JP2011066244A - Semiconductor device for electrostatic protection - Google Patents

Semiconductor device for electrostatic protection Download PDF

Info

Publication number
JP2011066244A
JP2011066244A JP2009216243A JP2009216243A JP2011066244A JP 2011066244 A JP2011066244 A JP 2011066244A JP 2009216243 A JP2009216243 A JP 2009216243A JP 2009216243 A JP2009216243 A JP 2009216243A JP 2011066244 A JP2011066244 A JP 2011066244A
Authority
JP
Japan
Prior art keywords
terminal
conductivity type
bipolar transistor
region
electrostatic protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009216243A
Other languages
Japanese (ja)
Other versions
JP2011066244A5 (en
Inventor
Shinjiro Kato
伸二郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009216243A priority Critical patent/JP2011066244A/en
Publication of JP2011066244A publication Critical patent/JP2011066244A/en
Publication of JP2011066244A5 publication Critical patent/JP2011066244A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protection circuit that protects a semiconductor integrated circuit from the eddy current noise of an ESD and eddy current noise in a latch-up test and can enhance the degree of flexibility in the arrangement of wiring from a power terminal to a protective element, and to prevent a chip area from increasing. <P>SOLUTION: With a structure for setting a base ground current amplification factor of a bipolar transistor 12 to be protected from overcurrent noise in a latch-up test to 0.5 to 1.0, the overcurrent noise in the latch-up test entering from an I/O terminal 10 flows into a ground terminal 11 through the bipolar transistor 12, thus the wiring from the power terminal 9 to the base of the bipolar transistor 12 is made to be thin and the degree of flexibility in the wiring arrangement is enhanced. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高耐圧な半導体集積回路の静電気保護用半導体装置に関する。   The present invention relates to a semiconductor device for electrostatic protection of a high voltage semiconductor integrated circuit.

半導体集積回路は、外部端子から印加される過電流ノイズ(例えばESD (Electrostatic Discharge) シミュレータやラッチアップシミュレータの試験パルスのようなパルス電流)によって、内部回路が破壊するのを防ぐために、通常外部端子と内部回路の間に設けられた静電保護回路を有している。この静電保護回路は、例えばI/O端子に過電流ノイズが印加されたとき、内部回路を構成する素子の最大動作電圧よりも数ボルト程度高い電圧(以下、トリガー電圧と呼ぶ)で動作し、過電流ノイズを接地端子或いは、電源端子に流すように設計される。この目的を満たす最も簡単な方法としては、ダイオード(逆方向接続)、オフトランジスタ、サイリスタなどのように、ある電圧以下では電流を流さないが、ある印加電圧以上になると急激に電流が流れるような素子を静電保護素子としてI/O端子と接地端子の間に接続することによって実現できる。上記のような静電保護素子を備えた半導体集積回路のノイズに対する耐量は、ESDシミュレータ、CDM (Charged Device Model) シミュレータ、ラッチアップシミュレータなどのシミュレータを用いて評価される。   Semiconductor integrated circuits are usually connected to external terminals in order to prevent internal circuits from being destroyed by overcurrent noise applied from external terminals (for example, pulse currents such as ESD (Electrostatic Discharge) simulator and latch-up simulator test pulses). And an electrostatic protection circuit provided between the internal circuits. For example, when overcurrent noise is applied to the I / O terminal, this electrostatic protection circuit operates at a voltage (hereinafter referred to as a trigger voltage) that is several volts higher than the maximum operating voltage of the elements constituting the internal circuit. Designed to allow overcurrent noise to flow through the ground terminal or power supply terminal. The simplest way to meet this goal is to prevent current from flowing below a certain voltage, such as a diode (reverse connection), off-transistor, thyristor, etc. This can be realized by connecting the element as an electrostatic protection element between the I / O terminal and the ground terminal. The resistance to noise of the semiconductor integrated circuit including the electrostatic protection element as described above is evaluated using a simulator such as an ESD simulator, a CDM (Charged Device Model) simulator, and a latch-up simulator.

より高い耐圧の半導体集積回路を作製しようとする場合、過電流ノイズから保護するために用いられる静電保護素子は、より高いトリガー電圧で過電流ノイズを接地端子或いは電源端子へ流すことが出来なければならない。このような耐圧の高い内部回路を保護するための保護素子は、耐圧の低い内部回路を保護する保護素子よりも、ジュール熱による破壊に関してより厳しい条件に耐えることができなければならない。過電流ノイズのパルス幅に関しても、時間的に長いパルス幅の方が、ジュール熱による破壊に関して厳しい条件となる。特にラッチアップをシミュレートするために用いられる電流パルスのパルス幅は、数msオーダーと他のノイズに比べ時間が長いため、静電保護素子自身の破壊に関して特に注意が必要である。   When creating a semiconductor integrated circuit with higher withstand voltage, the electrostatic protection element used to protect against overcurrent noise must be able to pass overcurrent noise to the ground terminal or power supply terminal with a higher trigger voltage. I must. A protective element for protecting such an internal circuit with a high withstand voltage must be able to withstand more severe conditions regarding destruction due to Joule heat than a protective element for protecting an internal circuit with a low withstand voltage. Regarding the pulse width of overcurrent noise, a longer pulse width is a more severe condition with respect to destruction due to Joule heat. In particular, since the pulse width of the current pulse used for simulating latch-up is on the order of several ms, which is longer than other noises, special attention must be paid to the destruction of the electrostatic protection element itself.

ジュール熱によって静電保護素子自身が破壊しないようにするためには、電流が流れる断面の単位面積当たりの電流密度を下げて、発熱を抑制することが必要であるが、素子サイズの拡大につながるので、コストの観点から際限なく大きくすることは出来ない。また、過電流ノイズが印加される際の各端子の状態によっても、保護の方法が異なってくる。例えば、ESDの場合は、ノイズが印加される端子と接地端子以外の端子はオープンの状態でノイズが印加されるので、ノイズを逃がす端子は接地端子しか無いが、ラッチアップ試験の電流パルスの場合は、電源端子と接地端子をそれぞれ接続した状態で、残りの端子に過電流ノイズを印加するので、過電流ノイズを逃がせる端子は、電源端子と接地端子の2つになるといった具合である。   In order to prevent the electrostatic protection element itself from being destroyed by Joule heat, it is necessary to reduce the current density per unit area of the cross section through which the current flows to suppress heat generation, but this leads to an increase in the element size. Therefore, it cannot be increased without limit from the viewpoint of cost. Also, the protection method varies depending on the state of each terminal when overcurrent noise is applied. For example, in the case of ESD, since the noise is applied while the terminals to which noise is applied and the terminals other than the ground terminal are open, there is only a ground terminal to release the noise, but in the case of a current pulse in the latch-up test In the state where the power supply terminal and the ground terminal are connected to each other, overcurrent noise is applied to the remaining terminals, so that there are two terminals, the power supply terminal and the ground terminal, through which the overcurrent noise can be released.

特開平11−26695号公報Japanese Patent Laid-Open No. 11-26695

上記のように耐圧の高い内部回路を保護する場合、チップサイズを大きくせずに、上記ESDの過電流ノイズ及びラッチアップシミュレータの試験パルスのような数msオーダーのパルス幅の過電流ノイズから保護するためには、従来、図3或いは図4に示すような保護回路が考えられた。   When protecting internal circuits with high breakdown voltage as described above, protection from ESD overcurrent noise and overcurrent noise with a pulse width on the order of several ms, such as the test pulse of the latch-up simulator, without increasing the chip size. In order to achieve this, a protection circuit as shown in FIG. 3 or FIG. 4 has been conventionally considered.

第1の従来例(図3)は、I/O端子15と電源端子14の間にダイオード17と接続し、I/O端子15と接地端子16の間にダイオード18を接続した形の保護回路である。I/O端子15にESDのような過電流ノイズが印加される場合、電源端子14は接続しないので、I/O端子15と接地端子16の間に接続したダイオード18が降伏し、過電流ノイズを接地端子16に逃がすことになる。ラッチアップ試験の場合においては、電源端子14には電源が接続され最大動作電圧に電位が維持される。この状態でI/O端子15に過電流ノイズを印加すると、I/O端子15の電位が(電源端子14の電位+ダイオード17の拡散電位)以上の状態になったときに、過電流ノイズはI/O端子15と電源端子14の間に接続されたダイオード17を通り順方向で電源端子14に流すことになる。   The first conventional example (FIG. 3) is a protection circuit in which a diode 17 is connected between the I / O terminal 15 and the power supply terminal 14 and a diode 18 is connected between the I / O terminal 15 and the ground terminal 16. It is. When overcurrent noise such as ESD is applied to the I / O terminal 15, the power supply terminal 14 is not connected, so that the diode 18 connected between the I / O terminal 15 and the ground terminal 16 breaks down and overcurrent noise is generated. Is released to the ground terminal 16. In the case of the latch-up test, a power supply is connected to the power supply terminal 14 and the potential is maintained at the maximum operating voltage. When overcurrent noise is applied to the I / O terminal 15 in this state, when the potential of the I / O terminal 15 becomes equal to or higher than (the potential of the power supply terminal 14 + the diffusion potential of the diode 17), the overcurrent noise is generated. The current flows through the diode 17 connected between the I / O terminal 15 and the power supply terminal 14 in the forward direction to the power supply terminal 14.

第2の従来例(図4)は、I/O端子20と電源端子19の間にダイオード22、I/O端子20と接地端子21の間にオフMOS型電界効果トランジスタ23を接続した形になっている。第1の従来例(図3)と同様に、I/O端子20にESDのような過電流ノイズが印加される場合、オフMOS型電界効果トランジスタ23が動作して、I/O端子20から接地端子21に過電流ノイズを流す。ラッチアップ試験の場合においても、第1の従来例(図3)と同様に、過電流ノイズはI/O端子20と電源端子19の間に接続されたダイオード22を通り順方向で電源端子19に流すことになる。   In the second conventional example (FIG. 4), a diode 22 is connected between the I / O terminal 20 and the power supply terminal 19, and an off-MOS field effect transistor 23 is connected between the I / O terminal 20 and the ground terminal 21. It has become. Similar to the first conventional example (FIG. 3), when an overcurrent noise such as ESD is applied to the I / O terminal 20, the off-MOS type field effect transistor 23 operates and the I / O terminal 20 Overcurrent noise is passed through the ground terminal 21. Also in the case of the latch-up test, as in the first conventional example (FIG. 3), the overcurrent noise passes through the diode 22 connected between the I / O terminal 20 and the power supply terminal 19 in the forward direction. Will be shed.

上記のような構成にすれば、I/O端子15と接地端子16の間のダイオード18、或いはI/O端子20と接地端子21の間のオフMOS型電界効果トランジスタ23は、ESDのような十数nsオーダーの過電流ノイズだけを流すことが出来るような素子サイズにすれば良いので、素子サイズの縮小化が見込める。また、ラッチアップシミュレータの試験パルスのような数msオーダーのパルス幅をもつエネルギーの大きい過電流ノイズは、I/O端子15と電源端子14の間のダイオード17、或いはI/O端子20と電源端子19の間のダイオード22を通って順方向に過電流ノイズを流すことになるから、逆方向で過電流ノイズを流す場合よりも抵抗が低く、素子サイズを小さくすることができる。   With the configuration described above, the diode 18 between the I / O terminal 15 and the ground terminal 16 or the off-MOS field effect transistor 23 between the I / O terminal 20 and the ground terminal 21 can be an ESD type. The element size can be reduced so that only the overcurrent noise of the order of several tens of ns can flow, so that the element size can be reduced. Further, a large-energy overcurrent noise having a pulse width on the order of several ms, such as a test pulse of a latch-up simulator, is generated by the diode 17 between the I / O terminal 15 and the power supply terminal 14 or the I / O terminal 20 and the power supply. Since the overcurrent noise flows in the forward direction through the diode 22 between the terminals 19, the resistance is lower than that in the case of flowing the overcurrent noise in the reverse direction, and the element size can be reduced.

上記のような構成を採った場合の問題点として挙げられることは、過電流ノイズが流せるような太い配線を電源端子14からダイオード17、或いは電源端子19からダイオード22まで引かなければならず、配線配置の自由度が制限され、I/O端子の配置によっては、配線幅分のチップ面積の増加につながってしまう可能性があることである。   What is cited as a problem in the case of adopting the above configuration is that a thick wiring capable of flowing overcurrent noise must be drawn from the power supply terminal 14 to the diode 17 or from the power supply terminal 19 to the diode 22. The degree of freedom of arrangement is limited, and depending on the arrangement of the I / O terminals, there is a possibility of increasing the chip area corresponding to the wiring width.

本発明は、上記のような課題を鑑みたものである。耐圧の高い内部回路を保護する静電保護回路において、ESDの過電流ノイズ及びラッチアップ試験の過電流ノイズから内部回路を保護し、且つ配線によるチップ面積の増大を抑制するような、静電気保護用半導体装置を提供するのが目的である。   The present invention has been made in view of the above problems. In an electrostatic protection circuit that protects internal circuits with high withstand voltage, for protecting electrostatic circuits that protects internal circuits from ESD overcurrent noise and latch-up test overcurrent noise, and suppresses increase in chip area due to wiring An object is to provide a semiconductor device.

上記課題を解決するたに、本発明に係る静電気保護用半導体装置は、I/O端子と接地端子の間に接続されたESD保護素子と、電源端子をベース、I/O端子をエミッタ、接地端子をコレクタに接続されたバイポーラトランジスタを有する静電保護回路において、バイポーラトランジスタの構造をベース接地電流利得率α0が0.5〜1.0になるような構造にして、I/O端子から入ったESDの過電流ノイズ或いはラッチアップ試験の過電流ノイズを接地端子側に流すようにした。 In order to solve the above problems, an electrostatic protection semiconductor device according to the present invention includes an ESD protection element connected between an I / O terminal and a ground terminal, a power supply terminal as a base, an I / O terminal as an emitter, and a ground. In an electrostatic protection circuit having a bipolar transistor whose terminal is connected to the collector, the structure of the bipolar transistor is such that the base ground current gain factor α 0 is 0.5 to 1.0, and the ESD Overcurrent noise or latch-up test overcurrent noise was allowed to flow to the ground terminal side.

以上の構成とすることで、電源端子からバイポーラトランジスタのベースまでの配線の幅を小さくすることができ、配線配置の自由度の向上や配線分のチップ面積を縮小した静電保護回路を備えた半導体集積回路をつくることが出来る。   With the above configuration, the width of the wiring from the power supply terminal to the base of the bipolar transistor can be reduced, and an electrostatic protection circuit with improved wiring layout freedom and reduced chip area for wiring is provided. A semiconductor integrated circuit can be manufactured.

本発明の実施形態に係る静電気保護用半導体装置の一部を表す断面図。1 is a cross-sectional view illustrating a part of a semiconductor device for electrostatic protection according to an embodiment of the present invention. 本発明の実施形態に係る回路図。The circuit diagram concerning the embodiment of the present invention. 第1の従来例に係る回路図。The circuit diagram concerning the 1st conventional example. 第2の従来例に係る回路図。The circuit diagram which concerns on a 2nd prior art example.

以下、本発明を実施するための最良の形態について、図面に基づいて説明する。なお、以下の説明においてはI/O端子あるいは入出力端子という語句はいわゆる入出力端子だけではなく、入力のみの端子および出力のみの端子も含むものとして使用する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following description, the term “I / O terminal” or “input / output terminal” is used to include not only an input / output terminal but also an input-only terminal and an output-only terminal.

図2は、本発明の実施形態に係る回路図である。実施例では、接地端子11とI/O端子10(入出力端子とも呼ぶ)の間にESDの過電流ノイズを保護するESD保護素子として、例えばNチャネルオフMOS型電界効果トランジスタ13を配置して、ドレインをI/O端子10に接続し、ソースとゲートとバックゲートを接地端子11に接続する。更に、ラッチアップ試験の過電流ノイズから保護するラッチアップ保護素子として、ベース接地電流利得率α0が0.5〜1.0になるような、例えばpnpバイポーラトランジスタ12を配置して、エミッタをI/O端子10にコレクタを接地端子11に、ベースを電源端子9に接続する。 FIG. 2 is a circuit diagram according to an embodiment of the present invention. In the embodiment, for example, an N-channel off-MOS field effect transistor 13 is arranged between the ground terminal 11 and the I / O terminal 10 (also referred to as input / output terminal) as an ESD protection element for protecting ESD overcurrent noise. The drain is connected to the I / O terminal 10, and the source, gate, and back gate are connected to the ground terminal 11. Further, as a latch-up protection element for protecting against overcurrent noise in the latch-up test, for example, a pnp bipolar transistor 12 having a base ground current gain factor α 0 of 0.5 to 1.0 is arranged, and the emitter is an I / O terminal. The collector is connected to the ground terminal 11 and the base is connected to the power supply terminal 9.

上記pnpバイポーラトランジスタ12の実施例の断面図を図1に示す。pnpバイポーラトランジスタ100は、以下のような構成である。例えば、抵抗が20〜30ΩcmのP型シリコン基板1に、P型埋め込みコレクタ領域7を表面から5〜6um程度の深さ位置から下方に8um程度の厚みに、不純物は例えばボロンとして1×1016cm-3程度に形成する。次いで、P型埋め込みコレクタ領域7上に低濃度のN型ウェルベース領域4を厚み6um程度、不純物は例えばリンとして濃度は1×1016cm-3程度に形成し、次いで、低濃度のN型ウェルベース領域4に接してN型ウェルベース領域4を囲むように、低濃度のP型ウェルコレクタ領域3を厚み10um程度、不純物は例えばボロンとして濃度は1×1016cm-3程度に形成する。次いで、低濃度のN型ウェルベース領域4内に、レジストパターンをマスクとしたイオン注入により、P型高濃度エミッタ領域2を深さ0.4um、不純物は例えばボロンとして1×1020cm-3程度に形成し、更に低濃度のN型ウェルベース領域4内に、レジストパターンをマスクとしたイオン注入により、N型高濃度ベース領域6を深さ0.4um、不純物は例えばリンとして1×1020cm-3程度に形成し、更に低濃度のP型ウェルコレクタ領域3内に、レジストパターンをマスクとしたイオン注入により、P型高濃度コレクタ領域5を深さ0.4um、不純物は例えばリンとして1×1020cm-3程度に形成する。 A cross-sectional view of an embodiment of the pnp bipolar transistor 12 is shown in FIG. The pnp bipolar transistor 100 has the following configuration. For example, in a P-type silicon substrate 1 having a resistance of 20 to 30 Ωcm, a P-type buried collector region 7 is formed to a thickness of about 8 μm from a depth of about 5 to 6 μm from the surface, and the impurity is 1 × 10 16 as boron, for example. Forms about cm -3 . Next, a low-concentration N-type well base region 4 is formed on the P-type buried collector region 7 with a thickness of about 6 μm, the impurity is, for example, phosphorus, and a concentration of about 1 × 10 16 cm −3. A low-concentration P-type well collector region 3 is formed so as to be in contact with the well base region 4 and surround the N-type well base region 4 with a thickness of about 10 μm and impurities as boron, for example, with a concentration of about 1 × 10 16 cm −3. . Next, by ion implantation using the resist pattern as a mask in the low-concentration N-type well base region 4, the P-type high-concentration emitter region 2 has a depth of 0.4 μm, and the impurity is, for example, about 1 × 10 20 cm −3 as boron. The N-type high-concentration base region 6 has a depth of 0.4 μm and the impurity is, for example, phosphorus as 1 × 10 20 cm by ion implantation using the resist pattern as a mask in the low-concentration N-type well base region 4. -3 and further implanted into the low concentration P-type well collector region 3 by ion implantation using the resist pattern as a mask. Form 10 20 cm -3 or so.

P型埋め込みコレクタ領域7を設けることにより、エミッタ−コレクタ間距離8を例えば5um程度に設定することにより、P型高濃度エミッタ領域2から注入された正孔のうち、N型ウェルベース領域4を通過して、P型埋め込みコレクタ領域7に到達し、P型ウェルコレクタ領域3を通ってP型高濃度コレクタ領域5にたどり着く正孔の割合が増え、結果としてベース接地電流利得率α0が0.5〜1.0となるpnpバイポーラトランジスタ100を得ることができる。図2において、上記のような構造のベース接地電流利得率α0が0.5〜1.0のpnpバイポーラトランジスタ12を用いれば、I/O端子10から電源端子9に流れる電流が減るので、電源端子9からpnpバイポーラトランジスタ12のエミッタに接続する配線の太さを小さくすることができ、配線の配置の自由度の向上とチップ面積の縮小を図ることができる。 By providing the P-type buried collector region 7 and setting the emitter-collector distance 8 to, for example, about 5 μm, among the holes injected from the P-type high-concentration emitter region 2, the N-type well base region 4 The proportion of holes passing through and reaching the P-type buried collector region 7 and reaching the P-type high-concentration collector region 5 through the P-type well collector region 3 is increased, resulting in a base ground current gain factor α 0 of 0.5. A pnp bipolar transistor 100 of ˜1.0 can be obtained. In FIG. 2, if a pnp bipolar transistor 12 having a base ground current gain factor α 0 of 0.5 to 1.0 having the above-described structure is used, the current flowing from the I / O terminal 10 to the power supply terminal 9 is reduced. The thickness of the wiring connected to the emitter of the pnp bipolar transistor 12 can be reduced, so that the degree of freedom of wiring arrangement can be improved and the chip area can be reduced.

以上は、I/O端子と接地端子との間にMOS電界効果トランジスタ、I/O端子と電源端子との間にバイポーラトランジスタを設けた例で説明したが、I/O端子と接地端子との間にはMOS電界効果トランジスタ以外の半導体素子をESD保護素子として配置しても良い。ESD保護素子がダイオードやサイリスタの場合にはI/O端子にダイオードのアノードを接続し、接地端子にカソードを接続し、I/O端子と電源端子との間にバイポーラトランジスタを設けることで同様の効果を得ることができる。   In the above description, a MOS field effect transistor is provided between the I / O terminal and the ground terminal, and a bipolar transistor is provided between the I / O terminal and the power supply terminal. A semiconductor element other than the MOS field effect transistor may be disposed as an ESD protection element between them. When the ESD protection element is a diode or thyristor, the anode of the diode is connected to the I / O terminal, the cathode is connected to the ground terminal, and a bipolar transistor is provided between the I / O terminal and the power supply terminal. An effect can be obtained.

1 P型シリコン基板
2 P型高濃度エミッタ領域
3 P型ウェルコレクタ領域
4 N型ウェルベース領域
5 P型高濃度コレクタ領域
6 N型高濃度ベース領域
7 P型埋め込みコレクタ領域
8 エミッタ−コレクタ間距離
9 電源端子
10 I/O端子
11 接地端子
12 pnpバイポーラトランジスタ
13 NチャネルオフMOS型電界効果トランジスタ
100 pnpバイポーラトランジスタ
1 P-type silicon substrate 2 P-type high-concentration emitter region 3 P-type well collector region 4 N-type well base region 5 P-type high-concentration collector region 6 N-type high-concentration base region 7 P-type buried collector region 8 Emitter-collector distance 9 Power supply terminal 10 I / O terminal 11 Ground terminal 12 pnp bipolar transistor 13 N channel off MOS field effect transistor 100 pnp bipolar transistor

Claims (5)

半導体基板と、
前記半導体基板の表面に配置され、入出力端子と接地端子の間に接続されたESD保護素子と、
前記半導体基板の表面に配置され、エミッタを前記入出力端子に、ベースを電源端子に、コレクタを前記接地端子に接続したバイポーラトランジスタと、を有し、
前記バイポーラトランジスタのベース接地電流利得率が0.5〜1.0である静電気保護用半導体装置。
A semiconductor substrate;
An ESD protection element disposed on a surface of the semiconductor substrate and connected between an input / output terminal and a ground terminal;
A bipolar transistor disposed on the surface of the semiconductor substrate, having an emitter connected to the input / output terminal, a base connected to a power supply terminal, and a collector connected to the ground terminal;
A semiconductor device for electrostatic protection, wherein a base ground current gain factor of the bipolar transistor is 0.5 to 1.0.
前記バイポーラトランジスタは、
第1導電型の前記半導体基板上に設けられた第2導電型の第1の低濃度ウェル領域と、
前記第1の低濃度ウェル領域の下に設けられた第1導電型の埋め込み領域と、
前記第1の低濃度ウェル領域の表面に設けられた第1の第1導電型高濃度領域と、
前記第1の低濃度ウェル領域の表面に前記第1の第1導電型高濃度領域と離間し、前記第1の第1導電型高濃度領域を囲んで設けられた第2導電型高濃度領域と、
前記第1の低濃度ウェル領域に接し、前記第1の低濃度ウェル領域を囲んで設けられた第1導電型の第2の低濃度ウェル領域と、
前記第2の低濃度ウェル領域の表面に設けられた第2の第1導電型高濃度領域と、
を有することを特徴とする請求項1に記載の静電保護用半導体装置。
The bipolar transistor is:
A first conductivity type first low-concentration well region provided on the first conductivity type semiconductor substrate;
A buried region of a first conductivity type provided under the first low-concentration well region;
A first first conductivity type high concentration region provided on a surface of the first low concentration well region;
A second conductivity type high concentration region provided on the surface of the first low concentration well region so as to be separated from the first first conductivity type high concentration region and to surround the first first conductivity type high concentration region When,
A second low-concentration well region of a first conductivity type provided in contact with and surrounding the first low-concentration well region;
A second first conductivity type high concentration region provided on the surface of the second low concentration well region;
The semiconductor device for electrostatic protection according to claim 1, comprising:
前記ESD保護素子は、アノードが前記入出力端子に接続され、カソードが前記接地端子に接続された保護ダイオードである請求項1あるいは2に記載の静電気保護用半導体装置。   3. The semiconductor device for electrostatic protection according to claim 1, wherein the ESD protection element is a protection diode having an anode connected to the input / output terminal and a cathode connected to the ground terminal. 前記ESD保護素子は、ドレインが前記入出力端子に接続され、ソースとゲートとバックゲートが前記接地端子に接続されたMOSトランジスタである請求項1あるいは2に記載の静電気保護用半導体装置。   3. The semiconductor device for electrostatic protection according to claim 1, wherein the ESD protection element is a MOS transistor having a drain connected to the input / output terminal and a source, a gate, and a back gate connected to the ground terminal. 前記ESD保護素子は、アノードが前記入出力端子に接続され、カソードが前記接地端子に接続されたサイリスタである請求項1あるいは2に記載の静電気保護用半導体装置。   3. The semiconductor device for electrostatic protection according to claim 1, wherein the ESD protection element is a thyristor having an anode connected to the input / output terminal and a cathode connected to the ground terminal.
JP2009216243A 2009-09-17 2009-09-17 Semiconductor device for electrostatic protection Withdrawn JP2011066244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216243A JP2011066244A (en) 2009-09-17 2009-09-17 Semiconductor device for electrostatic protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216243A JP2011066244A (en) 2009-09-17 2009-09-17 Semiconductor device for electrostatic protection

Publications (2)

Publication Number Publication Date
JP2011066244A true JP2011066244A (en) 2011-03-31
JP2011066244A5 JP2011066244A5 (en) 2012-08-30

Family

ID=43952176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216243A Withdrawn JP2011066244A (en) 2009-09-17 2009-09-17 Semiconductor device for electrostatic protection

Country Status (1)

Country Link
JP (1) JP2011066244A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174468A (en) * 1997-08-29 1999-03-16 Sony Corp Semiconductor device
JP2000286344A (en) * 1999-03-31 2000-10-13 Canon Inc Current mirror circuit and driving circuit of light emitting element using the current mirror circuit
JP2001135643A (en) * 1999-11-04 2001-05-18 Sony Corp Method of manufacturing semiconductor device
JP2001223277A (en) * 2001-01-09 2001-08-17 Nec Corp I/o protective circuit
JP2009081458A (en) * 1998-08-25 2009-04-16 Sharp Corp Electrostatic discharge protection device for semiconductor integrated circuit, method for producing the same, and electrostatic discharge protection circuit using electrostatic discharge protection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174468A (en) * 1997-08-29 1999-03-16 Sony Corp Semiconductor device
JP2009081458A (en) * 1998-08-25 2009-04-16 Sharp Corp Electrostatic discharge protection device for semiconductor integrated circuit, method for producing the same, and electrostatic discharge protection circuit using electrostatic discharge protection device
JP2000286344A (en) * 1999-03-31 2000-10-13 Canon Inc Current mirror circuit and driving circuit of light emitting element using the current mirror circuit
JP2001135643A (en) * 1999-11-04 2001-05-18 Sony Corp Method of manufacturing semiconductor device
JP2001223277A (en) * 2001-01-09 2001-08-17 Nec Corp I/o protective circuit

Similar Documents

Publication Publication Date Title
TWI496265B (en) Semiconductor device for electrostatic discharge protection
JP4209432B2 (en) ESD protection device
JP2006319330A (en) Device for protecting from electrostatic discharge
US7763908B2 (en) Design of silicon-controlled rectifier by considering electrostatic discharge robustness in human-body model and charged-device model devices
JP4209433B2 (en) ESD protection device
US7145204B2 (en) Guardwall structures for ESD protection
JP6600491B2 (en) Semiconductor device having ESD element
JP6243720B2 (en) Semiconductor device provided with ESD protection circuit
WO2016148156A1 (en) Semiconductor device and method for manufacturing semiconductor device
KR20070082506A (en) Semiconductor device
JP4993941B2 (en) Semiconductor integrated circuit and system LSI having the same
TWI427765B (en) Esd protection device with vertical transistor structure
JP3902040B2 (en) Semiconductor protection device
JP5203850B2 (en) ESD protection element
KR20090098237A (en) Esd protection device having a stack type scr with high holding voltage
KR20080061004A (en) Electrostatic discharge protection circuit and the method of layout thereof
US10269898B2 (en) Surrounded emitter bipolar device
JP2012094797A (en) Semiconductor device and method of manufacturing the same
JP5529414B2 (en) ESD protection circuit
JP2006332144A (en) Integrated circuit
KR100796426B1 (en) Semiconductor device
JP2011066244A (en) Semiconductor device for electrostatic protection
JP4435672B2 (en) Semiconductor integrated circuit device
JP2009141071A (en) Semiconductor element for electrostatic protection
JP2005294740A (en) Multi-finger nmos transistor structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A621 Written request for application examination

Effective date: 20120711

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20131023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A761 Written withdrawal of application

Effective date: 20140124

Free format text: JAPANESE INTERMEDIATE CODE: A761