JP4659954B2 - Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module - Google Patents

Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module Download PDF

Info

Publication number
JP4659954B2
JP4659954B2 JP2000283960A JP2000283960A JP4659954B2 JP 4659954 B2 JP4659954 B2 JP 4659954B2 JP 2000283960 A JP2000283960 A JP 2000283960A JP 2000283960 A JP2000283960 A JP 2000283960A JP 4659954 B2 JP4659954 B2 JP 4659954B2
Authority
JP
Japan
Prior art keywords
dye
oxide semiconductor
semiconductor film
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000283960A
Other languages
Japanese (ja)
Other versions
JP2002093475A (en
Inventor
晃次郎 大川
淳朗 續木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2000283960A priority Critical patent/JP4659954B2/en
Publication of JP2002093475A publication Critical patent/JP2002093475A/en
Application granted granted Critical
Publication of JP4659954B2 publication Critical patent/JP4659954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、色素増感型太陽電池セルの製造方法及び色素増感型太陽電池モジュールの製造方法に関する。
【0002】
【従来の技術】
二酸化炭素が原因とされる地球温暖化が世界的に問題となっている近年、環境にやさしく、クリーンなエネルギー源として、太陽光エネルギーを利用した太陽電池が注目され、積極的に研究開発が進められている。このような太陽電池として、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池などが既に実用化されているが、より光電変換効率が高く、且つ、低コスト化の可能性のある太陽電池として、色素増感型太陽電池が新たに注目され研究開発されている。
【0003】
色素増感型太陽電池は、例えば、光の入射する側から、透明基板、透明電極層、発電層(発電層は、多孔質の酸化物半導体膜とその表面に担持された色素増感剤と電解質溶液とで構成される)、裏面電極層、裏面基板が順に積層されてセルが形成される。
【0004】
【発明が解決しようとする課題】
このような色素増感型太陽電池セルは、実験室的には変換効率など性能に優れたセルを作製することができるが、各構成要素(材料)の高品質化と低コスト化、およびモジュール化を含めた製造方法など量産化技術などの点では、未だ多くの課題がある。例えば、前記透明基板や裏面基板についても、通常、ガラス板が用いられるが、その場合、光の透過性、耐久性、ガスバリヤー性などの性能面では優れているが、このガラス板を基材として、その上に各種の電池の構成要素をバッチ式で逐次加工して太陽電池を製造する必要があり、その作業性、生産性に劣るため、大量生産が困難であり、製造コストも上昇するなどの問題があった。
【0005】
本発明は、このような問題点を解決するためになされたものであり、その目的とするところは、光電変換効率が高く、且つ、生産性にも優れ、大量生産が容易であると共に、製造コストも低減することのできる色素増感型太陽電池セルの製造方法及び色素増感型太陽電池セルを用いた色素増感型太陽電池モジュールの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題は、以下の本発明により解決することができる。即ち、請求項1に記載した発明は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルの製造方法であって、前記の粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜を、粒子径0.1nm〜10μmの酸化物微粒子を少なくともポリエチレングリコールを含む液に分散させて作製した酸化物微粒子ペーストを用いて形成し、前記の少なくとも発電層の色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板との積層体を、裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用い、裏面基板の上に、巻き取り供給巻き上げ方式のパターンコーターを用いて、白金またはカーボンペーストをパターン状に塗布、乾燥して、裏面電極層を形成し、次いで、裏面電極層の上に、前記の酸化物微粒子ペーストを、パターン状に塗布、乾燥、焼成して酸化物半導体膜を形成し、更に、形成された酸化物半導体膜に、色素増感剤の溶液を、巻き取り供給巻き上げ方式のパターンコーター、または巻き取り供給巻き上げ方式の浸漬装置を用いて、塗布、または浸漬して含浸させた後、乾燥して、色素増感剤を担持させて、形成することを特徴とする色素増感型太陽電池セルの製造方法からなる。
【0007】
このような製造方法を採ることにより、酸化物半導体膜を形成する際、その塗布液にポリエチレングリコールを含ませることにより、高度の多孔質膜を容易に形成できるようになる。また、このような製造方法を採ることにより、色素増感型太陽電池セルの各構成要素のうち、少なくとも色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板との積層体を、裏面基板の長尺の耐熱性フレキシブルフィルムを基材として、その上に、裏面電極層と酸化物半導体膜とそれに担持させる色素増感剤とを、巻き取り供給巻き上げ方式のパターンコーター、または浸漬装置などを用いて加工し、製造することができるので、生産性が大幅に向上し、光電変換効率に優れた色素増感型太陽電池セルを低コストで大量生産することができる。
【0008】
請求項2に記載した発明は、前記の酸化物微粒子ペーストを塗布し、100〜350℃で、10〜180分間、乾燥、焼成して酸化物半導体膜を形成することを特徴とする請求項1に記載の色素増感型太陽電池セルの製造方法からなる。
【0009】
請求項3に記載した発明は、前記の酸化物微粒子ペーストを塗布した後であって、100〜350℃で、10〜180分間、乾燥、焼成する前に、予備乾燥をすることを特徴とする請求項2に記載の色素増感型太陽電池セルの製造方法からなる。
【0010】
請求項4に記載した発明は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、上記色素増感型太陽電池セルが、請求項1乃至3のいずれかに記載の色素増感型太陽電池セルの製造方法で製造することを特徴とする色素増感型太陽電池モジュールの製造方法からなる。
【0011】
このような構成を採ることにより、前記請求項1乃至4のいずれかに記載した色素増感型太陽電池セルを有効に利用できるので、光電変換効率に優れ、且つ、所望の起電力を有する色素増感型太陽電池モジュールを生産性よく、低コストで製造することができる。
【0012】
請求項5に記載した発明は、少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、少なくとも下記(1)〜(5)の工程を含むことを特徴とする色素増感型太陽電池モジュールの製造方法からなる。
(1)裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用い、該裏面基板の上に、巻き取り供給巻き上げ方式のパターンコーターを用いて、白金またはカーボンペーストを、複数個のセルが所定の間隔を開けて配列されて形成されるモジュールの裏面電極層のパターンで塗布、乾燥して、裏面電極層を形成し、裏面電極層の上に酸化物半導体膜のパターンで、粒子径0.1nm〜10μmの酸化物微粒子を少なくともポリエチレングリコールを含む液に分散させて作製した酸化物微粒子ペーストを塗布し、予備乾燥後、100〜350℃で10〜180分間、乾燥、焼成して多孔質の酸化物半導体膜を形成する工程。
(2)前記(1)の工程で作製した耐熱性フレキシブルフィルムの裏面基板と該裏面基板の上にそれぞれ所定のパターンで形成された裏面電極層と酸化物半導体膜の積層体の酸化物半導体膜に、色素増感剤の溶液を、巻き取り供給巻き上げ方式のパターンコーター、または巻き取り供給巻き上げ方式の浸漬装置を用いて、塗布、または浸漬して含浸させた後、乾燥して、色素増感剤を担持させる工程。
(3)前記(2)の工程で作製した耐熱性フレキシブルフィルムの裏面基板と該裏面基板の上にそれぞれ所定のパターンで形成された裏面電極層と色素増感剤を担持させた酸化物半導体膜の積層体の酸化物半導体膜形成面に、各セル間を直列に接続する接続部と、各セル間を仕切りする隔壁とを設ける工程。
(4)前記(3)の工程で作製した積層体の酸化物半導体膜形成面に、別に作製した透明基板と該透明基板の上に所定のパターンで形成された透明電極層の積層体を、その透明電極層面が対向するように重ね、直列に接続された複数個のセルからなるモジュールの正極の端部と負極の端部から電極リードを引き出し、両者を接合する工程。
(5)前記(4)の工程で作製した積層体の各セルに予め耐熱性フレキシブルフィルムの裏面基板に設けられた小孔、またはセルの端部に設けられた間隙部から電解質溶液を注入し、酸化物半導体膜に含浸させ、それぞれの小孔または間隙部をシール材で封止する工程。
【0015】
このような製造方法を採ることにより、色素増感型太陽電池モジュールの各構成要素のうち、少なくとも色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板との積層体を、裏面基板の長尺の耐熱性フレキシブルフィルムを基材として、その上に、裏面電極層と酸化物半導体膜とそれに担持させる色素増感剤とを、巻き取り供給巻き上げ方式のパターンコーター、または浸漬装置などを用いて加工し、製造することができるので、生産性を大幅に向上させることができ、光電変換効率に優れ、且つ、所望の起電力を有する色素増感型太陽電池モジュールを生産性よく、低コストで大量生産することができる。
【0016】
【発明の実施の形態】
以下、本発明の色素増感型太陽電池セルの製造方法から得られるセルについて、説明する。
少なくとも、受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層されてなる太陽電池セルにおいて、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成され、且つ、該酸化物微粒子の少なくとも30重量%が、粒子径0.1〜10nmの微粒子であることが好ましい。
【0017】
上記酸化物微粒子の粒子径は、0.1nm〜10μmの範囲が好ましく、粒子径が0.1nm未満の微粒子は、製造自体が難しい上、粒子同士が凝集して二次粒子を作りやすくなるため好ましくない。また、粒子径が10μmを超える微粒子は、酸化物半導体膜の厚さを必要以上に厚くすると共に、光の透過性も低下させるため好ましくない。
【0018】
このような構成を採ることにより、発電層の酸化物半導体膜を形成する酸化物微粒子が、粒子径0.1nm〜10μmの範囲であって、且つ、その少なくとも30重量%が、粒子径0.1〜10nmの微粒子であるため、形成される多孔質膜の内部の実表面積が一層大きくなると同時に、内部の表面にも色素増感剤が担持されるので、広い波長領域の光を一層有効に利用でき、色素増感型太陽電池セルの光電変換効率、即ち、発電効率を一層高くすることができる。また、酸化物微粒子は、アモルファスシリコンなどと比較して安価であるため、材料コストを低減することができる。更に、裏面基板には、ガラス板を用いてもよいが、ロール状に巻き上げられた長尺の耐熱性フィルムを用いることができ、それにより、少なくともその上の裏面電極層、および発電層の酸化物半導体膜とそれに担持させる色素増感剤を、巻き取り供給巻き上げ方式のパターンコーター、例えばグラビアダイレクトコーター、ロータリースクリーン印刷機、或いは浸漬装置などを用いて、ロール・ツー・ロール方式で形成することができるので、生産性が著しく向上し、大量生産が容易になると同時に製造コストも低減することができる。
【0019】
前記酸化物半導体膜の酸化物微粒子が、TiO2、ZnO、SnO2、ITO、ZrO2、SiOx、MgO、Al23、CeO2、Bi23、Mn34、Y23、WO3、Ta25、Nb25、La23の微粒子のうちのいずれか一種、または二種以上の混合系の微粒子であることが好ましい。
【0020】
上記の酸化物微粒子は、材質的に発電層の酸化物半導体多孔質膜の形成に適しており、その光電変換効率も高く、コスト面でも比較的安価である。従って、このような構成を採ることにより、前記に記載した作用効果に加えて、光電変換効率が高く、低コストの色素増感型太陽電池セルを一層容易に製造することができる。
【0021】
前記酸化物半導体膜の酸化物微粒子の30重量%以上が、TiO2の微粒子であることが好ましい。
【0022】
色素増感型太陽電池セルの酸化物半導体膜に用いる酸化物微粒子としては、TiO2の微粒子が、粒子径0.1〜10nmの微粒子の製造も比較的容易であり、高多孔質膜の形成、光電変換効率の高さ、低コスト化などの点で特に適している。従って、酸化物微粒子の全部をTiO2の微粒子で構成してもよいが、30重量%以上をTiO2の微粒子とすることにより、前記高多孔質膜の形成、高光電変換効率、低コスト化などの効果を充分に得ることができる。従って、前記のような構成を採ることにより、前記に記載した発明の作用効果に加えて、一層確実に光電変換効率が高く、低コストの色素増感型太陽電池セルを製造することができる。
【0023】
前記酸化物半導体膜が、前記酸化物微粒子に導電性バインダーを1〜30重量%の範囲で混合した混合物で形成されていることが好ましい。
【0024】
このような構成を採ることにより、前記に記載した作用効果に加えて、酸化物半導体膜を形成する際、より低い加熱温度、或いは、より短い加熱時間で、その多孔質膜を形成できるので、生産性を向上できると共に、裏面基板として、耐熱性フレキシブルフィルムを用いる場合、その耐熱性のレベルを下げることができるので、フィルムの選択範囲を広げることができ、コスト低減効果も得ることができる。
【0025】
前記酸化物半導体膜が、その多孔質の内部表面まで、TiCl4水溶液及び/又はt−ブチルピリジンのアセトニトリル分散液により、表面処理されていることが好ましい。
【0026】
上記TiCl4水溶液による表面処理は、焼成された酸化物半導体膜上に0.5M未満のTiCl4水溶液を塗布し、含浸させた後、乾燥する方法で実施することができ、これが酸化物半導体膜の表面準位の減少に寄与し、また、t−ブチルピリジンのアセトニトリル分散液による表面処理は、色素増感剤を担持させた後の酸化物半導体膜上にt−ブチルピリジン5容量%未満を含むアセトニトリル分散液を塗布し、含浸させた後、乾燥する方法で実施することができ、これにより酸化物半導体膜中に移動した電子の逆流が抑制される。
【0027】
従って、このような表面処理を施すことにより、前記に記載した発明の作用効果に加えて、発生した電子を一層効率的に利用できるようになるので、色素増感型太陽電池セルの発電効率を更に向上させることができる。
【0028】
前記色素増感剤が、ルテニウム錯体であることが好ましい。
【0029】
前記色素増感剤としては、有機色素または金属錯体色素を使用することができ、有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられ、金属錯体色素では、ルテニウム系色素が好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が好ましい。例えば、酸化物半導体膜だけでは、可視光(400〜800nm程度の波長)を殆ど吸収できないが、ルテニウム錯体を担持させることにより、大幅に可視光まで取り込んで光電変換できるようになる。
【0030】
従って、前記のような構成を採ることにより、前記に記載した作用効果に加えて、ルテニウム錯体により光電変換できる光の波長領域を大幅に広げることができるので、色素増感型太陽電池セルの光電変換効率を一層向上させることができる。
【0031】
前記電解質溶液が、ヨウ素電解質溶液、またはゲル電解質、固体電解質のいずれかであることが好ましい。
【0032】
本発明の色素増感型太陽電池セルの電解質溶液としては、ヨウ素電解質溶液を有効に使用することができるが、そのほかにゲル電解質、固体電解質を使用することができる。ゲル電解質は、大別して、物理ゲルと化学ゲルに分けられ、物理ゲルは、物理的な相互作用で室温付近でゲル化しているものであり、例えば、ポリアクリロニトリル、ポリメタクリレートが挙げられる。化学ゲルは、架橋反応などにより化学結合でゲルを形成しているものであり、アクリル酸エステル系、メタクリル酸エステル系のゲルが挙げられる。また、固体電解質としては、ポリピロール、CuIが挙げられる。ゲル電解質、固体電解質を使用する場合、低粘度の前駆体を酸化物半導体膜に含浸させ、加熱、紫外線照射、電子線照射などの手段で二次元または三次元の架橋反応を起こさせることにより、ゲル化または固体化することができる。
【0033】
このような構成を採ることにより、前記に記載した作用効果に加えて、ヨウ素電解質溶液を使用した場合は、その酸化還元反応が迅速に行われ、光電変換効率が向上する。また、ゲル電解質、固体電解質を用いた場合は、液漏れすることがないので安全性、耐久性が向上する。
【0034】
前記に記載の色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールである。
【0035】
このような構成を採ることにより、前記に記載した色素増感型太陽電池セルを有効に利用できるので、光電変換効率に優れ、且つ、所望の起電力を有する色素増感型太陽電池モジュールを生産性よく、低コストで製造することができる。
【0036】
以下に、本発明の実施の形態について、図面を用いて説明する。図1は、本発明の製造方法で製造された色素増感型太陽電池セルの一実施例の構成を示す模式断面図であり、図2は、本発明の製造方法で製造された色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。
【0037】
図1に示した色素増感型太陽電池セル100は、光が入射する側から、透明基板1、透明電極層2、電解質溶液3、色素増感剤が担持された酸化物半導体膜4、裏面電極層5、裏面基板6が順に積層または配置されて構成されている。透明基板1は、特に光の透過性(紫外光〜可視光域の波長の光の透過性)に優れると共に、耐候性、水蒸気その他のガスバリヤー性などに優れることが好ましく、ガラス板が適しているが、適宜の厚さのプラスチックシートなどを使用することもできる。ガラス板を使用する場合、厚さは0.5〜5mmの範囲が適当であり、1〜3mm程度が好ましい。プラスチックシートを使用する場合、耐候性の点ではエチレン・テトラフルオロエチレン共重合体シートが適しているが、2軸延伸ポリエチレンテレフタレートシートなども使用することができる。プラスチックシートを使用する場合、その厚さは、特に限定はされないが、50〜300μm程度が適当である。
【0038】
透明電極層2は、導電性と共に光の透過性(紫外光〜可視光域の波長の光の透過性)に優れることが好ましく、例えば、SnO2、ITO、ZnOなどの薄膜層を用いることができるが、なかでもフッ素ドープしたSnO2、ITOの薄膜層が、導電性と光の透過性の両方に優れている点で特に好ましい。SnO2またはITOの薄膜層を形成する方法としては、各種の蒸着法を用いることができるが、特にスパッタリング法により形成することが、生産性がよく、前記性能にも優れている点で好ましい。SnO2またはITOの薄膜層の厚さは300〜1500Å程度が適当である。
【0039】
発電層8を構成する電解質溶液3、および色素増感剤が担持された酸化物半導体膜4に関しては、先に詳しく説明したので、ここでは説明を省略する。只、酸化物半導体膜4を形成する際、その塗布液にポリエチレングリコールを含ませることにより、高度の多孔質膜を容易に形成できるようになる。この酸化物半導体膜4の厚さは10μm程度が好ましい。また、図には示していないが、酸化物半導体膜4には、先に説明したようなTiCl4水溶液及び/又はt−ブチルピリジンのアセトニトリル分散液による表面処理を施すことが好ましい。
【0040】
裏面電極層5は、裏面基板6の上に、例えば白金ペーストまたはカーボンペーストをパターン状に塗布、乾燥して形成することができる。白金ペーストを使用する場合、例えばH2PtCl6ペーストを使用することができ、これをイソプロピルアルコール、酢酸エチル、トルエンなどの有機溶剤で適する粘度に調整して塗布することができる。
【0041】
裏面基板6には、ガラス板を使用することもできるが、生産性を向上させ、またコストの低減化を図るためには、先に説明したように、ロール状に巻き上げ可能な耐熱性フレキシブルフィルムを使用することが好ましい。耐熱性フレキシブルフィルムとしては、例えば、2軸延伸ポリエチレンテレフタレートフィルムのほか、ポリエーテルサルフォン(PES)フィルム、ポリエーテルエーテルケトン(PEEK)フィルム、ポリエーテルイミド(PEI)フィルム、ポリイミド(PI)フィルムなどが挙げられる。これらは単独のフィルムを使用してもよく、他の耐熱性材料を積層した複合フィルムとして使用することもできる。このような耐熱性フレキシブルフィルムの厚さは、特に限定はされないが、16〜100μm程度が適当である。
【0042】
次に、図2は、本発明の製造方法で製造された色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。図2に示した色素増感型太陽電池モジュール200は、前記図1に示した構成の色素増感型太陽電池セルが所定の間隔を開けて3個並べて配列され、それぞれのセルが導電性の電極接続部7で直列に接続されると共に、各セルの間には非導電性の隔壁9が設けられて仕切りされ、また、両側のセルの端部、即ち、色素増感型太陽電池モジュール200の周囲の端部は非導電性の封止材10で封止され、更に、両側のセルから正極または負極の電極リード11が引き出されて構成されている。
【0043】
従って、各セル自体の構成は、前記図1に示した色素増感型太陽電池セル100と同様であり、光の入射する側から、透明基板1、透明電極層2、電解質溶液3、色素増感剤が担持された酸化物半導体膜4、裏面電極層5、裏面基板6が順に積層または配置されて構成されている。
【0044】
尚、図2に示した色素増感型太陽電池モジュール200では、色素増感型太陽電池セルが3個並べて配列され、直列に接続された形態で示したが、配列するセルの数は任意であり、所望の電圧が得られるように自由に設計することができる。また、このような色素増感型太陽電池モジュールは、前記請求項5に記載した発明の色素増感型太陽電池モジュールの製造方法により、生産性よく、低コストで製造でき、大量生産も容易である。
【0045】
【実施例】
以下に、実施例、参考例を挙げて本発明を更に具体的に説明する。
参考例1〕
(色素増感型太陽電池セルの作製)裏面基板として、ガラス板を用い、その上に枚葉のスクリーン印刷機により、先ず、白金ペーストをパターン状に塗布、乾燥して厚さ3μmの裏面電極層を形成し、その上に粒子径1〜10nmのTiO2微粒子をポリエチレングリコールに分散した分散液をパターン状に塗布し、450℃で30分間、乾燥、焼成して、厚さ10μmの酸化物半導体膜(TiO2の多孔質膜)を形成した後、そのTiO2多孔質膜に色素増感剤を担持させるため、この積層体をルテニウム錯体のエタノール溶液に浸漬して含浸させた後、乾燥して、TiO2多孔質膜にルテニウム錯体を担持させた。次いで、この積層体のTiO2多孔質膜形成面に、別に用意したガラス板(透明基板)上にSnO2薄膜層(透明電極層)がパターン状に形成された積層体のSnO2の薄膜層形成面が対向するように重ね合わせ、電極リードを引き出すと共に、周囲の端部をエポキシ系接着剤で電解質溶液の注入口のみを残して封止し、接着剤の硬化後、その注入口からヨウ素電解質溶液を注入し、注入後、その注入口をシール材で封止して参考例1の色素増感型太陽電池セルを作製した。
【0046】
〔実施例
(色素増感型太陽電池セルの作製)裏面基板として、厚さ25μmのロール状に巻き上げられた長尺のPETフィルムを用い、巻き取り供給巻き上げ方式のグラビアダイレクトコーターにより、先ず、白金ペーストをパターン状に塗布、乾燥して厚さ3μmの裏面電極層を形成し、その上に粒子径1〜10nmのTiO2微粒子をポリエチレングリコールに分散した分散液をパターン状に塗布し、120℃で30分間、乾燥、焼成して、厚さ10μmの酸化物半導体膜(TiO2の多孔質膜)を形成した後、更にそのTiO2多孔質膜に色素増感剤を担持させるため、TiO2多孔質膜上にルテニウム錯体のエタノール溶液を塗布し、含浸させた後、乾燥して、TiO2多孔質膜にルテニウム錯体を担持させた。次いで、この積層体を所定の寸法に打ち抜き、そのTiO2多孔質膜形成面に、別に用意したガラス板(透明基板)上にSnO2の薄膜層(透明電極層)がパターン状に形成された積層体のSnO2の薄膜層形成面が対向するように重ね合わせ、電極リードを引き出すと共に、周囲の端部をエポキシ系接着剤で電解質溶液の注入口のみを残して封止し、接着剤の硬化後、その注入口からヨウ素電解質溶液を注入し、注入後、その注入口をシール材で封止して実施例の色素増感型太陽電池セルを作製した。
【0047】
参考例2
(色素増感型太陽電池セルの作製)前記参考例1の色素増感型太陽電池セルの作製において、酸化物半導体膜の形成に用いたTiO2微粒子の粒子径のみを、平均粒子径20nmのTiO2微粒子に変えた他は総て参考例1と同様に加工して参考例2の色素増感型太陽電池セルを作製した。
【0048】
以上のように作製した参考例1、実施例および参考例2の色素増感型太陽電池セルについて、その光電変換効率〔η%〕を測定した結果は、参考例1の色素増感型太陽電池セルは9%、実施例の色素増感型太陽電池セルは8%、参考例2の色素増感型太陽電池セルは7%であり、参考例1および実施例の色素増感型太陽電池セルは、参考例2の色素増感型太陽電池セルと対比して、酸化物半導体膜のTiO2微粒子の微細化により、発電効率の大幅な向上が認められた。また、実施例の色素増感型太陽電池セルは、裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルム(この場合、PETフィルム)を用いて、その上に裏面電極層と酸化物半導体膜と、その酸化物半導体膜に担持させる色素増感剤とを、巻き取り供給巻き上げ方式のパターンコーター(この場合、グラビアダイレクトコーター)を使用して加工しているので、ガラス基板などに枚葉のスクリーン印刷機を使用して加工する場合と比較して、生産性が大幅に向上し、コストも低減でき、量産性にも優れている。
【0049】
【発明の効果】
以上の説明で明らかなように、本発明によれば、光電変換効率〔η%〕が高く、生産性にも優れ、大量生産が容易であると共に、コストも低減することのできる色素増感型太陽電池セルおよびそれを用いた色素増感型太陽電池モジュール、それらの製造方法を提供できる効果を奏する。
また、酸化物半導体膜を形成する際、その塗布液にポリエチレングリコールを含ませることにより、高度の多孔質膜を容易に形成できるようになる。
【図面の簡単な説明】
【図1】本発明の製造方法で製造された色素増感型太陽電池セルの一実施例の構成を示す模式断面図である。
【図2】本発明の製造方法で製造された色素増感型太陽電池モジュールの一実施例の構成を示す要部の模式断面図である。
【符号の説明】
1 透明基板
2 透明電極層
3 電解質溶液
4 色素増感剤が担持された酸化物半導体膜
5 裏面電極層
6 裏面基板
7 電極接続部
8 発電層
9 隔壁
10 封止材
11 電極リード
100 色素増感型太陽電池セル
200 色素増感型太陽電池モジュール
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for producing a dye-sensitized solar cell and a method for producing a dye-sensitized solar cell module.
[0002]
[Prior art]
  In recent years, global warming caused by carbon dioxide has become a global problem. In recent years, solar cells that use solar energy have attracted attention as environmentally friendly and clean energy sources, and research and development are actively promoted. It has been. As such solar cells, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells and the like have already been put into practical use, but there is a possibility of higher photoelectric conversion efficiency and lower cost. As solar cells, dye-sensitized solar cells are newly attracting attention and being researched and developed.
[0003]
  For example, a dye-sensitized solar cell includes a transparent substrate, a transparent electrode layer, a power generation layer (a power generation layer includes a porous oxide semiconductor film and a dye sensitizer carried on the surface from the light incident side. The back electrode layer and the back substrate are sequentially laminated to form a cell.
[0004]
[Problems to be solved by the invention]
  Although such a dye-sensitized solar cell can produce a cell excellent in performance such as conversion efficiency in the laboratory, it is possible to improve the quality and cost of each component (material), and the module. There are still many issues in terms of mass production technology such as manufacturing methods including production. For example, a glass plate is usually used for the transparent substrate and the back substrate. In this case, the glass plate is used as a base material, although it is excellent in performance such as light transmission, durability, and gas barrier properties. As a result, it is necessary to manufacture a solar cell by sequentially processing various battery components in a batch manner, and its workability and productivity are inferior, so that mass production is difficult and the manufacturing cost increases. There were problems such as.
[0005]
  The present invention has been made in order to solve such problems. The object of the present invention is high photoelectric conversion efficiency, excellent productivity, easy mass production, and manufacturing. An object of the present invention is to provide a method for producing a dye-sensitized solar cell that can reduce the cost and a method for producing a dye-sensitized solar cell module using the dye-sensitized solar cell.
[0006]
[Means for Solving the Problems]
  The above problems can be solved by the following present invention. That is, the invention described in claim 1 is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are stacked in order from at least the light receiving surface side, and the power generation layer includes An oxide semiconductor film obtained by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film; A method for producing a dye-sensitized solar cell formed by firing an oxide semiconductor film obtained by firing the oxide fine particles having a particle size of 0.1 nm to 10 μm, having a particle size of 0.1 nm to 10 μm. Formed using oxide fine particle paste prepared by dispersing oxide fine particles in a liquid containing at least polyethylene glycolA long heat-resistant flexible film rolled up in the form of a roll using the laminate of the oxide semiconductor film supporting the dye sensitizer of at least the power generation layer, the back electrode layer, and the back substrate as the back substrate. And using a pattern coater of a winding supply winding method on the back substrate, platinum or carbon paste is applied in a pattern and dried to form a back electrode layer, and then on the back electrode layer The oxide fine particle paste is applied in a pattern, dried, and fired to form an oxide semiconductor film. Further, a dye sensitizer solution is wound on the formed oxide semiconductor film and wound up. Using a pattern coater of the type or a dipping device of a winding supply winding method, it is applied or dipped and impregnated, and then dried to carry a dye sensitizer and formIt consists of the manufacturing method of the dye-sensitized solar cell characterized by doing.
[0007]
  By adopting such a manufacturing method, when an oxide semiconductor film is formed, a highly porous film can be easily formed by including polyethylene glycol in the coating solution.Further, by adopting such a manufacturing method, among the constituent elements of the dye-sensitized solar cell, a laminate of an oxide semiconductor film, a back electrode layer, and a back substrate on which at least a dye sensitizer is supported , Using a long heat-resistant flexible film on the back substrate as a base material, and a back electrode layer, an oxide semiconductor film, and a dye sensitizer carried on the back electrode layer, a pattern coater of a winding supply winding method, or Since it can be processed and manufactured using an immersion apparatus or the like, the productivity is greatly improved, and a dye-sensitized solar cell excellent in photoelectric conversion efficiency can be mass-produced at low cost.
[0008]
  The invention described in claim 2 is characterized in that the oxide fine particle paste is applied, dried and fired at 100 to 350 ° C. for 10 to 180 minutes to form an oxide semiconductor film. The manufacturing method of the dye-sensitized solar cell as described in 1 above.
[0009]
  The invention described in claim 3 is characterized in that preliminary drying is performed after applying the oxide fine particle paste and before drying and baking at 100 to 350 ° C. for 10 to 180 minutes. It consists of the manufacturing method of the dye-sensitized solar cell of Claim 2.
[0010]
  The invention described in claim 4 is at leastFrom the light receiving surface side, a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are formed in a laminated body in order, and the power generation layer is an oxide fine particle having a particle diameter of 0.1 nm to 10 μm. A dye-sensitized solar cell formed by an oxide semiconductor film obtained by firing a dye, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film. A method for producing a dye-sensitized solar cell module, a plurality of which are arranged in a planar or curved shape and connected in series, wherein the dye-sensitized solar cell is according to claims 1 to 3. Manufactured by the method for producing a dye-sensitized solar cell according to any one ofDye-sensitized solar cell characterized byModule manufacturing methodConsists of.
[0011]
  By adopting such a configuration, the dye-sensitized solar cell according to any one of claims 1 to 4 can be used effectively, so that the dye has excellent photoelectric conversion efficiency and has a desired electromotive force. A sensitized solar cell module can be manufactured with high productivity and low cost.
[0012]
  The invention described in claim 5 is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially stacked at least from the light receiving surface side, and the power generation layer includes particles. Formed by an oxide semiconductor film obtained by firing oxide fine particles having a diameter of 0.1 nm to 10 μm, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film A plurality of dye-sensitized solar cells that are arranged in a planar or curved shape and connected in series, the method for producing a dye-sensitized solar cell module,At least the following steps (1) to (5) are included.It consists of the manufacturing method of the dye-sensitized solar cell module characterized by this.
(1) As a back substrate, a long heat-resistant flexible film wound up in a roll shape is used, and a plurality of platinum or carbon pastes are formed on the back substrate using a pattern coater of a take-up supply winding system. The cells are applied with a pattern of a back electrode layer of a module formed by being arranged at a predetermined interval and dried to form a back electrode layer, and a pattern of an oxide semiconductor film on the back electrode layer, An oxide fine particle paste prepared by dispersing oxide fine particles having a particle size of 0.1 nm to 10 μm in a liquid containing at least polyethylene glycol is applied, and after preliminary drying, dried and fired at 100 to 350 ° C. for 10 to 180 minutes. Forming a porous oxide semiconductor film.
(2) The back substrate of the heat-resistant flexible film produced in the step (1), and the oxide semiconductor film in the laminate of the back electrode layer and the oxide semiconductor film formed in a predetermined pattern on the back substrate, respectively. Then, the dye sensitizer solution is applied, dipped and impregnated by using a pattern coater of a winding supply winding method or a dipping device of winding supply winding method, and then dried to dye sensitization. A step of supporting the agent.
(3) A back substrate of the heat-resistant flexible film produced in the step (2), a back electrode layer formed in a predetermined pattern on the back substrate, and an oxide semiconductor film carrying a dye sensitizer A step of providing a connection portion for connecting cells in series and a partition wall for partitioning the cells on the oxide semiconductor film forming surface of the laminate.
(4) On the oxide semiconductor film formation surface of the laminate produced in the step (3), a laminate of a separately produced transparent substrate and a transparent electrode layer formed in a predetermined pattern on the transparent substrate, A step of drawing the electrode leads from the end of the positive electrode and the end of the negative electrode of a module composed of a plurality of cells connected in series, with the transparent electrode layer surfaces facing each other, and bonding them together.
(5) An electrolyte solution is injected into each cell of the laminate produced in the step (4) from a small hole provided in advance on the back substrate of the heat-resistant flexible film, or from a gap provided at the end of the cell. The step of impregnating the oxide semiconductor film and sealing each small hole or gap with a sealing material.
[0015]
  By adopting such a production method, among the constituent elements of the dye-sensitized solar cell module, at least the oxide semiconductor film carrying the dye sensitizer, the back electrode layer and the back substrate, Using a long heat-resistant flexible film on the back substrate as a base material, a back electrode layer, an oxide semiconductor film, and a dye sensitizer carried on the back electrode layer, and a pattern coater or a dipping device for winding and winding. Can be processed and manufactured using, for example, the productivity can be greatly improved, the photoelectric conversion efficiency is excellent, and a dye-sensitized solar cell module having a desired electromotive force is produced with high productivity. Can be mass-produced at low cost.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the cell obtained from the manufacturing method of the dye-sensitized solar cell of this invention is demonstrated.
  At least in a solar cell in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are laminated in this order from the light receiving surface side, the power generation layer is an oxide fine particle having a particle diameter of 0.1 nm to 10 μm. Formed of an oxide semiconductor film formed by firing, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film, and at least the oxide fine particles 30% by weight is preferably fine particles having a particle size of 0.1 to 10 nm.
[0017]
  The particle diameter of the oxide fine particles is preferably in the range of 0.1 nm to 10 μm, and the fine particles having a particle diameter of less than 0.1 nm are difficult to produce, and moreover, the particles tend to aggregate to form secondary particles. It is not preferable. In addition, fine particles having a particle diameter exceeding 10 μm are not preferable because the thickness of the oxide semiconductor film is increased more than necessary and the light transmittance is also decreased.
[0018]
  By adopting such a configuration, the oxide fine particles forming the oxide semiconductor film of the power generation layer have a particle size in the range of 0.1 nm to 10 μm, and at least 30% by weight of the fine particles have a particle size of 0.00. Since it is a fine particle of 1 to 10 nm, the actual surface area inside the porous film to be formed is further increased, and at the same time the dye sensitizer is supported on the inner surface, so that light in a wide wavelength region is more effectively used. The photoelectric conversion efficiency of the dye-sensitized solar cell, that is, the power generation efficiency can be further increased. Further, since the oxide fine particles are less expensive than amorphous silicon or the like, the material cost can be reduced. Furthermore, although a glass plate may be used for the back substrate, a long heat-resistant film wound up in a roll shape can be used, thereby oxidizing at least the back electrode layer thereon and the power generation layer. The film semiconductor film and the dye sensitizer carried thereon are formed by a roll-to-roll method using a wind-up / wind-up pattern coater, such as a gravure direct coater, a rotary screen printer, or a dipping device. Therefore, productivity is remarkably improved, mass production is facilitated, and manufacturing cost can be reduced.
[0019]
  The oxide fine particles of the oxide semiconductor film are TiO.2ZnO, SnO2, ITO, ZrO2, SiOx, MgO, Al2OThree, CeO2, Bi2OThree, MnThreeOFour, Y2OThree, WOThree, Ta2OFive, Nb2OFive, La2OThreeAmong these fine particles, any one kind, or two or more kinds of mixed fine particles are preferable.
[0020]
  The oxide fine particles are suitable for forming an oxide semiconductor porous film as a power generation layer in terms of material, have high photoelectric conversion efficiency, and are relatively inexpensive in terms of cost. Therefore, by adopting such a configuration, in addition to the effects described above, a dye-sensitized solar cell with high photoelectric conversion efficiency and low cost can be more easily manufactured.
[0021]
  30% by weight or more of the oxide fine particles of the oxide semiconductor film is TiO 2.2The fine particles are preferable.
[0022]
  As oxide fine particles used for the oxide semiconductor film of the dye-sensitized solar cell, TiO2These fine particles are relatively easy to produce fine particles having a particle diameter of 0.1 to 10 nm, and are particularly suitable in terms of formation of a highly porous film, high photoelectric conversion efficiency, and low cost. Therefore, all of the oxide fine particles are made of TiO.230% by weight or more of TiO 2 may be formed.2By using such fine particles, effects such as formation of the highly porous film, high photoelectric conversion efficiency, and cost reduction can be sufficiently obtained. Therefore, by adopting the configuration as described above, in addition to the effects of the invention described above, a dye-sensitized solar cell with higher photoelectric conversion efficiency and lower cost can be manufactured more reliably.
[0023]
  The oxide semiconductor film is preferably formed of a mixture obtained by mixing the oxide fine particles in a range of 1 to 30% by weight with a conductive binder.
[0024]
  By adopting such a configuration, in addition to the effects described above, when forming the oxide semiconductor film, the porous film can be formed at a lower heating temperature or a shorter heating time. In addition to improving productivity, when a heat-resistant flexible film is used as the back substrate, the level of heat resistance can be lowered, so that the range of film selection can be expanded and a cost reduction effect can be obtained.
[0025]
  The oxide semiconductor film is TiCl up to its porous inner surface.FourSurface treatment is preferably performed with an aqueous solution and / or an acetonitrile dispersion of t-butylpyridine.
[0026]
  TiClFourSurface treatment with an aqueous solution is performed on a baked oxide semiconductor film with a TiCl of less than 0.5M.FourIt can be carried out by a method in which an aqueous solution is applied, impregnated, and then dried, which contributes to the reduction of the surface level of the oxide semiconductor film, and the surface treatment with an acetonitrile dispersion of t-butylpyridine is performed as follows: The oxide semiconductor film after supporting the dye sensitizer is coated with an acetonitrile dispersion containing less than 5% by volume of t-butylpyridine, impregnated, and then dried. Backflow of electrons that have moved into the oxide semiconductor film is suppressed.
[0027]
  Therefore, by applying such a surface treatment, in addition to the effects of the invention described above, the generated electrons can be used more efficiently, so the power generation efficiency of the dye-sensitized solar cell can be improved. Further improvement can be achieved.
[0028]
  The dye sensitizer is preferably a ruthenium complex.
[0029]
  As the dye sensitizer, an organic dye or a metal complex dye can be used. Examples of the organic dye include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes. Among the metal complex dyes, ruthenium dyes are preferable, and ruthenium bipyridine dyes and ruthenium terpyridine dyes which are ruthenium complexes are particularly preferable. For example, visible light (wavelength of about 400 to 800 nm) can hardly be absorbed with only an oxide semiconductor film, but by supporting a ruthenium complex, visible light can be significantly taken in and photoelectrically converted.
[0030]
  Therefore, by adopting the configuration as described above, in addition to the above-described functions and effects, the wavelength range of light that can be photoelectrically converted by the ruthenium complex can be greatly expanded, so that the photoelectric property of the dye-sensitized solar cell can be increased. Conversion efficiency can be further improved.
[0031]
  It is preferable that the electrolyte solution is an iodine electrolyte solution, a gel electrolyte, or a solid electrolyte.
[0032]
  As the electrolyte solution of the dye-sensitized solar cell of the present invention, an iodine electrolyte solution can be used effectively, but a gel electrolyte and a solid electrolyte can also be used. Gel electrolytes are roughly classified into physical gels and chemical gels, and the physical gels are gelled near room temperature due to physical interaction, and examples thereof include polyacrylonitrile and polymethacrylate. The chemical gel is a gel formed by a chemical bond by a crosslinking reaction or the like, and examples thereof include acrylate ester-based and methacrylate ester-based gels. Moreover, polypyrrole and CuI are mentioned as a solid electrolyte. When using a gel electrolyte or solid electrolyte, impregnating a low-viscosity precursor into an oxide semiconductor film and causing a two-dimensional or three-dimensional crosslinking reaction by means of heating, ultraviolet irradiation, electron beam irradiation, etc. It can be gelled or solidified.
[0033]
  By adopting such a configuration, in addition to the effects described above, when an iodine electrolyte solution is used, the oxidation-reduction reaction is rapidly performed and the photoelectric conversion efficiency is improved. Further, when a gel electrolyte or a solid electrolyte is used, the liquid does not leak, and thus safety and durability are improved.
[0034]
  A dye-sensitized solar cell module in which a plurality of the dye-sensitized solar cells described above are arranged in a planar shape or a curved shape and connected in series.
[0035]
  By adopting such a configuration, the dye-sensitized solar cell described above can be used effectively, so that a dye-sensitized solar cell module having excellent photoelectric conversion efficiency and a desired electromotive force is produced. It can be manufactured at low cost with good performance.
[0036]
  Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of an embodiment of a dye-sensitized solar cell manufactured by the manufacturing method of the present invention, and FIG. 2 is a dye-sensitized method manufactured by the manufacturing method of the present invention. It is a schematic cross section of the principal part which shows the structure of one Example of a solar cell module.
[0037]
  A dye-sensitized solar cell 100 shown in FIG. 1 includes a transparent substrate 1, a transparent electrode layer 2, an electrolyte solution 3, an oxide semiconductor film 4 on which a dye sensitizer is supported, and a back surface, from the light incident side. The electrode layer 5 and the back substrate 6 are sequentially laminated or arranged. The transparent substrate 1 is particularly excellent in light transmittance (transmittance of light having a wavelength in the range of ultraviolet light to visible light) and preferably excellent in weather resistance, water vapor and other gas barrier properties, and a glass plate is suitable. However, a plastic sheet having an appropriate thickness can also be used. When using a glass plate, the thickness is suitably in the range of 0.5 to 5 mm, preferably about 1 to 3 mm. When a plastic sheet is used, an ethylene / tetrafluoroethylene copolymer sheet is suitable in terms of weather resistance, but a biaxially stretched polyethylene terephthalate sheet or the like can also be used. When using a plastic sheet, the thickness is not particularly limited, but about 50 to 300 μm is appropriate.
[0038]
  The transparent electrode layer 2 is preferably excellent in conductivity and light transmittance (transmittance of light having a wavelength in the ultraviolet to visible light range), for example, SnO2, ITO, ZnO and other thin film layers can be used, among which fluorine doped SnO2The ITO thin film layer is particularly preferable because it is excellent in both conductivity and light transmission. SnO2Alternatively, various vapor deposition methods can be used as a method for forming a thin film layer of ITO, but it is particularly preferable to form by a sputtering method in terms of good productivity and excellent performance. SnO2Alternatively, the thickness of the ITO thin film layer is suitably about 300 to 1500 mm.
[0039]
  Since the electrolyte solution 3 constituting the power generation layer 8 and the oxide semiconductor film 4 on which the dye sensitizer is supported have been described in detail above, description thereof is omitted here. When the oxide semiconductor film 4 is formed, a highly porous film can be easily formed by including polyethylene glycol in the coating solution. The thickness of the oxide semiconductor film 4 is preferably about 10 μm. Although not shown in the drawing, the oxide semiconductor film 4 includes TiCl as described above.FourIt is preferable to perform a surface treatment with an aqueous solution and / or an acetonitrile dispersion of t-butylpyridine.
[0040]
  The back electrode layer 5 can be formed on the back substrate 6 by applying, for example, a platinum paste or a carbon paste in a pattern and drying. When using platinum paste, for example, H2PtCl6A paste can be used, and this can be applied by adjusting to a suitable viscosity with an organic solvent such as isopropyl alcohol, ethyl acetate, and toluene.
[0041]
  Although a glass plate can be used for the back substrate 6, as described above, a heat-resistant flexible film that can be rolled up in order to improve productivity and reduce costs. Is preferably used. Examples of the heat-resistant flexible film include a biaxially stretched polyethylene terephthalate film, a polyethersulfone (PES) film, a polyetheretherketone (PEEK) film, a polyetherimide (PEI) film, and a polyimide (PI) film. Is mentioned. These may use a single film, and can also be used as a composite film in which other heat-resistant materials are laminated. The thickness of such a heat-resistant flexible film is not particularly limited, but about 16 to 100 μm is appropriate.
[0042]
  Next, FIG. 2 is a schematic cross-sectional view of the main part showing the configuration of an embodiment of the dye-sensitized solar cell module manufactured by the manufacturing method of the present invention. In the dye-sensitized solar cell module 200 shown in FIG. 2, three dye-sensitized solar cells having the configuration shown in FIG. 1 are arranged side by side at a predetermined interval, and each cell is electrically conductive. In addition to being connected in series at the electrode connection portion 7, a non-conductive partition wall 9 is provided and partitioned between the cells, and the ends of the cells on both sides, that is, the dye-sensitized solar cell module 200. The peripheral edge of each is sealed with a non-conductive sealing material 10, and positive or negative electrode leads 11 are drawn from the cells on both sides.
[0043]
  Therefore, the configuration of each cell itself is the same as that of the dye-sensitized solar cell 100 shown in FIG. 1, and from the light incident side, the transparent substrate 1, the transparent electrode layer 2, the electrolyte solution 3, the dye-sensitized solar cell. The oxide semiconductor film 4 on which the sensitizer is supported, the back electrode layer 5 and the back substrate 6 are sequentially laminated or arranged.
[0044]
  In the dye-sensitized solar cell module 200 shown in FIG. 2, three dye-sensitized solar cells are arranged side by side and connected in series. However, the number of cells to be arranged is arbitrary. Yes, it can be freely designed to obtain a desired voltage. In addition, such a dye-sensitized solar cell module can be manufactured with high productivity and low cost by the method for manufacturing a dye-sensitized solar cell module according to the invention described in claim 5, and mass production is also easy. is there.
[0045]
【Example】
Examples belowreferenceThe present invention will be described more specifically with reference to examples.
[referenceExample 1)
(Preparation of dye-sensitized solar cell) A glass plate is used as the back substrate, and then a platinum paste is applied in a pattern and dried by a sheet-fed screen printer, and the back electrode has a thickness of 3 μm. TiO 2 having a particle diameter of 1 to 10 nm is formed on the layer.2A dispersion of fine particles dispersed in polyethylene glycol is applied in a pattern, dried and fired at 450 ° C. for 30 minutes, and an oxide semiconductor film (TiO 2) having a thickness of 10 μm.2TiO 2 after forming the porous film)2In order to support the dye sensitizer on the porous film, this laminate was immersed in an ethanol solution of a ruthenium complex and impregnated, and then dried, and TiO 2 was dried.2A ruthenium complex was supported on the porous membrane. Next, TiO of this laminated body2SnO on a glass plate (transparent substrate) prepared separately on the porous film forming surface2SnO of a laminate in which a thin film layer (transparent electrode layer) is formed in a pattern2The thin film layer formation surfaces are stacked so that they face each other, the electrode leads are drawn out, and the peripheral edges are sealed with an epoxy adhesive leaving only the electrolyte solution injection port. Iodine electrolyte solution is injected from the inlet, and after injection, the inlet is sealed with a sealing material.referenceThe dye-sensitized solar cell of Example 1 was produced.
[0046]
〔Example1]
(Preparation of dye-sensitized solar cell) Using a long PET film wound up in a roll shape with a thickness of 25 μm as a back substrate, first, pattern the platinum paste with a gravure direct coater of a take-up feed winding method. And dried to form a back electrode layer having a thickness of 3 μm, on which TiO having a particle diameter of 1 to 10 nm is formed.2A dispersion in which fine particles are dispersed in polyethylene glycol is applied in a pattern, dried and fired at 120 ° C. for 30 minutes, and an oxide semiconductor film (TiO 2) having a thickness of 10 μm.2TiO 2 and the TiO 22In order to support the dye sensitizer on the porous film, TiO2An ethanol solution of ruthenium complex is applied onto the porous film, impregnated, and then dried, and then TiO 22A ruthenium complex was supported on the porous membrane. Next, this laminate is punched to a predetermined size, and its TiO2SnO on a glass plate (transparent substrate) prepared separately on the porous film forming surface2SnO of a laminate in which a thin film layer (transparent electrode layer) is formed in a pattern2The thin film layer formation surfaces are stacked so that they face each other, the electrode leads are drawn out, and the peripheral edges are sealed with an epoxy adhesive leaving only the electrolyte solution injection port. Example of injecting iodine electrolyte solution from the inlet and sealing the inlet with a sealing material after injection1A dye-sensitized solar cell was prepared.
[0047]
[Reference example 2]
(Preparation of dye-sensitized solar cell)referenceTiO used for forming the oxide semiconductor film in the production of the dye-sensitized solar cell of Example 12Only the particle diameter of the fine particles was changed to TiO having an average particle diameter of 20 nm.2All but changed to fine particlesreferenceProcessing as in Example 1Reference example 2A dye-sensitized solar cell was prepared.
[0048]
  Produced as abovereferenceExample 1, Example1andReference example 2As a result of measuring the photoelectric conversion efficiency [η%] of the dye-sensitized solar cell ofreference9% for the dye-sensitized solar cell of Example 1, Example18% of dye-sensitized solar cellsReference example 2The dye-sensitized solar cell is 7%,referenceExample 1 and Examples1The dye-sensitized solar cell ofReference example 2Compared with the dye-sensitized solar cell of TiO 2 of the oxide semiconductor film2A significant improvement in power generation efficiency was observed due to finer particles. Examples1In this dye-sensitized solar cell, a long heat-resistant flexible film (in this case, a PET film) wound up in a roll shape is used as a back substrate, and a back electrode layer and an oxide semiconductor film are formed thereon. Since the dye sensitizer carried on the oxide semiconductor film is processed using a wind-up / wind-up pattern coater (in this case, a gravure direct coater), a single wafer screen is formed on a glass substrate or the like. Compared with processing using a printing press, productivity is greatly improved, costs can be reduced, and mass productivity is excellent.
[0049]
【The invention's effect】
  As is clear from the above description, according to the present invention, a dye-sensitized type that has high photoelectric conversion efficiency [η%], is excellent in productivity, is easy to mass-produce, and can reduce costs. The solar cell, the dye-sensitized solar cell module using the solar cell, and the production method thereof can be provided.
  Further, when an oxide semiconductor film is formed, a highly porous film can be easily formed by including polyethylene glycol in the coating solution.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the configuration of one embodiment of a dye-sensitized solar cell manufactured by the manufacturing method of the present invention.
FIG. 2 is a schematic cross-sectional view of an essential part showing the configuration of an embodiment of a dye-sensitized solar cell module manufactured by the manufacturing method of the present invention.
[Explanation of symbols]
1 Transparent substrate
2 Transparent electrode layer
3 Electrolyte solution
4 Oxide semiconductor film carrying dye sensitizer
5 Back electrode layer
6 Back substrate
7 Electrode connection
8 Power generation layer
9 Bulkhead
10 Sealing material
11 Electrode lead
100 Dye-sensitized solar cell
200 Dye-sensitized solar cell module

Claims (5)

少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルの製造方法であって、
前記の粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜を、粒子径0.1nm〜10μmの酸化物微粒子を少なくともポリエチレングリコールを含む液に分散させて作製した酸化物微粒子ペーストを用いて形成し、
前記の少なくとも発電層の色素増感剤が担持された酸化物半導体膜と裏面電極層と裏面基板との積層体を、
裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用い、
裏面基板の上に、巻き取り供給巻き上げ方式のパターンコーターを用いて、白金またはカーボンペーストをパターン状に塗布、乾燥して、裏面電極層を形成し、
次いで、裏面電極層の上に、前記の酸化物微粒子ペーストを、パターン状に塗布、乾燥、焼成して酸化物半導体膜を形成し、
更に、形成された酸化物半導体膜に、色素増感剤の溶液を、巻き取り供給巻き上げ方式のパターンコーター、または巻き取り供給巻き上げ方式の浸漬装置を用いて、塗布、または浸漬して含浸させた後、乾燥して、色素増感剤を担持させて、
形成することを特徴とする色素増感型太陽電池セルの製造方法。
At least from the light receiving surface side, a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are formed in order, and the power generation layer is an oxide having a particle diameter of 0.1 nm to 10 μm. A dye-sensitized solar cell formed by an oxide semiconductor film obtained by firing fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film A manufacturing method of
Oxide semiconductor film formed by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm, and an oxide fine film prepared by dispersing oxide fine particles with a particle diameter of 0.1 nm to 10 μm in a liquid containing at least polyethylene glycol Formed using a fine particle paste ,
A laminate of the oxide semiconductor film supporting the dye sensitizer of at least the power generation layer, the back electrode layer, and the back substrate,
As the back substrate, using a long heat-resistant flexible film wound up in a roll shape,
On a back substrate, using a pattern coater of a winding supply winding method, platinum or carbon paste is applied in a pattern and dried to form a back electrode layer,
Next, on the back electrode layer, the oxide fine particle paste is applied in a pattern, dried and fired to form an oxide semiconductor film,
Further, the formed oxide semiconductor film was impregnated with a dye sensitizer solution by coating or dipping using a wind-up / wind-up pattern coater or a wind-up / roll-up dipping apparatus. After drying, carrying a dye sensitizer,
A method for producing a dye-sensitized solar cell, characterized by comprising:
前記の酸化物微粒子ペーストを塗布し、100〜350℃で、10〜180分間、乾燥、焼成して酸化物半導体膜を形成することを特徴とする請求項1に記載の色素増感型太陽電池セルの製造方法。  2. The dye-sensitized solar cell according to claim 1, wherein the oxide fine particle paste is applied, dried and baked at 100 to 350 ° C. for 10 to 180 minutes to form an oxide semiconductor film. Cell manufacturing method. 前記の酸化物微粒子ペーストを塗布した後であって、100〜350℃で、10〜180分間、乾燥、焼成する前に、予備乾燥をすることを特徴とする請求項2に記載の色素増感型太陽電池セルの製造方法。  3. The dye sensitization according to claim 2, wherein after the oxide fine particle paste is applied, preliminary drying is performed at 100 to 350 ° C. and before drying and baking for 10 to 180 minutes. Type solar cell manufacturing method. 少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、
上記色素増感型太陽電池セルが、請求項1乃至3のいずれかに記載の色素増感型太陽電池セルの製造方法で製造することを特徴とする色素増感型太陽電池モジュールの製造方法。
At least from the light receiving surface side, a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are formed in order, and the power generation layer is an oxide having a particle diameter of 0.1 nm to 10 μm. A dye-sensitized solar cell formed by an oxide semiconductor film obtained by firing fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film Is a method for producing a dye-sensitized solar cell module, a plurality of which are arranged in a planar or curved shape and connected in series,
The said dye-sensitized solar cell is manufactured with the manufacturing method of the dye-sensitized solar cell in any one of Claims 1 thru | or 3, The manufacturing method of the dye-sensitized solar cell module characterized by the above-mentioned .
少なくとも受光面側から、透明基板、透明電極層、発電層、裏面電極層、裏面基板が順に積層された積層体で形成され、且つ、該発電層が、粒子径0.1nm〜10μmの酸化物微粒子を焼成してなる酸化物半導体膜と、該酸化物半導体膜に担持された色素増感剤と、該酸化物半導体膜に含浸された電解質溶液とで形成される色素増感型太陽電池セルが、複数個、平面状または曲面状に配列され、且つ直列に接続されてなる色素増感型太陽電池モジュールの製造方法であって、少なくとも下記(1)〜(5)の工程を含むことを特徴とする色素増感型太陽電池モジュールの製造方法。
(1)裏面基板として、ロール状に巻き上げられた長尺の耐熱性フレキシブルフィルムを用い、該裏面基板の上に、巻き取り供給巻き上げ方式のパターンコーターを用いて、白金またはカーボンペーストを、複数個のセルが所定の間隔を開けて配列されて形成されるモジュールの裏面電極層のパターンで塗布、乾燥して、裏面電極層を形成し、裏面電極層の上に酸化物半導体膜のパターンで、粒子径0.1nm〜10μmの酸化物微粒子を少なくともポリエチレングリコールを含む液に分散させて作製した酸化物微粒子ペーストを塗布し、予備乾燥後、100〜350℃で10〜180分間、乾燥、焼成して多孔質の酸化物半導体膜を形成する工程。
(2)前記(1)の工程で作製した耐熱性フレキシブルフィルムの裏面基板と該裏面基板の上にそれぞれ所定のパターンで形成された裏面電極層と酸化物半導体膜の積層体の酸化物半導体膜に、色素増感剤の溶液を、巻き取り供給巻き上げ方式のパターンコーター、または巻き取り供給巻き上げ方式の浸漬装置を用いて、塗布、または浸漬して含浸させた後、乾燥して、色素増感剤を担持させる工程。
(3)前記(2)の工程で作製した耐熱性フレキシブルフィルムの裏面基板と該裏面基板の上にそれぞれ所定のパターンで形成された裏面電極層と色素増感剤を担持させた酸化物半導体膜の積層体の酸化物半導体膜形成面に、各セル間を直列に接続する接続部と、各セル間を仕切りする隔壁とを設ける工程。
(4)前記(3)の工程で作製した積層体の酸化物半導体膜形成面に、別に作製した透明基板と該透明基板の上に所定のパターンで形成された透明電極層の積層体を、その透明電極層面が対向するように重ね、直列に接続された複数個のセルからなるモジュールの正極の端部と負極の端部から電極リードを引き出し、両者を接合する工程。
(5)前記(4)の工程で作製した積層体の各セルに予め耐熱性フレキシブルフィルムの裏面基板に設けられた小孔、またはセルの端部に設けられた間隙部から電解質溶液を注入し、酸化物半導体膜に含浸させ、それぞれの小孔または間隙部をシール材で封止する工程。
At least from the light receiving surface side, a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are formed in order, and the power generation layer is an oxide having a particle diameter of 0.1 nm to 10 μm. A dye-sensitized solar cell formed by an oxide semiconductor film obtained by firing fine particles, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film Is a method for producing a dye-sensitized solar cell module, which is arranged in a plurality of planes or curved surfaces and connected in series, and includes at least the following steps (1) to (5): A method for producing a dye-sensitized solar cell module.
(1) As a back substrate, a long heat-resistant flexible film wound up in a roll shape is used, and a plurality of platinum or carbon pastes are formed on the back substrate using a pattern coater of a take-up supply winding system. The cells are applied with a pattern of a back electrode layer of a module formed by being arranged at a predetermined interval and dried to form a back electrode layer, and a pattern of an oxide semiconductor film on the back electrode layer, An oxide fine particle paste prepared by dispersing oxide fine particles having a particle size of 0.1 nm to 10 μm in a liquid containing at least polyethylene glycol is applied, and after preliminary drying, dried and fired at 100 to 350 ° C. for 10 to 180 minutes. Forming a porous oxide semiconductor film.
(2) The back substrate of the heat-resistant flexible film produced in the step (1), and the oxide semiconductor film in the laminate of the back electrode layer and the oxide semiconductor film formed in a predetermined pattern on the back substrate, respectively. Then, the dye sensitizer solution is applied, dipped and impregnated by using a pattern coater of a winding supply winding method or a dipping device of winding supply winding method, and then dried to dye sensitization. A step of supporting the agent.
(3) A back substrate of the heat-resistant flexible film produced in the step (2), a back electrode layer formed in a predetermined pattern on the back substrate, and an oxide semiconductor film carrying a dye sensitizer A step of providing a connection portion for connecting cells in series and a partition wall for partitioning the cells on the oxide semiconductor film forming surface of the laminate.
(4) On the oxide semiconductor film formation surface of the laminate produced in the step (3), a laminate of a separately produced transparent substrate and a transparent electrode layer formed in a predetermined pattern on the transparent substrate, A step of drawing the electrode leads from the end of the positive electrode and the end of the negative electrode of a module composed of a plurality of cells connected in series, with the transparent electrode layer surfaces facing each other, and bonding them together.
(5) An electrolyte solution is injected into each cell of the laminate produced in the step (4) from a small hole provided in advance on the back substrate of the heat-resistant flexible film, or from a gap provided at the end of the cell. The step of impregnating the oxide semiconductor film and sealing each small hole or gap with a sealing material.
JP2000283960A 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module Expired - Fee Related JP4659954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000283960A JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000283960A JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010251749A Division JP5212750B2 (en) 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2002093475A JP2002093475A (en) 2002-03-29
JP4659954B2 true JP4659954B2 (en) 2011-03-30

Family

ID=18768249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000283960A Expired - Fee Related JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP4659954B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003103085A1 (en) * 2002-06-04 2005-10-06 新日本石油株式会社 Photoelectric conversion element
WO2004036683A1 (en) 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Sensitized dye solar cell and sensitized dye solar cell module
WO2005081065A1 (en) * 2004-02-20 2005-09-01 Nippon Soda Co., Ltd. Light-sensitive substrate and method for patterning
KR100554179B1 (en) 2004-06-09 2006-02-22 한국전자통신연구원 Flexible dye-sensitized solar cell using conducting metal substrate
JP4063802B2 (en) 2004-08-04 2008-03-19 シャープ株式会社 Photoelectrode
JP5111799B2 (en) * 2006-07-07 2013-01-09 株式会社フジクラ Solar cell and solar cell module
JP5089157B2 (en) 2006-12-15 2012-12-05 新光電気工業株式会社 Dye-sensitized solar cell module and manufacturing method thereof
JP5332358B2 (en) * 2008-07-08 2013-11-06 東洋製罐株式会社 Coating solution for reverse electron prevention layer formation
JP5125860B2 (en) * 2008-08-05 2013-01-23 日立造船株式会社 Method for forming titanium oxide film
CN102265453B (en) 2008-10-29 2014-10-01 富士胶片株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
KR101146673B1 (en) 2010-05-06 2012-05-22 삼성에스디아이 주식회사 Electrode for dye sensitized fuel cell, manufacturing method thereof, and dye sensitized fuel cell using the same
KR101219245B1 (en) * 2011-04-21 2013-01-21 삼성에스디아이 주식회사 Photoelectric conversion device and method of preparing the same
JP5998449B2 (en) * 2011-10-04 2016-09-28 大日本印刷株式会社 Detection system for questionnaire counting
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell
JP6645692B2 (en) 2014-10-09 2020-02-14 キヤノン株式会社 Sheet conveying device and image forming device
KR20160148211A (en) * 2015-06-16 2016-12-26 주식회사 오리온 Dye-sensitized solar cell
CN112233906B (en) * 2020-10-13 2021-11-02 江苏日御光伏新材料科技有限公司 Photoanode based on flexible substrate and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306399A (en) * 1995-04-15 1996-11-22 Heidelberger Druckmas Ag Photochemical cell
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000101106A (en) * 1998-09-25 2000-04-07 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion device, manufacture thereof and photo-electrochemical cell
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306399A (en) * 1995-04-15 1996-11-22 Heidelberger Druckmas Ag Photochemical cell
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JP2000101106A (en) * 1998-09-25 2000-04-07 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion device, manufacture thereof and photo-electrochemical cell
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element

Also Published As

Publication number Publication date
JP2002093475A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP4659954B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP4659955B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module using the same, and manufacturing method thereof
KR100658263B1 (en) Tandem structured photovoltaic cell and preparation method thereof
US20140227828A1 (en) Dye-sensitized solar cell and method for manufacturing the same
US20070095390A1 (en) Solar cell and manufacturing method thereof
JP4698028B2 (en) Method for providing a conduction path in a multi-cell regenerative photovoltaic photovoltaic device
KR20080105908A (en) High efficiency solar cell using quantum dots and manufacturing method thereof
AU2005236527A1 (en) A method of producing a porous semiconductor film on a substrate
TW201101508A (en) Dye-sensitized solar cells and manufacturing method for thereof
JP5380851B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
CN102449844A (en) Dye-sensitized solar cell
JP2001160426A (en) Dye-sensitization type solar battery, its manufacturing method and portable equipment using the same
JPH11266028A (en) Photoelectric conversion element
JP4955852B2 (en) Photoelectrode and photochemical battery using the same
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
JP5332378B2 (en) Counter electrode substrate and dye-sensitized solar cell using the same
JP2004311355A (en) Manufacturing method of substrate for electrode
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2002314108A (en) Solar cell
JP5212750B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2011058786A1 (en) Dye-sensitized solar cell
KR101406969B1 (en) Manufacturing method of solid-state dye-sensitized solar cells and electrolyte filling device used therefor
JP5521419B2 (en) Electrolyte forming coating solution and dye-sensitized solar cell using the same
JP2004047261A (en) Photo-electrode, method of manufacturing photo-electrode and solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees