JP2002093475A - Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module using the same, and their manufacturing method - Google Patents

Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module using the same, and their manufacturing method

Info

Publication number
JP2002093475A
JP2002093475A JP2000283960A JP2000283960A JP2002093475A JP 2002093475 A JP2002093475 A JP 2002093475A JP 2000283960 A JP2000283960 A JP 2000283960A JP 2000283960 A JP2000283960 A JP 2000283960A JP 2002093475 A JP2002093475 A JP 2002093475A
Authority
JP
Japan
Prior art keywords
dye
oxide semiconductor
semiconductor film
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000283960A
Other languages
Japanese (ja)
Other versions
JP4659954B2 (en
Inventor
Kojiro Okawa
晃次郎 大川
Atsuro Tsuzuki
淳朗 續木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2000283960A priority Critical patent/JP4659954B2/en
Publication of JP2002093475A publication Critical patent/JP2002093475A/en
Application granted granted Critical
Publication of JP4659954B2 publication Critical patent/JP4659954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a coloring matter sensitization type solar battery cell, a solar battery module using it, and their manufacturing method having high power generation efficiency, mass productivity, and economical efficiency. SOLUTION: This coloring matter sensitization type solar battery cell 100 is laminated with at least a transparent substrate 1, a transparent electrode layer 2, a power generation layer 8, a back electrode layer 5, and a back substrate 6 in this order from the light receiving face side. For a layered product of the power generation layer 8 and below, the back substrate 6 used as a base material is pattern-coated with a platinum paste to form the back electrode layer 5, it is pattern-coated and baked with a coating liquid of oxide fine grains having the grain size of 0.1 nm-10 μm, in which at least 30 wt.% has the grain size of 0.1-10 nm, to form an oxide semiconductor film 4, it is impregnated, dried, and carried with a solution of a pigment sensitizer, then an electrolyte solution 3 is injected and impregnated to form the layered product. TiO2 fine grains are preferably used for the oxide fine grains, and a ruthenium complex is preferably used for the pigment sensitizer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池セルおよびそれを用いた色素増感型太陽電池モジュー
ル、およびそれらの製造方法に関する。
The present invention relates to a dye-sensitized solar cell, a dye-sensitized solar cell module using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】二酸化炭素が原因とされる地球温暖化が
世界的に問題となっている近年、環境にやさしく、クリ
ーンなエネルギー源として、太陽光エネルギーを利用し
た太陽電池が注目され、積極的に研究開発が進められて
いる。このような太陽電池として、単結晶シリコン太陽
電池、多結晶シリコン太陽電池、アモルファスシリコン
太陽電池などが既に実用化されているが、より光電変換
効率が高く、且つ、低コスト化の可能性のある太陽電池
として、色素増感型太陽電池が新たに注目され研究開発
されている。
2. Description of the Related Art In recent years, global warming caused by carbon dioxide has become a global problem. In recent years, solar cells using solar energy have attracted attention as an environmentally friendly and clean energy source. R & D is underway. As such a solar cell, a single-crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, and the like have already been put into practical use, but there is a possibility that the photoelectric conversion efficiency is higher and the cost can be reduced. As a solar cell, a dye-sensitized solar cell has been newly attracting attention and being researched and developed.

【0003】色素増感型太陽電池は、例えば、光の入射
する側から、透明基板、透明電極層、発電層(発電層
は、多孔質の酸化物半導体膜とその表面に担持された色
素増感剤と電解質溶液とで構成される)、裏面電極層、
裏面基板が順に積層されてセルが形成される。
[0003] Dye-sensitized solar cells include, for example, a transparent substrate, a transparent electrode layer, and a power generation layer (a power generation layer includes a porous oxide semiconductor film and a dye sensitizer carried on the surface thereof). Composed of a sensitizer and an electrolyte solution), a back electrode layer,
The cells are formed by sequentially stacking the back substrates.

【0004】[0004]

【発明が解決しようとする課題】このような色素増感型
太陽電池セルは、実験室的には変換効率など性能に優れ
たセルを作製することができるが、各構成要素(材料)
の高品質化と低コスト化、およびモジュール化を含めた
製造方法など量産化技術などの点では、未だ多くの課題
がある。例えば、前記透明基板や裏面基板についても、
通常、ガラス板が用いられるが、その場合、光の透過
性、耐久性、ガスバリヤー性などの性能面では優れてい
るが、このガラス板を基材として、その上に各種の電池
の構成要素をバッチ式で逐次加工して太陽電池を製造す
る必要があり、その作業性、生産性に劣るため、大量生
産が困難であり、製造コストも上昇するなどの問題があ
った。
In such a dye-sensitized solar cell, a cell excellent in performance such as conversion efficiency can be manufactured in a laboratory, but each component (material) is required.
There are still many issues in terms of mass production technologies such as high quality and low cost of the products and manufacturing methods including modularization. For example, for the transparent substrate and the back substrate,
Usually, a glass plate is used. In this case, the glass plate is excellent in terms of performance such as light transmission, durability, and gas barrier properties. Need to be sequentially processed in a batch system to manufacture a solar cell, which is inferior in workability and productivity, so that mass production is difficult and the production cost is increased.

【0005】本発明は、このような問題点を解決するた
めになされたものであり、その目的とするところは、光
電変換効率が高く、且つ、生産性にも優れ、大量生産が
容易であると共に、製造コストも低減することのできる
色素増感型太陽電池セルおよびそれを用いた色素増感型
太陽電池モジュール、およびそれらの製造方法を提供す
ることにある。
The present invention has been made in order to solve such problems, and it is an object of the present invention to have high photoelectric conversion efficiency, excellent productivity, and easy mass production. Another object of the present invention is to provide a dye-sensitized solar cell capable of reducing the manufacturing cost, a dye-sensitized solar cell module using the same, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記の課題は、以下の本
発明により解決することができる。即ち、請求項1に記
載した発明は、少なくとも、受光面側から、透明基板、
透明電極層、発電層、裏面電極層、裏面基板が順に積層
されてなる太陽電池セルにおいて、該発電層が、粒子径
0.1nm〜10μmの酸化物微粒子を焼成してなる酸
化物半導体膜と、該酸化物半導体膜に担持された色素増
感剤と、該酸化物半導体膜に含浸された電解質溶液とで
形成され、且つ、該酸化物微粒子の少なくとも30重量
%が、粒子径0.1〜10nmの微粒子であることを特
徴とする色素増感型太陽電池セルからなる。
The above objects can be attained by the present invention described below. That is, according to the first aspect of the present invention, at least a transparent substrate,
In a solar battery cell in which a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially stacked, the power generation layer includes an oxide semiconductor film formed by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm. Formed of a dye sensitizer supported on the oxide semiconductor film and an electrolyte solution impregnated in the oxide semiconductor film, wherein at least 30% by weight of the oxide fine particles have a particle diameter of 0.1 It is a dye-sensitized solar cell characterized by being fine particles of 10 to 10 nm.

【0007】上記酸化物微粒子の粒子径は、0.1nm
〜10μmの範囲が好ましく、粒子径が0.1nm未満
の微粒子は、製造自体が難しい上、粒子同士が凝集して
二次粒子を作りやすくなるため好ましくない。また、粒
子径が10μmを超える微粒子は、酸化物半導体膜の厚
さを必要以上に厚くすると共に、光の透過性も低下させ
るため好ましくない。
The oxide fine particles have a particle diameter of 0.1 nm.
Microparticles having a particle size of less than 0.1 nm are not preferred because the production itself is difficult and the particles are likely to aggregate to form secondary particles. Further, fine particles having a particle diameter of more than 10 μm are not preferable because the thickness of the oxide semiconductor film becomes unnecessarily large and the light transmittance is reduced.

【0008】このような構成を採ることにより、発電層
の酸化物半導体膜を形成する酸化物微粒子が、粒子径
0.1nm〜10μmの範囲であって、且つ、その少な
くとも30重量%が、粒子径0.1〜10nmの微粒子
であるため、形成される多孔質膜の内部の実表面積が一
層大きくなると同時に、内部の表面にも色素増感剤が担
持されるので、広い波長領域の光を一層有効に利用で
き、色素増感型太陽電池セルの光電変換効率、即ち、発
電効率を一層高くすることができる。また、酸化物微粒
子は、アモルファスシリコンなどと比較して安価である
ため、材料コストを低減することができる。更に、裏面
基板には、ガラス板を用いてもよいが、ロール状に巻き
上げられた長尺の耐熱性フィルムを用いることができ、
それにより、少なくともその上の裏面電極層、および発
電層の酸化物半導体膜とそれに担持させる色素増感剤
を、巻き取り供給巻き上げ方式のパターンコーター、例
えばグラビアダイレクトコーター、ロータリースクリー
ン印刷機、或いは浸漬装置などを用いて、ロール・ツー
・ロール方式で形成することができるので、生産性が著
しく向上し、大量生産が容易になると同時に製造コスト
も低減することができる。
By adopting such a configuration, the oxide fine particles forming the oxide semiconductor film of the power generation layer have a particle diameter in the range of 0.1 nm to 10 μm, and at least 30% by weight of the particles have a particle diameter of 0.1 nm to 10 μm. Since the fine particles have a diameter of 0.1 to 10 nm, the actual surface area inside the formed porous film is further increased, and at the same time, the dye sensitizer is also supported on the inner surface, so that light in a wide wavelength range is emitted. It can be used more effectively, and the photoelectric conversion efficiency of the dye-sensitized solar cell, that is, the power generation efficiency can be further increased. In addition, since the oxide fine particles are inexpensive as compared with amorphous silicon or the like, the material cost can be reduced. Further, for the back substrate, a glass plate may be used, but a long heat-resistant film wound up in a roll shape can be used,
Thereby, at least the back electrode layer thereon, and the oxide semiconductor film of the power generation layer and the dye sensitizer to be carried on the oxide semiconductor film are wound and supplied by a pattern coater of a winding type, for example, a gravure direct coater, a rotary screen printing machine, or immersion. Since it can be formed by a roll-to-roll method using an apparatus or the like, productivity is remarkably improved, mass production becomes easy, and production cost can be reduced.

【0009】請求項2に記載した発明は、前記酸化物半
導体膜の酸化物微粒子が、TiO2、ZnO、Sn
2 、ITO、ZrO2 、SiOX 、MgO、Al2
3 、CeO2 、Bi2 3 、Mn3 4 、Y2 3 、W
3 、Ta2 5 、Nb2 5 、La2 3 の微粒子の
うちのいずれか一種、または二種以上の混合系の微粒子
であることを特徴とする請求項1記載の色素増感型太陽
電池セルである。
In the invention described in claim 2, the oxide fine particles of the oxide semiconductor film are TiO 2 , ZnO, Sn
O 2 , ITO, ZrO 2 , SiO x , MgO, Al 2 O
3 , CeO 2 , Bi 2 O 3 , Mn 3 O 4 , Y 2 O 3 , W
O 3, Ta 2 O 5, Nb 2 O 5, La 2 O 3 of the dye-sensitized according to claim 1, characterized in that any one or particulates of two or more of the mixed system, of the fine particles Type solar cell.

【0010】上記の酸化物微粒子は、材質的に発電層の
酸化物半導体多孔質膜の形成に適しており、その光電変
換効率も高く、コスト面でも比較的安価である。従っ
て、このような構成を採ることにより、前記請求項1に
記載した発明の作用効果に加えて、光電変換効率が高
く、低コストの色素増感型太陽電池セルを一層容易に製
造することができる。
The above-mentioned oxide fine particles are materially suitable for forming an oxide semiconductor porous film of a power generation layer, have a high photoelectric conversion efficiency, and are relatively inexpensive in terms of cost. Therefore, by adopting such a configuration, in addition to the operation and effect of the invention described in claim 1, it is possible to more easily manufacture a dye-sensitized solar cell having high photoelectric conversion efficiency and low cost. it can.

【0011】請求項3に記載した発明は、前記酸化物半
導体膜の酸化物微粒子の30重量%以上が、TiO2
微粒子であることを特徴とする請求項1または2に記載
の色素増感型太陽電池セルである。
According to a third aspect of the present invention, there is provided the dye sensitization according to the first or second aspect, wherein 30% by weight or more of the oxide fine particles of the oxide semiconductor film are TiO 2 fine particles. Type solar cell.

【0012】色素増感型太陽電池セルの酸化物半導体膜
に用いる酸化物微粒子としては、TiO2 の微粒子が、
粒子径0.1〜10nmの微粒子の製造も比較的容易で
あり、高多孔質膜の形成、光電変換効率の高さ、低コス
ト化などの点で特に適している。従って、酸化物微粒子
の全部をTiO2 の微粒子で構成してもよいが、30重
量%以上をTiO2 の微粒子とすることにより、前記高
多孔質膜の形成、高光電変換効率、低コスト化などの効
果を充分に得ることができる。従って、前記のような構
成を採ることにより、前記請求項1または2に記載した
発明の作用効果に加えて、一層確実に光電変換効率が高
く、低コストの色素増感型太陽電池セルを製造すること
ができる。
As the oxide fine particles used for the oxide semiconductor film of the dye-sensitized solar cell, TiO 2 fine particles are used.
The production of fine particles having a particle diameter of 0.1 to 10 nm is relatively easy, and is particularly suitable for forming a highly porous film, high photoelectric conversion efficiency, low cost, and the like. Accordingly, all of the oxide fine particles may be composed of TiO 2 fine particles. However, by forming 30% by weight or more of TiO 2 fine particles, the formation of the highly porous film, high photoelectric conversion efficiency, and cost reduction can be achieved. And other effects can be sufficiently obtained. Therefore, by adopting the above-described configuration, in addition to the effects of the invention described in claim 1 or 2, a dye-sensitized solar cell having high photoelectric conversion efficiency and low cost can be more reliably manufactured. can do.

【0013】請求項4に記載した発明は、前記酸化物半
導体膜が、前記酸化物微粒子に導電性バインダーを1〜
30重量%の範囲で混合した混合物で形成されているこ
とを特徴とする請求項1乃至3のいずれかに記載の色素
増感型太陽電池セルからなる。
According to a fourth aspect of the present invention, in the semiconductor device, the oxide semiconductor film is formed by adding a conductive binder to the oxide fine particles.
The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the dye-sensitized solar cell is formed of a mixture mixed in a range of 30% by weight.

【0014】このような構成を採ることにより、前記請
求項1乃至3のいずれかに記載した発明の作用効果に加
えて、酸化物半導体膜を形成する際、より低い加熱温
度、或いは、より短い加熱時間で、その多孔質膜を形成
できるので、生産性を向上できると共に、裏面基板とし
て、耐熱性フレキシブルフィルムを用いる場合、その耐
熱性のレベルを下げることができるので、フィルムの選
択範囲を広げることができ、コスト低減効果も得ること
ができる。
By employing such a structure, in addition to the effects of the invention according to any one of claims 1 to 3, when forming an oxide semiconductor film, a lower heating temperature or a shorter heating temperature can be obtained. In the heating time, the porous film can be formed, so that the productivity can be improved, and when a heat-resistant flexible film is used as the back substrate, the level of the heat resistance can be lowered, so that the selection range of the film is expanded. And a cost reduction effect can also be obtained.

【0015】請求項5に記載した発明は、前記酸化物半
導体膜が、その多孔質の内部表面まで、TiCl4 水溶
液及び/又はt−ブチルピリジンのアセトニトリル分散
液により、表面処理されていることを特徴とする請求項
1乃至4のいずれかに記載の色素増感型太陽電池セルか
らなる。
According to a fifth aspect of the present invention, the oxide semiconductor film is surface-treated to a porous inner surface thereof with a TiCl 4 aqueous solution and / or acetonitrile dispersion of t-butylpyridine. A dye-sensitized solar cell according to any one of claims 1 to 4, characterized in that:

【0016】上記TiCl4 水溶液による表面処理は、
焼成された酸化物半導体膜上に0.5M未満のTiCl
4 水溶液を塗布し、含浸させた後、乾燥する方法で実施
することができ、これが酸化物半導体膜の表面準位の減
少に寄与し、また、t−ブチルピリジンのアセトニトリ
ル分散液による表面処理は、色素増感剤を担持させた後
の酸化物半導体膜上にt−ブチルピリジン5容量%未満
を含むアセトニトリル分散液を塗布し、含浸させた後、
乾燥する方法で実施することができ、これにより酸化物
半導体膜中に移動した電子の逆流が抑制される。
The surface treatment with the TiCl 4 aqueous solution is as follows:
TiCl of less than 0.5M on the fired oxide semiconductor film
4 An aqueous solution can be applied and impregnated, followed by drying, which contributes to a reduction in the surface level of the oxide semiconductor film.In addition, surface treatment with acetonitrile dispersion of t-butylpyridine is Acetonitrile dispersion containing less than 5% by volume of t-butylpyridine is applied to the oxide semiconductor film after supporting the dye sensitizer, and impregnated.
The method can be performed by a drying method, whereby the backflow of electrons transferred to the oxide semiconductor film is suppressed.

【0017】従って、このような表面処理を施すことに
より、前記請求項1乃至4のいずれかに記載した発明の
作用効果に加えて、発生した電子を一層効率的に利用で
きるようになるので、色素増感型太陽電池セルの発電効
率を更に向上させることができる。
Therefore, by performing such a surface treatment, the generated electrons can be used more efficiently, in addition to the functions and effects of the invention described in any one of the first to fourth aspects. The power generation efficiency of the dye-sensitized solar cell can be further improved.

【0018】請求項6に記載した発明は、前記色素増感
剤が、ルテニウム錯体であることを特徴とする請求項1
乃至5のいずれかに記載の色素増感型太陽電池セルから
なる。
According to a sixth aspect of the present invention, the dye sensitizer is a ruthenium complex.
Or a dye-sensitized solar cell according to any one of (1) to (5).

【0019】前記色素増感剤としては、有機色素または
金属錯体色素を使用することができ、有機色素として
は、アクリジン系、アゾ系、インジゴ系、キノン系、ク
マリン系、メロシアニン系、フェニルキサンテン系の色
素が挙げられ、金属錯体色素では、ルテニウム系色素が
好ましく、特にルテニウム錯体であるルテニウムビピリ
ジン色素およびルテニウムターピリジン色素が好まし
い。例えば、酸化物半導体膜だけでは、可視光(400
〜800nm程度の波長)を殆ど吸収できないが、ルテ
ニウム錯体を担持させることにより、大幅に可視光まで
取り込んで光電変換できるようになる。
As the dye sensitizer, an organic dye or a metal complex dye can be used. Examples of the organic dye include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene. Among the metal complex dyes, a ruthenium-based dye is preferable, and a ruthenium bipyridine dye and a ruthenium terpyridine dye, which are ruthenium complexes, are particularly preferable. For example, with an oxide semiconductor film alone, visible light (400
However, by supporting a ruthenium complex, visible light can be significantly captured and photoelectrically converted.

【0020】従って、前記のような構成を採ることによ
り、前記請求項1乃至5のいずれかに記載した発明の作
用効果に加えて、ルテニウム錯体により光電変換できる
光の波長領域を大幅に広げることができるので、色素増
感型太陽電池セルの光電変換効率を一層向上させること
ができる。
Therefore, by adopting the above configuration, in addition to the effects of the invention according to any one of claims 1 to 5, the wavelength range of light that can be photoelectrically converted by the ruthenium complex is greatly expanded. Therefore, the photoelectric conversion efficiency of the dye-sensitized solar cell can be further improved.

【0021】請求項7に記載した発明は、前記電解質溶
液が、ヨウ素電解質溶液、またはゲル電解質、固体電解
質のいずれかであることを特徴とする請求項1乃至6の
いずれかに記載の色素増感型太陽電池セルである。
According to a seventh aspect of the present invention, in the dye sensitizer according to any one of the first to sixth aspects, the electrolyte solution is an iodine electrolyte solution, a gel electrolyte, or a solid electrolyte. It is a sensitive solar cell.

【0022】本発明の色素増感型太陽電池セルの電解質
溶液としては、ヨウ素電解質溶液を有効に使用すること
ができるが、そのほかにゲル電解質、固体電解質を使用
することができる。ゲル電解質は、大別して、物理ゲル
と化学ゲルに分けられ、物理ゲルは、物理的な相互作用
で室温付近でゲル化しているものであり、例えば、ポリ
アクリロニトリル、ポリメタクリレートが挙げられる。
化学ゲルは、架橋反応などにより化学結合でゲルを形成
しているものであり、アクリル酸エステル系、メタクリ
ル酸エステル系のゲルが挙げられる。また、固体電解質
としては、ポリピロール、CuIが挙げられる。ゲル電
解質、固体電解質を使用する場合、低粘度の前駆体を酸
化物半導体膜に含浸させ、加熱、紫外線照射、電子線照
射などの手段で二次元または三次元の架橋反応を起こさ
せることにより、ゲル化または固体化することができ
る。
As an electrolyte solution of the dye-sensitized solar cell of the present invention, an iodine electrolyte solution can be effectively used, and in addition, a gel electrolyte and a solid electrolyte can be used. The gel electrolyte is roughly classified into a physical gel and a chemical gel. The physical gel is gelled at around room temperature due to physical interaction, and examples thereof include polyacrylonitrile and polymethacrylate.
The chemical gel forms a gel by a chemical bond by a cross-linking reaction or the like, and examples thereof include an acrylate-based gel and a methacrylate-based gel. Examples of the solid electrolyte include polypyrrole and CuI. When a gel electrolyte or a solid electrolyte is used, a low-viscosity precursor is impregnated into the oxide semiconductor film, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, and electron beam irradiation. It can be gelled or solidified.

【0023】このような構成を採ることにより、前記請
求項1乃至6のいずれかに記載した発明の作用効果に加
えて、ヨウ素電解質溶液を使用した場合は、その酸化還
元反応が迅速に行われ、光電変換効率が向上する。ま
た、ゲル電解質、固体電解質を用いた場合は、液漏れす
ることがないので安全性、耐久性が向上する。
By adopting such a configuration, in addition to the effects of the invention described in any one of the above-mentioned claims 1 to 6, when an iodine electrolyte solution is used, the oxidation-reduction reaction is rapidly performed. In addition, the photoelectric conversion efficiency is improved. In addition, when a gel electrolyte or a solid electrolyte is used, liquid leakage does not occur, so that safety and durability are improved.

【0024】請求項8に記載した発明は、前記請求項1
乃至7のいずれかに記載の色素増感型太陽電池セルが、
複数個、平面状または曲面状に配列され、且つ直列に接
続されてなる色素増感型太陽電池モジュールである。
The invention described in claim 8 is the first invention.
The dye-sensitized solar cell according to any one of to 7,
A plurality of dye-sensitized solar cell modules are arranged in a planar or curved surface and connected in series.

【0025】このような構成を採ることにより、前記請
求項1乃至7のいずれかに記載した色素増感型太陽電池
セルを有効に利用できるので、光電変換効率に優れ、且
つ、所望の起電力を有する色素増感型太陽電池モジュー
ルを生産性よく、低コストで製造することができる。
By adopting such a constitution, the dye-sensitized solar cell according to any one of claims 1 to 7 can be effectively used, so that the photoelectric conversion efficiency is excellent and the desired electromotive force is obtained. Can be manufactured with good productivity and at low cost.

【0026】請求項9に記載した発明は、少なくとも受
光面側から、透明基板、透明電極層、発電層、裏面電極
層、裏面基板が順に積層された積層体で形成され、且
つ、該発電層が、粒子径0.1nm〜10μmの酸化物
微粒子を焼成してなる酸化物半導体膜と、該酸化物半導
体膜に担持された色素増感剤と、該酸化物半導体膜に含
浸された電解質溶液とで形成される色素増感型太陽電池
セルの製造方法であって、少なくとも前記発電層の色素
増感剤が担持された酸化物半導体膜と裏面電極層と裏面
基板との積層体を、裏面基板として、ロール状に巻き上
げられた長尺の耐熱性フレキシブルフィルムを用い、そ
の上に、巻き取り供給巻き上げ方式のパターンコーター
を用いて、白金またはカーボンペーストをパターン状に
塗布、乾燥して、裏面電極層を形成し、次いで、該裏面
電極層の上に、粒子径0.1nm〜10μmの酸化物微
粒子を少なくともポリエチレングリコールを含む液に分
散させて作製した酸化物微粒子ペーストを、パターン状
に塗布し、予備乾燥後、100〜350℃で、10〜1
80分間、乾燥、焼成して酸化物半導体膜を形成し、更
に、形成された酸化物半導体膜に、色素増感剤の溶液
を、前記パターンコーター、または巻き取り供給巻き上
げ方式の浸漬装置を用いて、塗布、または浸漬して含浸
させた後、乾燥して、色素増感剤を担持させて形成する
ことを特徴とする色素増感型太陽電池セルの製造方法か
らなる。
According to a ninth aspect of the present invention, the power generation layer is formed of a laminate in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially stacked at least from the light receiving surface side. Is an oxide semiconductor film obtained by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film. The method for producing a dye-sensitized solar cell formed by the method, wherein at least the oxide semiconductor film carrying a dye sensitizer of the power generation layer, a back electrode layer and a back substrate, a back body As a substrate, a long heat-resistant flexible film wound up in a roll shape is used, and a platinum or carbon paste is applied in a pattern using a pattern supply coater of a winding-supply winding type, dried, and dried. An electrode layer is formed, and then an oxide fine particle paste prepared by dispersing oxide fine particles having a particle diameter of 0.1 nm to 10 μm in a liquid containing at least polyethylene glycol is applied in a pattern on the back electrode layer. After pre-drying, at 100-350 ° C, 10-1
Drying and baking for 80 minutes to form an oxide semiconductor film, and further, a solution of a dye sensitizer is applied to the formed oxide semiconductor film using the pattern coater or a winding-supply winding type dipping apparatus. Coating or dipping, impregnating, drying, and carrying a dye sensitizer to form a dye-sensitized solar cell.

【0027】このような製造方法を採ることにより、色
素増感型太陽電池セルの各構成要素のうち、少なくとも
色素増感剤が担持された酸化物半導体膜と裏面電極層と
裏面基板との積層体を、裏面基板の長尺の耐熱性フレキ
シブルフィルムを基材として、その上に、裏面電極層と
酸化物半導体膜とそれに担持させる色素増感剤とを、巻
き取り供給巻き上げ方式のパターンコーター、または浸
漬装置などを用いて加工し、製造することができるの
で、生産性が大幅に向上し、光電変換効率に優れた色素
増感型太陽電池セルを低コストで大量生産することがで
きる。
By adopting such a manufacturing method, among the constituent elements of the dye-sensitized solar cell, at least the oxide semiconductor film carrying the dye sensitizer, the back electrode layer, and the back substrate are laminated. The body, using a long heat-resistant flexible film of the back substrate as a base material, on which, a back electrode layer, an oxide semiconductor film and a dye sensitizer to be carried on it, a winding and winding type pattern coater, Alternatively, it can be processed and manufactured by using an immersion device or the like, so that productivity can be greatly improved and dye-sensitized solar cells having excellent photoelectric conversion efficiency can be mass-produced at low cost.

【0028】請求項10に記載した発明は、少なくとも
受光面側から、透明基板、透明電極層、発電層、裏面電
極層、裏面基板が順に積層された積層体で形成され、且
つ、該発電層が、粒子径0.1nm〜10μmの酸化物
微粒子を焼成してなる酸化物半導体膜と、該酸化物半導
体膜に担持された色素増感剤と、該酸化物半導体膜に含
浸された電解質溶液とで形成される色素増感型太陽電池
セルが、複数個、平面状または曲面状に配列され、且つ
直列に接続されてなる色素増感型太陽電池モジュールの
製造方法であって、少なくとも下記(1)〜(5)の工
程を含むことを特徴とする色素増感型太陽電池モジュー
ルの製造方法である。 (1)裏面基板として、ロール状に巻き上げられた長尺
の耐熱性フレキシブルフィルムを用い、その上に、巻き
取り供給巻き上げ方式のパターンコーターを用いて、白
金またはカーボンペーストを、複数個のセルが所定の間
隔を開けて配列されて形成されるモジュールの裏面電極
層のパターンで塗布、乾燥して、裏面電極層を形成し、
その上に酸化物半導体膜のパターンで、粒子径0.1n
m〜10μmの酸化物微粒子を少なくともポリエチレン
グリコールを含む液に分散させて作製した酸化物微粒子
ペーストを塗布し、予備乾燥後、100〜350℃で1
0〜180分間、乾燥、焼成して多孔質の酸化物半導体
膜を形成する工程。 (2)前記(1)の工程で作製した裏面基板(耐熱性フ
レキシブルフィルム)と、その上にそれぞれ所定のパタ
ーンで形成された裏面電極層と酸化物半導体膜の積層体
の酸化物半導体膜に、色素増感剤の溶液を、前記パター
ンコーター、または巻き取り供給巻き上げ方式の浸漬装
置を用いて、塗布、または浸漬して含浸させた後、乾燥
して、色素増感剤を担持させる工程。 (3)前記(2)の工程で作製した裏面基板(耐熱性フ
レキシブルフィルム)と、その上にそれぞれ所定のパタ
ーンで形成された裏面電極層と色素増感剤を担持させた
酸化物半導体膜の積層体の酸化物半導体膜形成面に、各
セル間を直列に接続する接続部と、各セル間を仕切りす
る隔壁とを設ける工程。 (4)前記(3)の工程で作製した積層体の酸化物半導
体膜形成面に、別に作製した透明基板とその上に所定の
パターンで形成された透明電極層の積層体を、その透明
電極層面が対向するように重ね、直列に接続されたセル
の両端(正極と負極)から電極リードを引き出し、両者
を接合する工程。 (5)前記(4)の工程で作製した積層体の各セルに予
め裏面基板(耐熱性フレキシブルフィルム)に設けられ
た小孔、またはセルの端部に設けられた間隙部から電解
質溶液を注入し、酸化物半導体膜に含浸させ、それぞれ
の小孔または間隙部をシール材で封止する工程。
[0028] According to a tenth aspect of the present invention, the power generation layer is formed by laminating a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate in this order from at least the light receiving surface side. Is an oxide semiconductor film obtained by firing oxide fine particles having a particle diameter of 0.1 nm to 10 μm, a dye sensitizer carried on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film. The method for producing a dye-sensitized solar cell module in which a plurality of dye-sensitized solar cells formed by the steps (a) and (b) are arranged in a planar or curved shape and connected in series, at least A method for producing a dye-sensitized solar cell module, comprising the steps of 1) to (5). (1) A long heat-resistant flexible film wound up in a roll shape is used as a back substrate, and platinum or carbon paste is applied thereon using a pattern coater of a winding-supplying and winding type, and a plurality of cells are formed. Applying and drying the pattern of the back electrode layer of the module formed and arranged at predetermined intervals to form a back electrode layer,
On top of that, the pattern of the oxide semiconductor film has a particle diameter of 0.1 n.
An oxide fine particle paste prepared by dispersing oxide fine particles of m to 10 μm in a liquid containing at least polyethylene glycol is applied, preliminarily dried, and then heated at 100 to 350 ° C. for 1 hour.
A step of drying and firing for 0 to 180 minutes to form a porous oxide semiconductor film; (2) The back substrate (heat-resistant flexible film) manufactured in the step (1) and the oxide semiconductor film of the stacked body of the back electrode layer and the oxide semiconductor film each formed in a predetermined pattern on the back substrate And a step of coating or dipping the solution of the dye sensitizer by using the pattern coater or the winding-supplying-rolling type dipping apparatus, followed by drying to carry the dye sensitizer. (3) The back substrate (heat-resistant flexible film) produced in the step (2), the back electrode layer formed on the back substrate in a predetermined pattern, and the oxide semiconductor film carrying a dye sensitizer on the back substrate. A step of providing, on the oxide semiconductor film formation surface of the stacked body, a connection portion for connecting the cells in series and a partition for partitioning the cells. (4) On the oxide semiconductor film forming surface of the laminate prepared in the above step (3), a laminate of a separately prepared transparent substrate and a transparent electrode layer formed in a predetermined pattern thereon is placed on the transparent electrode. A step of drawing electrode leads from both ends (a positive electrode and a negative electrode) of cells stacked in such a manner that the layers face each other and connected in series, and joining the two. (5) An electrolyte solution is injected into each cell of the laminated body prepared in the step (4) from a small hole previously provided on the back substrate (heat-resistant flexible film) or a gap provided at an end of the cell. And then impregnating the oxide semiconductor film and sealing each small hole or gap with a sealing material.

【0029】このような製造方法を採ることにより、色
素増感型太陽電池モジュールの各構成要素のうち、少な
くとも色素増感剤が担持された酸化物半導体膜と裏面電
極層と裏面基板との積層体を、裏面基板の長尺の耐熱性
フレキシブルフィルムを基材として、その上に、裏面電
極層と酸化物半導体膜とそれに担持させる色素増感剤と
を、巻き取り供給巻き上げ方式のパターンコーター、ま
たは浸漬装置などを用いて加工し、製造することができ
るので、生産性を大幅に向上させることができ、光電変
換効率に優れ、且つ、所望の起電力を有する色素増感型
太陽電池モジュールを生産性よく、低コストで大量生産
することができる。
By adopting such a manufacturing method, of the constituent elements of the dye-sensitized solar cell module, at least the oxide semiconductor film carrying the dye sensitizer, the back electrode layer and the back substrate are laminated. The body, using a long heat-resistant flexible film of the back substrate as a base material, on which, a back electrode layer, an oxide semiconductor film and a dye sensitizer to be carried on it, a winding and winding type pattern coater, Alternatively, it can be processed and manufactured using an immersion device or the like, so that the productivity can be greatly improved, the photoelectric conversion efficiency is excellent, and a dye-sensitized solar cell module having a desired electromotive force can be obtained. High productivity and mass production at low cost.

【0030】[0030]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を用いて説明する。図1は、本発明の色素増
感型太陽電池セルの一実施例の構成を示す模式断面図で
あり、図2は、本発明の色素増感型太陽電池モジュール
の一実施例の構成を示す要部の模式断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of one embodiment of the dye-sensitized solar cell of the present invention, and FIG. 2 shows the configuration of one embodiment of the dye-sensitized solar cell module of the present invention. It is a schematic cross section of an important section.

【0031】図1に示した色素増感型太陽電池セル10
0は、光が入射する側から、透明基板1、透明電極層
2、電解質溶液3、色素増感剤が担持された酸化物半導
体膜4、裏面電極層5、裏面基板6が順に積層または配
置されて構成されている。透明基板1は、特に光の透過
性(紫外光〜可視光域の波長の光の透過性)に優れると
共に、耐候性、水蒸気その他のガスバリヤー性などに優
れることが好ましく、ガラス板が適しているが、適宜の
厚さのプラスチックシートなどを使用することもでき
る。ガラス板を使用する場合、厚さは0.5〜5mmの
範囲が適当であり、1〜3mm程度が好ましい。プラス
チックシートを使用する場合、耐候性の点ではエチレン
・テトラフルオロエチレン共重合体シートが適している
が、2軸延伸ポリエチレンテレフタレートシートなども
使用することができる。プラスチックシートを使用する
場合、その厚さは、特に限定はされないが、50〜30
0μm程度が適当である。
The dye-sensitized solar cell 10 shown in FIG.
0 indicates that the transparent substrate 1, the transparent electrode layer 2, the electrolyte solution 3, the oxide semiconductor film 4 supporting the dye sensitizer, the back electrode layer 5, and the back substrate 6 are sequentially laminated or arranged from the light incident side. It is configured. The transparent substrate 1 is preferably excellent in light transmittance (light transmittance in a wavelength range from ultraviolet light to visible light), and is also excellent in weather resistance, water vapor and other gas barrier properties, and a glass plate is suitable. However, a plastic sheet having an appropriate thickness can be used. When a glass plate is used, the thickness is suitably in the range of 0.5 to 5 mm, and preferably about 1 to 3 mm. When a plastic sheet is used, an ethylene / tetrafluoroethylene copolymer sheet is suitable in terms of weather resistance, but a biaxially stretched polyethylene terephthalate sheet or the like can also be used. When a plastic sheet is used, its thickness is not particularly limited, but may be 50 to 30.
About 0 μm is appropriate.

【0032】透明電極層2は、導電性と共に光の透過性
(紫外光〜可視光域の波長の光の透過性)に優れること
が好ましく、例えば、SnO2 、ITO、ZnOなどの
薄膜層を用いることができるが、なかでもフッ素ドープ
したSnO2 、ITOの薄膜層が、導電性と光の透過性
の両方に優れている点で特に好ましい。SnO2 または
ITOの薄膜層を形成する方法としては、各種の蒸着法
を用いることができるが、特にスパッタリング法により
形成することが、生産性がよく、前記性能にも優れてい
る点で好ましい。SnO2 またはITOの薄膜層の厚さ
は300〜1500Å程度が適当である。
It is preferable that the transparent electrode layer 2 has excellent conductivity as well as light transmittance (light transmittance in a wavelength range from ultraviolet light to visible light). For example, a thin film layer of SnO 2 , ITO, ZnO, etc. Among them, a thin film layer of SnO 2 or ITO doped with fluorine is particularly preferable because it is excellent in both conductivity and light transmittance. As a method for forming a thin film layer of SnO 2 or ITO, various vapor deposition methods can be used. However, it is particularly preferable to form the thin film layer by a sputtering method in terms of good productivity and excellent performance. The thickness of the SnO 2 or ITO thin film layer is suitably about 300 to 1500 °.

【0033】発電層8を構成する電解質溶液3、および
色素増感剤が担持された酸化物半導体膜4に関しては、
先に詳しく説明したので、ここでは説明を省略する。
只、酸化物半導体膜4を形成する際、その塗布液にポリ
エチレングリコールを含ませることにより、高度の多孔
質膜を容易に形成できるようになる。この酸化物半導体
膜4の厚さは10μm程度が好ましい。また、図には示
していないが、酸化物半導体膜4には、先に説明したよ
うなTiCl4 水溶液及び/又はt−ブチルピリジンの
アセトニトリル分散液による表面処理を施すことが好ま
しい。
Regarding the electrolyte solution 3 constituting the power generation layer 8 and the oxide semiconductor film 4 carrying the dye sensitizer,
Since this has been described in detail above, the description is omitted here.
However, when the oxide semiconductor film 4 is formed, a highly porous film can be easily formed by including polyethylene glycol in the coating liquid. The thickness of the oxide semiconductor film 4 is preferably about 10 μm. Although not shown, the oxide semiconductor film 4 is preferably subjected to a surface treatment with an aqueous solution of TiCl 4 and / or an acetonitrile dispersion of t-butylpyridine as described above.

【0034】裏面電極層5は、裏面基板6の上に、例え
ば白金ペーストまたはカーボンペーストをパターン状に
塗布、乾燥して形成することができる。白金ペーストを
使用する場合、例えばH2 Pt Cl6ペーストを使用する
ことができ、これをイソプロピルアルコール、酢酸エチ
ル、トルエンなどの有機溶剤で適する粘度に調整して塗
布することができる。
The back electrode layer 5 can be formed on the back substrate 6 by, for example, applying a platinum paste or a carbon paste in a pattern and drying. When using a platinum paste, for example, an H 2 Pt Cl 6 paste can be used, and the paste can be adjusted to an appropriate viscosity with an organic solvent such as isopropyl alcohol, ethyl acetate, and toluene, and applied.

【0035】裏面基板6には、ガラス板を使用すること
もできるが、生産性を向上させ、またコストの低減化を
図るためには、先に説明したように、ロール状に巻き上
げ可能な耐熱性フレキシブルフィルムを使用することが
好ましい。耐熱性フレキシブルフィルムとしては、例え
ば、2軸延伸ポリエチレンテレフタレートフィルムのほ
か、ポリエーテルサルフォン(PES)フィルム、ポリ
エーテルエーテルケトン(PEEK)フィルム、ポリエ
ーテルイミド(PEI)フィルム、ポリイミド(PI)
フィルムなどが挙げられる。これらは単独のフィルムを
使用してもよく、他の耐熱性材料を積層した複合フィル
ムとして使用することもできる。このような耐熱性フレ
キシブルフィルムの厚さは、特に限定はされないが、1
6〜100μm程度が適当である。
Although a glass plate can be used for the back substrate 6, in order to improve the productivity and reduce the cost, as described above, a heat-resistant material that can be wound into a roll is used. It is preferable to use a flexible flexible film. Examples of the heat-resistant flexible film include a biaxially stretched polyethylene terephthalate film, a polyethersulfone (PES) film, a polyetheretherketone (PEEK) film, a polyetherimide (PEI) film, and a polyimide (PI).
Films and the like. These may be used alone or as a composite film in which other heat resistant materials are laminated. Although the thickness of such a heat-resistant flexible film is not particularly limited,
About 6 to 100 μm is appropriate.

【0036】次に、図2は、本発明の色素増感型太陽電
池モジュールの一実施例の構成を示す要部の模式断面図
である。図2に示した色素増感型太陽電池モジュール2
00は、前記図1に示した構成の色素増感型太陽電池セ
ルが所定の間隔を開けて3個並べて配列され、それぞれ
のセルが導電性の電極接続部7で直列に接続されると共
に、各セルの間には非導電性の隔壁9が設けられて仕切
りされ、また、両側のセルの端部、即ち、色素増感型太
陽電池モジュール200の周囲の端部は非導電性の封止
材10で封止され、更に、両側のセルから正極または負
極の電極リード11が引き出されて構成されている。
Next, FIG. 2 is a schematic sectional view of a main part showing the structure of one embodiment of the dye-sensitized solar cell module of the present invention. Dye-sensitized solar cell module 2 shown in FIG.
00, three dye-sensitized solar cells having the configuration shown in FIG. 1 are arranged side by side at predetermined intervals, and each cell is connected in series by a conductive electrode connection portion 7; Non-conductive partition walls 9 are provided between the cells to partition the cells, and the ends of the cells on both sides, that is, the ends around the dye-sensitized solar cell module 200 are non-conductive sealing. It is sealed with a material 10, and furthermore, a positive electrode or a negative electrode lead 11 is drawn out from both cells.

【0037】従って、各セル自体の構成は、前記図1に
示した色素増感型太陽電池セル100と同様であり、光
の入射する側から、透明基板1、透明電極層2、電解質
溶液3、色素増感剤が担持された酸化物半導体膜4、裏
面電極層5、裏面基板6が順に積層または配置されて構
成されている。
Therefore, the structure of each cell itself is the same as that of the dye-sensitized solar cell 100 shown in FIG. 1, and the transparent substrate 1, the transparent electrode layer 2, the electrolyte solution 3 The oxide semiconductor film 4 carrying a dye sensitizer, the back electrode layer 5, and the back substrate 6 are sequentially laminated or arranged.

【0038】尚、図2に示した色素増感型太陽電池モジ
ュール200では、色素増感型太陽電池セルが3個並べ
て配列され、直列に接続された形態で示したが、配列す
るセルの数は任意であり、所望の電圧が得られるように
自由に設計することができる。また、このような色素増
感型太陽電池モジュールは、前記請求項10に記載した
発明の色素増感型太陽電池モジュールの製造方法によ
り、生産性よく、低コストで製造でき、大量生産も容易
である。
Incidentally, in the dye-sensitized solar cell module 200 shown in FIG. 2, three dye-sensitized solar cells are arranged side by side and connected in series. Is arbitrary and can be freely designed so as to obtain a desired voltage. In addition, such a dye-sensitized solar cell module can be manufactured with good productivity at low cost by the method for manufacturing a dye-sensitized solar cell module according to the tenth aspect, and mass production is easy. is there.

【0039】[0039]

〔実施例1〕[Example 1]

(色素増感型太陽電池セルの作製)裏面基板として、ガ
ラス板を用い、その上に枚葉のスクリーン印刷機によ
り、先ず、白金ペーストをパターン状に塗布、乾燥して
厚さ3μmの裏面電極層を形成し、その上に粒子径1〜
10nmのTiO2 微粒子をポリエチレングリコールに
分散した分散液をパターン状に塗布し、450℃で30
分間、乾燥、焼成して、厚さ10μmの酸化物半導体膜
(TiO2 の多孔質膜)を形成した後、そのTiO2
孔質膜に色素増感剤を担持させるため、この積層体をル
テニウム錯体のエタノール溶液に浸漬して含浸させた
後、乾燥して、TiO2 多孔質膜にルテニウム錯体を担
持させた。次いで、この積層体のTiO2 多孔質膜形成
面に、別に用意したガラス板(透明基板)上にSnO2
の薄膜層(透明電極層)がパターン状に形成された積層
体のSnO2 の薄膜層形成面が対向するように重ね合わ
せ、電極リードを引き出すと共に、周囲の端部をエポキ
シ系接着剤で電解質溶液の注入口のみを残して封止し、
接着剤の硬化後、その注入口からヨウ素電解質溶液を注
入し、注入後、その注入口をシール材で封止して実施例
1の色素増感型太陽電池セルを作製した。
(Production of Dye-Sensitized Solar Cell) A glass plate was used as a back substrate, and a platinum paste was first applied thereon in a pattern by a single-sheet screen printing machine and dried to form a back electrode having a thickness of 3 μm. A layer is formed, and a particle size of 1 to
A dispersion of 10 nm TiO 2 fine particles dispersed in polyethylene glycol is applied in a pattern,
After drying and baking for 10 minutes to form an oxide semiconductor film (a porous film of TiO 2 ) having a thickness of 10 μm, the laminate was coated with ruthenium to carry a dye sensitizer on the TiO 2 porous film. After being impregnated by immersion in an ethanol solution of the complex, it was dried and the ruthenium complex was supported on the TiO 2 porous membrane. Then, a SnO 2 layer was placed on a separately prepared glass plate (transparent substrate) on the TiO 2 porous film forming surface of the laminate.
The thin film layer (transparent electrode layer) of the above is superimposed so that the SnO 2 thin film layer forming surface of the laminate formed in a pattern faces each other, the electrode lead is pulled out, and the peripheral end is made of an electrolyte with an epoxy-based adhesive. Seal leaving only the solution inlet,
After the adhesive was cured, an iodine electrolyte solution was injected from the injection port, and after the injection, the injection port was sealed with a sealing material to produce a dye-sensitized solar cell of Example 1.

【0040】〔実施例2〕 (色素増感型太陽電池セルの作製)裏面基板として、厚
さ25μmのロール状に巻き上げられた長尺のPETフ
ィルムを用い、巻き取り供給巻き上げ方式のグラビアダ
イレクトコーターにより、先ず、白金ペーストをパター
ン状に塗布、乾燥して厚さ3μmの裏面電極層を形成
し、その上に粒子径1〜10nmのTiO2 微粒子をポ
リエチレングリコールに分散した分散液をパターン状に
塗布し、120℃で30分間、乾燥、焼成して、厚さ1
0μmの酸化物半導体膜(TiO2 の多孔質膜)を形成
した後、更にそのTiO2 多孔質膜に色素増感剤を担持
させるため、TiO2 多孔質膜上にルテニウム錯体のエ
タノール溶液を塗布し、含浸させた後、乾燥して、Ti
2 多孔質膜にルテニウム錯体を担持させた。次いで、
この積層体を所定の寸法に打ち抜き、そのTiO2 多孔
質膜形成面に、別に用意したガラス板(透明基板)上に
SnO2 の薄膜層(透明電極層)がパターン状に形成さ
れた積層体のSnO2 の薄膜層形成面が対向するように
重ね合わせ、電極リードを引き出すと共に、周囲の端部
をエポキシ系接着剤で電解質溶液の注入口のみを残して
封止し、接着剤の硬化後、その注入口からヨウ素電解質
溶液を注入し、注入後、その注入口をシール材で封止し
て実施例2の色素増感型太陽電池セルを作製した。
Example 2 (Preparation of Dye-Sensitized Solar Cell) A gravure direct coater of a winding supply and winding type using a long PET film wound up in a roll shape having a thickness of 25 μm as a back substrate. First, a platinum paste is applied in a pattern and dried to form a back electrode layer having a thickness of 3 μm, and a dispersion liquid in which TiO 2 fine particles having a particle diameter of 1 to 10 nm are dispersed in polyethylene glycol is formed in a pattern. Coated, dried and baked at 120 ° C for 30 minutes to obtain a thickness of 1
After forming the oxide semiconductor film of 0 .mu.m (TiO 2 porous film) and further in order to carry the dye sensitizer to the TiO 2 porous membrane, an ethanol solution of a ruthenium complex on TiO 2 porous film coating And then impregnated and dried,
The ruthenium complex was supported on the O 2 porous membrane. Then
This laminate is punched into a predetermined size, and a thin film layer (transparent electrode layer) of SnO 2 is formed in a pattern on a separately prepared glass plate (transparent substrate) on the TiO 2 porous film formation surface. The SnO 2 thin film layer forming surface is overlapped, the electrode leads are pulled out, and the peripheral end is sealed with an epoxy adhesive leaving only the electrolyte solution inlet, and after the adhesive is cured. Then, an iodine electrolyte solution was injected from the injection port, and after the injection, the injection port was sealed with a sealing material to produce a dye-sensitized solar cell of Example 2.

【0041】〔比較例1〕 (色素増感型太陽電池セルの作製)前記実施例1の色素
増感型太陽電池セルの作製において、酸化物半導体膜の
形成に用いたTiO2 微粒子の粒子径のみを、平均粒子
径20nmのTiO2 微粒子に変えた他は総て実施例1
と同様に加工して比較例1の色素増感型太陽電池セルを
作製した。
Comparative Example 1 (Preparation of Dye-Sensitized Solar Cell) In the preparation of the dye-sensitized solar cell of Example 1, the particle size of the TiO 2 fine particles used for forming the oxide semiconductor film Example 1 except that only TiO 2 fine particles having an average particle diameter of 20 nm were used.
The dye-sensitized solar cell of Comparative Example 1 was fabricated in the same manner as described above.

【0042】以上のように作製した実施例1、実施例2
および比較例1の色素増感型太陽電池セルについて、そ
の光電変換効率〔η%〕を測定した結果は、実施例1の
色素増感型太陽電池セルは9%、実施例2の色素増感型
太陽電池セルは8%、比較例1の色素増感型太陽電池セ
ルは7%であり、実施例1および実施例2の色素増感型
太陽電池セルは、比較例1の色素増感型太陽電池セルと
対比して、酸化物半導体膜のTiO2 微粒子の微細化に
より、発電効率の大幅な向上が認められた。また、実施
例2の色素増感型太陽電池セルは、裏面基板として、ロ
ール状に巻き上げられた長尺の耐熱性フレキシブルフィ
ルム(この場合、PETフィルム)を用いて、その上に
裏面電極層と酸化物半導体膜と、その酸化物半導体膜に
担持させる色素増感剤とを、巻き取り供給巻き上げ方式
のパターンコーター(この場合、グラビアダイレクトコ
ーター)を使用して加工しているので、ガラス基板など
に枚葉のスクリーン印刷機を使用して加工する場合と比
較して、生産性が大幅に向上し、コストも低減でき、量
産性にも優れている。
Example 1 and Example 2 fabricated as described above
The results obtained by measuring the photoelectric conversion efficiency [η%] of the dye-sensitized solar cell of Comparative Example 1 were 9% for the dye-sensitized solar cell of Example 1, and 9% for the dye-sensitized solar cell of Example 2. The solar cell of the type 1 was 8%, the solar cell of the dye-sensitized type of Comparative Example 1 was 7%, and the dye-sensitized solar cells of Examples 1 and 2 were the dye-sensitized type of Comparative Example 1. Compared with the solar cell, the power generation efficiency was significantly improved by making the TiO 2 fine particles of the oxide semiconductor film finer. Further, the dye-sensitized solar cell of Example 2 uses a long heat-resistant flexible film (in this case, a PET film) wound up in a roll shape as a back substrate, and a back electrode layer is formed thereon. Since the oxide semiconductor film and the dye sensitizer to be supported on the oxide semiconductor film are processed by using a pattern supply coater (in this case, a gravure direct coater) of a take-up and supply type, a glass substrate or the like is used. Compared with the case of processing using a single-sheet screen printing machine, productivity is greatly improved, costs can be reduced, and mass productivity is excellent.

【0043】[0043]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、光電変換効率〔η%〕が高く、生産性にも優
れ、大量生産が容易であると共に、コストも低減するこ
とのできる色素増感型太陽電池セルおよびそれを用いた
色素増感型太陽電池モジュール、およびそれらの製造方
法を提供できる効果を奏する。
As is apparent from the above description, according to the present invention, the photoelectric conversion efficiency [η%] is high, the productivity is excellent, the mass production is easy, and the cost is reduced. Dye-sensitized solar cells that can be provided, dye-sensitized solar cell modules using the same, and methods for producing them are provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の色素増感型太陽電池セルの一実施例の
構成を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of one embodiment of a dye-sensitized solar cell of the present invention.

【図2】本発明の色素増感型太陽電池モジュールの一実
施例の構成を示す要部の模式断面図である。
FIG. 2 is a schematic sectional view of a main part showing a configuration of one embodiment of a dye-sensitized solar cell module of the present invention.

【符号の説明】[Explanation of symbols]

1 透明基板 2 透明電極層 3 電解質溶液 4 色素増感剤が担持された酸化物半導体膜 5 裏面電極層 6 裏面基板 7 電極接続部 8 発電層 9 隔壁 10 封止材 11 電極リード 100 色素増感型太陽電池セル 200 色素増感型太陽電池モジュール REFERENCE SIGNS LIST 1 transparent substrate 2 transparent electrode layer 3 electrolyte solution 4 oxide semiconductor film supporting dye sensitizer 5 back electrode layer 6 back substrate 7 electrode connection portion 8 power generation layer 9 partition 10 sealing material 11 electrode lead 100 dye sensitization Type solar cell 200 Dye-sensitized solar cell module

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA14 5H032 AA06 AA09 AS16 BB02 BB05 BB10 CC09 CC14 CC16 CC17 EE01 EE03 EE04 EE07 EE12 EE16 EE17 EE18 HH01 HH04 HH06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA14 5H032 AA06 AA09 AS16 BB02 BB05 BB10 CC09 CC14 CC16 CC17 EE01 EE03 EE04 EE07 EE12 EE16 EE17 EE18 HH01 HH04 HH06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、受光面側から、透明基板、透
明電極層、発電層、裏面電極層、裏面基板が順に積層さ
れてなる太陽電池セルにおいて、該発電層が、粒子径
0.1nm〜10μmの酸化物微粒子を焼成してなる酸
化物半導体膜と、該酸化物半導体膜に担持された色素増
感剤と、該酸化物半導体膜に含浸された電解質溶液とで
形成され、且つ、該酸化物微粒子の少なくとも30重量
%が、粒子径0.1〜10nmの微粒子であることを特
徴とする色素増感型太陽電池セル。
At least a solar cell in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are laminated in this order from the light receiving surface side, the power generation layer has a particle diameter of 0.1 nm to 0.1 nm. An oxide semiconductor film formed by firing 10 μm oxide fine particles, a dye sensitizer supported on the oxide semiconductor film, and an electrolyte solution impregnated in the oxide semiconductor film; A dye-sensitized solar cell, wherein at least 30% by weight of the oxide fine particles are fine particles having a particle size of 0.1 to 10 nm.
【請求項2】前記酸化物半導体膜の酸化物微粒子が、T
iO2 、ZnO、SnO2 、ITO、ZrO2 、SiO
X 、MgO、Al2 3 、CeO2 、Bi23 、Mn
3 4 、Y2 3 、WO3 、Ta2 5 、Nb2 5
La2 3 の微粒子のうちのいずれか一種、または二種
以上の混合系の微粒子であることを特徴とする請求項1
記載の色素増感型太陽電池セル。
2. The method according to claim 2, wherein the oxide fine particles of the oxide semiconductor film are T particles.
iO 2, ZnO, SnO 2, ITO, ZrO 2, SiO
X , MgO, Al 2 O 3 , CeO 2 , Bi 2 O 3 , Mn
3 O 4 , Y 2 O 3 , WO 3 , Ta 2 O 5 , Nb 2 O 5 ,
2. A fine particle of any one of La 2 O 3 fine particles or a mixed type of two or more kinds thereof.
The dye-sensitized solar cell according to the above.
【請求項3】前記酸化物半導体膜の酸化物微粒子の30
重量%以上が、TiO2 の微粒子であることを特徴とす
る請求項1または2に記載の色素増感型太陽電池セル。
3. An oxide semiconductor film comprising:
3. The dye-sensitized solar cell according to claim 1, wherein the weight percent or more is TiO 2 fine particles. 4.
【請求項4】前記酸化物半導体膜が、前記酸化物微粒子
に導電性バインダーを1〜30重量%の範囲で混合した
混合物で形成されていることを特徴とする請求項1乃至
3のいずれかに記載の色素増感型太陽電池セル。
4. The oxide semiconductor film according to claim 1, wherein said oxide semiconductor film is formed of a mixture of said oxide fine particles and a conductive binder in a range of 1 to 30% by weight. 3. The dye-sensitized solar cell according to item 1.
【請求項5】前記酸化物半導体膜が、その多孔質の内部
表面まで、TiCl 4 水溶液及び/又はt−ブチルピリ
ジンのアセトニトリル分散液により、表面処理されてい
ることを特徴とする請求項1乃至4のいずれかに記載の
色素増感型太陽電池セル。
5. The method according to claim 1, wherein the oxide semiconductor film has a porous interior.
Up to the surface, TiCl FourAqueous solution and / or t-butylpyri
Surface treatment with acetonitrile dispersion of gin
The method according to any one of claims 1 to 4, wherein
Dye-sensitized solar cell.
【請求項6】前記色素増感剤が、ルテニウム錯体である
ことを特徴とする請求項1乃至5のいずれかに記載の色
素増感型太陽電池セル。
6. The dye-sensitized solar cell according to claim 1, wherein the dye sensitizer is a ruthenium complex.
【請求項7】前記電解質溶液が、ヨウ素電解質溶液、ま
たはゲル電解質、固体電解質のいずれかであることを特
徴とする請求項1乃至6のいずれかに記載の色素増感型
太陽電池セル。
7. The dye-sensitized solar cell according to claim 1, wherein the electrolyte solution is an iodine electrolyte solution, a gel electrolyte, or a solid electrolyte.
【請求項8】前記請求項1乃至7のいずれかに記載の色
素増感型太陽電池セルが、複数個、平面状または曲面状
に配列され、且つ直列に接続されてなる色素増感型太陽
電池モジュール。
8. A dye-sensitized solar cell comprising a plurality of dye-sensitized solar cells according to any one of claims 1 to 7, which are arranged in a planar or curved shape and connected in series. Battery module.
【請求項9】少なくとも受光面側から、透明基板、透明
電極層、発電層、裏面電極層、裏面基板が順に積層され
た積層体で形成され、且つ、該発電層が、粒子径0.1
nm〜10μmの酸化物微粒子を焼成してなる酸化物半
導体膜と、該酸化物半導体膜に担持された色素増感剤
と、該酸化物半導体膜に含浸された電解質溶液とで形成
される色素増感型太陽電池セルの製造方法であって、少
なくとも前記発電層の色素増感剤が担持された酸化物半
導体膜と裏面電極層と裏面基板との積層体を、裏面基板
として、ロール状に巻き上げられた長尺の耐熱性フレキ
シブルフィルムを用い、その上に、巻き取り供給巻き上
げ方式のパターンコーターを用いて、白金またはカーボ
ンペーストをパターン状に塗布、乾燥して、裏面電極層
を形成し、次いで、該裏面電極層の上に、粒子径0.1
nm〜10μmの酸化物微粒子を少なくともポリエチレ
ングリコールを含む液に分散させて作製した酸化物微粒
子ペーストを、パターン状に塗布し、予備乾燥後、10
0〜350℃で、10〜180分間、乾燥、焼成して酸
化物半導体膜を形成し、更に、形成された酸化物半導体
膜に、色素増感剤の溶液を、前記パターンコーター、ま
たは巻き取り供給巻き上げ方式の浸漬装置を用いて、塗
布、または浸漬して含浸させた後、乾燥して、色素増感
剤を担持させて形成することを特徴とする色素増感型太
陽電池セルの製造方法。
9. A laminated body in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially stacked at least from the light receiving surface side, and the power generation layer has a particle diameter of 0.1.
An oxide semiconductor film formed by baking oxide fine particles of 10 nm to 10 μm, a dye sensitizer supported on the oxide semiconductor film, and a dye formed by an electrolyte solution impregnated in the oxide semiconductor film. A method for manufacturing a sensitized solar cell, comprising a laminate of at least the oxide semiconductor film supporting a dye sensitizer of the power generation layer, a back electrode layer, and a back substrate, in a roll shape as a back substrate. Using a rolled-up long heat-resistant flexible film, on top of that, using a pattern coater of the winding supply winding system, platinum or carbon paste is applied in a pattern and dried to form a back electrode layer, Subsequently, a particle diameter of 0.1
An oxide fine particle paste prepared by dispersing oxide fine particles of nm to 10 μm in a liquid containing at least polyethylene glycol is applied in a pattern, and after preliminary drying, 10 μm is applied.
Drying and baking at 0 to 350 ° C. for 10 to 180 minutes to form an oxide semiconductor film, and further, a solution of a dye sensitizer is applied to the formed oxide semiconductor film by the pattern coater or winding. A method for producing a dye-sensitized solar cell, comprising coating or dipping and impregnating with a supply-winding-type dipping device, followed by drying to form a dye-sensitized agent. .
【請求項10】少なくとも受光面側から、透明基板、透
明電極層、発電層、裏面電極層、裏面基板が順に積層さ
れた積層体で形成され、且つ、該発電層が、粒子径0.
1nm〜10μmの酸化物微粒子を焼成してなる酸化物
半導体膜と、該酸化物半導体膜に担持された色素増感剤
と、該酸化物半導体膜に含浸された電解質溶液とで形成
される色素増感型太陽電池セルが、複数個、平面状また
は曲面状に配列され、且つ直列に接続されてなる色素増
感型太陽電池モジュールの製造方法であって、少なくと
も下記(1)〜(5)の工程を含むことを特徴とする色
素増感型太陽電池モジュールの製造方法。 (1)裏面基板として、ロール状に巻き上げられた長尺
の耐熱性フレキシブルフィルムを用い、その上に、巻き
取り供給巻き上げ方式のパターンコーターを用いて、白
金またはカーボンペーストを、複数個のセルが所定の間
隔を開けて配列されて形成されるモジュールの裏面電極
層のパターンで塗布、乾燥して、裏面電極層を形成し、
その上に酸化物半導体膜のパターンで、粒子径0.1n
m〜10μmの酸化物微粒子を少なくともポリエチレン
グリコールを含む液に分散させて作製した酸化物微粒子
ペーストを塗布し、予備乾燥後、100〜350℃で1
0〜180分間、乾燥、焼成して多孔質の酸化物半導体
膜を形成する工程。 (2)前記(1)の工程で作製した裏面基板(耐熱性フ
レキシブルフィルム)と、その上にそれぞれ所定のパタ
ーンで形成された裏面電極層と酸化物半導体膜の積層体
の酸化物半導体膜に、色素増感剤の溶液を、前記パター
ンコーター、または巻き取り供給巻き上げ方式の浸漬装
置を用いて、塗布、または浸漬して含浸させた後、乾燥
して、色素増感剤を担持させる工程。 (3)前記(2)の工程で作製した裏面基板(耐熱性フ
レキシブルフィルム)と、その上にそれぞれ所定のパタ
ーンで形成された裏面電極層と色素増感剤を担持させた
酸化物半導体膜の積層体の酸化物半導体膜形成面に、各
セル間を直列に接続する接続部と、各セル間を仕切りす
る隔壁とを設ける工程。 (4)前記(3)の工程で作製した積層体の酸化物半導
体膜形成面に、別に作製した透明基板とその上に所定の
パターンで形成された透明電極層の積層体を、その透明
電極層面が対向するように重ね、直列に接続されたセル
の両端(正極と負極)から電極リードを引き出し、両者
を接合する工程。 (5)前記(4)の工程で作製した積層体の各セルに予
め裏面基板(耐熱性フレキシブルフィルム)に設けられ
た小孔、またはセルの端部に設けられた間隙部から電解
質溶液を注入し、酸化物半導体膜に含浸させ、それぞれ
の小孔または間隙部をシール材で封止する工程。
10. A laminated body in which a transparent substrate, a transparent electrode layer, a power generation layer, a back electrode layer, and a back substrate are sequentially laminated at least from the light receiving surface side.
An oxide semiconductor film formed by firing oxide fine particles of 1 nm to 10 μm, a dye sensitizer carried on the oxide semiconductor film, and a dye formed from an electrolyte solution impregnated in the oxide semiconductor film A method for producing a dye-sensitized solar cell module, in which a plurality of sensitized solar cells are arranged in a planar or curved shape and connected in series, comprising at least the following (1) to (5) A method for producing a dye-sensitized solar cell module, comprising the steps of: (1) A long heat-resistant flexible film wound up in a roll shape is used as a back substrate, and platinum or carbon paste is applied thereon using a pattern coater of a winding-supplying and winding type, and a plurality of cells are formed. Applying and drying the pattern of the back electrode layer of the module formed and arranged at predetermined intervals to form a back electrode layer,
On top of that, the pattern of the oxide semiconductor film has a particle diameter of 0.1 n.
An oxide fine particle paste prepared by dispersing oxide fine particles of m to 10 μm in a liquid containing at least polyethylene glycol is applied, preliminarily dried, and then heated at 100 to 350 ° C. for 1 hour.
A step of drying and firing for 0 to 180 minutes to form a porous oxide semiconductor film; (2) The back substrate (heat-resistant flexible film) manufactured in the step (1) and the oxide semiconductor film of the stacked body of the back electrode layer and the oxide semiconductor film each formed in a predetermined pattern on the back substrate And a step of coating or dipping the solution of the dye sensitizer by using the pattern coater or the winding-supplying-rolling type dipping apparatus, followed by drying to carry the dye sensitizer. (3) The back substrate (heat-resistant flexible film) produced in the step (2), the back electrode layer formed on the back substrate in a predetermined pattern, and the oxide semiconductor film carrying a dye sensitizer on the back substrate. A step of providing, on the oxide semiconductor film formation surface of the stacked body, a connection portion for connecting the cells in series and a partition for partitioning the cells. (4) On the oxide semiconductor film forming surface of the laminate prepared in the above step (3), a laminate of a separately prepared transparent substrate and a transparent electrode layer formed in a predetermined pattern thereon is placed on the transparent electrode. A step of extracting electrode leads from both ends (a positive electrode and a negative electrode) of the cells stacked so that the layer surfaces face each other and connected in series, and joining them. (5) An electrolyte solution is injected into each cell of the laminated body prepared in the step (4) from a small hole previously provided on the back substrate (heat-resistant flexible film) or a gap provided at an end of the cell. And then impregnating the oxide semiconductor film and sealing each small hole or gap with a sealing material.
JP2000283960A 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module Expired - Fee Related JP4659954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000283960A JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000283960A JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010251749A Division JP5212750B2 (en) 2010-11-10 2010-11-10 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2002093475A true JP2002093475A (en) 2002-03-29
JP4659954B2 JP4659954B2 (en) 2011-03-30

Family

ID=18768249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000283960A Expired - Fee Related JP4659954B2 (en) 2000-09-19 2000-09-19 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP4659954B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103085A1 (en) * 2002-06-04 2003-12-11 新日本石油株式会社 Photoelectric transducer
WO2004036683A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Sensitized dye solar cell and sensitized dye solar cell module
KR100554179B1 (en) 2004-06-09 2006-02-22 한국전자통신연구원 Flexible dye-sensitized solar cell using conducting metal substrate
JPWO2005081065A1 (en) * 2004-02-20 2007-10-25 日本曹達株式会社 Photosensitive substrate and patterning method
JP2008016387A (en) * 2006-07-07 2008-01-24 Fujikura Ltd Solar cell and solar cell module
JP2008153013A (en) * 2006-12-15 2008-07-03 Shinko Electric Ind Co Ltd Dye-sensitized solar cell module and its manufacturing method
JP2010020939A (en) * 2008-07-08 2010-01-28 Toyo Seikan Kaisha Ltd Coating liquid for forming backward electron preventive layer
JP2010037138A (en) * 2008-08-05 2010-02-18 Hitachi Zosen Corp Method for forming titanium oxide film and photoelectric conversion element
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
US20120266955A1 (en) * 2011-04-21 2012-10-25 Samsung Sdi Co., Ltd. Photoelectric conversion device and method of preparing the same
JP2013079882A (en) * 2011-10-04 2013-05-02 Dainippon Printing Co Ltd Detection system and detection device
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
US8624106B2 (en) 2010-05-06 2014-01-07 Samsung Sdi Co., Ltd. Electrode for dye sensitized solar cell, method of manufacturing the same, and dye sensitized solar cell using the electrode
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
DE102015117164A1 (en) 2014-10-09 2016-04-14 Canon Kabushiki Kaisha Sheet conveying device and image forming device
WO2016204505A1 (en) * 2015-06-16 2016-12-22 주식회사 오리온 Dye-sensitized solar cell
CN112233906A (en) * 2020-10-13 2021-01-15 杭州肄康新材料有限公司 Photoanode based on flexible substrate and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306399A (en) * 1995-04-15 1996-11-22 Heidelberger Druckmas Ag Photochemical cell
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000101106A (en) * 1998-09-25 2000-04-07 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion device, manufacture thereof and photo-electrochemical cell
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306399A (en) * 1995-04-15 1996-11-22 Heidelberger Druckmas Ag Photochemical cell
JPH11260427A (en) * 1998-03-11 1999-09-24 Toshiba Corp Transparent semiconductor electrode and photochemical battery by using it
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JP2000101106A (en) * 1998-09-25 2000-04-07 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion device, manufacture thereof and photo-electrochemical cell
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000251958A (en) * 1998-12-28 2000-09-14 Fuji Photo Film Co Ltd Optoelectric transducing element and optoelectric- chemical cell
JPH11273754A (en) * 1999-01-18 1999-10-08 Agency Of Ind Science & Technol Organic pigment sensitization-type oxide semiconductor and solar battery including it
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103085A1 (en) * 2002-06-04 2003-12-11 新日本石油株式会社 Photoelectric transducer
WO2004036683A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Sensitized dye solar cell and sensitized dye solar cell module
JPWO2004036683A1 (en) * 2002-10-15 2006-02-16 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
US7851699B2 (en) 2002-10-15 2010-12-14 Sharp Kabushiki Kaisha Dye-sensitized solar cell and dye-sensitized solar cell module
JP4602971B2 (en) * 2004-02-20 2010-12-22 日本曹達株式会社 Photosensitive substrate and patterning method
JPWO2005081065A1 (en) * 2004-02-20 2007-10-25 日本曹達株式会社 Photosensitive substrate and patterning method
KR100554179B1 (en) 2004-06-09 2006-02-22 한국전자통신연구원 Flexible dye-sensitized solar cell using conducting metal substrate
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
JP2008016387A (en) * 2006-07-07 2008-01-24 Fujikura Ltd Solar cell and solar cell module
JP2008153013A (en) * 2006-12-15 2008-07-03 Shinko Electric Ind Co Ltd Dye-sensitized solar cell module and its manufacturing method
US7977569B2 (en) 2006-12-15 2011-07-12 Shinko Electric Industries Co., Ltd. Dye sensitized solar cell module and manufacturing method thereof
JP2010020939A (en) * 2008-07-08 2010-01-28 Toyo Seikan Kaisha Ltd Coating liquid for forming backward electron preventive layer
JP2010037138A (en) * 2008-08-05 2010-02-18 Hitachi Zosen Corp Method for forming titanium oxide film and photoelectric conversion element
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
US8624106B2 (en) 2010-05-06 2014-01-07 Samsung Sdi Co., Ltd. Electrode for dye sensitized solar cell, method of manufacturing the same, and dye sensitized solar cell using the electrode
US20120266955A1 (en) * 2011-04-21 2012-10-25 Samsung Sdi Co., Ltd. Photoelectric conversion device and method of preparing the same
JP2013079882A (en) * 2011-10-04 2013-05-02 Dainippon Printing Co Ltd Detection system and detection device
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
DE102015117164A1 (en) 2014-10-09 2016-04-14 Canon Kabushiki Kaisha Sheet conveying device and image forming device
US9442450B2 (en) 2014-10-09 2016-09-13 Canon Kabushiki Kaisha Sheet conveying apparatus and image forming apparatus
DE102015117164B4 (en) 2014-10-09 2022-03-17 Canon Kabushiki Kaisha Sheet feeding device and image forming device
WO2016204505A1 (en) * 2015-06-16 2016-12-22 주식회사 오리온 Dye-sensitized solar cell
CN112233906A (en) * 2020-10-13 2021-01-15 杭州肄康新材料有限公司 Photoanode based on flexible substrate and preparation method thereof
CN112233906B (en) * 2020-10-13 2021-11-02 江苏日御光伏新材料科技有限公司 Photoanode based on flexible substrate and preparation method thereof

Also Published As

Publication number Publication date
JP4659954B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2002093475A (en) Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module using the same, and their manufacturing method
JP2002093476A (en) Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
US20140227828A1 (en) Dye-sensitized solar cell and method for manufacturing the same
Liu et al. Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications
JP2001160425A (en) Optical semiconductor electrode and its manufacturing method
JP2006282970A (en) Laminated film for dye-sensitized solar cell and electrode for the dye-sensitized solar cell using the same
JP2008257893A (en) Method of manufacturing substrate for dye-sensitized solar cell, method of manufacturing dye-sensitized solar cell, and substrate for dye-sensitized solar cell and dye-sensitized solar cell manufactured by these methods
JP4955852B2 (en) Photoelectrode and photochemical battery using the same
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2002314108A (en) Solar cell
JP5212750B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP2004047261A (en) Photo-electrode, method of manufacturing photo-electrode and solar battery
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2011058786A1 (en) Dye-sensitized solar cell
JP2003264304A (en) Photoelectric transducer
JP2007149600A (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell using it
JP2002175844A (en) Solar cell
JP2002252359A (en) Light-receiving layer and solar battery
JP5119624B2 (en) Transfer body for metal oxide electrode production
JP5059289B2 (en) Dye-sensitized solar cell laminate, dye-sensitized solar cell electrode, and method for producing the same
JP2004103518A (en) Manufacturing method of dye-sensitized solar cell and dye-sensitized solar cell manufactured using the manufacturing method
Mandal et al. Low-Cost, Large-Area Nanocrystalline TiO 2-Polymer Solar Cells on Flexible Plastics
JP6641167B2 (en) Method for producing coated semiconductor particles, method for producing semiconductor film, method for producing laminate, method for producing electrode, and method for producing dye-sensitized solar cell
WO2015005031A1 (en) Photovoltaic generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees