JP2011066007A - Method of manufacturing dye-sensitized solar battery cell, and method of manufacturing dye-sensitized solar cell module - Google Patents

Method of manufacturing dye-sensitized solar battery cell, and method of manufacturing dye-sensitized solar cell module Download PDF

Info

Publication number
JP2011066007A
JP2011066007A JP2010251749A JP2010251749A JP2011066007A JP 2011066007 A JP2011066007 A JP 2011066007A JP 2010251749 A JP2010251749 A JP 2010251749A JP 2010251749 A JP2010251749 A JP 2010251749A JP 2011066007 A JP2011066007 A JP 2011066007A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
oxide semiconductor
solar cell
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010251749A
Other languages
Japanese (ja)
Other versions
JP5212750B2 (en
Inventor
Kojiro Okawa
晃次郎 大川
Atsuro Tsuzuki
淳朗 續木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010251749A priority Critical patent/JP5212750B2/en
Publication of JP2011066007A publication Critical patent/JP2011066007A/en
Application granted granted Critical
Publication of JP5212750B2 publication Critical patent/JP5212750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dye-sensitized solar battery cell, which has a high photoelectric conversion efficiency, is superior in productivity, easily achieves mass-production, and of which manufacturing cost can be reduced; and to provide a method of manufacturing a dye-sensitized solar cell module using the dye-sensitized solar battery cell. <P>SOLUTION: This invention relates to a method of manufacturing a dye-sensitized solar battery cell 100 which is formed of a laminate in which a transparent substrate 1, a transparent electrode layer 2, a power generation layer 8, a back electrode layer 5, and a back substrate are laminated in order from a light-receiving surface side, and in which the power generation layer is formed of an oxide semiconductor membrane configured by calcining oxide particulates, a dye sensitizing agent which is carried by the oxide semiconductor membrane, and an electrolyte which is impregnated in the oxide semiconductor membrane. The laminate of the oxide semiconductor membrane, the back electrode layer, and the back substrate carrying the dye-sensitized agent of the power generation layer is formed by a step of forming the back electrode layer on the back substrate, a step of forming the oxide semiconductor membrane on the back electrode layer, and a step of making the oxide semiconductor membrane carry the dye-sensitized agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池セルの製造方法および色素増感型太陽電池セルを用いた色素増感型太陽電池モジュールの製造方法に関する。   The present invention relates to a method for producing a dye-sensitized solar cell and a method for producing a dye-sensitized solar cell module using the dye-sensitized solar cell.

二酸化炭素が原因とされる地球温暖化が世界的に問題となっている近年、環境にやさしく、クリーンなエネルギー源として、太陽光エネルギーを利用した太陽電池が注目され、積極的に研究開発が進められている。このような太陽電池として、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池などが既に実用化されているが、より光電変換効率が高く、且つ、低コスト化の可能性のある太陽電池として、色素増感型太陽電池が新たに注目され研究開発されている。   In recent years, global warming caused by carbon dioxide has become a global problem. In recent years, solar cells that use solar energy have attracted attention as environmentally friendly and clean energy sources, and research and development are actively promoted. It has been. As such solar cells, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells and the like have already been put into practical use, but there is a possibility of higher photoelectric conversion efficiency and lower cost. As solar cells, dye-sensitized solar cells are newly attracting attention and being researched and developed.

色素増感型太陽電池は、例えば、光の入射する側から、透明基板、透明電極層、発電層(発電層は、多孔質の酸化物半導体膜とその表面に担持された色素増感剤と電解質溶液とで構成される)、裏面電極層、裏面基板が順に積層されてセルが形成される。   For example, a dye-sensitized solar cell includes a transparent substrate, a transparent electrode layer, a power generation layer (a power generation layer includes a porous oxide semiconductor film and a dye sensitizer carried on the surface from the light incident side. The back electrode layer and the back substrate are sequentially laminated to form a cell.

このような色素増感型太陽電池セルは、実験室的には変換効率など性能に優れたセルを作製することができるが、各構成要素(材料)の高品質化と低コスト化、およびモジュール化を含めた製造方法など量産化技術などの点では、未だ多くの課題がある。   Although such a dye-sensitized solar cell can produce a cell excellent in performance such as conversion efficiency in the laboratory, it is possible to improve the quality and cost of each component (material), and the module. There are still many issues in terms of mass production technology such as manufacturing methods including production.

本発明は、このような問題点を解決するためになされたものであり、その目的とするところは、光電変換効率が高く、且つ、生産性にも優れ、大量生産が容易であると共に、製造コストも低減することのできる色素増感型太陽電池セルの製造方法及び色素増感型太陽電池セルを用いた色素増感型太陽電池モジュールの製造方法を提供することにある。   The present invention has been made in order to solve such problems. The object of the present invention is high photoelectric conversion efficiency, excellent productivity, easy mass production, and manufacturing. An object of the present invention is to provide a method for producing a dye-sensitized solar cell that can reduce the cost and a method for producing a dye-sensitized solar cell module using the dye-sensitized solar cell.

上記の課題は、以下の本発明により解決することができる。即ち、請求項1に記載した発明は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質とで形成される色素増感型太陽電池セルの製造方法であって、裏面基板の上に、白金またはカーボンペーストをパターン状に塗布、乾燥して、裏面電極層を形成する工程と、裏面電極層の上に、酸化物微粒子ペーストをパターン状に塗布、乾燥、焼成して、酸化物半導体膜を形成する工程と、酸化物半導体膜に、色素増感剤の溶液を塗布または浸漬して含浸させた後、乾燥して、色素増感剤を担持させる工程と、によって、発電層の色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板の積層体を形成することを特徴とする色素増感型太陽電池セルの製造方法からなる。 The above problems can be solved by the following present invention. That is, the invention described in claim 1 is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are stacked in order from at least the light receiving surface side, and the power generation layer includes A dye-sensitized solar formed by an oxide semiconductor film obtained by firing oxide fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte impregnated in the oxide semiconductor film A method of manufacturing a battery cell, comprising: applying a platinum or carbon paste in a pattern on a back substrate and drying to form a back electrode layer; and forming an oxide fine particle paste on the back electrode layer. Applying, drying, and baking in a pattern to form an oxide semiconductor film, and impregnating the oxide semiconductor film with a solution of a dye sensitizer applied or immersed, and then drying to increase the dye The step of loading the sensitizer, and Motozo sensitizer consists method for producing a supported oxide semiconductor film and the dye-sensitized solar cell, which comprises forming a back surface electrode layer and the back substrate laminate.

このような製造方法を採ることにより、光電変換効率〔η%〕が高く、生産性にも優れ、大量生産が容易であると共に、コストも低減することができる。 By adopting such a manufacturing method, photoelectric conversion efficiency [η%] is high, productivity is excellent, mass production is easy, and cost can be reduced.

請求項2に記載した発明は、裏面基板として、ガラス板、または耐熱性フレキシブルフィルムを用いることを特徴とする請求項1に記載の色素増感型太陽電池セルの製造方法からなる。 The invention described in claim 2 comprises the method for producing a dye-sensitized solar cell according to claim 1 , wherein a glass plate or a heat-resistant flexible film is used as the back substrate .

請求項3に記載した発明は、裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用いることを特徴とする請求項1または2に記載の色素増感型太陽電池セルの製造方法からなる。 Invention of Claim 3 uses the elongate heat-resistant flexible film wound up in roll shape as a back substrate, The manufacture of the dye-sensitized solar cell of Claim 1 or 2 characterized by the above-mentioned. It consists of a method.

請求項4に記載した発明は、裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法からなる。 The invention described in claim 4 is a process of forming a back electrode layer, wherein a pattern coater of a winding supply winding method is used. From the method for producing a dye-sensitized solar cell according to claim 3 Become.

請求項5に記載した発明は、裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、酸化物半導体膜を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法からなる。The invention described in claim 5 uses a pattern coater of the winding supply winding method in the step of forming the back electrode layer, and uses a pattern coater of winding supply and winding method in the step of forming the oxide semiconductor film. It consists of the manufacturing method of the dye-sensitized solar cell of Claim 3 characterized by these.

請求項6に記載した発明は、裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、酸化物半導体膜を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、色素増感剤を担持させる工程で、巻き取り供給巻き上げ方式のパターンコーターまたは巻き取り供給巻き上げ方式の浸漬装置を用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法からなる。The invention described in claim 6 is a step of forming a back electrode layer, using a pattern coater of a winding supply winding method, and using a pattern coater of a winding supply winding method in a step of forming an oxide semiconductor film, 4. The method for producing a dye-sensitized solar cell according to claim 3, wherein in the step of supporting the dye sensitizer, a pattern coater of a winding supply winding method or a dipping apparatus of a winding supply winding method is used. Consists of.

これらのような製造方法を採ることにより、色素増感型太陽電池セルの各構成要素のうち、少なくとも色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板との積層体を、裏面基板の長尺の耐熱性フレキシブルフィルムを基材として、その上に、裏面電極層と酸化物半導体膜とそれに担持させる色素増感剤とを、巻き取り供給巻き上げ方式のパターンコーター、または浸漬装置などを用いて加工し、製造することができるので、生産性が大幅に向上し、光電変換効率に優れた色素増感型太陽電池セルを低コストで大量生産することができる。 By adopting a production method such as these, among the constituent elements of the dye-sensitized solar cell, a laminated body of an oxide semiconductor film, a back electrode layer and a back substrate on which at least a dye sensitizer is supported is formed. , Using a long heat-resistant flexible film on the back substrate as a base material, and a back electrode layer, an oxide semiconductor film, and a dye sensitizer to be supported on the back electrode layer, a pattern coater of a winding supply winding method, or immersion Since it can be processed and manufactured using an apparatus or the like, productivity is greatly improved, and dye-sensitized solar cells excellent in photoelectric conversion efficiency can be mass-produced at low cost .

請求項に記載した発明は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、上記色素増感型太陽電池セルが、請求項1乃至6のいずれかに記載の色素増感型太陽電池セルの製造方法で製造することを特徴とする色素増感型太陽電池モジュールの製造方法からなる。 The invention described in claim 7 is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially stacked at least from the light receiving surface side, and the power generation layer is oxidized Dye-sensitized solar cell formed by an oxide semiconductor film obtained by firing product fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film A method for producing a dye-sensitized solar cell module, in which a plurality of cells are arranged in a planar or curved shape and connected in series, wherein the dye-sensitized solar cell comprises: 6. A method for producing a dye-sensitized solar cell module, which is produced by the method for producing a dye-sensitized solar cell according to any one of 6 above .

このような構成を採ることにより、前記請求項1乃至6のいずれかに記載した色素増感型太陽電池セルを有効に利用できるので、光電変換効率に優れ、且つ、所望の起電力を有する色素増感型太陽電池モジュールを生産性よく、低コストで製造することができる。By adopting such a configuration, the dye-sensitized solar cell according to any one of claims 1 to 6 can be used effectively, so that the dye has excellent photoelectric conversion efficiency and has a desired electromotive force. A sensitized solar cell module can be manufactured with high productivity and low cost.

以上の説明で明らかなように、本発明によれば、光電変換効率〔η%〕が高く、生産性にも優れ、大量生産が容易であると共に、コストも低減することのできる色素増感型太陽電池セルおよびそれを用いた色素増感型太陽電池モジュール、およびそれらの製造方法を提供できる効果を奏する。   As is clear from the above description, according to the present invention, a dye-sensitized type that has high photoelectric conversion efficiency [η%], is excellent in productivity, is easy to mass-produce, and can reduce costs. The solar cell, the dye-sensitized solar cell module using the solar cell, and the production method thereof can be provided.

本発明の製造方法による色素増感型太陽電池セルの一実施例の構成を示す模式断面図である。It is a schematic cross section which shows the structure of one Example of the dye-sensitized solar cell by the manufacturing method of this invention. 本発明の製造方法による色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。It is a schematic cross section of the principal part which shows the structure of one Example of the dye-sensitized solar cell module by the manufacturing method of this invention.

本発明の色素増感型太陽電池セルの製造方法は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質とで形成される色素増感型太陽電池セルの製造方法にて、裏面基板の上に、白金またはカーボンペーストをパターン状に塗布、乾燥して、裏面電極層を形成する工程と、裏面電極層の上に、酸化物微粒子ペーストをパターン状に塗布、乾燥、焼成して、酸化物半導体膜を形成する工程と、酸化物半導体膜に、色素増感剤の溶液を塗布または浸漬して含浸させた後、乾燥して、色素増感剤を担持させる工程と、によって、発電層の色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板の積層体を形成するものである。   The method for producing a dye-sensitized solar cell of the present invention is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are laminated in order from at least the light receiving surface side, and A dye formed by the power generation layer comprising an oxide semiconductor film obtained by firing fine oxide particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte impregnated in the oxide semiconductor film In the method of manufacturing a sensitized solar cell, a step of applying a platinum or carbon paste in a pattern on a back substrate and drying to form a back electrode layer, and an oxide on the back electrode layer Applying a fine particle paste in a pattern, drying and baking to form an oxide semiconductor film, and impregnating the oxide semiconductor film by applying or dipping a solution of a dye sensitizer, followed by drying And a step of supporting a dye sensitizer, In which a dye sensitizer conductive layer to form a supported oxide semiconductor film and the back electrode layer and the back substrate laminate.

また、本発明の色素増感型太陽電池モジュールの製造方法は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法にて、上記色素増感型太陽電池セルが、上記の色素増感型太陽電池セルの製造方法で製造するものである。   Further, the method for producing the dye-sensitized solar cell module of the present invention is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially laminated from at least the light receiving surface side, The power generation layer is formed of an oxide semiconductor film obtained by firing oxide fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film. In the method for producing a dye-sensitized solar cell module in which a plurality of dye-sensitized solar cells are arranged in a planar or curved shape and connected in series, the dye-sensitized solar cell A cell is manufactured by the above method for manufacturing a dye-sensitized solar cell.

発電層は、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成され、且つ、該酸化物微粒子の少なくとも30重量%が、粒子径0.1〜10nmの微粒子である構成にすることができる。   The power generation layer was impregnated in an oxide semiconductor film obtained by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm, a dye sensitizer supported on the oxide semiconductor film, and the oxide semiconductor film. It is possible to make a configuration in which at least 30% by weight of the oxide fine particles are fine particles having a particle diameter of 0.1 to 10 nm.

上記酸化物微粒子の粒子径は、0.1nm〜10μmの範囲が好ましく、粒子径が0.1nm未満の微粒子は、製造自体が難しい上、粒子同士が凝集して二次粒子を作りやすくなるため好ましくない。また、粒子径が10μmを超える微粒子は、酸化物半導体膜の厚さを必要以上に厚くすると共に、光の透過性も低下させるため好ましくない。   The particle diameter of the oxide fine particles is preferably in the range of 0.1 nm to 10 μm, and the fine particles having a particle diameter of less than 0.1 nm are difficult to produce, and moreover, the particles tend to aggregate to form secondary particles. It is not preferable. In addition, fine particles having a particle diameter exceeding 10 μm are not preferable because the thickness of the oxide semiconductor film is increased more than necessary and the light transmittance is also decreased.

このような構成を採ることにより、発電層の酸化物半導体膜を形成する酸化物微粒子が、粒子径0.1nm〜10μmの範囲であって、且つ、その少なくとも30重量%が、粒子径0.1〜10nmの微粒子であるため、形成される多孔質膜の内部の実表面積が一層大きくなると同時に、内部の表面にも色素増感剤が担持されるので、広い波長領域の光を一層有効に利用でき、色素増感型太陽電池セルの光電変換効率、即ち、発電効率を一層高くすることができる。また、酸化物微粒子は、アモルファスシリコンなどと比較して安価であるため、材料コストを低減することができる。   By adopting such a configuration, the oxide fine particles forming the oxide semiconductor film of the power generation layer have a particle size in the range of 0.1 nm to 10 μm, and at least 30% by weight of the fine particles have a particle size of 0.00. Since it is a fine particle of 1 to 10 nm, the actual surface area inside the porous film to be formed is further increased, and at the same time the dye sensitizer is supported on the inner surface, so that light in a wide wavelength region is more effectively used. The photoelectric conversion efficiency of the dye-sensitized solar cell, that is, the power generation efficiency can be further increased. Further, since the oxide fine particles are less expensive than amorphous silicon or the like, the material cost can be reduced.

裏面基板には、ガラス板を用いてもよいが、ロール状に巻き上げられた長尺の耐熱性フィルムを用いることができ、それにより、少なくともその上の裏面電極層、および発電層の酸化物半導体膜とそれに担持させる色素増感剤を、巻き取り供給巻き上げ方式のパターンコーター、例えばグラビアダイレクトコーター、ロータリースクリーン印刷機、或いは浸漬装置などを用いて、ロール・ツー・ロール方式で形成することができるので、生産性が著しく向上し、大量生産が容易になると同時に製造コストも低減することができる。   A glass plate may be used for the back substrate, but a long heat-resistant film wound up in a roll shape can be used, whereby at least the back electrode layer thereon and the oxide semiconductor of the power generation layer The film and the dye sensitizer to be supported on the film can be formed by a roll-to-roll method using a wind-up / wind-up pattern coater such as a gravure direct coater, a rotary screen printer, or a dipping device. Therefore, productivity is remarkably improved, mass production is facilitated, and manufacturing cost can be reduced.

前記酸化物半導体膜の酸化物微粒子が、TiO2、ZnO、SnO2、ITO、ZrO2、SiOX、MgO、Al23、CeO2、Bi23、Mn34、Y23、WO3、Ta25、Nb25、La23の微粒子のうちのいずれか一種、または二種以上の混合系の微粒子である構成にすることができる。 Oxide fine particles of the oxide semiconductor film, TiO 2, ZnO, SnO 2 , ITO, ZrO 2, SiO X, MgO, Al 2 O 3, CeO 2, Bi 2 O 3, Mn 3 O 4, Y 2 O 3 , WO 3 , Ta 2 O 5 , Nb 2 O 5 , La 2 O 3 fine particles, or a mixture of two or more fine particles.

上記の酸化物微粒子は、材質的に発電層の酸化物半導体多孔質膜の形成に適しており、その光電変換効率も高く、コスト面でも比較的安価である。従って、このような構成を採ることにより、前記に記載した作用効果に加えて、光電変換効率が高く、低コストの色素増感型太陽電池セルを一層容易に製造することができる。   The oxide fine particles are suitable for forming an oxide semiconductor porous film as a power generation layer in terms of material, have high photoelectric conversion efficiency, and are relatively inexpensive in terms of cost. Therefore, by adopting such a configuration, in addition to the effects described above, a dye-sensitized solar cell with high photoelectric conversion efficiency and low cost can be more easily manufactured.

前記酸化物半導体膜の酸化物微粒子の30重量%以上が、TiO2の微粒子とすることができる。 30% by weight or more of the oxide fine particles of the oxide semiconductor film can be TiO 2 fine particles.

色素増感型太陽電池セルの酸化物半導体膜に用いる酸化物微粒子としては、TiO2の微粒子が、粒子径0.1〜10nmの微粒子の製造も比較的容易であり、高多孔質膜の形成、光電変換効率の高さ、低コスト化などの点で特に適している。従って、酸化物微粒子の全部をTiO2の微粒子で構成してもよいが、30重量%以上をTiO2の微粒子とすることにより、前記高多孔質膜の形成、高光電変換効率、低コスト化などの効果を充分に得ることができる。従って、前記のような構成を採ることにより、前記の作用効果に加えて、一層確実に光電変換効率が高く、低コストの色素増感型太陽電池セルを製造することができる。 As the oxide fine particles used for the oxide semiconductor film of the dye-sensitized solar cell, it is relatively easy to produce fine particles of TiO 2 fine particles having a particle diameter of 0.1 to 10 nm. It is particularly suitable in terms of high photoelectric conversion efficiency and low cost. Therefore, all of the oxide fine particles may be composed of TiO 2 fine particles, but by forming 30% by weight or more of TiO 2 fine particles, the formation of the highly porous film, high photoelectric conversion efficiency, and low cost are achieved. Such effects can be sufficiently obtained. Therefore, by adopting the configuration as described above, in addition to the above-described effects, a dye-sensitized solar cell with higher photoelectric conversion efficiency and lower cost can be manufactured.

前記酸化物半導体膜が、前記酸化物微粒子に導電性バインダーを1〜30重量%の範囲で混合した混合物で形成されている構成にすることができる。   The said oxide semiconductor film can be set as the structure currently formed with the mixture which mixed the conductive binder with the oxide fine particle in the range of 1 to 30 weight%.

このような構成を採ることにより、前記に記載した作用効果に加えて、酸化物半導体膜を形成する際、より低い加熱温度、或いは、より短い加熱時間で、その多孔質膜を形成できるので、生産性を向上できると共に、裏面基板として、耐熱性フレキシブルフィルムを用いる場合、その耐熱性のレベルを下げることができるので、フィルムの選択範囲を広げることができ、コスト低減効果も得ることができる。   By adopting such a configuration, in addition to the effects described above, when forming the oxide semiconductor film, the porous film can be formed at a lower heating temperature or a shorter heating time. In addition to improving productivity, when a heat-resistant flexible film is used as the back substrate, the level of heat resistance can be lowered, so that the range of film selection can be expanded and a cost reduction effect can be obtained.

前記酸化物半導体膜が、その多孔質の内部表面まで、TiCl4水溶液及び/又はt−ブチルピリジンのアセトニトリル分散液により、表面処理されているようにすることができる。 The oxide semiconductor film may be surface-treated with a TiCl 4 aqueous solution and / or an acetonitrile dispersion of t-butylpyridine up to the porous inner surface.

上記TiCl4水溶液による表面処理は、焼成された酸化物半導体膜上に0.5M未満のTiCl4水溶液を塗布し、含浸させた後、乾燥する方法で実施することができ、これが酸化物半導体膜の表面準位の減少に寄与し、また、t−ブチルピリジンのアセトニトリル分散液による表面処理は、色素増感剤を担持させた後の酸化物半導体膜上にt−ブチルピリジン5容量%未満を含むアセトニトリル分散液を塗布し、含浸させた後、乾燥する方法で実施することができ、これにより酸化物半導体膜中に移動した電子の逆流が抑制される。 Surface treatment with the TiCl 4 aqueous solution, a TiCl 4 aqueous solution of less than 0.5M coated on the calcined oxide semiconductor film, after impregnation, can be carried out by a method of drying, this oxide semiconductor film The surface treatment with an acetonitrile dispersion of t-butylpyridine is less than 5% by volume of t-butylpyridine on the oxide semiconductor film after supporting the dye sensitizer. This can be carried out by applying and impregnating the acetonitrile dispersion liquid, followed by drying, whereby the backflow of electrons moved into the oxide semiconductor film is suppressed.

従って、このような表面処理を施すことにより、前記に記載した作用効果に加えて、発生した電子を一層効率的に利用できるようになるので、色素増感型太陽電池セルの発電効率を更に向上させることができる。   Therefore, by applying such a surface treatment, the generated electrons can be used more efficiently in addition to the above-described effects, further improving the power generation efficiency of the dye-sensitized solar cell. Can be made.

前記色素増感剤が、ルテニウム錯体とすることができる。   The dye sensitizer may be a ruthenium complex.

前記色素増感剤としては、有機色素または金属錯体色素を使用することができ、有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられ、金属錯体色素では、ルテニウム系色素が好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が好ましい。例えば、酸化物半導体膜だけでは、可視光(400〜800nm程度の波長)を殆ど吸収できないが、ルテニウム錯体を担持させることにより、大幅に可視光まで取り込んで光電変換できるようになる。   As the dye sensitizer, an organic dye or a metal complex dye can be used. Examples of the organic dye include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes. Among the metal complex dyes, ruthenium dyes are preferable, and ruthenium bipyridine dyes and ruthenium terpyridine dyes which are ruthenium complexes are particularly preferable. For example, visible light (wavelength of about 400 to 800 nm) can hardly be absorbed with only an oxide semiconductor film, but by supporting a ruthenium complex, visible light can be significantly taken in and photoelectrically converted.

従って、前記のような構成を採ることにより、前記請に記載した作用効果に加えて、ルテニウム錯体により光電変換できる光の波長領域を大幅に広げることができるので、色素増感型太陽電池セルの光電変換効率を一層向上させることができる。   Therefore, by adopting the configuration as described above, in addition to the effects described in the above-mentioned request, the wavelength range of light that can be photoelectrically converted by the ruthenium complex can be greatly expanded, so that of the dye-sensitized solar cell Photoelectric conversion efficiency can be further improved.

前記電解質溶液が、ヨウ素電解質溶液、またはゲル電解質、固体電解質のいずれかとすることができる。   The electrolyte solution may be an iodine electrolyte solution, a gel electrolyte, or a solid electrolyte.

本発明の色素増感型太陽電池セルの電解質溶液としては、ヨウ素電解質溶液を有効に使用することができるが、そのほかにゲル電解質、固体電解質を使用することができる。ゲル電解質は、大別して、物理ゲルと化学ゲルに分けられ、物理ゲルは、物理的な相互作用で室温付近でゲル化しているものであり、例えば、ポリアクリロニトリル、ポリメタクリレートが挙げられる。化学ゲルは、架橋反応などにより化学結合でゲルを形成しているものであり、アクリル酸エステル系、メタクリル酸エステル系のゲルが挙げられる。また、固体電解質としては、ポリピロール、CuIが挙げられる。ゲル電解質、固体電解質を使用する場合、低粘度の前駆体を酸化物半導体膜に含浸させ、加熱、紫外線照射、電子線照射などの手段で二次元または三次元の架橋反応を起こさせることにより、ゲル化または固体化することができる。   As the electrolyte solution of the dye-sensitized solar cell of the present invention, an iodine electrolyte solution can be used effectively, but a gel electrolyte and a solid electrolyte can also be used. Gel electrolytes are roughly classified into physical gels and chemical gels, and the physical gels are gelled near room temperature due to physical interaction, and examples thereof include polyacrylonitrile and polymethacrylate. The chemical gel is a gel formed by a chemical bond by a crosslinking reaction or the like, and examples thereof include acrylate ester-based and methacrylate ester-based gels. Moreover, polypyrrole and CuI are mentioned as a solid electrolyte. When using a gel electrolyte or solid electrolyte, impregnating a low-viscosity precursor into an oxide semiconductor film and causing a two-dimensional or three-dimensional crosslinking reaction by means of heating, ultraviolet irradiation, electron beam irradiation, etc. It can be gelled or solidified.

このような構成を採ることにより、前記に記載した作用効果に加えて、ヨウ素電解質溶液を使用した場合は、その酸化還元反応が迅速に行われ、光電変換効率が向上する。また、ゲル電解質、固体電解質を用いた場合は、液漏れすることがないので安全性、耐久性が向上する。   By adopting such a configuration, in addition to the effects described above, when an iodine electrolyte solution is used, the oxidation-reduction reaction is rapidly performed and the photoelectric conversion efficiency is improved. Further, when a gel electrolyte or a solid electrolyte is used, the liquid does not leak, and thus safety and durability are improved.

以下に、本発明の実施の形態について、図面を用いて説明する。図1は、本発明の色素増感型太陽電池セルの一実施例の構成を示す模式断面図であり、図2は、本発明の色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of one embodiment of the dye-sensitized solar cell of the present invention, and FIG. 2 shows the configuration of one embodiment of the dye-sensitized solar cell module of the present invention. It is a schematic cross section of the principal part.

図1に示した色素増感型太陽電池セル100は、光が入射する側から、透明基板1、透明電極層2、電解質溶液3、色素増感剤が担持された酸化物半導体膜4、裏面電極層5、裏面基板6が順に積層または配置されて構成されている。透明基板1は、特に光の透過性(紫外光〜可視光域の波長の光の透過性)に優れると共に、耐候性、水蒸気その他のガスバリヤー性などに優れることが好ましく、ガラス板が適しているが、適宜の厚さのプラスチックシートなどを使用することもできる。ガラス板を使用する場合、厚さは0.5〜5mmの範囲が適当であり、1〜3mm程度が好ましい。プラスチックシートを使用する場合、耐候性の点ではエチレン・テトラフルオロエチレン共重合体シートが適しているが、2軸延伸ポリエチレンテレフタレートシートなども使用することができる。プラスチックシートを使用する場合、その厚さは、特に限定はされないが、50〜300μm程度が適当である。   A dye-sensitized solar cell 100 shown in FIG. 1 includes a transparent substrate 1, a transparent electrode layer 2, an electrolyte solution 3, an oxide semiconductor film 4 on which a dye sensitizer is supported, and a back surface, from the light incident side. The electrode layer 5 and the back substrate 6 are sequentially laminated or arranged. The transparent substrate 1 is particularly excellent in light transmittance (transmittance of light having a wavelength in the range of ultraviolet light to visible light) and preferably excellent in weather resistance, water vapor and other gas barrier properties, and a glass plate is suitable. However, a plastic sheet having an appropriate thickness can also be used. When using a glass plate, the thickness is suitably in the range of 0.5 to 5 mm, preferably about 1 to 3 mm. When a plastic sheet is used, an ethylene / tetrafluoroethylene copolymer sheet is suitable in terms of weather resistance, but a biaxially stretched polyethylene terephthalate sheet or the like can also be used. When using a plastic sheet, the thickness is not particularly limited, but about 50 to 300 μm is appropriate.

透明電極層2は、導電性と共に光の透過性(紫外光〜可視光域の波長の光の透過性)に優れることが好ましく、例えば、SnO2、ITO、ZnOなどの薄膜層を用いることができるが、なかでもフッ素ドープしたSnO2、ITOの薄膜層が、導電性と光の透過性の両方に優れている点で特に好ましい。SnO2またはITOの薄膜層を形成する方法としては、各種の蒸着法を用いることができるが、特にスパッタリング法により形成することが、生産性がよく、前記性能にも優れている点で好ましい。SnO2またはITOの薄膜層の厚さは300〜1500Å程度が適当である。 The transparent electrode layer 2 is preferably excellent in conductivity and light transmittance (transmittance of light having a wavelength in the range of ultraviolet light to visible light). For example, a thin film layer such as SnO 2 , ITO, ZnO or the like is used. Among them, a fluorine-doped SnO 2 or ITO thin film layer is particularly preferable because it is excellent in both conductivity and light transmittance. As a method for forming a thin film layer of SnO 2 or ITO, various vapor deposition methods can be used, but it is particularly preferable to form by a sputtering method in terms of good productivity and excellent performance. The thickness of the SnO 2 or ITO thin film layer is suitably about 300 to 1500 mm.

発電層8を構成する電解質溶液3、および色素増感剤が担持された酸化物半導体膜4に関しては、先に詳しく説明したので、ここでは説明を省略する。只、酸化物半導体膜4を形成する際、その塗布液にポリエチレングリコールを含ませることにより、高度の多孔質膜を容易に形成できるようになる。この酸化物半導体膜4の厚さは10μm程度が好ましい。また、図には示していないが、酸化物半導体膜4には、先に説明したようなTiCl4水溶液及び/又はt−ブチルピリジンのアセトニトリル分散液による表面処理を施すことが好ましい。 Since the electrolyte solution 3 constituting the power generation layer 8 and the oxide semiconductor film 4 on which the dye sensitizer is supported have been described in detail above, description thereof is omitted here. When the oxide semiconductor film 4 is formed, a highly porous film can be easily formed by including polyethylene glycol in the coating solution. The thickness of the oxide semiconductor film 4 is preferably about 10 μm. Although not shown in the figure, the oxide semiconductor film 4 is preferably subjected to a surface treatment with a TiCl 4 aqueous solution and / or an acetonitrile dispersion of t-butylpyridine as described above.

裏面電極層5は、裏面基板6の上に、例えば白金ペーストまたはカーボンペーストをパターン状に塗布、乾燥して形成することができる。白金ペーストを使用する場合、例えばH2PtCl6ペーストを使用することができ、これをイソプロピルアルコール、酢酸エチル、トルエンなどの有機溶剤で適する粘度に調整して塗布することができる。 The back electrode layer 5 can be formed on the back substrate 6 by applying, for example, a platinum paste or carbon paste in a pattern and drying. In the case of using a platinum paste, for example, an H 2 PtCl 6 paste can be used, which can be applied after adjusting to a suitable viscosity with an organic solvent such as isopropyl alcohol, ethyl acetate, and toluene.

裏面基板6には、ガラス板を使用することもできるが、生産性を向上させ、またコストの低減化を図るためには、先に説明したように、ロール状に巻き上げ可能な耐熱性フレキシブルフィルムを使用することが好ましい。耐熱性フレキシブルフィルムとしては、例えば、2軸延伸ポリエチレンテレフタレートフィルムのほか、ポリエーテルサルフォン(PES)フィルム、ポリエーテルエーテルケトン(PEEK)フィルム、ポリエーテルイミド(PEI)フィルム、ポリイミド(PI)フィルムなどが挙げられる。これらは単独のフィルムを使用してもよく、他の耐熱性材料を積層した複合フィルムとして使用することもできる。このような耐熱性フレキシブルフィルムの厚さは、特に限定はされないが、16〜100μm程度が適当である。   Although a glass plate can be used for the back substrate 6, as described above, a heat-resistant flexible film that can be rolled up in order to improve productivity and reduce costs. Is preferably used. Examples of the heat-resistant flexible film include a biaxially stretched polyethylene terephthalate film, a polyethersulfone (PES) film, a polyetheretherketone (PEEK) film, a polyetherimide (PEI) film, and a polyimide (PI) film. Is mentioned. These may use a single film, and can also be used as a composite film in which other heat-resistant materials are laminated. The thickness of such a heat-resistant flexible film is not particularly limited, but about 16 to 100 μm is appropriate.

次に、図2は、本発明の色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。図2に示した色素増感型太陽電池モジュール200は、前記図1に示した構成の色素増感型太陽電池セルが所定の間隔を開けて3個並べて配列され、それぞれのセルが導電性の電極接続部7で直列に接続されると共に、各セルの間には非導電性の隔壁9が設けられて仕切りされ、また、両側のセルの端部、即ち、色素増感型太陽電池モジュール200の周囲の端部は非導電性の封止材10で封止され、更に、両側のセルから正極または負極の電極リード11が引き出されて構成されている。   Next, FIG. 2 is a schematic cross-sectional view of the main part showing the configuration of one embodiment of the dye-sensitized solar cell module of the present invention. In the dye-sensitized solar cell module 200 shown in FIG. 2, three dye-sensitized solar cells having the configuration shown in FIG. 1 are arranged side by side at a predetermined interval, and each cell is electrically conductive. In addition to being connected in series at the electrode connection portion 7, a non-conductive partition wall 9 is provided and partitioned between the cells, and the ends of the cells on both sides, that is, the dye-sensitized solar cell module 200. The peripheral edge of each is sealed with a non-conductive sealing material 10, and positive or negative electrode leads 11 are drawn from the cells on both sides.

従って、各セル自体の構成は、前記図1に示した色素増感型太陽電池セル100と同様であり、光の入射する側から、透明基板1、透明電極層2、電解質溶液3、色素増感剤が担持された酸化物半導体膜4、裏面電極層5、裏面基板6が順に積層または配置されて構成されている。   Therefore, the configuration of each cell itself is the same as that of the dye-sensitized solar cell 100 shown in FIG. 1, and from the light incident side, the transparent substrate 1, the transparent electrode layer 2, the electrolyte solution 3, the dye-sensitized solar cell. The oxide semiconductor film 4 on which the sensitizer is supported, the back electrode layer 5 and the back substrate 6 are sequentially laminated or arranged.

尚、図2に示した色素増感型太陽電池モジュール200では、色素増感型太陽電池セルが3個並べて配列され、直列に接続された形態で示したが、配列するセルの数は任意であり、所望の電圧が得られるように自由に設計することができる。また、このような色素増感型太陽電池モジュールは、前記請求項10に記載した発明の色素増感型太陽電池モジュールの製造方法により、生産性よく、低コストで製造でき、大量生産も容易である。   In the dye-sensitized solar cell module 200 shown in FIG. 2, three dye-sensitized solar cells are arranged side by side and connected in series. However, the number of cells to be arranged is arbitrary. Yes, it can be freely designed to obtain a desired voltage. Moreover, such a dye-sensitized solar cell module can be manufactured at low cost and with high productivity by the method for manufacturing a dye-sensitized solar cell module according to the invention described in claim 10, and mass production is also easy. is there.

以下に、実施例、比較例を挙げて本発明を更に具体的に説明する。
〔実施例1〕
(色素増感型太陽電池セルの作製)裏面基板として、ガラス板を用い、その上に枚葉のスクリーン印刷機により、先ず、白金ペーストをパターン状に塗布、乾燥して厚さ3μmの裏面電極層を形成し、その上に粒子径1〜10nmのTiO2微粒子をポリエチレングリコールに分散した分散液をパターン状に塗布し、450℃で30分間、乾燥、焼成して、厚さ10μmの酸化物半導体膜(TiO2の多孔質膜)を形成した後、そのTiO2多孔質膜に色素増感剤を担持させるため、この積層体をルテニウム錯体のエタノール溶液に浸漬して含浸させた後、乾燥して、TiO2多孔質膜にルテニウム錯体を担持させた。次いで、この積層体のTiO2多孔質膜形成面に、別に用意したガラス板(透明基板)上にSnO2の薄膜層(透明電極層)がパターン状に形成された積層体のSnO2の薄膜層形成面が対向するように重ね合わせ、電極リードを引き出すと共に、周囲の端部をエポキシ系接着剤で電解質溶液の注入口のみを残して封止し、接着剤の硬化後、その注入口からヨウ素電解質溶液を注入し、注入後、その注入口をシール材で封止して実施例1の色素増感型太陽電池セルを作製した。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[Example 1]
(Preparation of dye-sensitized solar cell) A glass plate is used as the back substrate, and then a platinum paste is applied in a pattern and dried by a sheet-fed screen printer, and the back electrode has a thickness of 3 μm. A layer is formed, and a dispersion liquid in which TiO 2 fine particles having a particle diameter of 1 to 10 nm are dispersed in polyethylene glycol is applied in a pattern, dried and fired at 450 ° C. for 30 minutes, and an oxide having a thickness of 10 μm. After the semiconductor film (TiO 2 porous film) is formed, the laminate is dipped in an ethanol solution of ruthenium complex and impregnated in order to support the dye sensitizer on the TiO 2 porous film, and then dried. Then, the ruthenium complex was supported on the TiO 2 porous film. Then, the TiO 2 porous film surface of the laminate, a thin film of SnO 2 of laminate thin layers of SnO 2 (transparent electrode layer) is formed in a pattern on the glass plate prepared separately (transparent substrate) Laminate so that the layer formation surfaces face each other, pull out the electrode lead, seal the surrounding edge with an epoxy adhesive leaving only the injection port of the electrolyte solution, and after curing the adhesive, from the injection port The iodine electrolyte solution was injected, and after the injection, the injection port was sealed with a sealing material to prepare the dye-sensitized solar cell of Example 1.

〔実施例2〕
(色素増感型太陽電池セルの作製)裏面基板として、厚さ25μmのロール状に巻き上げられた長尺のPETフィルムを用い、巻き取り供給巻き上げ方式のグラビアダイレクトコーターにより、先ず、白金ペーストをパターン状に塗布、乾燥して厚さ3μmの裏面電極層を形成し、その上に粒子径1〜10nmのTiO2微粒子をポリエチレングリコールに分散した分散液をパターン状に塗布し、120℃で30分間、乾燥、焼成して、厚さ10μmの酸化物半導体膜(TiO2の多孔質膜)を形成した後、更にそのTiO2多孔質膜に色素増感剤を担持させるため、TiO2多孔質膜上にルテニウム錯体のエタノール溶液を塗布し、含浸させた後、乾燥して、TiO2多孔質膜にルテニウム錯体を担持させた。次いで、この積層体を所定の寸法に打ち抜き、そのTiO2多孔質膜形成面に、別に用意したガラス板(透明基板)上にSnO2の薄膜層(透明電極層)がパターン状に形成された積層体のSnO2の薄膜層形成面が対向するように重ね合わせ、電極リードを引き出すと共に、周囲の端部をエポキシ系接着剤で電解質溶液の注入口のみを残して封止し、接着剤の硬化後、その注入口からヨウ素電解質溶液を注入し、注入後、その注入口をシール材で封止して実施例2の色素増感型太陽電池セルを作製した。
[Example 2]
(Preparation of dye-sensitized solar cell) Using a long PET film wound up in a 25 μm-thick roll as the back substrate, first pattern the platinum paste with a wind-up and wind-up gravure direct coater A back electrode layer having a thickness of 3 μm is formed by coating and drying, and a dispersion liquid in which TiO 2 fine particles having a particle diameter of 1 to 10 nm are dispersed in polyethylene glycol is applied on the back electrode layer in a pattern, and then at 120 ° C. for 30 minutes. , dried, and calcined, after formation of the oxide semiconductor film having a thickness of 10 [mu] m (TiO 2 porous membrane), in order to further carry the dye sensitizer to the TiO 2 porous film, TiO 2 porous film An ethanol solution of ruthenium complex was applied on the surface, impregnated, and then dried to load the ruthenium complex on the TiO 2 porous film. Next, this laminate was punched into a predetermined size, and a thin film layer (transparent electrode layer) of SnO 2 was formed in a pattern on a separately prepared glass plate (transparent substrate) on the TiO 2 porous film forming surface. Laminate the SnO 2 thin film layer forming surfaces of the laminate so that they face each other, pull out the electrode leads, seal the surrounding edges with an epoxy adhesive leaving only the electrolyte solution inlet, After curing, an iodine electrolyte solution was injected from the injection port, and after the injection, the injection port was sealed with a sealing material to produce a dye-sensitized solar cell of Example 2.

以上のように作製した実施例1、実施例2の色素増感型太陽電池セルについて、その光電変換効率〔η%〕を測定した結果は、実施例1の色素増感型太陽電池セルは9%、実施例2の色素増感型太陽電池セルは8%であった。また、実施例2の色素増感型太陽電池セルは、裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルム(この場合、PETフィルム)を用いて、その上に裏面電極層と酸化物半導体膜と、その酸化物半導体膜に担持させる色素増感剤とを、巻き取り供給巻き上げ方式のパターンコーター(この場合、グラビアダイレクトコーター)を使用して加工しているので、ガラス基板などに枚葉のスクリーン印刷機を使用して加工する場合と比較して、生産性が大幅に向上し、コストも低減でき、量産性にも優れている。   As a result of measuring the photoelectric conversion efficiency [η%] of the dye-sensitized solar cells of Example 1 and Example 2 manufactured as described above, the result is 9 for the dye-sensitized solar cell of Example 1. %, And the dye-sensitized solar cell of Example 2 was 8%. Moreover, the dye-sensitized solar cell of Example 2 uses a long heat-resistant flexible film (in this case, a PET film) wound up in a roll shape as a back substrate, and a back electrode layer on the long heat-resistant flexible film. Since the oxide semiconductor film and the dye sensitizer to be supported on the oxide semiconductor film are processed using a pattern coater (in this case, a gravure direct coater) of a winding supply winding method, such as a glass substrate Compared with processing using a sheet-fed screen printer, productivity is greatly improved, costs can be reduced, and mass productivity is excellent.

1 透明基板
2 透明電極層
3 電解質溶液
4 色素増感剤が担持された酸化物半導体膜
5 裏面電極層
6 裏面基板
7 電極接続部
8 発電層
9 隔壁
10 封止材
11 電極リード
100 色素増感型太陽電池セル
200 色素増感型太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent electrode layer 3 Electrolyte solution 4 Oxide semiconductor film 5 with which dye sensitizer was carry | supported Back electrode layer 6 Back substrate 7 Electrode connection part 8 Power generation layer 9 Partition 10 Sealing material 11 Electrode lead 100 Dye sensitization Type solar cell 200 Dye-sensitized solar cell module

Claims (7)

少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質とで形成される色素増感型太陽電池セルの製造方法であって、
裏面基板の上に、白金またはカーボンペーストをパターン状に塗布、乾燥して、裏面電極層を形成する工程と、
裏面電極層の上に、酸化物微粒子ペーストをパターン状に塗布、乾燥、焼成して、酸化物半導体膜を形成する工程と、
酸化物半導体膜に、色素増感剤の溶液を塗布または浸漬して含浸させた後、乾燥して、色素増感剤を担持させる工程と、
によって、発電層の色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板の積層体を形成することを特徴とする色素増感型太陽電池セルの製造方法。
An oxide formed by laminating a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate in order from at least the light receiving surface side, and the power generation layer is obtained by firing oxide fine particles A method for producing a dye-sensitized solar cell formed by a semiconductor film, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte impregnated in the oxide semiconductor film,
Applying platinum or carbon paste in a pattern on the back substrate and drying to form a back electrode layer;
Applying oxide fine particle paste in a pattern on the back electrode layer, drying and baking to form an oxide semiconductor film;
Applying or immersing a dye sensitizer solution in an oxide semiconductor film and impregnating the oxide semiconductor film, followed by drying and supporting the dye sensitizer;
To form a laminate of the oxide semiconductor film carrying the dye sensitizer of the power generation layer, the back electrode layer, and the back substrate, thereby producing a dye-sensitized solar cell.
裏面基板として、ガラス板、または耐熱性フレキシブルフィルムを用いることを特徴とする請求項1に記載の色素増感型太陽電池セルの製造方法。 The method for producing a dye-sensitized solar cell according to claim 1 , wherein a glass plate or a heat-resistant flexible film is used as the back substrate . 裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用いることを特徴とする請求項1または2に記載の色素増感型太陽電池セルの製造方法。 The method for producing a dye-sensitized solar cell according to claim 1 or 2, wherein a long heat-resistant flexible film wound up in a roll shape is used as the back substrate . 裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法。 The method for producing a dye-sensitized solar cell according to claim 3, wherein a pattern coater of a winding supply winding method is used in the step of forming the back electrode layer . 裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、酸化物半導体膜を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法。 In the step of forming a back electrode layer, using the pattern coater winding supply hoisting system, in the step of forming the oxide semiconductor film, according to claim 3, characterized by using a pattern coater winding supply hoisting system the method of manufacturing the dye-sensitized solar cell. 裏面電極層を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、酸化物半導体膜を形成する工程で、巻き取り供給巻き上げ方式のパターンコーターを用い、色素増感剤を担持させる工程で、巻き取り供給巻き上げ方式のパターンコーターまたは巻き取り供給巻き上げ方式の浸漬装置を用いることを特徴とする請求項3に記載の色素増感型太陽電池セルの製造方法。 In the step of forming the back electrode layer, in the step of forming the oxide semiconductor film in the step of forming an oxide semiconductor film using the pattern coater of the winding supply winding method, in the step of supporting the dye sensitizer using the pattern coater of the winding supply winding method. , the winding supply hoisting method for producing a dye-sensitized solar cell according to claim 3, characterized by using a dipping apparatus of a pattern coater or winding supply hoisting method in the method. 少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、上記色素増感型太陽電池セルが、請求項1乃至6のいずれかに記載の色素増感型太陽電池セルの製造方法で製造することを特徴とする色素増感型太陽電池モジュールの製造方法。An oxide formed by laminating a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate in order from at least the light receiving surface side, and the power generation layer is obtained by firing oxide fine particles A plurality of dye-sensitized solar cells formed by a semiconductor film, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film are planar or A method for producing a dye-sensitized solar cell module arranged in a curved surface and connected in series, wherein the dye-sensitized solar cell is the dye-sensitized solar cell according to any one of claims 1 to 6. A method for producing a dye-sensitized solar cell module, which is produced by a method for producing a sensitive solar cell.
JP2010251749A 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module Expired - Fee Related JP5212750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251749A JP5212750B2 (en) 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251749A JP5212750B2 (en) 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000283960A Division JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2011066007A true JP2011066007A (en) 2011-03-31
JP5212750B2 JP5212750B2 (en) 2013-06-19

Family

ID=43952015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251749A Expired - Fee Related JP5212750B2 (en) 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP5212750B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071036A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Solution concentration adjusting method, solution concentration adjusting device, dye-sensitized solar cell, and optical device
JP2013219037A (en) * 2013-05-09 2013-10-24 Dainippon Printing Co Ltd Dye-sensitized solar cell element module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071036A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Solution concentration adjusting method, solution concentration adjusting device, dye-sensitized solar cell, and optical device
JP2013219037A (en) * 2013-05-09 2013-10-24 Dainippon Printing Co Ltd Dye-sensitized solar cell element module

Also Published As

Publication number Publication date
JP5212750B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP4659954B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP4659955B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module using the same, and manufacturing method thereof
Chang et al. Fabrication of highly efficient flexible dye-sensitized solar cells
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
US20140227828A1 (en) Dye-sensitized solar cell and method for manufacturing the same
Chang et al. Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition
JP2001160425A (en) Optical semiconductor electrode and its manufacturing method
TW201101508A (en) Dye-sensitized solar cells and manufacturing method for thereof
TW201115809A (en) Method for manufacturing an electrode
JP2008257893A (en) Method of manufacturing substrate for dye-sensitized solar cell, method of manufacturing dye-sensitized solar cell, and substrate for dye-sensitized solar cell and dye-sensitized solar cell manufactured by these methods
JP5332378B2 (en) Counter electrode substrate and dye-sensitized solar cell using the same
JP4955852B2 (en) Photoelectrode and photochemical battery using the same
JP2004311355A (en) Manufacturing method of substrate for electrode
KR20120020938A (en) Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
JP5212750B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
Kuo et al. Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells
JP2002314108A (en) Solar cell
TW201214717A (en) Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2004047261A (en) Photo-electrode, method of manufacturing photo-electrode and solar battery
Chen et al. Photoelectrode fabrication of dye-sensitized nanosolar cells using multiple spray coating technique
JP5521419B2 (en) Electrolyte forming coating solution and dye-sensitized solar cell using the same
JP5119624B2 (en) Transfer body for metal oxide electrode production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees