JP2013071036A - Solution concentration adjusting method, solution concentration adjusting device, dye-sensitized solar cell, and optical device - Google Patents

Solution concentration adjusting method, solution concentration adjusting device, dye-sensitized solar cell, and optical device Download PDF

Info

Publication number
JP2013071036A
JP2013071036A JP2011210644A JP2011210644A JP2013071036A JP 2013071036 A JP2013071036 A JP 2013071036A JP 2011210644 A JP2011210644 A JP 2011210644A JP 2011210644 A JP2011210644 A JP 2011210644A JP 2013071036 A JP2013071036 A JP 2013071036A
Authority
JP
Japan
Prior art keywords
solution
concentration
dye
adjusting
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011210644A
Other languages
Japanese (ja)
Other versions
JP5898895B2 (en
Inventor
Naohiro Fujinuma
尚洋 藤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011210644A priority Critical patent/JP5898895B2/en
Publication of JP2013071036A publication Critical patent/JP2013071036A/en
Application granted granted Critical
Publication of JP5898895B2 publication Critical patent/JP5898895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solution concentration adjusting method and a solution concentration adjusting device, capable of adjusting the solution concentration at low cost by a simple facility, and a dye-sensitized solar cell or optical device which is manufactured using the solution concentration adjusting device.SOLUTION: In the solution concentration adjusting method for storing a saturated solution and a low-concentration solution in a container 12 through a semipermeable membrane 11 and adjusting the concentration of the low-concentration solution, the concentration of the low-concentration solution is adjusted by adjusting the pressure difference between the saturated solution and the low-concentration solution and the temperatures of the saturated solution and the low-concentration solution.

Description

本発明は、溶液濃度調節方法、溶液濃度調整装置、色素増感型太陽電池、光学デバイスに関するものである。  The present invention relates to a solution concentration adjusting method, a solution concentration adjusting apparatus, a dye-sensitized solar cell, and an optical device.

色素増感型太陽電池は、多孔質半導体層の表面に増感作用を有する増感色素を吸着させることによって、幅広い波長領域を光電変換することが可能である。
多孔質半導体層に増感色素を吸着させる方法としては、一般的に、増感色素を含む色素溶液に、多孔質半導体層を浸漬する方法が用いられている。この方法では、色素溶液に多孔質半導体層を浸漬する時間に応じて、多孔質半導体層に吸着する増感色素の量が変化する。そして、多孔質半導体層に吸着した増感色素の量は、発電効率に大きく影響するため、同一プロセスで再現性よく、性能のばらつきが少ない色素増感型太陽電池を製造するためには、色素溶液の濃度を一定に保つ必要がある。
The dye-sensitized solar cell can photoelectrically convert a wide wavelength region by adsorbing a sensitizing dye having a sensitizing action on the surface of the porous semiconductor layer.
As a method for adsorbing a sensitizing dye to a porous semiconductor layer, a method of immersing the porous semiconductor layer in a dye solution containing a sensitizing dye is generally used. In this method, the amount of the sensitizing dye adsorbed on the porous semiconductor layer varies depending on the time during which the porous semiconductor layer is immersed in the dye solution. The amount of the sensitizing dye adsorbed on the porous semiconductor layer greatly affects the power generation efficiency. Therefore, in order to produce a dye-sensitized solar cell with good reproducibility and little performance variation in the same process, It is necessary to keep the concentration of the solution constant.

従来、色素溶液の濃度を一定に保つ方法としては、色素濃度検出装置により色素溶液の濃度を測定し、その情報に基づいて、色素濃度調節装置により色素溶液の濃度を調節する方法が知られている(例えば、特許文献1、2参照)。
しかしながら、上記の方法では、色素濃度検出装置や色素濃度調節装置に加えて、色素濃度制御装置などの複数の装置が必要になり、装置が煩雑になったり、ランニングコストが増加したりするという問題があった。
Conventionally, as a method of keeping the concentration of the dye solution constant, a method of measuring the concentration of the dye solution with a dye concentration detecting device and adjusting the concentration of the dye solution with the dye concentration adjusting device based on the information is known. (For example, refer to Patent Documents 1 and 2).
However, the above-described method requires a plurality of devices such as a dye concentration control device in addition to the dye concentration detection device and the dye concentration adjustment device, and thus the device becomes complicated and the running cost increases. was there.

特開平6−204623号公報JP-A-6-204623 特開平8−71494号公報JP-A-8-71494

本発明は、上記事情に鑑みてなされたものであって、簡便な設備によって、低コストで溶液濃度の調節が可能な溶液濃度調節方法および溶液濃度調整装置、並びに、その溶液濃度調整装置を用いて製造された色素増感型太陽電池または光学デバイスを提供することを目的とする。  The present invention has been made in view of the above circumstances, and uses a solution concentration adjusting method, a solution concentration adjusting device, and a solution concentration adjusting device capable of adjusting the solution concentration at low cost with simple equipment. It is an object of the present invention to provide a dye-sensitized solar cell or an optical device manufactured in the above manner.

本発明の溶液濃度調節方法は、半透膜を介して飽和溶液と低濃度溶液を容器に収容し、前記低濃度溶液の濃度を調節する方法であって、前記飽和溶液と前記低濃度溶液の圧力差、並びに、前記飽和溶液および前記低濃度溶液の温度を調節することにより、前記低濃度溶液の濃度を調節することを特徴とする。  The solution concentration adjusting method of the present invention is a method of accommodating a saturated solution and a low concentration solution in a container through a semipermeable membrane and adjusting the concentration of the low concentration solution, wherein the saturated solution and the low concentration solution The concentration of the low concentration solution is adjusted by adjusting the pressure difference and the temperature of the saturated solution and the low concentration solution.

本発明の溶液濃度調節方法において、前記飽和溶液および前記低濃度溶液は、色素増感型太陽電池に用いられる増感色素を含むことが好ましい。  In the solution concentration adjusting method of the present invention, the saturated solution and the low concentration solution preferably contain a sensitizing dye used in a dye-sensitized solar cell.

本発明の溶液濃度調整装置は、半透膜を介して飽和溶液と低濃度溶液を収容する容器を備えた溶液濃度調整装置であって、前記飽和溶液と前記低濃度溶液の圧力差を調節する手段と、前記飽和溶液および前記低濃度溶液の温度を調節する手段と、を有することを特徴とする。  The solution concentration adjusting device of the present invention is a solution concentration adjusting device including a container for storing a saturated solution and a low concentration solution through a semipermeable membrane, and adjusts a pressure difference between the saturated solution and the low concentration solution. And means for adjusting the temperature of the saturated solution and the low concentration solution.

本発明の溶液濃度調整装置において、前記飽和溶液および前記低濃度溶液は、色素増感型太陽電池に用いられる増感色素を含むことが好ましい。  In the solution concentration adjusting apparatus of the present invention, it is preferable that the saturated solution and the low concentration solution contain a sensitizing dye used in a dye-sensitized solar cell.

本発明の色素増感型太陽電池は、本発明の溶液濃度調整装置によって濃度調節された色素溶液を用いて製造されたことを特徴とする。  The dye-sensitized solar cell of the present invention is manufactured using the dye solution whose concentration is adjusted by the solution concentration adjusting device of the present invention.

本発明の光学デバイスは、本発明の溶液濃度調整装置によって濃度調節された色素溶液を用いて製造されたことを特徴とする。  The optical device of the present invention is manufactured using a dye solution whose concentration is adjusted by the solution concentration adjusting apparatus of the present invention.

本発明によれば、従来の色素溶液濃度の調節方法と比べて、簡便な設備のみで溶液濃度の調節を行うことができる。  According to the present invention, it is possible to adjust the solution concentration with only simple equipment as compared with the conventional method of adjusting the concentration of the dye solution.

本発明の溶液濃度調整装置の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the solution concentration adjustment apparatus of this invention. 本発明の溶液濃度調整装置および溶液濃度調節方法を用いた太陽電池の製造方法の基板形成工程の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of board | substrate formation process of the manufacturing method of the solar cell using the solution concentration adjustment apparatus and solution concentration adjustment method of this invention. 本発明の溶液濃度調整装置および溶液濃度調節方法を用いた太陽電池の製造方法の基板形成工程の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of board | substrate formation process of the manufacturing method of the solar cell using the solution concentration adjustment apparatus and solution concentration adjustment method of this invention. 本発明の溶液濃度調整装置および溶液濃度調節方法を用いた太陽電池の製造方法の基板貼合工程の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of board | substrate bonding process of the manufacturing method of the solar cell using the solution concentration adjustment apparatus and solution concentration adjustment method of this invention. 本発明の一実施形態として太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows a solar cell as one Embodiment of this invention.

本発明の実施形態として、溶液濃度調節方法、溶液濃度調整装置、色素増感型太陽電池、光学デバイスについて説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
As an embodiment of the present invention, a solution concentration adjusting method, a solution concentration adjusting device, a dye-sensitized solar cell, and an optical device will be described.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.

「溶液濃度調整装置」
図1は、本発明の溶液濃度調整装置の一実施形態を示す概略断面図である。
本実施形態の溶液濃度調整装置10は、半透膜11と、半透膜11を介して飽和溶液21と低濃度溶液22を収容する容器12と、飽和溶液21と低濃度溶液22の圧力差を調節する圧力調整装置13と、飽和溶液21および低濃度溶液22の温度を調節する温度調節装置14とから概略構成されている。
"Solution concentration adjuster"
FIG. 1 is a schematic cross-sectional view showing an embodiment of the solution concentration adjusting device of the present invention.
The solution concentration adjusting apparatus 10 according to the present embodiment includes a semipermeable membrane 11, a container 12 that contains a saturated solution 21 and a low concentration solution 22 through the semipermeable membrane 11, and a pressure difference between the saturated solution 21 and the low concentration solution 22. The pressure adjusting device 13 for adjusting the temperature and the temperature adjusting device 14 for adjusting the temperature of the saturated solution 21 and the low concentration solution 22 are roughly configured.

半透膜11は、飽和溶液21および低濃度溶液22を構成する溶媒を透過し、飽和溶液21および低濃度溶液22を構成する溶質を透過しないものであれば特に限定されるものではないが、例えば、再生セルロース(セロハン)、アセチルセルロース、ポリアクリロニトリル、ポリテトラフルオロエチレン、ポリエステル系ポリマーアロイ、ポリスルホンなどからなる多孔質膜が用いられる。  The semipermeable membrane 11 is not particularly limited as long as it transmits the solvent constituting the saturated solution 21 and the low concentration solution 22 and does not pass the solute constituting the saturated solution 21 and the low concentration solution 22. For example, a porous film made of regenerated cellulose (cellophane), acetylcellulose, polyacrylonitrile, polytetrafluoroethylene, polyester polymer alloy, polysulfone, or the like is used.

ここで、飽和溶液21と低濃度溶液22は、同一の溶媒および溶質から構成される溶液である。飽和溶液21と低濃度溶液22は、溶質の量(濃度)が異なっている。
本実施形態において、飽和溶液21は、飽和または過飽和の状態にある溶液を意味しており、低濃度溶液22は、飽和溶液21よりも濃度が低く、所定の濃度に調節された溶液を意味している。
Here, the saturated solution 21 and the low concentration solution 22 are solutions composed of the same solvent and solute. The saturated solution 21 and the low concentration solution 22 differ in the amount (concentration) of the solute.
In the present embodiment, the saturated solution 21 means a solution in a saturated or supersaturated state, and the low concentration solution 22 means a solution having a concentration lower than that of the saturated solution 21 and adjusted to a predetermined concentration. ing.

飽和溶液21および低濃度溶液22を構成する溶媒は、特に限定されるものではなく、各種有機溶媒や水が挙げられる。
飽和溶液21および低濃度溶液22を構成する溶質は、特に限定されるものではなく、各種有機溶媒や水に溶解可能な物質が挙げられる。
The solvent which comprises the saturated solution 21 and the low concentration solution 22 is not specifically limited, Various organic solvents and water are mentioned.
Solutes constituting the saturated solution 21 and the low concentration solution 22 are not particularly limited, and examples thereof include substances that can be dissolved in various organic solvents and water.

溶液濃度調整装置10が、色素増感型太陽電池の多孔質半導体層に、増感色素を吸着させるために用いられる場合、飽和溶液21および低濃度溶液22は、増感色素を含む色素溶液である。
色素溶液を構成する溶媒としては、水、メタノール、エタノール、アセトニトリル、プロパノール、t−ブタノール、アセトン、酢酸エチル、ヘキサン、シクロヘキサン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ベンゼン、トルエン、テトラヒドロフラン(THF)、メチルエチルケトン、ジクロロメタン、クロロホルムなどが挙げられる。
色素溶液を構成する溶質である増感色素は、有機色素または金属錯体色素で構成されている。
有機色素として、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系などの各種有機色素が挙げられる。
金属錯体色素としては、例えば、ルテニウム錯体などが挙げられる。
When the solution concentration adjusting device 10 is used for adsorbing the sensitizing dye to the porous semiconductor layer of the dye-sensitized solar cell, the saturated solution 21 and the low-concentration solution 22 are dye solutions containing the sensitizing dye. is there.
As a solvent constituting the dye solution, water, methanol, ethanol, acetonitrile, propanol, t-butanol, acetone, ethyl acetate, hexane, cyclohexane, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), benzene, Examples include toluene, tetrahydrofuran (THF), methyl ethyl ketone, dichloromethane, chloroform and the like.
A sensitizing dye that is a solute constituting the dye solution is composed of an organic dye or a metal complex dye.
Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene.
Examples of the metal complex dye include a ruthenium complex.

容器12は、飽和溶液21を収容する飽和溶液収容部12Aと、低濃度溶液22を収容する低濃度溶液収容部12Bとから構成されている。
容器12の形状や大きさは特に限定されるものではなく、例えば、溶液濃度調整装置10が、色素増感型太陽電池の多孔質半導体層に、増感色素を吸着させるために用いられる場合、低濃度溶液収容部12Bは、多孔質半導体層を収容可能な形状や大きさとされる。
The container 12 includes a saturated solution storage unit 12A that stores a saturated solution 21 and a low concentration solution storage unit 12B that stores a low concentration solution 22.
The shape and size of the container 12 are not particularly limited. For example, when the solution concentration adjusting device 10 is used to adsorb the sensitizing dye to the porous semiconductor layer of the dye-sensitized solar cell, The low-concentration solution storage unit 12B has a shape and size that can store the porous semiconductor layer.

容器12の材質は、飽和溶液21および低濃度溶液22によって腐食されない、安定な材質であれば、特に限定されるものではなく、例えば、ガラス、石英、ステンレス、ポリプロピレン、ポリカーボネート、アクリル、ポリテトラフルオロエチレン、シリコーンなどが挙げられる。  The material of the container 12 is not particularly limited as long as it is a stable material that is not corroded by the saturated solution 21 and the low concentration solution 22. For example, glass, quartz, stainless steel, polypropylene, polycarbonate, acrylic, polytetrafluoro Examples include ethylene and silicone.

圧力調整装置13としては、例えば、飽和溶液21の液面21aを押圧する押圧部15と、押圧部15を加圧する加圧部(図示略)と、加圧部に加える力を制御する制御部(図示略)とを備えたものが用いられる。
押圧部15は、飽和溶液21の液面21aを均一に押圧することができるものであれば、特に限定されるものではなく、飽和溶液21および低濃度溶液22によって腐食されない材質からなる板状のものが用いられる。
加圧部としては、スプリング、空気圧を利用したピストン、油圧を利用したピストンなどが用いられる。
制御部としては、飽和溶液収容部12Aに配管を接続し、圧力計をモニタリングしながら、圧力調整バルブによって加圧部への圧力を制御するものが用いられる。また、制御部による圧力制御は、マスフローコントローラーを利用した自動制御も可能である。
As the pressure adjusting device 13, for example, a pressing unit 15 that presses the liquid surface 21a of the saturated solution 21, a pressurizing unit (not shown) that pressurizes the pressing unit 15, and a control unit that controls the force applied to the pressing unit. (Not shown) is used.
The pressing unit 15 is not particularly limited as long as it can uniformly press the liquid surface 21 a of the saturated solution 21, and is a plate-like material made of a material that is not corroded by the saturated solution 21 and the low concentration solution 22. Things are used.
As the pressurizing unit, a spring, a piston using air pressure, a piston using hydraulic pressure, or the like is used.
As a control part, what connects a piping to 12A of saturated solution storage parts, and controls the pressure to a pressurization part with a pressure control valve, monitoring a pressure gauge is used. Further, the pressure control by the control unit can be automatically controlled using a mass flow controller.

温度調節装置14としては、飽和溶液21および低濃度溶液22を加熱するための加熱装置(ヒータ)と、飽和溶液21および低濃度溶液22を冷却するための冷却装置とを備えたものが用いられる。
冷却装置による低濃度溶液22の冷却方法としては、例えば、容器周辺に冷却水を循環させる方法、エアーコンディショナーのような空冷による冷却方法が挙げられる。
また、温度調節装置14は、飽和溶液21と低濃度溶液22を一括して温度調節可能であっても、飽和溶液21と低濃度溶液22を個別に温度調節可能であってもよい。
As the temperature control device 14, a device including a heating device (heater) for heating the saturated solution 21 and the low concentration solution 22 and a cooling device for cooling the saturated solution 21 and the low concentration solution 22 is used. .
Examples of the cooling method of the low concentration solution 22 by the cooling device include a method of circulating cooling water around the container and a cooling method by air cooling such as an air conditioner.
Further, the temperature adjusting device 14 may be capable of adjusting the temperature of the saturated solution 21 and the low concentration solution 22 in a lump, or may be capable of adjusting the temperature of the saturated solution 21 and the low concentration solution 22 individually.

「溶液濃度調節方法」
次に、溶液濃度調整装置10の使用方法を説明することにより、本実施形態の溶液濃度調節方法を説明する。
ここでは、溶液濃度調整装置10が、色素増感型太陽電池の多孔質半導体層に、増感色素を吸着させるために用いられる場合を例にとって説明する。
"Solution concentration adjustment method"
Next, the method for adjusting the solution concentration of the present embodiment will be described by explaining the method of using the solution concentration adjusting device 10.
Here, the case where the solution concentration adjusting device 10 is used for adsorbing a sensitizing dye to the porous semiconductor layer of the dye-sensitized solar cell will be described as an example.

まず、容器12の低濃度溶液収容部12Bに、所定の濃度に調整された低濃度溶液22を注入する。
ここで、所定の濃度の低濃度溶液22とは、低濃度溶液22が色素溶液である場合、その色素溶液の濃度が、色素増感型太陽電池の多孔質酸化物半導体層に担持させるために必要な量の増感色素を含んでいる溶液のことである。
First, the low concentration solution 22 adjusted to a predetermined concentration is injected into the low concentration solution storage portion 12B of the container 12.
Here, when the low concentration solution 22 is a dye solution, the low concentration solution 22 having a predetermined concentration is used because the concentration of the dye solution is supported on the porous oxide semiconductor layer of the dye-sensitized solar cell. A solution containing the necessary amount of sensitizing dye.

一方、容器12の飽和溶液収容部12Aに、飽和溶液21を注入する。
飽和溶液21は、飽和または過飽和の状態にある増感色素溶液であり、過飽和の状態にある場合には溶媒に溶解していない固体状の増感色素を含む溶液である。
固体状の増感色素とは、飽和溶液21に溶解せずに、粉末として沈殿または分散している増感色素、あるいは、塊となって沈殿している増感色素のことである。
On the other hand, the saturated solution 21 is injected into the saturated solution storage portion 12 </ b> A of the container 12.
The saturated solution 21 is a sensitizing dye solution in a saturated or supersaturated state, and when it is in a supersaturated state, it is a solution containing a solid sensitizing dye that is not dissolved in a solvent.
The solid sensitizing dye is a sensitizing dye that is not dissolved in the saturated solution 21 but is precipitated or dispersed as a powder, or a sensitizing dye that is precipitated as a lump.

溶液濃度調整装置10では、飽和溶液21と低濃度溶液22の圧力差、並びに、飽和溶液21および低濃度溶液22の温度を調節することにより、低濃度溶液22の濃度を調節し、低濃度溶液22の濃度を一定に保つ。すなわち、予め多孔質酸化物半導体層に担持させるために必要な増感色素量となるように調製された低濃度溶液22の濃度を一定に保つ。  In the solution concentration adjusting device 10, the concentration of the low concentration solution 22 is adjusted by adjusting the pressure difference between the saturated solution 21 and the low concentration solution 22 and the temperature of the saturated solution 21 and the low concentration solution 22. Keep the concentration of 22 constant. That is, the concentration of the low-concentration solution 22 prepared so as to be the amount of sensitizing dye necessary for supporting the porous oxide semiconductor layer in advance is kept constant.

本発明では、「溶質(増感色素)+飽和溶液21(飽和状態)」と、「溶質(増感色素)+低濃度溶液22(不飽和状態)」との接触から発現する圧力差を調節している。
ここで、溶液の浸透圧π[atm]は、下記のファントホッフの式(1)で表される。
π=MRT (1)
上記の式(1)において、Mはモル濃度[mol/dm]、Rは気体定数[atm・dm/K・mol]、Tは温度[K]を表す。
In the present invention, the pressure difference generated from the contact between “solute (sensitizing dye) + saturated solution 21 (saturated state)” and “solute (sensitizing dye) + low concentration solution 22 (unsaturated state)” is adjusted. doing.
Here, the osmotic pressure π [atm] of the solution is expressed by the following Phantohof equation (1).
π = MRT (1)
In the above formula (1), M represents a molar concentration [mol / dm 3 ], R represents a gas constant [atm · dm 3 / K · mol], and T represents a temperature [K].

上記の式(1)から、温度Tが一定の場合、飽和溶液21のモル濃度と低濃度溶液22のモル濃度は、それぞれの浸透圧に比例することが分かる。したがって、飽和溶液21および低濃度溶液22の温度を一定に保つとともに、飽和溶液21と低濃度溶液22の圧力差を一定に保つことによって、飽和溶液21のモル濃度と低濃度溶液22のモル濃度との差が一定に保たれ、結果として、低濃度溶液22の濃度を一定に保つことができる。  From the above equation (1), it can be seen that when the temperature T is constant, the molar concentration of the saturated solution 21 and the molar concentration of the low-concentration solution 22 are proportional to the osmotic pressures. Therefore, by keeping the temperature of the saturated solution 21 and the low concentration solution 22 constant and keeping the pressure difference between the saturated solution 21 and the low concentration solution 22 constant, the molar concentration of the saturated solution 21 and the molar concentration of the low concentration solution 22 are maintained. As a result, the concentration of the low concentration solution 22 can be kept constant.

飽和溶液21および低濃度溶液22の温度を一定に保つには、温度調節装置14により、飽和溶液21および低濃度溶液22を加熱および/または冷却する。  In order to keep the temperature of the saturated solution 21 and the low concentration solution 22 constant, the temperature adjusting device 14 heats and / or cools the saturated solution 21 and the low concentration solution 22.

飽和溶液21と低濃度溶液22の圧力差を一定に保つには、圧力調整装置13の押圧部15により、飽和溶液21の液面21aを押圧する。
低濃度溶液22の圧力は、上述したように予め調整された濃度と、低濃度溶液22の温度によって算出される。低濃度溶液22と飽和溶液21の圧力差が常に一定になるように、圧力調整装置13の押圧部15により、飽和溶液21の液面21aを押圧する力(圧力)を調整する。
あるいは、飽和溶液21の濃度を紫外可視吸光分析により測定しながら、飽和溶液21の濃度が一定になるように、圧力調整装置13の押圧部15により、飽和溶液21の液面21aを押圧する力(圧力)を調整する。
In order to keep the pressure difference between the saturated solution 21 and the low-concentration solution 22 constant, the liquid surface 21 a of the saturated solution 21 is pressed by the pressing unit 15 of the pressure adjusting device 13.
The pressure of the low concentration solution 22 is calculated based on the concentration adjusted in advance as described above and the temperature of the low concentration solution 22. The force (pressure) for pressing the liquid surface 21a of the saturated solution 21 is adjusted by the pressing unit 15 of the pressure adjusting device 13 so that the pressure difference between the low concentration solution 22 and the saturated solution 21 is always constant.
Alternatively, the force of pressing the liquid surface 21a of the saturated solution 21 by the pressing unit 15 of the pressure adjusting device 13 so that the concentration of the saturated solution 21 becomes constant while measuring the concentration of the saturated solution 21 by ultraviolet visible absorption analysis. Adjust (pressure).

溶液濃度調整装置10を用いて、色素増感型太陽電池の多孔質半導体層に、増感色素を吸着させるには、所定の濃度に調節された低濃度溶液22に、多孔質半導体層を所定の時間、浸漬する。
このように低濃度溶液22への多孔質半導体層の浸漬を行うと、多孔質半導体層に増感色素が吸着されて、低濃度溶液22に含まれる増感色素の量が減少する。すると、飽和溶液21および低濃度溶液22の温度が一定に保たれているとともに、飽和溶液21と低濃度溶液22の圧力差が一定に保たれているので、低濃度溶液収容部12Bから飽和溶液収容部12Aへと溶媒が移動(浸透)して、低濃度溶液22の濃度は一定に保たれる。
このとき、飽和溶液収容部12A内の溶媒量は増加するが、飽和溶液21は、予め溶媒に溶解していない固体状の増感色素を含んでいるので、増加した溶媒にその固体状の増感色素が溶解して、飽和溶液21の濃度が一定に保たれる。
In order to adsorb the sensitizing dye to the porous semiconductor layer of the dye-sensitized solar cell using the solution concentration adjusting device 10, the porous semiconductor layer is predetermined in the low-concentration solution 22 adjusted to a predetermined concentration. Soak for the time.
When the porous semiconductor layer is immersed in the low concentration solution 22 in this manner, the sensitizing dye is adsorbed on the porous semiconductor layer, and the amount of the sensitizing dye contained in the low concentration solution 22 decreases. Then, the temperature of the saturated solution 21 and the low concentration solution 22 is kept constant, and the pressure difference between the saturated solution 21 and the low concentration solution 22 is kept constant. The solvent moves (penetrates) into the accommodating portion 12A, and the concentration of the low concentration solution 22 is kept constant.
At this time, although the amount of the solvent in the saturated solution storage portion 12A increases, the saturated solution 21 contains a solid sensitizing dye that is not dissolved in the solvent in advance, and therefore the solid solvent increases in the increased solvent. The dye is dissolved and the concentration of the saturated solution 21 is kept constant.

一方、低濃度溶液22を構成する溶媒の量が減少した場合、飽和溶液21および低濃度溶液22の温度が一定に保たれているとともに、飽和溶液21と低濃度溶液22の圧力差が一定に保たれているので、飽和溶液収容部12Aから低濃度溶液収容部12Bへと溶媒が移動(浸透)して、低濃度溶液22の濃度は一定に保たれる。
このとき、飽和溶液21中の溶媒は減少するが、飽和溶液21は元々飽和溶液であるため、過飽和となって増感色素が固体化し、沈殿または分散するだけであり、飽和溶液21中の濃度も一定に保たれる。
On the other hand, when the amount of the solvent constituting the low concentration solution 22 decreases, the temperature of the saturated solution 21 and the low concentration solution 22 is kept constant, and the pressure difference between the saturated solution 21 and the low concentration solution 22 is constant. Since it is maintained, the solvent moves (penetrates) from the saturated solution container 12A to the low concentration solution container 12B, and the concentration of the low concentration solution 22 is kept constant.
At this time, the solvent in the saturated solution 21 decreases, but since the saturated solution 21 is originally a saturated solution, it becomes supersaturated and the sensitizing dye is solidified and only precipitates or disperses. Is also kept constant.

本実施形態の溶液濃度調整装置および溶液濃度調節方法によれば、従来の色素溶液濃度の調節方法と比べて、簡便な設備のみで溶液濃度の調節を行うことができる。  According to the solution concentration adjusting apparatus and the solution concentration adjusting method of the present embodiment, the solution concentration can be adjusted with only simple equipment as compared with the conventional method of adjusting the dye solution concentration.

なお、本実施形態の溶液濃度調整装置および溶液濃度調節方法は、上述の浸漬方法以外の色素増感型太陽電池の製造方法にも適用することができる。例えば、スプレー方法を用いた色素の染色方法においても、使用する色素溶液の濃度が一定に保たれることが望ましいので、本実施形態の溶液濃度調整装置および溶液濃度調節方法により、色素溶液の濃度を一定に保つことによって、一定濃度の色素溶液を供給することができる。
さらに、本実施形態の溶液濃度調整装置および溶液濃度調節方法は、色素増感型太陽電池の製造方法以外にも応用することができる。例えば、色素レーザー装置やスピンコーターに、一定濃度の溶液を供給することができる。
The solution concentration adjusting device and the solution concentration adjusting method of the present embodiment can also be applied to a method for manufacturing a dye-sensitized solar cell other than the above-described immersion method. For example, in the dyeing method of the dye using the spray method, it is desirable that the concentration of the dye solution to be used is kept constant. Therefore, the concentration of the dye solution is adjusted by the solution concentration adjusting device and the solution concentration adjusting method of the present embodiment. Is kept constant, a dye solution having a constant concentration can be supplied.
Furthermore, the solution concentration adjusting device and the solution concentration adjusting method of the present embodiment can be applied in addition to a method for manufacturing a dye-sensitized solar cell. For example, a solution having a constant concentration can be supplied to a dye laser device or a spin coater.

「太陽電池およびその製造方法」
図2〜5を参照して、本実施形態の溶液濃度調整装置および溶液濃度調節方法を用いた太陽電池の製造方法を説明する。
本実施形態の太陽電池の製造方法は、(I)光電極基板と対極基板とを形成する基板形成工程と、(II)基板形成工程により形成された光電極基板と対極基板とを貼り合せる基板貼合工程とを備えている。
"Solar cell and manufacturing method thereof"
With reference to FIGS. 2-5, the manufacturing method of the solar cell using the solution concentration adjustment apparatus and solution concentration adjustment method of this embodiment is demonstrated.
The manufacturing method of the solar cell of this embodiment includes (I) a substrate forming step for forming a photoelectrode substrate and a counter electrode substrate, and (II) a substrate for bonding the photoelectrode substrate and the counter electrode substrate formed by the substrate forming step. And a bonding step.

(I)基板形成工程
光電極基板31を作製する。
まず、スパッタリング法や印刷法などにより、第一基板32の一方の面32aに、スズドープ酸化インジウム、フッ素ドープ酸化スズ、酸化亜鉛などからなる透明電極膜33を成膜する(図2参照)。
(I) Substrate Formation Step The photoelectrode substrate 31 is produced.
First, a transparent electrode film 33 made of tin-doped indium oxide, fluorine-doped tin oxide, zinc oxide or the like is formed on one surface 32a of the first substrate 32 by sputtering or printing (see FIG. 2).

次いで、フォトリソグラフィ法や印刷法などにより、透明電極膜33の一方の面33aに、焼成が可能な酸化チタンなどの金属酸化物を含有したペーストを塗布し、必要に応じて焼結して、多孔質の半導体からなる光電変換層34を形成する(図2参照)。
また、エアロゾルデポジション法(AD法)により、光電変換層34を形成してもよい。
Next, a paste containing a metal oxide such as titanium oxide that can be baked is applied to one surface 33a of the transparent electrode film 33 by a photolithography method or a printing method, and sintered as necessary. A photoelectric conversion layer 34 made of a porous semiconductor is formed (see FIG. 2).
Further, the photoelectric conversion layer 34 may be formed by an aerosol deposition method (AD method).

次いで、上述の溶液濃度調整装置10を用いて、低濃度溶液収容部12B中の低濃度溶液22に光電変換層34を浸漬し、光電変換層34に増感色素を担持させ、光電極基板31を得る。
また、光電変換層34に増感色素を担持させた後、光電変換層34の表面を無水アルコールなどで洗浄してもよい。
Next, the photoelectric conversion layer 34 is immersed in the low-concentration solution 22 in the low-concentration solution storage unit 12B using the solution concentration adjusting device 10 described above, and the sensitizing dye is supported on the photoelectric conversion layer 34, and the photoelectrode substrate 31. Get.
Further, after the sensitizing dye is supported on the photoelectric conversion layer 34, the surface of the photoelectric conversion layer 34 may be washed with anhydrous alcohol or the like.

次いで、光電変換層34と所定の間隔を置いて、かつ、光電変換層34を囲繞するように、インクジェット法などにより、透明電極膜33の一方の面33aに封止樹脂35を形成する。
ここでは、光電極基板31と、後述する対極基板36を貼り合せた際、光電変換層34と、対極基板36の対向電極膜38とが所定の間隔を置いて離隔し、かつ、後述する電解質層39が必要とされる厚さとなるように封止樹脂35の厚さを調整する。
Next, a sealing resin 35 is formed on one surface 33 a of the transparent electrode film 33 by an inkjet method or the like so as to leave a predetermined distance from the photoelectric conversion layer 34 and to surround the photoelectric conversion layer 34.
Here, when the photoelectrode substrate 31 and a counter electrode substrate 36, which will be described later, are bonded together, the photoelectric conversion layer 34 and the counter electrode film 38 of the counter electrode substrate 36 are spaced apart from each other by a predetermined distance, and an electrolyte, which will be described later. The thickness of the sealing resin 35 is adjusted so that the layer 39 has a required thickness.

対極基板36を作製する。
スパッタリング法や印刷法などにより、第二基板37の一方の面37aに、白金、ポリアニリン、ポリエチレンジオキシチオフェン(PEDOT)、カーボンなどからなる対向電極膜38を成膜し、対極基板36を得る(図3参照)。
A counter electrode substrate 36 is produced.
A counter electrode film 36 made of platinum, polyaniline, polyethylenedioxythiophene (PEDOT), carbon, or the like is formed on one surface 37a of the second substrate 37 by a sputtering method or a printing method to obtain a counter electrode substrate 36 ( (See FIG. 3).

(II)基板貼合工程
光電極基板31に形成された封止樹脂35を介して、光電極基板31と対極基板36とを貼り合わせ、封止樹脂35によって、光電極基板31と対極基板36とを接着、固定する(図4参照)。
この基板貼合工程により、光電極基板31と対極基板36の間に間隙が形成される。
(II) Substrate bonding step The photoelectrode substrate 31 and the counter electrode substrate 36 are bonded to each other through the sealing resin 35 formed on the photoelectrode substrate 31, and the photoelectrode substrate 31 and the counter electrode substrate 36 are bonded by the sealing resin 35. Are bonded and fixed (see FIG. 4).
By this substrate bonding step, a gap is formed between the photoelectrode substrate 31 and the counter electrode substrate 36.

次いで、予め光電極基板31または対極基板36に形成しておいた注入口(図示略)から、光電極基板31と対極基板36の間の間隙に電解質を注入して、光電極基板31と対極基板36の間に電解質層39を形成する。
次いで、注入口を封止して、図5に示すような太陽電池30を得る。
Next, an electrolyte is injected into a gap between the photoelectrode substrate 31 and the counter electrode substrate 36 from an injection port (not shown) formed in the photoelectrode substrate 31 or the counter electrode substrate 36 in advance, and the photoelectrode substrate 31 and the counter electrode 36 are counteracted. An electrolyte layer 39 is formed between the substrates 36.
Next, the inlet is sealed to obtain a solar cell 30 as shown in FIG.

「光学デバイス」
本実施形態における光学デバイスは、本実施形態の溶液濃度調整装置および溶液濃度調節方法によって、一定の濃度に調節された溶液を用いて製造されたものである。このような光学デバイスとしては、例えば、色素レーザー、磁気記録体、有機薄膜太陽電池などが挙げられる。
"Optical device"
The optical device in the present embodiment is manufactured using a solution adjusted to a certain concentration by the solution concentration adjusting apparatus and the solution concentration adjusting method of the present embodiment. Examples of such an optical device include a dye laser, a magnetic recording body, and an organic thin film solar cell.

10 溶液濃度調整装置
11 半透膜
12 容器
12A 飽和溶液収容部
12B 低濃度溶液収容部
13 圧力調整装置
14 温度調節装置
15 押圧部
21 飽和溶液
22 低濃度溶液
DESCRIPTION OF SYMBOLS 10 Solution concentration adjustment apparatus 11 Semipermeable membrane 12 Container 12A Saturated solution storage part 12B Low concentration solution storage part 13 Pressure adjustment apparatus 14 Temperature adjustment apparatus 15 Press part 21 Saturated solution 22 Low concentration solution

Claims (6)

半透膜を介して飽和溶液と低濃度溶液を容器に収容し、前記低濃度溶液の濃度を調節する方法であって、
前記飽和溶液と前記低濃度溶液の圧力差、並びに、前記飽和溶液および前記低濃度溶液の温度を調節することにより、前記低濃度溶液の濃度を調節することを特徴とする溶液濃度調節方法。
A method of accommodating a saturated solution and a low concentration solution in a container through a semipermeable membrane and adjusting the concentration of the low concentration solution,
A solution concentration adjusting method, wherein the concentration of the low concentration solution is adjusted by adjusting a pressure difference between the saturated solution and the low concentration solution, and a temperature of the saturated solution and the low concentration solution.
前記飽和溶液および前記低濃度溶液は、色素増感型太陽電池に用いられる増感色素を含むことを特徴とする請求項1に記載の溶液濃度調節方法。  2. The solution concentration adjusting method according to claim 1, wherein the saturated solution and the low-concentration solution contain a sensitizing dye used in a dye-sensitized solar cell. 半透膜を介して飽和溶液と低濃度溶液を収容する容器を備えた溶液濃度調整装置であって、
前記飽和溶液と前記低濃度溶液の圧力差を調節する手段と、前記飽和溶液および前記低濃度溶液の温度を調節する手段と、を有することを特徴とする溶液濃度調整装置。
A solution concentration adjusting device comprising a container for containing a saturated solution and a low concentration solution through a semipermeable membrane,
A solution concentration adjusting apparatus comprising: means for adjusting a pressure difference between the saturated solution and the low concentration solution; and means for adjusting temperatures of the saturated solution and the low concentration solution.
前記飽和溶液および前記低濃度溶液は、色素増感型太陽電池に用いられる増感色素を含むことを特徴とする請求項3に記載の溶液濃度調整装置。  The solution concentration adjusting apparatus according to claim 3, wherein the saturated solution and the low concentration solution contain a sensitizing dye used in a dye-sensitized solar cell. 請求項3または4に記載の溶液濃度調整装置によって濃度調節された色素溶液を用いて製造されたことを特徴とする色素増感型太陽電池。  A dye-sensitized solar cell manufactured using a dye solution whose concentration is adjusted by the solution concentration adjusting device according to claim 3. 請求項3または4に記載の溶液濃度調整装置によって濃度調節された色素溶液を用いて製造されたことを特徴とする光学デバイス。
An optical device manufactured using a dye solution whose concentration is adjusted by the solution concentration adjusting apparatus according to claim 3.
JP2011210644A 2011-09-27 2011-09-27 Solution concentration adjusting method, solution concentration adjusting device, and method for producing dye-sensitized solar cell Expired - Fee Related JP5898895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210644A JP5898895B2 (en) 2011-09-27 2011-09-27 Solution concentration adjusting method, solution concentration adjusting device, and method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210644A JP5898895B2 (en) 2011-09-27 2011-09-27 Solution concentration adjusting method, solution concentration adjusting device, and method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2013071036A true JP2013071036A (en) 2013-04-22
JP5898895B2 JP5898895B2 (en) 2016-04-06

Family

ID=48475975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210644A Expired - Fee Related JP5898895B2 (en) 2011-09-27 2011-09-27 Solution concentration adjusting method, solution concentration adjusting device, and method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5898895B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137037U (en) * 1983-03-04 1984-09-12 日立工機株式会社 Ink circulation device in inkjet recording device
JPH03245521A (en) * 1990-02-23 1991-11-01 Oki Electric Ind Co Ltd Development device
JPH06204623A (en) * 1992-12-28 1994-07-22 Toshiba Corp Coloring-matter-solution circulating apparatus
JPH0871494A (en) * 1994-08-31 1996-03-19 Mitsubishi Chem Corp Automatic preparation of dyestuff solution
JPH0929995A (en) * 1995-07-18 1997-02-04 Hitachi Ltd Ink jet printer
JPH11102734A (en) * 1997-09-29 1999-04-13 Sharp Corp Semiconductor of photoelectric conversion material, its manufacture and solar cell
JP2010225478A (en) * 2009-03-24 2010-10-07 Ulvac Japan Ltd Photoelectric conversion element and its manufacturing method
JP2011066007A (en) * 2010-11-10 2011-03-31 Dainippon Printing Co Ltd Method of manufacturing dye-sensitized solar battery cell, and method of manufacturing dye-sensitized solar cell module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137037U (en) * 1983-03-04 1984-09-12 日立工機株式会社 Ink circulation device in inkjet recording device
JPH03245521A (en) * 1990-02-23 1991-11-01 Oki Electric Ind Co Ltd Development device
JPH06204623A (en) * 1992-12-28 1994-07-22 Toshiba Corp Coloring-matter-solution circulating apparatus
JPH0871494A (en) * 1994-08-31 1996-03-19 Mitsubishi Chem Corp Automatic preparation of dyestuff solution
JPH0929995A (en) * 1995-07-18 1997-02-04 Hitachi Ltd Ink jet printer
JPH11102734A (en) * 1997-09-29 1999-04-13 Sharp Corp Semiconductor of photoelectric conversion material, its manufacture and solar cell
JP2010225478A (en) * 2009-03-24 2010-10-07 Ulvac Japan Ltd Photoelectric conversion element and its manufacturing method
JP2011066007A (en) * 2010-11-10 2011-03-31 Dainippon Printing Co Ltd Method of manufacturing dye-sensitized solar battery cell, and method of manufacturing dye-sensitized solar cell module

Also Published As

Publication number Publication date
JP5898895B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
Ahmad et al. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes
Kim et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells
US20180197688A1 (en) Photoelectric conversion element and solar cell
Molaeirad et al. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on T i O 2 nanostructured electrode
Raza et al. In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes
WO2014022377A1 (en) Membranes and coatings made from mixtures including ionic liquids having silicon-bonded hydrolyzable groups
Liu et al. Temperature dependent response/recovery characteristics of Pd/Ni thin film based hydrogen sensor
CN105217614A (en) A kind of method based on Liquid preparation methods two-dimension nano materials film
CN102590398A (en) Miniature gas enricher with membranes on double surfaces
US9068941B2 (en) Apparatus for monitoring a dye solution to be adsorbed to a dye-sensitized solar cell, and apparatus for adjusting the dye solution
WO2006122114A2 (en) Rechargeable dye sensitized solar cell
JP5898895B2 (en) Solution concentration adjusting method, solution concentration adjusting device, and method for producing dye-sensitized solar cell
TW200741265A (en) Method for production of polarizing film, and liquid crystal display element
Perera et al. A hybrid soft solar cell based on the mycobacterial porin MspA linked to a sensitizer–viologen diad
CN110382123A (en) Applying device and coating method
JP5743599B2 (en) Liquid injection device, liquid injection method, and method for producing dye-sensitized solar cell using the same
Kuo et al. Speed up dye-sensitized solar cell fabrication by rapid dye solution droplets bombardment
CN102593239B (en) Preparation method of latticed textured azo compound (AZO) transparent conductive membrane
Ha et al. Compact and high-power dye-sensitized solar system integrated with low-cost solar-concentrating polymer lens
CN103606464B (en) Method and device for rapid and uniform sensitization of photo anode of dye-sensitized solar cell
GB2518308A9 (en) Method for manufacturing gas sensor based on dye-sensitized TIO2 film
JP2013110066A (en) Device and method of manufacturing dye-sensitized solar cell
JP2005142446A (en) Forming method of porous semiconductor layer, manufacturing method of electrode substrate for dye-sensitized solar cell, dye-sensitized solar cell, and electrode substrate therefor
CN110621943B (en) Method for manufacturing solar heat collecting pipe
JP3963102B2 (en) CO gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5898895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees