット50は、その目標トルクの出力トルクを電動モータ31Rに出力させるように該電動モータ31Rの通電電流を制御する。左側の電動モータ31Lの動作制御についても同様である。
以上が、制御ユニット50が実行する全体的な制御処理である。
次に、上記ステップS9の車両制御演算処理の詳細を説明する。
なお、以降の説明においては、前記搭乗モードにおける車両・乗員全体重心点と、前記自立モードにおける車両単体重心点とを総称的に、車両系重心点という。該車両系重心点は、車両1の動作モードが搭乗モードである場合には、車両・乗員全体重心点を意味し、自立モードである場合には、車両単体重心点を意味する。
また、以降の説明では、制御ユニット50が各制御処理周期で決定する値(更新する値)に関し、現在の(最新の)制御処理周期で決定する値を今回値、その1つ前の制御処理周期で決定した値を前回値ということがある。そして、今回値、前回値を特にことわらない値は、今回値を意味する。
また、X軸方向の速度及び加速度に関しては、前方向きを正の向きとし、Y軸方向の速度及び加速度に関しては、左向きを正の向きとする。
本実施形態では、前記車両系重心点の動力学的な挙動(詳しくは、Y軸方向からこれに直交する面(XZ平面)に投影して見た挙動と、X軸方向からこれに直交する面(YZ平面)に投影して見た挙動)が、近似的に、図8に示すような、倒立振子モデルの挙動(倒立振子の動力学的挙動)によって表現されるものとして、ステップS9の車両制御演算処理が行なわれる。
なお、図8において、括弧を付していない参照符号は、Y軸方向から見た倒立振子モデルに対応する参照符号であり、括弧付きの参照符号は、X軸方向から見た倒立振子モデルに対応する参照符号である。
この場合、Y軸方向から見た挙動を表現する倒立振子モデルは、車両系重心点に位置する質点60_xと、Y軸方向に平行な回転軸62a_xを有して床面上を輪転自在な仮想的な車輪62_x(以降、仮想車輪62_xという)とを備える。そして、質点60_xが、仮想車輪62_xの回転軸62a_xに直線状のロッド64_xを介して支持され、該回転軸62a_xを支点として該回転軸62a_xの周りに揺動自在とされている。
この倒立振子モデルでは、質点60_xの運動が、Y軸方向から見た車両系重心点の運動に相当する。また、鉛直方向に対するロッド64_xの傾斜角度θbe_xがY軸周り方向での基体傾斜角度計測値θb_x_sと基体傾斜角度目標値θb_x_objとの偏差θbe_x_s(=θb_x_s−θb_x_obj)に一致するものとされる。また、ロッド64_xの傾斜角度θbe_xの変化速度(=dθbe_x/dt)がY軸周り方向の基体傾斜角速度計測値θbdot_x_sに一致するものとされる。また、仮想車輪62_xの移動速度Vw_x(X軸方向の並進移動速度)は、車両1の主輪20のX軸方向の移動速度に一致するものとされる。
同様に、X軸方向から見た挙動を表現する倒立振子モデル(図8の括弧付きの符号を参照)は、車両系重心点に位置する質点60_yと、X軸方向に平行な回転軸62a_yを有して床面上を輪転自在な仮想的な車輪62_y(以降、仮想車輪62_yという)とを備える。そして、質点60_yが、仮想車輪62_yの回転軸62a_yに直線状のロッド64_yを介して支持され、該回転軸62a_yを支点として該回転軸62a_yの周りに揺動自在とされている。
この倒立振子モデルでは、質点60_yの運動が、X軸方向から見た車両系重心点の運動に相当する。また、鉛直方向に対するロッド64_yの傾斜角度θbe_yがX軸周り方向での基体傾斜角度計測値θb_y_sと基体傾斜角度目標値θb_y_objとの偏差θbe_y_s(=θb_y_s−θb_y_obj)に一致するものとされる。また、ロッド64_yの傾斜角度θbe_yの変化速度(=dθbe_y/dt)がX軸周り方向の基体傾斜角速度計測値θbdot_y_sに一致するものとされる。また、仮想車輪62_yの移動速度Vw_y(Y軸方向の並進移動速度)は、車両1の主輪20のY軸方向の移動速度に一致するものとされる。
なお、仮想車輪62_x,62_yは、それぞれ、あらかじめ定められた所定値Rw_x,Rw_yの半径を有するものとされる。
また、仮想車輪62_x,62_yのそれぞれの回転角速度ωw_x,ωw_yと、電動モータ31R,31Lのそれぞれの回転角速度ω_R,ω_L(より正確には、回転部材27R,27Lのそれぞれの回転角速度ω_R,ω_L)との間には、次式01a,01bの関係が成立するものとされる。
ωw_x=(ω_R+ω_L)/2 ……式01a
ωw_y=C・(ω_R−ω_L)/2 ……式01b
なお、式01bにおける“C”は、前記フリーローラ29R,29Lと主輪20との間の機構的な関係や滑りに依存する所定値の係数である。
ここで、図8に示す倒立振子モデルの動力学は、次式03x,03yにより表現される。なお、式03xは、Y軸方向から見た倒立振子モデルの動力学を表現する式、式03yは、X軸方向から見た倒立振子モデルの動力学を表現する式である。
d2θbe_x/dt2=α_x・θbe_x+β_x・ωwdot_x ……式03x
d2θbe_y/dt2=α_y・θbe_y+β_y・ωwdot_y ……式03y
式03xにおけるωwdot_xは仮想車輪62_xの回転角加速度(回転角速度ωw_xの1階微分値)、α_xは、質点60_xの質量や高さh_xに依存する係数、β_xは、仮想車輪62_xのイナーシャ(慣性モーメント)や半径Rw_xに依存する係数である。式03yにおけるωwdot_y、α_y、β_yについても上記と同様である。
これらの式03x,03yから判るように、倒立振子の質点60_x,60_yの運動(ひいては車両系重心点の運動)は、それぞれ、仮想車輪62_xの回転角加速度ωwdot_x、仮想車輪62_yの回転角加速度ωwdot_yに依存して規定される。
そこで、本実施形態では、Y軸方向から見た車両系重心点の運動を制御するための操作量(制御入力)として、仮想車輪62_xの回転角加速度ωwdot_xを用いると共に、X軸方向から見た車両系重心点の運動を制御するための操作量(制御入力)として、仮想車輪62_yの回転角加速度ωwdot_yを用いる。
そして、ステップS9の車両制御演算処理を概略的に説明すると、制御ユニット50は、X軸方向で見た質点60_xの運動と、Y軸方向で見た質点60_yの運動とが、車両系重心点の所望の運動に対応する運動となるように、操作量としての上記回転角加速度ωwdot_x,ωwdot_yの指令値(目標値)である仮想車輪回転角加速度指令ωwdot_x_cmd,ωwdot_y_cmdを決定する。さらに、制御ユニット50は、仮想車輪回転角加速度指令ωwdot_x_cmd,ωwdot_y_cmdをそれぞれ積分してなる値を、仮想車輪62_x,62_yのそれぞれの回転角速度ωw_x,ωw_yの指令値(目標値)である仮想車輪回転角速度指令ωw_x_cmd,ωw_y_cmdとして決定する。
そして、制御ユニット50は、仮想車輪回転角速度指令ωw_x_cmdに対応する仮想車輪62_xの移動速度(=Rw_x・ωw_x_cmd)と、仮想車輪回転角速度指令ωw_y_cmdに対応する仮想車輪62_yの移動速度(=Rw_y・ωw_y_cmd)とを、それぞれ、車両1の主輪20のX軸方向の目標移動速度、Y軸方向の目標移動速度とし、それらの目標移動速度を実現するように、電動モータ31R,31Lのそれぞれの速度指令ω_R_cmd,ωL_cmdを決定する。
なお、本実施形態では、操作量(制御入力)としての上記仮想車輪回転角加速度指令ωwdot_x_cmd,ωwdot_y_cmdは、それぞれ、後述する式07x,07yに示す如く、3個の操作量成分を加え合わせることによって決定される。
制御ユニット50は、上記の如き、ステップS9の車両制御演算処理を実行するための機能として、図9のブロック図で示す機能を備えている。
すなわち、制御ユニット50は、基体傾斜角度計測値θb_xy_sと基体傾斜角度目標値θb_xy_objとの偏差である基体傾斜角度偏差計測値θbe_xy_sを算出する偏差演算部70と、前記車両系重心点の移動速度である重心速度Vb_xyの観測値としての重心速度推定値Vb_xy_sを算出する重心速度算出部72と、乗員等による車両1の操縦操作(車両1に推進力を付加する操作)によって要求されていると推定される上記重心速度Vb_xyの要求値としての要求重心速度Vb_xy_aimを生成する要求重心速度生成部74と、これらの重心速度推定値Vb_xy_s及び要求重心速度Vb_xy_aimから、電動モータ31R,31Lの回転角速度の許容範囲に応じた制限を加味して、重心速度Vb_xyの目標値としての制御用目標重心速度Vb_xy_mdfdを決定する重心速度制限部76と、後述する式07x,07yのゲイン係数の値を調整するためのゲイン調整パラメータKr_xyを決定するゲイン調整部78と、座面部13の揺れを表す値である揺動指数Eを算出する揺動指数算出部110とを備える。
制御ユニット50は、さらに、前記仮想車輪回転角速度指令ωw_xy_cmdを算出する姿勢制御演算部80と、この仮想車輪回転角速度指令ωw_xy_cmdを、右側の電動モータ31Rの速度指令ω_R_cmd(回転角速度の指令値)と左側の電動モータ31Lの速度指令ω_L_cmd(回転角速度の指令値)との組に変換するモータ指令演算部82とを備える。
なお、図9中の参照符号84を付したものは、姿勢制御演算部80が制御処理周期毎に算出する仮想車輪回転角速度指令ωw_xy_cmdを入力する遅延要素を示している。該遅延要素84は、各制御処理周期において、仮想車輪回転角速度指令ωw_xy_cmdの前回値ωw_xy_cmd_pを出力する。
前記ステップS9の車両制御演算処理では、これらの上記の各処理部の処理が以下に説明するように実行される。
すなわち、制御ユニット50は、まず、偏差演算部70の処理と揺動指数算出部110の処理と重心速度算出部72の処理とを実行する。
偏差演算部70には、前記ステップS2で算出された基体傾斜角度計測値θb_xy_s(θb_x_s及びθb_y_s)と、前記ステップS5又はステップS7で設定された目標値θb_xy_obj(θb_x_obj及びθb_y_obj)とが入力される。そして、偏差演算部70は、θb_x_sからθb_x_objを減算することによって、Y軸周り方向の基体傾斜角度偏差計測値θbe_x_s(=θb_x_s−θb_x_obj)を算出すると共に、θb_y_sからθb_y_objを減算することによって、X軸周り方向の基体傾斜角度偏差計測値θbe_y_s(=θb_y_s−θb_y_obj)を算出する。
なお、偏差演算部70の処理は、ステップS9の車両制御演算処理の前に行なうようにしてもよい。例えば、前記ステップS5又は7の処理の中で、偏差演算部70の処理を実行してもよい。
前記揺動指数算出部110には、前記ステップS2で算出された基体傾斜角度計測値θb_xy_s(θb_x_s及びθb_y_s)が入力されると共に、同じく前記ステップS2で算出された基体傾斜角速度計測値θbdot_xy_s(θbdot_x_s及びθbdot_y_s)の今回値が入力される。そして、揺動指数算出部110は、これらの入力値から揺動指数Eを算出する。
揺動指数Eは、図8に示すような倒立振子モデルにおいて質点60_x,60_yの揺動の大きさを表す値であり、揺動指数Eの値が大きいほど質点60_x,60_yの揺動が大きいことを表す。言い換えれば、揺動指数Eの値が大きいほど、車両1の乗員がバランスを的確にとることができておらず、乗車に関する習熟度が小さいことを表す。なお、揺動指数は、本実施例において算出される値に限らず、車体2や着座部5のふらつき(例えば左右方向のふらつき)に関する計測値もしくは推定値から算出される指数であれば他の値であっても良い。
本実施形態における車両1は、前後方向に一列に並んだ二つの車輪(前輪3及び後輪4)を備えているため、原則的には前後方向に質点60_xが揺動することはない。そのため、本実施形態における車両1では、以下に示すように左右方向への質点60_yの揺動に基づいて揺動指数Eが決定される。したがって、揺動指数算出部110には、ステップS2で算出された基体傾斜角度計測値θb_xy_sのうち、X軸周り方向(ロール方向)の成分θb_y_sのみが入力される。また、揺動指数算出部110には、ステップS2で算出された基体傾斜角速度計測値θbdot_xy_sのうち、X軸周り方向(ロール方向)の成分θbdot_y_sのみが入力される。
具体的には、揺動指数算出部110は、次式11により、揺動指数Eを算出する。
E=w1(θb_y_s)2+w2(θbdot_y_s)2+w3・θb_y_s・θbdot_y_s……式11
この式11において、w1,w2,w3はそれぞれ定数であり、車両1に関するシミュレーションや実験によってあらかじめ設定される値である。
なお、揺動指数算出部110は、上記の式11ではなく次式13により揺動指数Eを算出しても良い。
E={w1(θb_y_s)2+w2(θbdot_y_s)2
+w3・θb_y_s・θbdot_y_s}τs/(1+τs)……式13
また、式13において、τはハイパスフィルタの時定数であり、車両1に関するシミュレーションや実験によってあらかじめ設定される値である。また、sはラプラス変換の変数である。この場合、揺動指数Eの値は、w1,w2,w3それぞれの定数に係る項の和について、時定数τで定義されるハイパスフィルタにより低周波数成分をカットすることによって得られる。揺動指数Eの値を算出する際にハイパスフィルタにより低周波数成分をカットすることにより、一定のθb_y_sで定常円の旋回運動をしている場合に、質点60_yが左右に揺動していないにもかかわらず揺動指数Eが不必要に大きくなってしまうことを抑止できる。
また、揺動指数算出部110は、次式15により揺動指数Eを算出しても良い。
E=w1{θb_y_s・τs/(1+τs)}2+w2{θbdot_y_s・τs/(1+τs)}2+w3・{θb_y_s・τs/(1+τs)}・{θbdot_y_s・τs/(1+τs)}……式15
この式15において、w1,w2,w3,τ,sはそれぞれ式13と同じ値である。式15では、w1,w2,w3それぞれの定数に係る項の値が算出される際に、あらかじめ基体傾斜角度計測値b_y_s及び基体傾斜角速度計測値θbdot_y_sに対して、時定数τで定義されるハイパスフィルタによる低周波数成分のカットが行われる。このような式15においても、一定のθb_y_sで定常円の旋回運動をしている場合に、質点60_yが左右に揺動していないにもかかわらず揺動指数Eが不必要に大きくなってしまうことを抑止できる。
また、揺動指数算出部110は、次式17により揺動指数Eを算出しても良い。
E=w2(θbdot_y_s)2+w3・θb_y_s・θbdot_y_s……式17
この式17において、w2,w3はそれぞれ式11と同じ値である。式17は、式11において定数w1の値をゼロ(0)とした場合のものと同じである。式17では、ハイパスフィルタによる低周波成分のカットを行わない代わりに、(θb_y_s)2の値が揺動指数Eに影響しない。そのため、一定のθb_y_sで定常円の旋回運動をしている場合に、質点60_yが左右に揺動していないにもかかわらず揺動指数Eが不必要に大きくなってしまうことを抑止できる。
前記重心速度算出部72には、前記ステップS2で算出された基体傾斜角速度計測値θbdot_xy_s(θbdot_x_s及びθbdot_y_s)の今回値が入力されると共に、仮想車輪速度指令ωw_xy_cmdの前回値ωw_xy_cmd_p(ωw_x_cmd_p及びωw_y_cmd_p)が遅延要素84から入力される。そして、重心速度算出部72は、これらの入力値から、前記倒立振子モデルに基づく所定の演算式によって、重心速度推定値Vb_xy_s(Vb_x_s及びVb_y_s)を算出する。
具体的には、重心速度算出部72は、次式05x,05yにより、Vb_x_s及びVb_y_sをそれぞれ算出する。
Vb_x_s=Rw_x・ωw_x_cmd_p+h_x・θbdot_x_s ……05x
Vb_y_s=Rw_y・ωw_y_cmd_p+h_y・θbdot_y_s ……05y
これらの式05x,05yにおいて、Rw_x,Rw_yは、前記したように、仮想車輪62_x,62_yのそれぞれの半径であり、これらの値は、あらかじめ設定された所定値である。また、h_x,h_yは、それぞれ倒立振子モデルの質点60_x,60_yの高さである。この場合、本実施形態では、車両系重心点の高さは、ほぼ一定に維持されるものとされる。そこで、h_x,h_yの値としては、それぞれ、あらかじめ設定された所定値が用いられる。補足すると、高さh_x,h_yは、前記ステップS6又は8において値を設定する定数パラメータに含まれるものである。
上記式05xの右辺の第1項は、仮想車輪62_xの速度指令の前回値ωw_x_cmd_pに対応する該仮想車輪62_xのX軸方向の移動速度であり、この移動速度は、主輪20のX軸方向の実際の移動速度の現在値に相当するものである。また、式05xの右辺の第2項は、座面部13がY軸周り方向にθbdot_x_sの傾斜角速度で傾動することに起因して生じる車両系重心点のX軸方向の移動速度(主輪20に対する相対的な移動速度)の現在値に相当するものである。これらのことは、式05yについても同様である。
なお、前記ロータリーエンコーダ56R,56Lの出力を基に計測される電動モータ31R,31Lのそれぞれの回転角速度の計測値(今回値)の組を、仮想車輪62_x,62_yのそれぞれの回転角速度の組に変換し、それらの回転角速度を、式05x、05yのωw_x_cmd_p、ωw_y_cmd_pの代わりに用いてもよい。ただし、回転角速度の計測値に含まれるノイズの影響を排除する上では、目標値であるωw_x_cmd_p、ωw_y_cmd_pを使用することが有利である。
次に、制御ユニット50は、要求重心速度生成部74の処理とゲイン調整部78の処理とを実行する。この場合、要求重心速度生成部74及びゲイン調整部78には、それぞれ、重心速度算出部72で上記の如く算出された重心速度推定値Vb_xy_s(Vb_x_s及びVb_y_s)が入力される。
そして、要求重心速度生成部74は、詳細は後述するが、車両1の動作モードが搭乗モードである場合に、入力された重心速度推定値Vb_xy_s(Vb_x_s及びVb_y_s)を基に、要求重心速度Vb_xy_aim(Vb_x_aim,Vb_y_aim)を決定する。なお、本実施形態では、車両1の動作モードが自立モードである場合には、要求重心速度生成部74は、要求重心速度Vb_x_aim及びVb_y_aimをいずれも“0”とする。
また、ゲイン調整部78は、入力された重心速度推定値Vb_xy_s(Vb_x_s及びVb_y_s)を基に、前記ゲイン調整パラメータKr_xy(Kr_x及びKr_y)を決定する。
このゲイン調整部78の処理を図10及び図11を参照して以下に説明する。
図10に示すように、ゲイン調整部78は、入力された重心速度推定値Vb_x_s,Vb_y_sをリミット処理部86に入力する。このリミット処理部86では、重心速度推定値Vb_x_s,Vb_y_sに、電動モータ31R,31Lのそれぞれの回転角速度の許容範囲に応じた制限を適宜、加えることによって、出力値Vw_x_lim1,Vw_y_lim1を生成する。出力値Vw_x_lim1は、前記仮想車輪62_xのX軸方向の移動速度Vw_xの制限後の値、出力値Vw_y_lim1は、前記仮想車輪62_yのY軸方向の移動速度Vw_yの制限後の値としての意味を持つ。
このリミット処理部86の処理を、図11を参照してさらに詳細に説明する。なお、図11中の括弧付きの参照符号は、後述する重心速度制限部76のリミット処理部104の処理を示すものであり、リミット処理部86の処理に関する説明では無視してよい。
リミット処理部86は、まず、重心速度推定値Vb_x_s,Vb_y_sをそれぞれ処理部86a_x,86a_yに入力する。処理部86a_xは、Vb_x_sを仮想車輪62_xの半径Rw_xで除算することによって、仮想車輪62_xのX軸方向の移動速度をVb_x_sに一致させたと仮定した場合の該仮想車輪62_xの回転角速度ωw_x_sを算出する。同様に、処理部86a_yは、仮想車輪62_yのY軸方向の移動速度をVb_y_sに一致させたと仮定した場合の該仮想車輪62_yの回転角速度ωw_y_s(=Vb_y_s/Rw_y)を算出する。
次いで、リミット処理部86は、ωw_x_s,ωw_y_sの組を、XY−RL変換部86bにより、電動モータ31Rの回転角速度ω_R_sと電動モータ31Lの回転角速度ω_L_sとの組に変換する。
この変換は、本実施形態では、前記式01a,01bのωw_x,ωw_y,ω_R,ω_Lをそれぞれ、ωw_x_s,ωw_y_s,ω_R_s,ω_L_sに置き換えて得られる連立方程式を、ω_R_s,ω_L_sを未知数として解くことにより行なわれる。
次いで、リミット処理部86は、XY−RL変換部86bの出力値ω_R_s,ω_L_sをそれぞれ、リミッタ86c_R,86c_Lに入力する。このとき、リミッタ86c_Rは、ω_R_sが、あらかじめ設定された所定値の上限値(>0)と下限値(<0)とを有する右モータ用許容範囲内に収まっている場合には、ω_R_sをそのまま出力値ω_R_lim1として出力する。また、リミッタ86c_Rは、ω_R_sが、右モータ用許容範囲から逸脱している場合には、該右モータ用許容範囲の上限値と下限値とのうちのω_R_sに近い方の境界値を出力値ω_R_lim1として出力する。これにより、リミッタ86c_Rの出力値ω_R_lim1は、右モータ用許容範囲内の値に制限される。
同様に、リミッタ86c_Lは、ω_L_sが、あらかじめ設定された所定値の上限値(>0)と下限値(<0)とを有する左モータ用許容範囲内に収まっている場合には、ω_L_sをそのまま出力値ω_L_lim1として出力する。また、リミッタ86c_Lは、ω_L_sが、左モータ用許容範囲から逸脱している場合には、該左モータ用許容範囲の上限値と下限値とのうちのω_L_sに近い方の境界値を出力値ω_L_lim1として出力する。これにより、リミッタ86c_Lの出力値ω_L_lim1は、左モータ用許容範囲内の値に制限される。
上記右モータ用許容範囲は右側の電動モータ31Rの回転角速度(絶対値)が高くなり過ぎないようにし、ひいては、電動モータ31Rが出力可能なトルクの最大値が低下するのを防止するために設定された許容範囲である。このことは、左モータ用許容範囲についても同様である。
次いで、リミット処理部86は、リミッタ86c_R,86c_Lのそれぞれの出力値ω_R_lim1,ω_L_lim1の組を、RL−XY変換部86dにより、仮想車輪62_x,62_yのそれぞれの回転角速度ωw_x_lim1,ωw_y_lim1の組に変換する。
この変換は、前記XY−RL変換部86bの変換処理の逆変換の処理である。この処理は、前記式01a,01bのωw_x,ωw_y,ω_R,ω_Lをそれぞれ、ωw_x_lim1,ωw_y_lim1,ω_R_lim1,ω_L_lim1に置き換えて得られる連立方程式を、ωw_x_lim1,ωw_y_lim1を未知数として解くことにより行なわれる。
次いで、リミット処理部86は、RL−XY変換部86dの出力値ωw_x_lim1,ωw_y_lim1をそれぞれ処理部86e_x,86e_yに入力する。処理部86e_xは、ωw_x_lim1に仮想車輪62_xの半径Rw_xを乗じることによって、ωw_x_lim1を仮想車輪62_xの移動速度Vw_x_lim1に変換する。同様に、処理部86e_yは、ωw_y_lim1を仮想車輪62_yの移動速度Vw_y_lim1(=ωw_y_lim1・Rw_y)に変換する。
以上のリミット処理部86の処理によって、仮想車輪62_xのX軸方向の移動速度Vw_xと、仮想車輪62_yのY軸方向の移動速度Vw_yとをそれぞれ重心速度推定値Vb_x_s,Vb_y_sに一致させたと仮定した場合(換言すれば、主輪20のX軸方向の移動速度とY軸方向の移動速度とをそれぞれ、Vb_x_s,Vb_y_sに一致させたと仮定した場合)に、それらの移動速度を実現するために必要な電動モータ31R,31Lのそれぞれの回転角速度ω_R_s,ω_L_sが、両方とも、許容範囲内に収まっている場合には、Vb_x_s,Vb_y_sにそれぞれ一致する出力値Vw_x_lim1,Vw_y_lim1の組がリミット処理部86から出力される。
一方、電動モータ31R,31Lのそれぞれの回転角速度ω_R_s,ω_L_sの両方又は一方が許容範囲から逸脱している場合には、その両方又は一方の回転角速度が強制的に許容範囲内に制限された上で、その制限後の電動モータ31R,31Lのそれぞれの回転角速度ω_R_lim1,ω_L_lim1の組に対応する、X軸方向及びY軸方向の移動速度Vw_x_lim1,Vw_y_lim1の組がリミット処理部86から出力される。
従って、リミット処理部86は、その出力値Vw_x_lim1,Vw_y_lim1の組に対応する電動モータ31R,31Lのそれぞれの回転角速度が許容範囲を逸脱しないことを必須の必要条件として、その必要条件下で可能な限り、出力値Vw_x_lim1,Vw_y_lim1をそれぞれVb_x_s,Vb_y_sに一致させるように、出力値Vw_x_lim1,Vw_y_lim1の組を生成する。
図10の説明に戻って、ゲイン調整部78は、次に、演算部88_x,88_yの処理を実行する。演算部88_xには、X軸方向の重心速度推定値Vb_x_sと、リミット処理部86の出力値Vw_x_lim1とが入力される。そして、演算部88_xは、Vw_x_lim1からVb_x_sを減算してなる値Vover_xを算出して出力する。また、演算部88_yには、Y軸方向の重心速度推定値Vb_y_sと、リミット処理部86の出力値Vw_y_lim1とが入力される。そして、演算部88_yは、Vw_y_lim1からVb_y_sを減算してなる値Vover_yを算出して出力する。
この場合、リミット処理部86での出力値Vw_x_lim1,Vw_y_lim1の強制的な制限が行なわれなかった場合には、Vw_x_lim1=Vb_x_s、Vw_y_lim1=Vb_y_sとなるので、演算部88_x,88_yのそれぞれの出力値Vover_x,Vover_yはいずれも“0”となる。
一方、リミット処理部86の出力値Vw_x_lim1,Vw_y_lim1が、入力値Vb_x_s,Vb_y_sに対して強制的な制限を施して生成された場合には、Vw_x_lim1のVb_x_sからの修正量(=Vw_x_lim1−Vb_x_s)と、Vw_y_lim1のVb_y_sからの修正量(=Vw_y_lim1−Vb_y_s)とがそれぞれ、演算部88_x,88_yから出力される。
次いで、ゲイン調整部78は、演算部88_xの出力値Vover_xを処理部90_x,92_xに順番に通すことによって、ゲイン調整パラメータKr_xを決定する。また、ゲイン調整部78は、演算部88_yの出力値Vover_yを処理部90_y,92_yに順番に通すことによって、ゲイン調整パラメータKr_yを決定する。なお、ゲイン調整パラメータKr_x,Kr_yは、いずれも“0”から“1”までの範囲内の値である。
上記処理部90_xは、入力されるVover_xの絶対値を算出して出力する。また、処理部92_xは、その出力値Kr_xが入力値|Vover_x|に対して単調に増加し、且つ、飽和特性を有するようにKr_xを生成する。該飽和特性は、入力値がある程度大きくなると、入力値の増加に対する出力値の変化量が“0”になるか、もしくは、“0”に近づく特性である。
この場合、本実施形態では、処理部92_xは、入力値|Vover_x|があらかじめ設定された所定値以下である場合には、該入力値|Vover_x|に所定値の比例係数を乗じてなる値をKr_xとして出力する。また、処理部92_xは、入力値|Vover_x|が所定値よりも大きい場合には、“1”をKr_xとして出力する。なお、上記比例係数は、|Vover_x|が所定値に一致するときに、|Vover_x|と比例係数との積が“1”になるように設定されている。
また、処理部90_y,92_yの処理は、それぞれ上記した処理部90_x,92_xの処理と同様である。
以上説明したゲイン調整部78の処理によって、リミット処理部86での出力値Vw_x_lim1,Vw_y_lim1の強制的な制限が行なわれなかった場合、すなわち、主輪20のX軸方向及びY軸方向のそれぞれの移動速度Vw_x,Vw_yを、それぞれ、重心速度推定値Vb_x_s,Vb_y_sに一致させるように電動モータ31R,31Lを動作させても、電動モータ31R,31Lのそれぞれの回転角速度が許容範囲内に収まるような場合には、ゲイン調整パラメータKr_x,Kr_yはいずれも“0”に決定される。
一方、リミット処理部86の出力値Vw_x_lim1,Vw_y_lim1が、入力値Vb_x_s,Vb_y_sに対して強制的な制限を施して生成された場合、すなわち、主輪20のX軸方向及びY軸方向のそれぞれの移動速度Vw_x,Vw_yを、それぞれ、重心速度推定値Vb_x_s,Vb_y_sに一致させるように電動モータ31R,31Lを動作させると、電動モータ31R,31Lのいずれかの回転角速度が許容範囲を逸脱してしまう場合(いずれかの回転角速度の絶対値が高くなり過ぎる場合)には、前記修正量Vover_x,Vover_yのそれぞれの絶対値に応じて、ゲイン調整パラメータKr_x,Kr_yの値がそれぞれ決定される。この場合、Kr_xは、“1”を上限値して、修正量Vx_overの絶対値が大きいほど、大きな値になるように決定される。このことは、Kr_yについても同様である。
図9の説明に戻って、制御ユニット50は、重心速度算出部72及び要求重心速度生成部74の処理を前記した如く実行した後、次に、重心速度制限部76の処理を実行する。
この重心速度制限部76には、重心速度算出部72で算出された重心速度推定値Vb_xy_s(Vb_x_s及びVb_y_s)と、要求重心速度生成部74で決定された要求重心速度V_xy_aim(V_x_aim及びV_y_aim)とが入力される。そして、重心速度制限部76は、これらの入力値を使用して、図12のブロック図で示す処理を実行することによって、制御用目標重心速度V_xy_mdfd(V_x_mdfd及びV_y_mdfd)を決定する。
具体的には、重心速度制限部76は、まず、定常偏差算出部94_x,94_yの処理を実行する。
この場合、定常偏差算出部94_xには、X軸方向の重心速度推定値Vb_x_sが入力されると共に、X軸方向の制御用目標重心速度Vb_x_mdfdの前回値Vb_x_mdfd_pが遅延要素96_xを介して入力される。そして、定常偏差算出部94_xは、まず、入力されるVb_x_sが比例・微分補償要素(PD補償要素)94a_xに入力する。この比例・微分補償要素94_xは、その伝達関数が1+Kd・Sにより表される補償要素であり、入力されるVb_x_sと、その微分値(時間的変化率)に所定値の係数Kdを乗じてなる値とを加算し、その加算結果の値を出力する。
次いで、定常偏差算出部94_xは、入力されるVb_x_mdfd_pを、比例・微分補償要素94_xの出力値から減算してなる値を演算部94b_xにより算出した後、この演算部94b_xの出力値を、位相補償機能を有するローパスフィルタ94c_xに入力する。このローパスフィルタ94c_xは、伝達関数が(1+T2・S)/(1+T1・S)により表されるフィルタである。そして、定常偏差算出部94_xは、このローパスフィルタ94c_xの出力値Vb_x_prdを出力する。
また、定常偏差算出部94_yには、Y軸方向の重心速度推定値Vb_y_sが入力されると共に、Y軸方向の制御用目標重心速度Vb_y_mdfdの前回値Vb_y_mdfd_pが遅延要素96_yを介して入力される。
そして、定常偏差算出部94_yは、上記した定常偏差算出部94_xと同様に、比例・微分補償要素94a_y、演算部94b_y及びローパスフィルタ94c_yの処理を順次実行し、ローパスフィルタ94c_yの出力値Vb_y_prdを出力する。
ここで、定常偏差算出部94_xの出力値Vb_x_prdは、Y軸方向から見た車両系重心点の現在の運動状態(換言すればY軸方向から見た倒立振子モデルの質点60_xの運動状態)から推測される、将来のX軸方向の重心速度推定値の収束予測値の制御用目標重心速度Vb_x_mdfdに対する定常偏差としての意味を持つものである。同様に、定常偏差算出部94_y出力値Vb_y_prdは、X軸方向から見た車両系重心点の現在の運動状態(換言すればX軸方向から見た倒立振子モデルの質点60_yの運動状態)から推測される、将来のY軸方向の重心速度推定値の収束予測値の制御用目標重心速度Vb_y_mdfdに対する定常偏差としての意味を持つものである。以降、定常偏差算出部94_x,94_yのそれぞれの出力値Vb_x_prd,Vb_y_prdを重心速度定常偏差予測値という。
重心速度制限部76は、上記の如く定常偏差算出部94_x,94_yの処理を実行した後、定常偏差算出部94_xの出力値Vb_x_prdに要求重心速度Vb_x_aimを加算する処理と、定常偏差算出部94_yの出力値Vb_y_prdに要求重心速度Vb_y_aimを加算する処理とをそれぞれ、演算部98_x,98_yにより実行する。
従って、演算部98_xの出力値Vb_x_tは、X軸方向の重心速度定常偏差予測値Vb_x_prdに、X軸方向の要求重心速度Vb_x_aimを付加した速度となる。同様に、演算部98_yの出力値Vb_y_tは、Y軸方向の重心速度定常偏差予測値Vb_y_prdに、Y軸方向の要求重心速度Vb_y_aimを付加した速度となる。
なお、車両1の動作モードが自立モードである場合等、X軸方向の要求重心速度Vb_x_aimが“0”である場合には、X軸方向の重心速度定常偏差予測値Vb_x_prdがそのまま、演算部98_xの出力値Vb_x_tとなる。同様に、Y軸方向の要求重心速度Vb_y_aimが“0”である場合には、Y軸方向の重心速度定常偏差予測値Vb_y_prdがそのまま、演算部98_yの出力値Vb_y_tとなる。
次いで、重心速度制限部76は、演算部98_x,98_yのそれぞれの出力値Vb_x_t,Vb_y_tを、リミット処理部100に入力する。このリミット処理部100の処理は、前記したゲイン調整部78のリミット処理部86の処理と同じである。この場合、図11に括弧付きに参照符号で示す如く、リミット処理部100の各処理部の入力値及び出力値だけがリミット処理部86と相違する。
具体的には、リミット処理部100では、前記仮想車輪62_x,62_yのそれぞれの移動速度Vw_x,Vw_yを、Vb_x_t,Vb_y_tにそれぞれ一致させたと仮定した場合の各仮想車輪62_x,62_yの回転角速度ωw_x_t,ωw_y_tがそれぞれ処理部86a_x,86a_yにより算出される。そして、この回転角速度ωw_x_t,ωw_y_tの組が、XY−RL変換部86bにより、電動モータ31R,31Lの回転角速度ω_R_t,ω_L_tの組に変換される。
さらに、これらの回転角速度ω_R_t,ω_L_tが、リミッタ86c_R,86c_Lによって、それぞれ、右モータ用許容範囲内の値と左モータ用許容範囲内の値とに制限される。そして、この制限処理後の値ω_R_lim2,ω_L_lim2が、RL−XY変換部86dによって、仮想車輪62_x,62_yの回転角速度ωw_x_lim2,ωw_y_lim2に変換される。
次いで、この各回転角速度ωw_x_lim2,ωw_y_lim2に対応する各仮想車輪62_x,62_yの移動速度Vw_x_lim2,Vw_y_lim2がそれぞれ処理部86e_x,86e_yによって算出され、これらの移動速度Vw_x_lim2,Vw_y_lim2がリミット処理部100から出力される。
以上のリミット処理部100の処理によって、リミット処理部100は、リミット処理部86と同様に、その出力値Vw_x_lim2,Vw_y_lim2の組に対応する電動モータ31R,31Lのそれぞれの回転角速度が許容範囲を逸脱しないことを必須の必要条件として、その必要条件下で可能な限り、出力値Vw_x_lim2,Vw_y_lim2をそれぞれVb_x_t,Vb_y_tに一致させるように、出力値Vw_x_lim2,Vw_y_lim2の組を生成する。
なお、リミット処理部100における右モータ用及び左モータ用の各許容範囲は、リミット処理部86における各許容範囲と同一である必要はなく、互いに異なる許容範囲に設定されていてもよい。
図12の説明に戻って、重心速度制限部76は、次に、演算部102_x,102_yの処理を実行することによって、それぞれ制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdを算出する。この場合、演算部102_xは、リミット処理部100の出力値Vw_x_lim2から、X軸方向の重心速度定常偏差予測値Vb_x_prdを減算してなる値をX軸方向の制御用目標重心速度Vb_x_mdfdとして算出する。同様に、演算部102_yは、リミット処理部100の出力値Vw_y_lim2から、Y軸方向の重心速度定常偏差予測値Vb_y_prdを減算してなる値をY軸方向の制御用目標重心速度Vb_y_mdfdとして算出する。
以上のようにして決定される制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdは、リミット処理部100での出力値V_x_lim2,V_y_lim2の強制的な制限が行なわれなかった場合、すなわち、主輪20のX軸方向及びY軸方向のそれぞれの移動速度を、それぞれ、演算部98_xの出力値Vb_x_tと演算部98_yの出力値Vb_y_tとに一致させるように電動モータ31R,31Lを動作させても、電動モータ31R,31Lのそれぞれの回転角速度が許容範囲内に収まるような場合には、要求重心速度Vb_x_aim,Vb_y_aimがそれぞれ、そのまま、制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdとして決定される。
なお、この場合、X軸方向の要求重心速度Vb_x_aimが“0”であれば、X軸方向の制御用目標重心速度Vb_x_mdfdも“0”となり、Y軸方向の要求重心速度Vb_y_aimが“0”であれば、Y軸方向の制御用目標重心速度Vb_y_mdfdも“0”となる。
一方、リミット処理部100の出力値Vw_x_lim2,Vw_y_lim2が、入力値Vb_x_t,Vb_y_tに対して強制的な制限を施して生成された場合、すなわち、主輪20のX軸方向及びY軸方向のそれぞれの移動速度を、それぞれ、演算部98_xの出力値Vb_x_tと演算部98_yの出力値Vb_y_tとに一致させるように電動モータ31R,31Lを動作させると、電動モータ31R,31Lのいずれかの回転角速度が許容範囲を逸脱してしまう場合(いずれかの回転角速度の絶対値が高くなり過ぎる場合)には、X軸方向については、リミット処理部100の出力値Vw_x_lim2の入力値Vb_x_tからの修正量(=Vw_x_lim2−Vb_x_t)だけ、要求重心速度Vb_x_aimを補正してなる値(当該修正量をVb_x_aimに加算した値)が、X軸方向の制御用目標重心速度Vb_x_mdfdとして決定される。
また、Y軸方向については、リミット処理部100の出力値Vw_y_lim2の入力値Vb_y_tからの修正量(=Vw_y_lim2−Vb_y_t)だけ、要求重心速度Vb_y_aimを補正してなる値(当該修正量をVb_y_aimに加算した値)が、Y軸方向の制御用目標重心速度Vb_y_mdfdとして決定される。
この場合において、例えばX軸方向の速度に関し、要求重心速度Vb_x_aimが“0”でない場合には、制御用目標重心速度Vb_x_mdfdは、要求重心速度Vb_x_aimよりも“0”に近づくか、もしくは、要求重心速度Vb_x_aimと逆向きの速度となる。また、要求重心速度Vb_x_aimが“0”である場合には、制御用目標重心速度Vb_x_mdfdは、定常偏差算出部94_xが出力するX軸方向の重心速度定常偏差予測値Vb_x_prdと逆向きの速度となる。これらのことは、Y軸方向の速度に関しても同様である。
以上が、重心速度制限部76の処理である。
図9の説明に戻って、制御ユニット50は、以上の如く揺動指数算出部110、重心速度算出部72、重心速度制限部76、ゲイン調整部78、及び偏差演算部70の処理を実行した後、次に、姿勢制御演算部80の処理を実行する。
この姿勢制御演算部80の処理を、以下に図13を参照して説明する。なお、図13において、括弧を付していない参照符号は、X軸方向に輪転する仮想車輪62_xの回転角速度の目標値である前記仮想車輪回転角速度指令ωw_x_comを決定する処理に係わる参照符号であり、括弧付きの参照符合は、Y軸方向に輪転する仮想車輪62_yの回転角速度の目標値である前記仮想車輪回転角速度指令ωw_y_comを決定する処理に係わる参照符号である。
姿勢制御演算部80には、偏差演算部70で算出された基体傾斜角度偏差計測値θbe_xy_sと、前記ステップS2で算出された基体傾斜角速度計測値θbdot_xy_sと、重心速度算出部72で算出された重心速度推定値Vb_xy_sと、重心速度制限部76で算出された目標重心速度Vb_xy_cmdと、ゲイン調整部78で算出されたゲイン調整パラメータKr_xyと、揺動指数算出部110で算出された揺動指数Eとが入力される。
そして、姿勢制御演算部80は、まず、これらの入力値を用いて、次式07x,07yにより、仮想車輪回転角加速度指令ωdotw_xy_comを算出する。
ωwdot_x_cmd=K1_x・θbe_x_s・E1_x+K2_x・θbdot_x_s・E2_x
+K3_x・(Vb_x_s−Vb_x_mdfd) ……式07x
ωwdot_y_cmd=K1_y・θbe_y_s・E1_y+K2_y・θbdot_y_s・E2_y
+K3_y・(Vb_y_s−Vb_y_mdfd) ……式07y
従って、本実施形態では、Y軸方向から見た倒立振子モデルの質点60_xの運動(ひいては、Y軸方向から見た車両系重心点の運動)を制御するための操作量(制御入力)としての仮想車輪回転角加速度指令ωdotw_x_comと、X軸方向から見た倒立振子モデルの質点60_yの運動(ひいては、X軸方向から見た車両系重心点の運動)を制御するための操作量(制御入力)としての仮想車輪回転角加速度指令ωdotw_y_comとは、それぞれ、3つの操作量成分(式07x,07yの右辺の3つの項)を加え合わせることによって決定される。
この場合、式07xにおける各操作量成分に係わるゲイン係数K1_x,K2_x,K3_xは、ゲイン調整パラメータKr_xに応じて可変的に設定され、式07yにおける各操作量成分に係わるゲイン係数K1_y,K2_y,K3_yは、ゲイン調整パラメータKr_yに応じて可変的に設定される。以降、式07xにおけるゲイン係数K1_x,K2_x,K3_xのそれぞれを第1ゲイン係数K1_x、第2ゲイン係数K2_x、第3ゲイン係数K3_xということがある。このことは、式07yにおけるゲイン係数K1_y,K2_y,K3_yについても同様とする。
式07xにおける第iゲイン係数Ki_x(i=1,2,3)と、式07yにおける第iゲイン係数Ki_y(i=1,2,3)とは、図13中にただし書きで示した如く、次式09x、09yにより、ゲイン調整パラメータKr_x,Kr_yに応じて決定される。
Ki_x=(1−Kr_x)・Ki_a_x+Kr_x・Ki_b_x ……式09x
Ki_y=(1−Kr_y)・Ki_a_y+Kr_y・Ki_b_y ……式09y
(i=1,2,3)
ここで、式09xにおけるKi_a_x、Ki_b_xは、それぞれ、第iゲイン係数Ki_xの最小側(“0”に近い側)のゲイン係数値、最大側(“0”から離れる側)のゲイン係数値としてあらかじめ設定された定数値である。このことは、式09yにおけるKi_a_y、Ki_b_yについても同様である。
従って、式07xの演算に用いる各第iゲイン係数Ki_x(i=1,2,3)は、それぞれに対応する定数値Ki_a_x、Ki_b_xの重み付き平均値として決定される。そして、この場合、Ki_a_x、Ki_b_xにそれぞれ掛かる重みが、ゲイン調整パラメータKr_xに応じて変化させられる。このため、Kr_x=0である場合には、Ki_x=Ki_a_xとなり、Kr_x=1である場合には、Ki_x=Ki_b_xとなる。そして、Kr_xが“0”から“1”に近づくに伴い、第iゲイン係数Ki_xはKi_a_xからKi_b_x近づいていく。
同様に、式07yの演算に用いる各第iゲイン係数Ki_y(i=1,2,3)は、それぞれに対応する定数値Ki_a_y、Ki_b_yの重み付き平均値として決定される。そして、この場合、Ki_a_y、Ki_b_yにそれぞれ掛かる重みが、ゲイン調整パラメータKr_yに応じて変化させられる。このため、Ki_xの場合と同様に、Kr_yの値が“0”から“1”の間で変化するに伴い、第iゲイン係数Ki_yの値が、Ki_a_yとKi_b_yとの間で変化する。
また、式07yにおける各操作量成分に係わる揺動係数E1_y,E2_yは、揺動指数Eに応じて可変的に設定される。以降、式07yにおける揺動係数E1_y,E2_yのそれぞれを第1揺動係数E1_y、第2揺動係数E2_yということがある。なお、上述したように本実施形態における車両1では左右方向への揺動に基づいて揺動指数Eが決定されるため、前後方向の揺動係数E1_x及びE2_xの値は揺動指数Eの変化にかかわらず常に“1”に設定される。
式07yにおける第j揺動係数Ej_y(j=1,2)は、次式19により、揺動指数Eに応じて決定される。
Ej_y=(1−E)・Ej_a_y+E・Ej_b_y ……式19
(j=1,2)
ここで、式19におけるEj_a_y、Ej_b_yは、それぞれ、第j揺動係数Ej_yの最小側(“0”に近い側)の揺動係数値、最大側(“0”から離れる側)の揺動係数値としてあらかじめ設定された定数値である。
従って、式19の演算に用いる各第j揺動係数Ej_y(j=1,2)は、それぞれに対応する定数値Ej_a_y、Ej_b_yの重み付き平均値として決定される。そして、この場合、Ej_a_y、Ej_b_yにそれぞれ掛かる重みが、揺動指数Eに応じて変化させられる。このため、揺動指数E=0である場合には、Ej_y=Ej_a_yとなり、揺動指数E=1である場合には、Ej_y=Ej_b_yとなる。そして、揺動指数Eが“0”から“1”に近づくに伴い、第j揺動係数Ej_yはEj_a_yからEj_b_y近づいていく。
補足すると、上記定数値Ki_a_x、Ki_b_x及びKi_a_y,Ki_b_y(i=1,2,3)と、Ej_a_y,Ej_b_y(j=1,2)とは、前記ステップS6又は8において値が設定される定数パラメータに含まれるものである。
姿勢制御演算部80は、上記の如く決定した第1〜第3ゲイン係数K1_x,K2_x,K3_xを用いて前記式07xの演算を行なうことで、X軸方向に輪転する仮想車輪62_xに係わる仮想車輪回転角加速度指令ωwdot_x_cmdを算出する。
さらに詳細には、図13を参照して、姿勢制御演算部80は、基体傾斜角度偏差計測値θbe_x_sに第1ゲイン係数K1_xを乗じてなる操作量成分u1_xと、基体傾斜角速度計測値θbdot_x_sに第2ゲイン係数K2_xを乗じてなる操作量成分u2_xとをそれぞれ、処理部80a,80bで算出する。さらに、姿勢制御演算部80は、重心速度推定値Vb_x_sと制御用目標重心速度Vb_x_mdfdとの偏差(=Vb_x_s−Vb_x_mdfd)を演算部80dで算出し、この偏差に第3ゲイン係数K3_xを乗じてなる操作量成u3_xを処理部80cで算出する。そして、姿勢制御演算部80は、これらの操作量成分u1_x,u2_x,u3_xを演算部80eにて加え合わせることにより、仮想車輪回転角加速度指令ωwdot_x_comを算出する。
同様に、姿勢制御演算部80は、上記の如く決定した第1〜第3ゲイン係数K1_y,K2_y,K3_y及び第1〜第2揺動係数E1_y,E2_yを用いて前記式07yの演算を行なうことで、Y軸方向に輪転する仮想車輪62_yに係わる仮想車輪回転角加速度指令ωwdot_y_cmdを算出する。
この場合には、姿勢制御演算部80は、基体傾斜角度偏差計測値θbe_y_sに第1ゲイン係数K1_yを乗じてなる操作量成分u1_yと、基体傾斜角速度計測値θbdot_y_sに第2ゲイン係数K2_yを乗じてなる操作量成分u2_yとをそれぞれ、処理部80a,80bで算出する。さらに、姿勢制御演算部80は、重心速度推定値Vb_y_sと制御用目標重心速度Vb_y_mdfdとの偏差(=Vb_y_s−Vb_y_mdfd)を演算部80dで算出し、この偏差に第3ゲイン係数K3_yを乗じてなる操作量成u3_yを処理部80cで算出する。さらに、姿勢制御演算部80は、操作量成分u1_yに第1揺動係数E1_yを乗じてなる操作量成分u’1_yと、操作量成分u2_yに第2揺動係数E2_yを乗じてなる操作量成分u’2_yとをそれぞれ、処理部80g,80hで算出する。そして、姿勢制御演算部80は、これらの操作量成分u’1_y,u’2_y,u3_yを演算部80eにて加え合わせることにより、仮想車輪回転角加速度指令ωwdot_y_comを算出する。
ここで、式07xの右辺の第1項(=第1操作量成分u1_x)及び第2項(=第2操作量成分u2_x)は、Y軸周り方向での基体傾斜角度偏差計測値θbe_x_sを、フィードバック制御則としてのPD則(比例・微分則)により“0”に収束させる(基体傾斜角度計測値θb_x_sを目標値θb_x_objに収束させる)ためのフィードバック操作量成分としての意味を持つ。
また、式07xの右辺の第3項(=第3操作量成分u3_x)は、重心速度推定値Vb_x_sと目標重心速度Vb_x_mdfdとの偏差をフィードバック制御則としての比例則により“0”に収束させる(Vb_x_sをVb_x_mdfdに収束させる)ためのフィードバック操作量成分としての意味を持つ。
これらのことは、式07yの右辺の第1〜第3項(第1〜第3操作量成分u’1_y,u’2_y,u3_y)についても同様である。
姿勢制御演算部80は、上記の如く、仮想車輪回転角加速度指令ωwdot_x_com,ωwdot_y_comを算出した後、次に、これらのωwdot_x_com,ωwdot_y_comをそれぞれ積分器80fにより積分することによって、前記仮想車輪回転速度指令ωw_x_com,ωw_y_comを決定する。
以上が姿勢制御演算部80の処理の詳細である。
補足すると、式07xの右辺の第3項を、Vb_x_sに応じた操作量成分(=K3_x・Vb_x_s)と、Vb_x_mdfdに応じた操作量成分(=−K3_x・Vb_x_mdfd)とに分離した式によって、仮想車輪回転角加速度指令ωdotw_x_comを算出するようにしてよい。同様に、式07yの右辺の第3項を、Vb_y_sに応じた操作量成分(=K3_y・Vb_y_s)と、Vb_y_mdfdに応じた操作量成分(=−K3_y・Vb_y_mdfd)とに分離した式によって、仮想車輪回転角加速度指令ωdotw_y_comを算出するようにしてよい。
また、本実施形態では、車両系重心点の挙動を制御するための操作量(制御入力)として、仮想車輪62_x,62_yの回転角加速度指令ωw_x_cmd,ωw_y_cmdを用いるようにしたが、例えば、仮想車輪62_x,62_yの駆動トルク、あるいは、この駆動トルクに各仮想車輪62_x,62_yの半径Rw_x,Rw_yを乗じてなる並進力(すなわち仮想車輪62_x,62_yと床面との間の摩擦力)を操作量として用いるようにしてもよい。
図9の説明に戻って、制御ユニット50は、次に、姿勢制御演算部80で上記の如く決定した仮想車輪回転速度指令ωw_x_com,ωw_y_comをモータ指令演算部82に入力し、該モータ指令演算部82の処理を実行することによって、電動モータ31Rの速度指令ω_R_comと電動モータ31Lの速度指令ω_L_comとを決定する。このモータ指令演算部82の処理は、前記リミット処理部86(図11参照)のXY−RL変換部86bの処理と同じである。
具体的には、モータ指令演算部82は、前記式01a,01bのωw_x,ωw_y,ω_R,ω_Lをそれぞれ、ωw_x_com,ωw_y_com,ω_R_cmd,ω_L_cmdに置き換えて得られる連立方程式を、ω_R_cmd,ω_L_cmdを未知数として解くことによって、電動モータ31R,31Lのそれぞれの速度指令ω_R_com,ω_L_comを決定する。
以上により前記ステップS9の車両制御演算処理が完了する。
以上説明した如く制御ユニット50が制御演算処理を実行することによって、前記搭乗モード及び自立モードのいずれの動作モードにおいても、基本的には、座面部13の姿勢が、前記基体傾斜角度偏差計測値θbe_x_s,θbe_y_sの両方が“0”となる姿勢(以下、この姿勢を基本姿勢という)に保たれるように、換言すれば、車両系重心点(車両・乗員全体重心点又は車両単体重心点)の位置が、接地線のほぼ真上の所定箇所に位置する状態に保たれるように、操作量(制御入力)としての仮想車輪回転角加速度指令ωdotw_xy_comが決定される。より詳しく言えば、座面部13の姿勢を前記基本姿勢に保ちつつ、車両系重心点の移動速度の推定値としての重心速度推定値Vb_xy_sを制御用目標重心速度Vb_xy_mdfdに収束させるように、仮想車輪回転角加速度指令ωdotw_xy_comが決定される。なお、制御用目標重心速度Vb_xy_mdfdは、通常は(詳しくは搭乗モードで乗員等が車両1の付加的な推進力を付与しない限り)、“0”である。この場合には、座面部13の姿勢を前記基本姿勢に保ちつつ、車両系重心点がほぼ静止するように、仮想車輪回転角加速度指令ωdotw_xy_comが決定されることとなる。
そして、ωdotw_xy_comの各成分を積分してなる仮想車輪回転角速度指令ωw_xy_comを変換してなる電動モータ31R,31Lのそれぞれの回転角速度が、電動モータ31R,31Lの速度指令ω_R_cmd,ω_L_cmdとして決定される。さらに、その速度指令ω_R_cmd,ω_L_cmdに従って、各電動モータ31R,31Lの回転速度が制御される。ひいては主輪20のX軸方向及びY軸方向のそれぞれの移動速度が、ωw_x_comに対応する仮想車輪62_xの移動速度と、ωw_y_comに対応する仮想車輪62_yの移動速度とに各々一致するように制御される。
このため、例えば、Y軸周り方向で、実際の基体傾斜角度θb_xが目標値θb_x_objから前傾側にずれると、そのずれを解消すべく(θbe_x_sを“0”に収束させるべく)、主輪20が前方に向かって移動する。同様に、実際のθb_xが目標値θb_x_objから後傾側にずれると、そのずれを解消すべく(θbe_x_sを“0”に収束させるべく)、主輪20が後方に向かって移動する。
また、例えば、X軸周り方向で、実際の基体傾斜角度θb_yが目標値θb_y_objから右傾側にずれると、そのずれを解消すべく(θbe_y_sを“0”に収束させるべく)、主輪20が右向きに移動する。同様に、実際のθb_yが目標値θb_y_objから左傾側にずれると、そのずれを解消すべく(θbe_y_sを“0”に収束させるべく)、主輪20が左向きに移動する。このとき、ずれを解消すべく移動する主輪20の移動量は、車両1の乗員の習熟の程度に応じて制御される。具体的には、乗員の習熟の程度が低い場合には、車両1の揺動が大きくなるため揺動指数Eが大きくなり、これに応じて揺動係数が大きく設定され、結果として姿勢制御演算部80から出力される仮想車輪回転角速度指令ωw_y_cmdが大きくなる。一方、乗員の習熟の程度が高い場合には、車両1の揺動が小さくなるため揺動指数Eが小さくなり、これに応じて揺動係数が小さく設定され、結果として姿勢制御演算部80から出力される仮想車輪回転角速度指令ωw_y_cmdが小さくなる。
なお、二輪の車両1について説明したが、一輪の車両1について同様の制御を行っても良い。この場合、前後方向にも揺動するため、θb_x_s及びθbdot_x_sについてもθb_y_s及びθbdot_y_sと同様に処理することによって対応することができる。このように構成することにより、いわゆる一輪車への乗車の練習を行うことができる。
さらに、実際の基体傾斜角度θb_x,θb_yの両方が、それぞれ目標値θb_x_obj,θb_y_objからずれると、θb_xのずれを解消するための主輪20の前後方向の移動動作と、θb_yのずれを解消するための主輪20の左右方向の移動動作とが合成され、主輪20がX軸方向及びY軸方向の合成方向(X軸方向及びY軸方向の両方向に対して傾斜した方向)に移動することとなる。
このようにして、座面部13が前記基本姿勢から傾くと、その傾いた側に向かって、主輪20が移動することとなる。従って、例えば前記搭乗モードにおいて、乗員が意図的にその上体を傾けると、その傾けた側に、主輪20が移動することとなる。
なお、制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdが“0”である場合には、座面部13の姿勢が基本姿勢に収束すると、主輪20の移動もほぼ停止する。また、例えば、座面部13のY軸周り方向の傾斜角度θb_xを基本姿勢から傾いた一定の角度に維持すると、主輪20のX軸方向の移動速度は、その角度に対応する一定の移動速度(制御用目標重心速度Vb_x_mdfdと一定の定常偏差を有する移動速度)に収束する。このことは、座面部13のX軸周り方向の傾斜角度θb_yを基本姿勢から傾いた一定の角度に維持した場合も同様である。
また、例えば、前記要求重心速度生成部74で生成される要求重心速度Vb_x_aim,Vb_y_aimの両方が“0”となっている状況において、座面部13の前記基本姿勢からの傾き量(基体傾斜角度偏差計測値θbe_x_s,θbe_y_s)が比較的大きくなり、それを解消し、もしくはその傾き量を維持するために必要な主輪20のX軸方向及びY軸方向の一方又は両方の移動速度(これらの移動速度は、それぞれ、図12に示した前記重心速度定常偏差予測値Vb_x_prd、Vb_y_prdに相当する)が、電動モータ31R,31Lの一方又は両方の回転角速度を許容範囲から逸脱させてしまうような、過大な移動速度になるような状況では、該主輪20の移動速度に対して逆向きとなる速度(詳しくは、Vw_x_lim2−Vb_x_prd及びVw_y_lim2−Vb_y_prd)が制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdとして決定される。そして、制御入力を構成する操作量成分のうちの操作量成分u3_x,u3_yが、この制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdに重心速度推定値Vb_x_s,Vb_y_sをそれぞれ収束させるように決定される。このため、座面部13の前記基本姿勢からの傾き量が過大になるのを予防し、ひいては、電動モータ31R,31Lの一方又は両方の回転角速度が高速になり過ぎるのが防止される。
さらに、前記ゲイン調整部78では、重心速度推定値Vb_x_s,Vb_y_sの一方又は両方が大きくなり、ひいては、座面部13の前記基本姿勢からの傾きを解消し、もしくはその傾き量を維持するために必要な主輪20のX軸方向及びY軸方向の一方又は両方の移動速度が、電動モータ31R,31Lの一方又は両方の回転角速度を許容範囲から逸脱させてしまうような、過大な移動速度になる恐れがある状況では、その逸脱が顕著になるほど(詳しくは、図10に示すVover_x,Vover_yの絶対値が大きくなるほど)、前記ゲイン調整パラメータKr_x,Kr_yの一方又は両方が“0”から“1”に近づけられる。
この場合、前記式09xにより算出される各第iゲイン係数Ki_x(i=1,2,3)は、Kr_xが“1”に近づくほど、最小側の定数値Ki_a_xから最大側の定数値Ki_b_xに近づく。このことは、前記式09yにより算出される各第iゲイン係数Ki_y(i=1,2,3)についても同様である。
そして、上記ゲイン係数の絶対値が大きくなることによって、座面部13の傾きの変化に対する操作量(仮想車輪回転角加速度指令ωdotw_x_cmd,ωdotw_y_cmd)の感度が高まる。従って、座面部13の基本姿勢からの傾き量が大きくなろうとすると、それを素早く解消するように、主輪20の移動速度が制御されることとなる。従って、座面部13が基本姿勢から大きく傾くことが強めに抑制され、ひいては、主輪20のX軸方向及びY軸方向の一方又は両方の移動速度が、電動モータ31R,31Lの一方又は両方の回転角速度を許容範囲から逸脱させてしまうような、過大な移動速度になるのを防止することができる。
また、搭乗モードにおいて、要求重心速度生成部74が、乗員等の操縦操作による要求に応じて要求重心速度Vb_x_aim,Vb_y_aim(Vb_x_aim,Vb_y_aimの一方又は両方が“0”でない要求重心速度)を生成した場合には、電動モータ31R,31Lの一方又は両方の回転角速度が許容範囲を逸脱するような高速の回転角速度にならない限り(詳しくは図12に示すVw_x_lim2,Vw_y_lim2がVb_x_t,Vb_y_tにそれぞれ一致する限り)、要求重心速度Vb_x_aim,Vb_y_aimがそれぞれ前記制御用目標重心速度Vb_x_mdfd,Vb_y_mdfdとして決定される。このため、要求重心速度Vb_x_aim,Vb_y_aimを実現するように(実際の重心速度が要求重心速度Vb_x_aim,Vb_y_aimに近づくように)、主輪20の移動速度が制御される。
次に、説明を後回しにした、前記要求重心速度生成部74の処理の詳細を説明する。
要求重心速度生成部74は、本実施形態では、車両1の動作モードが自立モードである場合には、前記したように、要求重心速度Vb_x_aim,Vb_y_aimを“0”とする。
一方、要求重心速度生成部74は、車両1の動作モードが搭乗モードである場合には、乗員等による車両1の操縦操作(車両1に推進力を付加する操作)に応じて、該操作により要求されると推定される要求重心速度Vb_x_aim,Vb_y_aimを決定する。
ここで、例えば、車両1の乗員が、車両1の発進時等において、車両1の移動速度(車両系重心点の移動速度)を積極的に増速させようとする場合には、自身の足により床を蹴り、それにより車両1に移動速度を増速させる推進力(乗員の足平と床との摩擦力による推進力)を車両1に付加する。あるいは、例えば、車両1の乗員の要求に応じて、外部の補助者等が、車両1にその移動速度を増速させる推進力を付加する場合もある。
ここで、本実施形態と本発明との対応関係を補足しておく。
本実施形態では、車両1に搭乗する乗員の前後方向(X軸方向)、左右方向(Y軸方向)が、それぞれ、本発明における第1の方向、第2の方向に相当する。
そして、前記要求重心速度生成部74により、本発明における目標速度決定手段が実現される。この場合、本実施形態では、車両系重心点(より正確には車両・乗員全体重心点)が、本発明における車両の所定の代表点に相当し、この車両系重心点の速度ベクトル↑Vbの目標値である要求重心速度ベクトル↑Vb_aimが、本発明における目標速度ベクトルに相当する。なお、要求重心速度ベクトル↑Vb_aimは、例えばコントローラ6に対する乗員の操作に応じて検出される。また、要求重心速度ベクトル↑Vb_aimは、不図示のアクセルペダルやスロットルレバーに対する乗員の操作に応じて検出されても良い。
[第2実施形態]
次に、本発明の第2実施形態を図14を参照しつつ以下に説明する。なお、本実施形態は、制御ユニット50における揺動指数算出部110の処理のみが前記第1実施形態と相違するものである。このため、本実施形態の説明では、第1実施形態と同一の構成及び処理については説明を省略する。
本実施形態では、制御ユニット50は図14に示す如く構成される。この場合、図14の揺動指数算出部110以外の各構成は、第1実施形態で説明した各構成(図9の構成)と同じである。
本実施形態の揺動指数算出部110には、基体傾斜角度計測値θb_xy_s(θb_x_s及びθb_y_s)、基体傾斜角速度計測値θbdot_xy_s(θbdot_x_s及びθbdot_y_s)の今回値に加えてさらに、ヨーレートγrate、重心速度推定値Vb_x_sが入力される。そして、揺動指数算出部110は、これらの入力値から揺動指数Eを算出する。
具体的には、揺動指数算出部110は、次式21−1及び21−2により、揺動指数Eを算出する。
E=w1(θb_y_s−θb_y_aim)2+w2(θbdot_y_s)2
+w3(θb_y_s−θb_y_aim)θbdot_y_s……式21−1
θb_y_aim=tan-1(γrate・Vb_x_s/g)……式21−2
式21−2において、γrate・Vb_x_sは、車両1が旋回している場合の遠心力の大きさを表し、算出されるθb_y_aimの値は、上記遠心力に釣り合う内傾角を表す。図15に、遠心力と重力加速度と内傾角θb_y_aimとの関係を示す。なお、ヨーレートγrateの値は、車両1にヨーレートセンサが取り付けられることによって検出されても良いし、他の既存の装置によって検出されても良い。また、gの値は重力加速度である。
式21−1において、旋回に要する内傾角θb_y_aimと基体傾斜角度計測値θb_y_sとの偏差に基づいて揺動指数Eが算出されるため、旋回に要する内傾角θb_y_aimからのぶれの大きさが揺動の大きさとして評価され、このぶれの大きさに応じて揺動指数Eが大きく算出される。
また、式21−1によって算出された揺動指数Eの値に対し、時定数τで定義されるハイパスフィルタにより低周波数成分をカットしても良い。また、式21−1に用いられるθb_y_s,θbdot_y_sそれぞれの値に対し、予め上記のハイパスフィルタにより低周波成分をカットしてもよい。このように処理することによって、一定のθb_y_sで定常円の旋回運動をしている場合に、質点60_yが左右に揺動していないにもかかわらず揺動指数Eが不必要に大きくなってしまうことを抑止できる。
以上説明した以外の構成は、第1実施形態と同じである。
[第3実施形態]
次に、本発明の第3実施形態を図16を参照しつつ以下に説明する。なお、本実施形態は、制御ユニット50における揺動指数算出部110の処理のみが前記第1実施形態と相違するものである。このため、本実施形態の説明では、第1実施形態と同一の構成及び処理については説明を省略する。
本実施形態では、制御ユニット50は図16に示す如く構成される。この場合、図16の揺動指数算出部110以外の各構成は、第1実施形態で説明した各構成(図9の構成)と同じである。
本実施形態の揺動指数算出部110には、舵角δが入力される。そして、揺動指数算出部110は、これらの入力値から揺動指数Eを算出する。
具体的には、揺動指数算出部110は、次式23により、揺動指数Eを算出する。
E=δ2・τs/(1+τs)……式23
式23において、δの値は、舵角であっても良いし、舵角の角速度であっても良い。また、舵角δは、コントローラ6における操舵角センサによって検出されても良いし、車両1に取り付けられたヨーレートセンサの出力に基づいて算出されても良い。また、車両1に公知のハンドル装置が取り付けられ、このハンドル装置に操舵角センサが取り付けられ、この操舵角センサによって舵角δが検出されても良い。図17は、三輪車である電動車両1を前側から見た斜視図であり、ハンドル装置が取り付けられた具体例を示す図である。図示する例では、電動車両1は、2つの前輪1003と、1つの後輪1004を備えている。また、コントローラとして、ハンドル装置1005と、アクセル1006と、ブレーキ1007とを備えている。
式23において、舵角δの大きさが揺動の大きさとして評価され、舵角δの大きさに応じて揺動指数Eが大きく算出される。
以上説明した以外の構成は、第1実施形態と同じである。
次に、以上説明した実施形態に係わる変形態様に関していくつか説明しておく。
前記各実施形態では、車両系重心点(詳しくは車両・乗員全体重心点)を車両1の所定の代表点としたが、該代表点を例えば、主輪20の中心点や、ベース部14の所定の部位の点等に設定してもよい。
また、前記各実施形態では、前記自立モードにおいては、要求重心速度ベクトル↑Vb_aimを常に“0”に設定するようにしたが、乗員が搭乗していない車両1を必要に応じて作業者などが押して移動させるような場合には、搭乗モードの場合と同様の処理を実行することで、要求重心速度ベクトル↑Vb_aimを変化させるように↑Vb_aimを決定するようにしてもよい。
また、前記各実施形態では、図1及び図2に示した構造の車両1を例示したが、本発明における全方向移動車両1は、本実施形態で例示した車両に限られるものではない。
具体的には、本実施形態の車両1の移動動作部としての主輪20は一体構造のものであるが、例えば、前記特許文献2の図10に記載されているような構造のものであってもよい。すなわち、剛性を有する円環状の軸体に、複数のローラをその軸心が該軸体の接線方向に向くようにして回転自在に外挿し、これらの複数のローラを軸体に沿って円周方向に配列させることによって、主輪を構成してもよい。
さらに移動動作部は、例えば、特許文献1の図3に記載されているようなクローラ状の構造のものであってもよい。
あるいは、例えば、前記特許文献1の図5、特許文献2の図7、もしくは特許文献3の図1に記載されているように、移動動作部を球体により構成し、この球体を、アクチュエータ装置(例えば前記主輪20を有するアクチュエータ装置)によりX軸周り方向及びY軸周り方向に回転駆動するように車両を構成してもよい。
また、本実施形態では、乗員の搭乗部として座面部13を備えた車両1を例示したが、本発明における全方向移動車両は、例えば特許文献2の図8に見られるように、乗員が両足を載せるステップと、そのステップ上で起立した乗員が把持する部分とを基体に組付けた構造の車両であってもよい。
このように本発明は、前記特許文献1〜3等に見られる如き、各種の構造の全方向移動車両に適用することが可能である。
さらには、本発明における全方向移動車両は、床面上を全方向に駆動可能な移動動作部を3つ以上(例えば、前輪として1つ後輪として左右に2つ等)備えていてもよいし、移動動作部を1つだけ備えてもよい。具体的には、自転車、自動二輪車、四輪自動車として構成されても良い。なお、移動動作部を3つ以上備えた場合には、基体が傾動しないようにして、該基体の傾斜角度の制御を省略してもよい。