JP2011065850A - Separator for battery and lithium secondary battery - Google Patents

Separator for battery and lithium secondary battery Download PDF

Info

Publication number
JP2011065850A
JP2011065850A JP2009215222A JP2009215222A JP2011065850A JP 2011065850 A JP2011065850 A JP 2011065850A JP 2009215222 A JP2009215222 A JP 2009215222A JP 2009215222 A JP2009215222 A JP 2009215222A JP 2011065850 A JP2011065850 A JP 2011065850A
Authority
JP
Japan
Prior art keywords
separator
fine particles
inorganic fine
battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009215222A
Other languages
Japanese (ja)
Other versions
JP5234817B2 (en
Inventor
Hiroshi Abe
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009215222A priority Critical patent/JP5234817B2/en
Publication of JP2011065850A publication Critical patent/JP2011065850A/en
Application granted granted Critical
Publication of JP5234817B2 publication Critical patent/JP5234817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in safety at an abnormal over-heating and load characteristics, and to provide a separator capable of composing the lithium secondary battery. <P>SOLUTION: The separator for a battery has a porous membrane A containing mainly massive inorganic particulates A on one face of a polyolefin fine porous membrane, and a porous membrane B containing mainly plate-shape inorganic particulates B on the other face thereof. The lithium secondary battery is provided with the separator. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐熱性に優れた電池用セパレータと、それを用いたリチウム二次電池に関するものである。   The present invention relates to a battery separator excellent in heat resistance and a lithium secondary battery using the same.

リチウム二次電池などの電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。例えば、リチウム二次電池では、携帯機器の高性能化に伴って高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   Electrochemical elements such as lithium secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. For example, lithium secondary batteries tend to have higher capacities as mobile devices become more sophisticated, and ensuring safety is important.

現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の微多孔質膜が使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。   In a current lithium secondary battery, a polyolefin microporous film having a thickness of about 20 to 30 μm is used as a separator interposed between a positive electrode and a negative electrode. In addition, as separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to ensure the so-called shutdown effect, polyethylene having a low melting point may be applied.

ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸または二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを前記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。   By the way, as such a separator, for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is secured by the stretching. However, with such a stretched film, the degree of crystallinity has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery. Therefore, it can be said that the margin for ensuring the safety of the battery is sufficient. hard.

また、前記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の微多孔質膜セパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡の危険性があるからである。   In addition, the film is distorted by the stretching, and there is a problem that when it is exposed to a high temperature, shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based microporous membrane separator is used, when the battery temperature reaches the shutdown temperature, such as when charging is abnormal, the current must be immediately reduced to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the temperature of the battery easily rises to the shrinkage temperature of the separator, and there is a risk of an internal short circuit.

このようなセパレータの熱収縮による短絡を防止し、電池の信頼性を高める技術として、例えば、シャットダウン機能を確保するための樹脂を主体として含む第1セパレータ層と、耐熱温度が150℃以上のフィラーを主体として含む第2セパレータ層とを有する多孔質のセパレータを用いて電気化学素子を構成することが提案されている(特許文献1)。   As a technique for preventing such a short circuit due to thermal contraction of the separator and improving the reliability of the battery, for example, a first separator layer mainly including a resin for ensuring a shutdown function, and a filler having a heat resistant temperature of 150 ° C. or more It has been proposed to form an electrochemical element by using a porous separator having a second separator layer containing mainly as a main component (Patent Document 1).

特許文献1の技術によれば、異常過熱した際にも熱暴走が生じ難い安全性に優れたリチウム二次電池などの電気化学素子を提供することができる。   According to the technique of Patent Document 1, it is possible to provide an electrochemical element such as a lithium secondary battery that is less likely to cause thermal runaway even when abnormally overheated and has excellent safety.

また、セパレータの耐熱収縮性を更に向上させる目的で、耐熱温度が150℃以上のフィラーとして板状粒子を用いる提案もされている(特許文献2および3)。   In addition, for the purpose of further improving the heat shrinkability of the separator, proposals have been made to use plate-like particles as a filler having a heat resistant temperature of 150 ° C. or more (Patent Documents 2 and 3).

国際公開第2007/66768号公報International Publication No. 2007/66768 特開2007−157723号公報JP 2007-157723 A 特開2008−4439号公報JP 2008-4439 A

現在、リチウム二次電池の利用範囲は更に広まる傾向にあり、それに伴って高容量化や高性能化が要求される。前記の板状粒子を用いたセパレータも電池の高性能化に一役買っているものの、例えばパワーツールの電源用途に利用されるリチウム二次電池の場合には、高電流下での充放電特性(すなわち、負荷特性)が重要であり、このような点において、前記の技術には未だ改善の余地がある。   Currently, the range of use of lithium secondary batteries tends to be further widened, and accordingly, higher capacity and higher performance are required. Although the separator using the plate-like particles also plays a role in improving the performance of the battery, for example, in the case of a lithium secondary battery used for power tools, the charge / discharge characteristics under a high current ( That is, the load characteristic is important, and there is still room for improvement in the above technique in this respect.

本発明は、前記事情に鑑みてなされたものであり、その目的は、異常過熱時における安全性および負荷特性に優れたリチウム二次電池と、該リチウム二次電池を構成し得るセパレータとを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a lithium secondary battery excellent in safety and load characteristics at the time of abnormal overheating, and a separator that can constitute the lithium secondary battery. There is to do.

前記目的を達成し得た本発明の電池用セパレータは、ポリオレフィン製微多孔質膜の片面に、塊状の無機微粒子Aを主体として含む多孔質膜Aを有し、かつ前記ポリオレフィン製微多孔質膜の他面に、板状の無機微粒子Bを主体として含む多孔質膜Bを有することを特徴とするものである。   The battery separator of the present invention that has achieved the above object has a porous membrane A mainly composed of massive inorganic fine particles A on one side of a polyolefin microporous membrane, and the polyolefin microporous membrane. It has a porous film B mainly containing plate-like inorganic fine particles B on the other surface.

また、本発明のリチウム二次電池は、正極、負極、非水電解液およびセパレータを有するリチウム二次電池であって、前記セパレータが本発明の電池用セパレータであることを特徴とするものである。   The lithium secondary battery of the present invention is a lithium secondary battery having a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein the separator is the battery separator of the present invention. .

本発明によれば、異常過熱時における安全性および負荷特性に優れたリチウム二次電池と、前記リチウム二次電池を構成し得る耐熱性に優れたセパレータとを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery excellent in the safety | security and load characteristic at the time of abnormal overheating, and the separator excellent in the heat resistance which can comprise the said lithium secondary battery can be provided.

本発明の電池用セパレータの一例を模式的に表す断面図である。It is sectional drawing which represents typically an example of the battery separator of this invention.

図1に本発明の電池用セパレータ(以下、「セパレータ」と省略する。)の一例を模式的に表す断面図を示している。本発明のセパレータは、ポリオレフィン製微多孔質膜1の片面に、塊状の無機微粒子Aを主体として含む多孔質膜2(多孔質膜A)を有しており、前記微多孔質膜の他面に、板状の無機微粒子Bを主体として含む多孔質膜3(多孔質膜B)を有している。   FIG. 1 is a cross-sectional view schematically showing an example of a battery separator (hereinafter abbreviated as “separator”) of the present invention. The separator of the present invention has a porous film 2 (porous film A) mainly containing massive inorganic fine particles A on one surface of a polyolefin microporous film 1, and the other surface of the microporous film. In addition, a porous film 3 (porous film B) mainly containing plate-like inorganic fine particles B is provided.

セパレータにおけるポリオレフィン製微多孔質膜は、本発明のセパレータを用いた電池において、正極と負極の短絡を防止しつつ、イオンを透過するセパレータ本来の機能を有するものである。また、ポリオレフィン製微多孔質膜によって、誤動作などによって電池内が高温になった際に、微多孔質膜を構成するポリオレフィンが溶融してセパレータの孔を塞ぐシャットダウン機能も確保できる。   The polyolefin microporous membrane in the separator has the original function of permeating ions while preventing a short circuit between the positive electrode and the negative electrode in a battery using the separator of the present invention. In addition, the polyolefin microporous membrane can ensure a shutdown function that melts the polyolefin constituting the microporous membrane and closes the pores of the separator when the temperature of the battery becomes high due to malfunction or the like.

セパレータにおける多孔質膜Aおよび多孔質膜Bは、セパレータに耐熱性を付与する役割を担うものである。すなわち、誤動作などによって電池内が高温になった際に、多孔質膜Aおよび多孔質膜Bが存在することで、セパレータ全体の熱収縮が抑えられ、正負極の接触による短絡が抑制される。   The porous membrane A and the porous membrane B in the separator play a role of imparting heat resistance to the separator. That is, when the inside of the battery becomes high due to malfunction or the like, the presence of the porous film A and the porous film B suppresses thermal contraction of the entire separator and suppresses short circuit due to contact between the positive and negative electrodes.

このうち、多孔質膜Bは、板状の無機微粒子Bを主体として含み、高い耐熱収縮性を有している。しかし、板状の無機微粒子を含有する多孔質膜では、膜内で無機微粒子が重なり合い、多孔質膜内の空孔の経路長(いわゆる曲路率)が大きくなるため、多孔質膜中のイオンの透過が阻害される。セパレータの耐熱性を良好に高めるには、板状の無機微粒子を含有する多孔質膜を、ある程度厚くすることが好ましいが、このようにすると多孔質膜内の空孔の経路長が非常に長くなり、多孔質膜内のイオンの透過性が大きく損なわれ、例えば、電池の負荷特性が低下してしまう。   Among these, the porous membrane B mainly contains the plate-like inorganic fine particles B and has high heat shrinkage resistance. However, in a porous film containing plate-like inorganic fine particles, the inorganic fine particles overlap in the film, and the path length (so-called curvature) of the pores in the porous film increases, so the ions in the porous film Permeation is inhibited. In order to improve the heat resistance of the separator satisfactorily, it is preferable to thicken the porous film containing the plate-like inorganic fine particles to some extent, but in this way, the path length of the pores in the porous film is very long. Thus, the ion permeability in the porous membrane is greatly impaired, and for example, the load characteristics of the battery are reduced.

そこで、本発明のセパレータでは、基材となるポリオレフィン製微多孔質膜の片面に、板状の無機微粒子Bを主体として含む多孔質膜Bを設けるとともに、他面には、塊状の無機微粒子Aを主体として含む多孔質膜Aを設けている。多孔質膜Aは、塊状の無機微粒子Aを含有していることで、多孔質膜Bよりは耐熱収縮性が劣るが、その一方で、空孔の経路長が多孔質膜Bよりも短くなる。そのため、本発明のセパレータでは、多孔質膜Bの厚みをある程度薄くし、その空孔の経路長を可及的に短くしてイオンの透過性を高めても、それに伴って低下する耐熱収縮性を、より空孔の経路長が短くイオン透過性が良好な多孔質膜Aによって補うことができるため、耐熱性とイオン透過性とを高いレベルで両立できる。   Therefore, in the separator of the present invention, a porous membrane B mainly containing plate-like inorganic fine particles B is provided on one side of a polyolefin microporous membrane serving as a substrate, and massive inorganic fine particles A are provided on the other side. Is provided as a main component. The porous membrane A contains massive inorganic fine particles A, so that the heat shrinkage is inferior to that of the porous membrane B. On the other hand, the path length of the pores is shorter than that of the porous membrane B. . Therefore, in the separator of the present invention, even if the porous membrane B is made thin to some extent and the path length of the pores is shortened as much as possible to increase the ion permeability, the heat shrinkage that decreases with that Can be compensated for by the porous membrane A having a shorter pore path length and good ion permeability, so that both heat resistance and ion permeability can be achieved at a high level.

よって、このような本発明のセパレータを使用することで、異常過熱時における安全性に優れ、かつ負荷特性も良好なリチウム二次電池を構成することができる。   Therefore, by using such a separator of the present invention, a lithium secondary battery having excellent safety during abnormal overheating and good load characteristics can be configured.

セパレータに係るポリオレフィン製微多孔質膜としては、従来からリチウムイオン二次電池用のセパレータとして用いられているポリオレフィン[ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体など]製の微多孔質膜(溶剤抽出法、乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の微多孔質膜)を使用することができる。なお、シャットダウン機能をより良好に確保する観点からは、微多孔質膜を構成するポリオレフィンは、PEなどのように、その融点が80℃以上150℃以下(より好ましくは100℃以上)、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、80℃以上150℃以下(より好ましくは100℃以上)のものであることが好ましい。   The polyolefin microporous membrane used for the separator is a microporous film made of polyolefin [polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, etc.] conventionally used as a separator for lithium ion secondary batteries. A porous membrane (an ion-permeable microporous membrane having a large number of pores formed by a solvent extraction method, a dry method or a wet stretching method) can be used. From the viewpoint of ensuring a better shutdown function, the polyolefin constituting the microporous membrane has a melting point of 80 ° C. or higher and 150 ° C. or lower (more preferably 100 ° C. or higher), such as PE, It is preferable that the melting temperature measured using a differential scanning calorimeter (DSC) is 80 ° C. or higher and 150 ° C. or lower (more preferably 100 ° C. or higher) in accordance with JIS K 7121.

ポリオレフィン微多孔質膜の厚みは、ある程度の強度を確保して破れなどを防止する観点から、10μm以上であることが好ましく、また、電池の内部抵抗の増大を抑える観点から、30μm以下であることが好ましい。   The thickness of the polyolefin microporous membrane is preferably 10 μm or more from the viewpoint of securing a certain degree of strength and preventing breakage, and from the viewpoint of suppressing an increase in the internal resistance of the battery, it is 30 μm or less. Is preferred.

セパレータに係るポリオレフィン微多孔質膜の両面に形成される多孔質膜のうち、多孔質膜Aが主体として含む無機微粒子Aは、その形状が塊状であり、例えば、略球状(真球状を含む)や、板状を除く多面体形状(例えば、粒子中の最大長さと最小長さとの比であるアスペクト比が、5未満、好ましくは3以下のもの)が含まれる。   Among the porous membranes formed on both surfaces of the polyolefin microporous membrane according to the separator, the inorganic fine particles A mainly composed of the porous membrane A are in a lump shape, for example, substantially spherical (including true sphere). And a polyhedron shape excluding a plate shape (for example, an aspect ratio which is a ratio of the maximum length to the minimum length in the particles is less than 5, preferably 3 or less).

無機微粒子Aの平均粒子径は、多孔質膜Aの空孔の経路長をより短くして、多孔質膜A内のイオン透過性をより良好にする観点から、1μm以下であることが好ましい。ただし、無機微粒子Aが小さすぎると、その表面積が大きくなって、多孔質膜A内での分散性が低下したり、粒子表面の付着水が多くなって電池特性に悪影響を与えることがある。よって、無機微粒子Aの平均粒子径は、0.2μm以上であることが好ましい。なお、本明細書でいう無機微粒子(後記の多孔質膜Bの有する無機微粒子も含む)の平均粒子径は、レーザー散乱式の粒度分布計(例えば、堀場製作所製「LA−920」)を使用し、無機微粒子を溶解しない媒体に分散させて測定した体積基準の積算分率50%における粒子直径の値であるD50%を意味している。   The average particle diameter of the inorganic fine particles A is preferably 1 μm or less from the viewpoint of making the pore path length of the porous membrane A shorter and improving the ion permeability in the porous membrane A. However, if the inorganic fine particles A are too small, the surface area thereof becomes large, and the dispersibility in the porous membrane A may be reduced, or the amount of water adhering to the particle surface may increase, which may adversely affect the battery characteristics. Therefore, the average particle diameter of the inorganic fine particles A is preferably 0.2 μm or more. In addition, the average particle diameter of the inorganic fine particles (including inorganic fine particles possessed by the porous film B described later) as used in this specification is a laser scattering type particle size distribution meter (for example, “LA-920” manufactured by Horiba, Ltd.). D50%, which is the value of the particle diameter at a volume-based integrated fraction of 50%, measured by dispersing inorganic fine particles in a medium that does not dissolve.

多孔質膜Aの厚みは、薄すぎるとセパレータの熱収縮を抑制する効果が小さくなる虞があることから、1μm以上であることが好ましく、また、厚すぎるとセパレータの総厚みが大きくなって電池のインピーダンスを過度に上昇させる虞があることから、5μm以下であることが好ましい。   If the thickness of the porous film A is too thin, the effect of suppressing the thermal shrinkage of the separator may be reduced. Therefore, the thickness is preferably 1 μm or more. If the thickness is too thick, the total thickness of the separator increases. It is preferable that the thickness is 5 μm or less.

セパレータに係るポリオレフィン微多孔質膜の両面に形成される多孔質膜のうち、多孔質膜Bは、板状の無機微粒子Bを主体として含むが、かかる無機微粒子Bは、BET法による比表面積が7〜10m/gであることが好ましく、また、一次粒子体であることが好ましい。このような無機微粒子Bを使用することで、より耐熱収縮性に優れた多孔質膜Bを形成することができる。 Of the porous membranes formed on both surfaces of the polyolefin microporous membrane according to the separator, the porous membrane B mainly contains plate-like inorganic fine particles B, and the inorganic fine particles B have a specific surface area by the BET method. It is preferable that it is 7-10 m < 2 > / g, and it is preferable that it is a primary particle body. By using such inorganic fine particles B, it is possible to form a porous film B having more excellent heat shrinkage resistance.

更に、多孔質膜Bに係る無機微粒子は、一次粒子形状を幾何学形状とした一次粒子の大きさおよび真密度から算出される理論比表面積と、BET法による比表面積との差が±15%以内であることがより好ましく、この場合には、多孔質膜Bにおける無機微粒子の充填性がより向上し、更に高い耐熱収縮性を有するセパレータを得ることができる。なお、多孔質膜Aに係る無機微粒子Aや多孔質膜Bに係る無機微粒子Bは、必要に応じて二次凝集体のものを解砕処理するなどして、その平均粒子径や比表面積を調整することができ、また、無機微粒子Bとして好ましい一次粒子体とすることができるが、前記の理論比表面積とBET法による比表面積との差は、この解砕処理による一次粒子体の形成の程度の目安とすることができる。   Furthermore, the inorganic fine particles related to the porous membrane B have a difference of ± 15% between the theoretical specific surface area calculated from the size and true density of the primary particles having a geometric shape as the primary particle shape and the specific surface area by the BET method. In this case, the filling property of the inorganic fine particles in the porous membrane B is further improved, and a separator having higher heat shrinkage resistance can be obtained. In addition, the inorganic fine particles A related to the porous film A and the inorganic fine particles B related to the porous film B may be subjected to a crushing treatment of the secondary aggregate as necessary, and the average particle diameter and specific surface area thereof may be set. It can be adjusted and can be a primary particle body preferable as the inorganic fine particle B. The difference between the theoretical specific surface area and the specific surface area by the BET method is the formation of the primary particle body by this crushing treatment. It can be a measure of the degree.

本明細書でいう無機微粒子の理論比表面積は、無機微粒子の一次粒子を幾何学形状と仮定して、その表面積、体積および密度から、下記式により算出することができる。
理論比表面積 = 表面積/(体積×密度)
(ここで、理論比表面積の単位をm/gとするならば、表面積の単位はm、体積の単位はm、密度の単位はg/mとする。)
The theoretical specific surface area of the inorganic fine particles referred to in this specification can be calculated from the surface area, volume, and density according to the following formula, assuming that the primary particles of the inorganic fine particles are geometric shapes.
Theoretical specific surface area = surface area / (volume x density)
(Here, if the unit of theoretical specific surface area is m 2 / g, the unit of surface area is m 2 , the unit of volume is m 3 , and the unit of density is g / m 3 )

なお、前記の無機微粒子の密度は、液相置換法(ピクノメーター法)で測定した値、具体的には、例えばセイシン企業社製「MAT−7000」を使用し、置換媒体にエタノールを用いて測定温度25±5℃で測定した値、または定容積膨張法で測定した値、具体的には、例えば島津−マイクロメリティック社製の乾式自動密度計「アキュピック1330−01」を用い、置換ガスにHeを使用し、測定温度を25℃とし、サンプル仕込み容積を見かけで10cmとして測定した値である。 The density of the inorganic fine particles is a value measured by a liquid phase substitution method (pycnometer method), specifically, for example, “MAT-7000” manufactured by Seishin Enterprise Co., Ltd., and ethanol as a substitution medium. A value measured at a measurement temperature of 25 ± 5 ° C. or a value measured by a constant volume expansion method, specifically, for example, a dry automatic densimeter “Acpic 1330-01” manufactured by Shimadzu Micromeritic Co. He was used, the measurement temperature was 25 ° C., and the sample charge volume was apparently 10 cm 3 .

無機微粒子の表面積と体積とを幾何学的に算出する場合には、無機微粒子の粒子径の情報が必要である。球体形状の無機微粒子であれば、その粒子径はレーザー散乱法などの一般の粒度分布測定装置から得られる平均粒子径(D50%)で求めることもできる。しかし、アスペクト比(後述する)の高い板状粒子(例えば5以上)の場合には、板状粒子中の最大長さと厚みの両方の情報が必要である。この場合、通常の粒度分布測定装置から得られる平均粒子径だけでは、いずれか一方の情報しか得られないため、例えば、無機微粒子を走査型電子顕微鏡(SEM)で観察し、任意の粒子の寸法をスケールなどで測定する方法が好適に採用される。特に任意の100個以上の粒子を測定すれば、より精度の高い情報が得られる。   When geometrically calculating the surface area and volume of the inorganic fine particles, information on the particle diameter of the inorganic fine particles is necessary. In the case of spherical inorganic fine particles, the particle diameter can also be determined by an average particle diameter (D50%) obtained from a general particle size distribution measuring apparatus such as a laser scattering method. However, in the case of plate-like particles having a high aspect ratio (described later) (for example, 5 or more), information on both the maximum length and thickness in the plate-like particles is necessary. In this case, since only one of the information can be obtained only by the average particle size obtained from a normal particle size distribution measuring apparatus, for example, the inorganic fine particles are observed with a scanning electron microscope (SEM), and the size of an arbitrary particle is measured. A method of measuring the value with a scale or the like is preferably employed. In particular, if any 100 or more particles are measured, more accurate information can be obtained.

なお、多孔質膜Bに係る前記無機微粒子Bは、前記の方法により求められる粒子中の最大長さは、0.5〜3μmであることが好ましく、また、前記の方法により求められる厚みは、0.05〜0.3μmであることが好ましい。更に、無機微粒子B中の最大長さと厚みとの比で表されるアスペクト比は、5以上であることが好ましく、10以上であることがより好ましく、また、100以下であることが好ましく、50以下であることがより好ましい。無機微粒子Bや無機微粒子Aのアスペクト比は、SEMにより撮影した画像を、画像解析することにより求められる。   In addition, as for the said inorganic fine particle B which concerns on the porous membrane B, it is preferable that the maximum length in the particle | grains calculated | required by the said method is 0.5-3 micrometers, and the thickness calculated | required by the said method is as follows. It is preferable that it is 0.05-0.3 micrometer. Furthermore, the aspect ratio represented by the ratio between the maximum length and the thickness in the inorganic fine particles B is preferably 5 or more, more preferably 10 or more, and preferably 100 or less, The following is more preferable. The aspect ratio of the inorganic fine particles B and the inorganic fine particles A can be obtained by image analysis of images taken by SEM.

多孔質膜Bの厚みは、薄すぎると耐熱収縮性が小さくなる虞があることから、1μm以上であることが好ましく、また、厚すぎると膜内の経路長が長くなって、負荷特性向上効果が小さくなる虞があることから、5μm以下であることが好ましい。   If the thickness of the porous membrane B is too thin, the heat shrinkage may be reduced. Therefore, the thickness is preferably 1 μm or more. If the thickness is too thick, the path length in the membrane becomes long, and the effect of improving the load characteristics is increased. Is preferably 5 μm or less.

多孔質膜Aに含まれる無機微粒子Aおよび多孔質膜Bに含まれる無機微粒子Bの具体例としては、例えば、酸化鉄、Al(アルミナ)、SiO(シリカ)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土;などが挙げられる。ここで、前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。また、金属、SnO、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。耐酸化性をより高める観点から、前記の無機酸化物の粒子(微粒子)が好ましく、中でも、アルミナ、シリカおよびベーマイトが好ましく、特にベーマイトが好ましい。 Specific examples of the inorganic fine particles A contained in the porous film A and the inorganic fine particles B contained in the porous film B include, for example, iron oxide, Al 2 O 3 (alumina), SiO 2 (silica), TiO 2 , BaTiO 3. 3 , inorganic oxides such as ZrO 2 ; inorganic nitrides such as aluminum nitride and silicon nitride; poorly soluble ionic crystals such as calcium fluoride, barium fluoride and barium sulfate; covalently bonded crystals such as silicon and diamond; montmorillonite Such as clay; Here, the inorganic oxide may be boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or other mineral resource-derived substances or artificial products thereof. In addition, the surface of a conductive material exemplified by metal, SnO 2 , conductive oxide such as tin-indium oxide (ITO), carbonaceous material such as carbon black, graphite, etc., is a material having electrical insulation ( For example, the particle | grains which gave the electrical insulation property by coat | covering with the said inorganic oxide etc. may be sufficient. From the viewpoint of further improving the oxidation resistance, the above-mentioned inorganic oxide particles (fine particles) are preferable, among which alumina, silica and boehmite are preferable, and boehmite is particularly preferable.

なお、一次粒子が板状の無機微粒子としては、各種市販品が挙げられ、例えば、旭硝子エスアイテック社製「サンラブリー(商品名)」(シリカ)、石原産業社製「NST−B1(商品名)」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ(商品名)」、「HLシリーズ(商品名)」、林化成社製「ミクロンホワイト(商品名)」(タルク)、林化成社製「ベンゲル(商品名)」(ベントナイト)、河合石灰社製「BMM(商品名)」や「BMT(商品名)」(ベーマイト)、河合石灰社製「セラシュールBMT−B(商品名)」(アルミナ)、キンセイマテック社製「セラフ(商品名)」(アルミナ)、斐川鉱業社製「斐川マイカ Z−20(商品名)」(セリサイト)などが入手可能である。 In addition, various commercial products are mentioned as an inorganic fine particle whose primary particle is a plate-like, for example, "Sun Lovely (trade name)" (silica) manufactured by Asahi Glass S-Tech Co., Ltd., "NST-B1 (trade name) manufactured by Ishihara Sangyo Co., Ltd. ) "Crushed product (TiO 2 ), Sakai Chemical Industry's plate-like barium sulfate“ H series (trade name) ”,“ HL series (trade name) ”, Hayashi Kasei Co., Ltd.“ micron white (trade name) ” (Talc), Hayashi Kasei's “Bengels (trade name)” (bentonite), Kawai Lime's “BMM (trade name)” and “BMT (trade name)” (boehmite), Kawai Lime's “Cerasur BMT” -B (trade name) "(alumina), Kinsei Matec" Seraph (trade name) "(alumina), Yodogawa Mining Co., Ltd." Yodogawa Mica Z-20 (trade name) "(sericite), etc. are available. is there.

前記の通り、無機微粒子が二次凝集体である場合には、一次粒子化したり、比表面積や粒子径を調整したりする目的で、乾式または湿式により解砕処理を施すことができる。例えば、板状粒子が凝集して平均粒子径が4〜5μmの二次凝集体を構成しているアルミナ、シリカ、ベーマイトなどを、溶媒(水など)や分散剤(ポリカルボン酸アンモニウム塩など)とともに解砕機に装填して処理することにより、解砕処理を施すことができる。   As described above, when the inorganic fine particles are secondary aggregates, the pulverization treatment can be performed by a dry method or a wet method for the purpose of forming primary particles or adjusting the specific surface area and particle diameter. For example, alumina, silica, boehmite, etc., which form a secondary aggregate having an average particle diameter of 4-5 μm by agglomeration of plate-like particles, a solvent (water, etc.) and a dispersant (polycarboxylic acid ammonium salt, etc.) At the same time, the crushing process can be performed by loading the crusher into the crusher.

解砕機としては、ジェットミル、高圧ホモジナイザー、ハイブリダイザーなどのメディアレスの粉砕機や、ボールミル、ビーズミル、サンドミル、振動ミルなどのメディアを使用する分散機などが挙げられる。特に低エネルギーでしかも解砕効率を高めるためには、部材の衝突力を利用する粉砕機よりも、メディア使用の分散機が好ましい。メディアとしては直径が0.1〜10mm程度のジルコニア、アルミナなど、通常のセラミックス材料が好適に用いられる。   Examples of the crusher include a medialess pulverizer such as a jet mill, a high-pressure homogenizer, and a hybridizer, and a disperser that uses media such as a ball mill, a bead mill, a sand mill, and a vibration mill. In particular, in order to increase the crushing efficiency with low energy, a disperser using media is preferable to a pulverizer that uses the collision force of members. As the medium, an ordinary ceramic material such as zirconia or alumina having a diameter of about 0.1 to 10 mm is preferably used.

多孔質層Aは塊状の無機微粒子Aを主体として含むが、ここでいう「主体として含む」とは、無機微粒子Aを、多孔質膜Aの構成成分の全体積中、50体積%以上含むことを意味している。多孔質層Aにおける無機微粒子Aの量は、多孔質膜Aの構成成分の全体積中、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層A中において無機微粒子Aを前記のように高含有量とすることで、セパレータ全体の熱収縮を良好に抑制することができる。また、多孔質層Aには、無機微粒子A間を結着したり多孔質層Aに係る無機微粒子Aとポリオレフィン製微多孔質膜とを結着したりするためにバインダを含有させることが好ましく、このような観点から、多孔質層Aにおける無機微粒子Aの量の好適上限値は、例えば、多孔質膜Aの構成成分の全体積中、99体積%である。なお、多孔質膜Aにおける無機微粒子Aの量を70体積%未満とすると、例えば、多孔質膜A中のバインダ量を多くする必要が生じるが、その場合には多孔質膜Aの空孔がバインダによって埋められてしまい、例えばセパレータとしての機能が低下する虞があり、また、開孔剤などを用いて多孔質化した場合には、無機微粒子A同士の間隔が大きくなりすぎて、熱収縮を抑制する効果が低下する虞がある。   The porous layer A mainly contains massive inorganic fine particles A, and the term “comprising mainly” here includes 50% by volume or more of the inorganic fine particles A in the total volume of the constituent components of the porous membrane A. Means. The amount of the inorganic fine particles A in the porous layer A is preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more in the total volume of the constituent components of the porous film A. More preferably it is. By making the inorganic fine particles A have a high content in the porous layer A as described above, the thermal contraction of the entire separator can be satisfactorily suppressed. The porous layer A preferably contains a binder in order to bind the inorganic fine particles A or bind the inorganic fine particles A related to the porous layer A and the polyolefin microporous film. From such a viewpoint, the preferable upper limit value of the amount of the inorganic fine particles A in the porous layer A is, for example, 99% by volume in the total volume of the constituent components of the porous film A. If the amount of the inorganic fine particles A in the porous film A is less than 70% by volume, for example, the amount of the binder in the porous film A needs to be increased. For example, the function as a separator may be reduced due to being filled with a binder, and when pores are formed using a pore opening agent or the like, the interval between the inorganic fine particles A becomes too large and heat shrinkage occurs. There is a possibility that the effect of suppressing the decrease.

また、多孔質層Bは板状の無機微粒子Bを主体として含むが、ここでいう「主体として含む」とは、無機微粒子Bを、多孔質膜Bの構成成分の全体積中、50体積%以上含むことを意味している。多孔質層Bにおける無機微粒子Bの量は、多孔質膜Bの構成成分の全体積中、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層B中において無機微粒子Bを前記のように高含有量とすることで、セパレータ全体の熱収縮を良好に抑制することができる。また、多孔質層Bには、無機微粒子B間を結着したり多孔質層Bに係る無機微粒子Bとポリオレフィン製微多孔質膜とを結着したりするためにバインダを含有させることが好ましく、このような観点から、多孔質層Bにおける無機微粒子Bの量の好適上限値は、例えば、多孔質膜Bの構成成分の全体積中、99体積%である。なお、多孔質膜Bにおける無機微粒子Bの量を70体積%未満とすると、例えば、多孔質膜B中のバインダ量を多くする必要が生じるが、その場合には多孔質膜Bの空孔がバインダによって埋められてしまい、例えばセパレータとしての機能が低下する虞があり、また、開孔剤などを用いて多孔質化した場合には、無機微粒子B同士の間隔が大きくなりすぎて、熱収縮を抑制する効果が低下する虞がある。   Further, the porous layer B mainly contains the plate-like inorganic fine particles B, and the term “mainly containing” as used herein means that the inorganic fine particles B are 50% by volume in the total volume of the constituent components of the porous film B. It is meant to include the above. The amount of the inorganic fine particles B in the porous layer B is preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more in the total volume of the constituent components of the porous film B. More preferably it is. By making the inorganic fine particles B have a high content as described above in the porous layer B, the thermal contraction of the entire separator can be satisfactorily suppressed. The porous layer B preferably contains a binder in order to bind the inorganic fine particles B or bind the inorganic fine particles B related to the porous layer B and the polyolefin microporous film. From such a viewpoint, the preferable upper limit of the amount of the inorganic fine particles B in the porous layer B is, for example, 99% by volume in the total volume of the constituent components of the porous film B. If the amount of the inorganic fine particles B in the porous film B is less than 70% by volume, for example, the amount of the binder in the porous film B needs to be increased. For example, the function as a separator may be reduced due to being filled with a binder, and when it is made porous by using a pore opening agent or the like, the interval between the inorganic fine particles B becomes too large and heat shrinkage occurs. There is a possibility that the effect of suppressing the decrease.

多孔質膜Aおよび多孔質膜Bには、無機微粒子間や無機微粒子とポリオレフィン製微多孔質膜とを結着する目的で、バインダを含有させてもよい。バインダとしては、電気化学的に安定かつ電解液に対して安定で、良好に接着できるものであればよいが、例えば、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが用いられる。これらのバインダは、1種単独で使用してもよく、2種以上を併用してもよい。   The porous film A and the porous film B may contain a binder for the purpose of binding between the inorganic fine particles or between the inorganic fine particles and the polyolefin microporous film. The binder is not limited as long as it is electrochemically stable and stable with respect to the electrolytic solution, and can be satisfactorily bonded. For example, an ethylene-vinyl acetate copolymer (EVA, vinyl acetate-derived structural unit is 20 to 35 mol%), ethylene-acrylic acid copolymer such as ethylene-ethyl acrylate copolymer, fluorine rubber, styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), poly N-vinylacetamide, crosslinked acrylic resin, polyurethane, epoxy resin and the like are used. These binders may be used individually by 1 type, and may use 2 or more types together.

前記例示のバインダの中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。これらの具体例としては、三井デュポンポリケミカル社製の「エバフレックスシリーズ(EVA、商品名)」、日本ユニカー社製のEVA、三井デュポンポリケミカル社製の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体、商品名)」、日本ユニカー社製のEEA、ダイキン工業社製の「ダイエルラテックスシリーズ(フッ素ゴム、商品名)」、JSR社製の「TRD−2001(SBR、商品名)」、日本ゼオン社製の「BM−400B(SBR、商品名)」などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。   Among the binders exemplified above, a heat-resistant resin having a heat resistance of 150 ° C. or higher is preferable, and in particular, a highly flexible material such as an ethylene-acrylic acid copolymer, a fluorine-based rubber, or SBR is more preferable. Specific examples include “Evaflex series (EVA, trade name)” manufactured by Mitsui DuPont Polychemical Co., Ltd., EVA manufactured by Nihon Unicar Co., Ltd., and “Evaflex-EEA Series (ethylene-acrylic) manufactured by Mitsui DuPont Polychemical Co., Ltd. Acid copolymer, trade name) ", EEA made by Nihon Unicar," Daiel Latex Series (fluoro rubber, trade name) "by Daikin Industries," TRD-2001 (SBR, trade name) by JSR ", BM-400B (SBR, trade name)" manufactured by Zeon Corporation. A cross-linked acrylic resin (self-crosslinking acrylic resin) having a low glass transition temperature and having a structure in which butyl acrylate is a main component and is cross-linked is also preferable.

多孔質膜Aにおけるバインダの含有量は、無機微粒子間や無機微粒子とポリオレフィン製微多孔質膜とを良好に結着する観点から、体積比率で、多孔質膜Aに含まれる無機微粒子Aの体積を100としたときに、1以上であることが好ましく、5以上であることがより好ましく、10以上であることが更に好ましい。ただし、多孔質膜A中のバインダ量が多すぎると、バインダによって多孔質膜Aの空孔が埋められてしまい、イオンの透過性が悪くなって電池特性に悪影響が出る虞がある。よって、多孔質膜Aにおけるバインダの含有量は、体積比率で、多孔質膜Aに含まれる無機微粒子Aの体積を100としたときに、30以下であることが好ましく、20以下であることがより好ましい。   The content of the binder in the porous film A is the volume ratio of the inorganic fine particles A contained in the porous film A in terms of volume ratio from the viewpoint of satisfactorily binding the inorganic fine particles between the inorganic fine particles and the polyolefin microporous film. When 100 is 100, it is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more. However, if the amount of the binder in the porous membrane A is too large, the pores of the porous membrane A are filled with the binder, which may deteriorate the ion permeability and adversely affect the battery characteristics. Therefore, the binder content in the porous membrane A is preferably 30 or less, more preferably 20 or less, when the volume ratio of the inorganic fine particles A contained in the porous membrane A is 100. More preferred.

また、多孔質膜Bにおけるバインダの含有量は、無機微粒子間や無機微粒子とポリオレフィン製微多孔質膜とを良好に結着する観点から、体積比率で、多孔質膜Bに含まれる無機微粒子Bの体積を100としたときに、1以上であることが好ましく、5以上であることがより好ましく、10以上であることが更に好ましい。ただし、多孔質膜B中のバインダ量が多すぎると、バインダによって多孔質膜Bの空孔が埋められてしまい、イオンの透過性が悪くなって電池特性に悪影響が出る虞がある。よって、多孔質膜Bにおけるバインダの含有量は、体積比率で、多孔質膜Bに含まれる無機微粒子Bの体積を100としたときに、30以下であることが好ましく、20以下であることがより好ましい。   The content of the binder in the porous membrane B is such that the inorganic fine particles B contained in the porous membrane B are in a volume ratio from the viewpoint of satisfactorily binding the inorganic fine particles between the inorganic fine particles and the polyolefin microporous membrane. When the volume is 100, it is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more. However, if the amount of the binder in the porous membrane B is too large, the pores of the porous membrane B are filled with the binder, and the ion permeability is deteriorated, which may adversely affect the battery characteristics. Therefore, the binder content in the porous membrane B is preferably 30 or less, and preferably 20 or less when the volume ratio of the inorganic fine particles B contained in the porous membrane B is 100. More preferred.

本発明のセパレータは、例えば、塊状の無機微粒子Aを水などの媒体に分散させ、必要に応じてバインダや増粘剤、消泡剤などを加えて調製した多孔質膜A形成用のスラリーと、板状の無機微粒子Bを水などの媒体に分散させ、必要に応じてバインダや増粘剤、消泡剤などを加えて調製した多孔質膜B形成用のスラリーとを用意し、ポリオレフィン製微多孔質膜の片面に多孔質膜A形成用のスラリーを塗布し乾燥して多孔質膜Aを形成し、ポリオレフィン製微多孔質膜の他面に多孔質膜B形成用のスラリーを塗布し乾燥して多孔質膜Bを形成することにより製造できる。   The separator of the present invention includes, for example, a slurry for forming a porous film A prepared by dispersing massive inorganic fine particles A in a medium such as water and adding a binder, a thickener, an antifoaming agent, or the like as necessary. And a slurry for forming a porous membrane B prepared by dispersing plate-like inorganic fine particles B in a medium such as water and adding a binder, a thickener, an antifoaming agent, etc. as necessary. Apply the slurry for forming the porous membrane A on one side of the microporous membrane and dry it to form the porous membrane A, and apply the slurry for forming the porous membrane B on the other side of the polyolefin microporous membrane. It can be manufactured by drying to form the porous membrane B.

多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーに増粘剤を添加することで、これらのスラリーの貯蔵中やセパレータを連続的に製造している途中において、スラリー中での無機微粒子の沈降などを抑制できるため、スラリーの貯蔵性を高め、またセパレータの安定製造を可能とし得る。増粘剤の具体例としては、例えば、ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール、ビニルメチルエーテル−無水マレイン酸共重合体などの合成高分子;キサンタンガム、ウェランガム、ジェランガム、グアーガム、カラギーナン、セルロース誘導体(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)、デキストリン、アルファー化でんぷんなどのでんぷん類などの天然多糖類;モンモリロナイト、ヘクトライトなどの粘土鉱物;ヒュームドシリカ、ヒュームドアルミナ、ヒュームドチタニアなどの無機酸化物類;などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーの媒体として好適な水に対する溶解性が高く、少量で増粘効果が高い点で、天然多糖類がより好ましく、キサンタンガム、ウェランガム、ジェランガムが更に好ましく、キサンタンガムが特に好ましい。また、多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーにチクソ性を付与する場合には、ヒュームドシリカ、ヒュームドアルミナ、ヒュームドチタニアなどの無機酸化物類を添加することが好ましい。   By adding a thickener to the slurry for forming the porous membrane A and the slurry for forming the porous membrane B, during the storage of these slurries and during the continuous production of the separator, Since sedimentation of inorganic fine particles can be suppressed, the storage property of the slurry can be improved, and the separator can be stably manufactured. Specific examples of the thickener include, for example, synthetic polymers such as polyethylene glycol, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer; xanthan gum, welan gum, gellan gum, guar gum, carrageenan, cellulose derivative ( Carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, etc.), natural polysaccharides such as starches such as dextrin and pregelatinized starch; clay minerals such as montmorillonite and hectorite; inorganics such as fumed silica, fumed alumina, and fumed titania Oxides; and the like. These may be used alone or in combination of two or more. Among these, a natural polysaccharide is more preferable in terms of high solubility in water suitable as a medium for the slurry for forming the porous membrane A and the slurry for forming the porous membrane B, and a high thickening effect in a small amount. Xanthan gum, welan gum, and gellan gum are more preferable, and xanthan gum is particularly preferable. In addition, when adding thixotropy to the slurry for forming the porous film A and the slurry for forming the porous film B, inorganic oxides such as fumed silica, fumed alumina, and fumed titania should be added. Is preferred.

多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーにおける増粘剤の含有量としては、スラリーの粘度が無機微粒子の沈降などを抑制し安定な分散状態を維持するのに適しており、塗工機を用いて塗布する際に、良好な塗布性が得られる粘度範囲に調整できるような量とすることが好ましい。   The content of the thickener in the slurry for forming the porous membrane A and the slurry for forming the porous membrane B is suitable for the viscosity of the slurry to suppress sedimentation of inorganic fine particles and to maintain a stable dispersion state. In addition, it is preferable that the amount be adjusted to a viscosity range in which good coating properties can be obtained when coating using a coating machine.

なお、多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーの粘度は、5mPa・s以上であることが好ましく、10mPa・s以上であることがより好ましく、20mPa・s以上であることが更に好ましく、また、500mPa・s以下であることが好ましく、300mPa・s以下であることがより好ましく、100mPa・s以下であることが更に好ましい。スラリーの粘度が低すぎると無機微粒子の沈降を抑制することが困難になって、スラリーの安定性を確保し難くなる虞があり、粘度が高すぎるとスラリーを必要な厚みに均一に塗布することが困難になる。多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーの粘度は、振動式粘度計またはE型粘度計により測定することができる。   The viscosity of the slurry for forming the porous film A and the slurry for forming the porous film B is preferably 5 mPa · s or more, more preferably 10 mPa · s or more, and 20 mPa · s or more. Is more preferably 500 mPa · s or less, more preferably 300 mPa · s or less, and still more preferably 100 mPa · s or less. If the viscosity of the slurry is too low, it may be difficult to suppress sedimentation of inorganic fine particles, and it may be difficult to ensure the stability of the slurry. If the viscosity is too high, the slurry should be uniformly applied to the required thickness. Becomes difficult. The viscosities of the slurry for forming the porous membrane A and the slurry for forming the porous membrane B can be measured with a vibration viscometer or an E-type viscometer.

ただし、増粘剤に、スラリー塗布後の乾燥工程で揮発しないものを用いる場合には、多孔質膜Aや多孔質膜Bに増粘剤が残留することになるため、多量に用いるのは好ましくない。よって、多孔質膜A形成用のスラリーおよび多孔質膜B形成用のスラリーにおける増粘剤の含有量は、スラリー中の全固形分(媒体以外の全成分)の全体積を100としたとき、10以下とすることが好ましく、5以下とすることがより好ましく、1以下とすることが更に好ましい。   However, when a thickening agent that does not volatilize in the drying step after slurry application is used, the thickening agent remains in the porous film A and the porous film B. Absent. Therefore, the content of the thickener in the slurry for forming the porous membrane A and the slurry for forming the porous membrane B is, when the total volume of all solids (all components other than the medium) in the slurry is 100, It is preferably 10 or less, more preferably 5 or less, and still more preferably 1 or less.

多孔質膜A形成用のスラリーや多孔質膜B形成用のスラリーをポリオレフィン製微多孔質膜に塗布する際には、ブレードコーター、ロールコーター、ダイコーター、マイクログラビアコーターなどを使用することができる。   When applying the slurry for forming the porous membrane A or the slurry for forming the porous membrane B to the polyolefin microporous membrane, a blade coater, a roll coater, a die coater, a micro gravure coater, or the like can be used. .

なお、多孔質膜A形成用のスラリーや多孔質膜B形成用のスラリーのポリオレフィン製微多孔質膜への塗布性を改善したり、多孔質膜Aや多孔質膜Bとポリオレフィン製微多孔質膜との接着性を高めたりするなどの目的で、ポリオレフィン製微多孔質膜の表面改質を行ってもよい。ポリオレフィン製微多孔質膜の表面改質方法としては、コロナ放電処理、プラズマ放電処理、紫外線照射処理などが挙げられる。なお、環境上の問題から多孔質膜A形成用のスラリーや多孔質膜B形成用のスラリーの媒体は水であることが望ましく、媒体として水を用いる場合には、親和性を確保する意味で前記表面改質処理は特に有効となる。   In addition, the coating property of the slurry for forming the porous film A and the slurry for forming the porous film B to the polyolefin microporous film is improved, or the porous film A or the porous film B and the polyolefin microporous For the purpose of enhancing the adhesion to the membrane, the polyolefin microporous membrane may be subjected to surface modification. Examples of the surface modification method for the polyolefin microporous membrane include corona discharge treatment, plasma discharge treatment, and ultraviolet irradiation treatment. In addition, it is desirable that the medium of the slurry for forming the porous film A and the slurry for forming the porous film B is water due to environmental problems, and in the case of using water as the medium, in order to ensure affinity. The surface modification treatment is particularly effective.

前記のようにして製造される本発明のセパレータは、その厚みが、12〜40μmであることが好ましい。   The separator of the present invention produced as described above preferably has a thickness of 12 to 40 μm.

本発明のリチウム二次電池は、本発明のセパレータを有していればよく、その他の構成、構造については特に制限はなく、従来から知られているリチウム二次電池で採用されている各種構成、構造を適用することができる。   The lithium secondary battery of the present invention is only required to have the separator of the present invention, and there are no particular restrictions on other configurations and structures, and various configurations employed in conventionally known lithium secondary batteries. The structure can be applied.

本発明のリチウム二次電池に係る正極には、従来から知られているリチウム二次電池に用いられている正極、すなわち、リチウムイオンを吸蔵・放出可能な正極活物質を含有する正極を用いることができる。例えば、正極活物質には、Li1+xMOで(−0.1<x<0.1、M:Co、Ni、Mnなど)で表されるリチウム含有遷移金属酸化物;LiMnなどのリチウムマンガン酸化物;LiMnのMnの一部を他元素で置換したLiMn(1−x);オリビン型LiMPO(M:Co、Ni、Mn、Fe);LiMn0.5Ni0.5;Li(1+a)MnNiCo(1−x−y)(−0.1<a<0.1、0<x<0.5、0<y<0.5);などを適用することが可能であり、これらの正極活物質に公知の導電助剤(カーボンブラックなどの炭素材料など)やポリフッ化ビニリデン(PVDF)などの結着剤などを適宜添加した正極合剤を、集電体を芯材として成形体(正極合剤層)に仕上げたものなどを用いることができる。 As the positive electrode according to the lithium secondary battery of the present invention, a positive electrode used in a conventionally known lithium secondary battery, that is, a positive electrode containing a positive electrode active material capable of occluding and releasing lithium ions is used. Can do. For example, for the positive electrode active material, lithium-containing transition metal oxide represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, etc.); LiMn 2 O 4, etc. LiMn x M (1-x) O 2 in which a part of Mn of LiMn 2 O 4 is substituted with another element; olivine-type LiMPO 4 (M: Co, Ni, Mn, Fe); LiMn 0 .5 Ni 0.5 O 2 ; Li (1 + a) Mn x Ni y Co (1-xy) O 2 (−0.1 <a <0.1, 0 <x <0.5, 0 <y <0.5); can be applied to these positive electrode active materials, and known conductive additives (carbon materials such as carbon black) and binders such as polyvinylidene fluoride (PVDF). An appropriately added positive electrode mixture is formed using a current collector as a core material (positive electrode). What was finished in the mixture layer) can be used.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

本発明のリチウム二次電池に係る負極には、従来から知られているリチウム二次電池に用いられている負極、すなわち、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極を用いることができる。例えば、負極活物質には、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。   As the negative electrode for the lithium secondary battery of the present invention, a negative electrode used in a conventionally known lithium secondary battery, that is, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions is used. Can do. For example, the anode active material can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One kind or a mixture of two or more kinds of carbon-based materials is used. In addition, elements such as Si, Sn, Ge, Bi, Sb and In and alloys thereof, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys Can also be used as a negative electrode active material.

負極活物質には、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値(I1360/I1580)が0.1以上0.5以下であり、002面の面間隔d002が0.338nm以下である黒鉛を使用することがより好ましい。このような負極活物質を含有する負極を使用することで、低温でも優れた充電特性を維持し得るリチウム二次電池とすることができる。 The negative electrode active material, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum (I 1360 / I 1580) is 0.1 to 0.5, 002 It is more preferable to use graphite having a face spacing d 002 of 0.338 nm or less. By using a negative electrode containing such a negative electrode active material, a lithium secondary battery that can maintain excellent charging characteristics even at low temperatures can be obtained.

R値およびd002が前記の値を満足する黒鉛としては、例えば、表面が低結晶性の炭素材で被覆された黒鉛が挙げられる。そのような黒鉛は、d002が0.338nm以下である天然黒鉛または人造黒鉛を球状に賦形したものを母材とし、その表面を有機化合物で被覆し、800〜1500℃で焼成した後、解砕し、篩を通して整粒することによって得ることができる。なお、前記母材を被覆する有機化合物としては、芳香族炭化水素;芳香族炭化水素を加熱加圧下で重縮合して得られるタールまたはピッチ類;芳香族炭化水素の混合物を主成分とするタール、ピッチまたはアスファルト類;などが挙げられる。前記母材を前記有機化合物で被覆するには、前記有機化合物に前記母材を含浸・混捏する方法が採用できる。また、プロパンやアセチレンなどの炭化水素ガスを熱分解により炭素化し、これをd002が0.338nm以下の黒鉛の表面に堆積させる気相法によっても、R値およびd002が前記の値を満足する黒鉛を作製することができる。 Examples of the graphite whose R value and d 002 satisfy the above values include graphite whose surface is coated with a low crystalline carbon material. Such graphite is obtained by using natural graphite or artificial graphite having a d 002 of 0.338 nm or less in a spherical shape as a base material, covering the surface with an organic compound, and firing at 800 to 1500 ° C. It can be obtained by crushing and sizing through a sieve. The organic compound covering the base material includes aromatic hydrocarbons; tars or pitches obtained by polycondensation of aromatic hydrocarbons under heat and pressure; tars mainly composed of a mixture of aromatic hydrocarbons. , Pitch or asphalt; In order to coat the base material with the organic compound, a method of impregnating and kneading the base material into the organic compound can be employed. Also, the R value and d 002 satisfy the above values by a vapor phase method in which hydrocarbon gas such as propane or acetylene is carbonized by pyrolysis and deposited on the surface of graphite having d 002 of 0.338 nm or less. Graphite can be produced.

電池には、これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げた負極が用いられる他、前記の各種合金やリチウム金属の箔を単独、若しくは集電体上に形成した負極を用いてもよい。   In the battery, a negative electrode mixture in which a conductive additive (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these negative electrode active materials, and a molded body (negative electrode) using the current collector as a core material In addition to the negative electrode finished in the mixture layer), the above-mentioned various alloys and lithium metal foils may be used alone or a negative electrode formed on a current collector.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、また、下限は5μmであることが望ましい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm.

負極側のリード部も、正極側のリード部と同様に、通常、負極作製時に、集電体の一部に負極剤層(負極活物質を有する層)を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、この負極側のリード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。   Similarly to the lead portion on the positive electrode side, the negative electrode lead portion is usually exposed to the current collector without forming a negative electrode agent layer (a layer having a negative electrode active material) on a part of the current collector during negative electrode fabrication. It is provided by leaving a part and using it as a lead part. However, the lead portion on the negative electrode side is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

非水電解液には、例えば、有機溶媒にリチウム塩を溶解させた溶液が使用される。非水電解液に係る有機溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの1種のみからなる有機溶媒または2種以上の混合溶媒を使用することができる。また、リチウム塩には、例えば、LiClO、LiPF、LiBF 、LiAsF 、LiSbF 、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのうちの1種または2種以上を用いることができる。リチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 For the non-aqueous electrolyte, for example, a solution in which a lithium salt is dissolved in an organic solvent is used. Examples of the organic solvent related to the non-aqueous electrolyte include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxy. An organic solvent composed of only one kind such as ethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether or a mixed solvent of two or more kinds can be used. Further, the lithium salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 One or two of SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] The above can be used. The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

また、非水電解液に、シクロヘキシルベンゼンまたはその誘導体(1−フルオロ−2−シクロヘキシルベンゼン、1−フルオロ−3−シクロヘキシルベンゼン、1−フルオロ−4−シクロヘキシルベンゼン、1−クロロ−4−シクロヘキシルベンゼン、1−ブロモ−4−シクロヘキシルベンゼン、1−ヨード−4−シクロヘキシルベンゼンなど)を含有させることが好ましく、これにより、リチウム二次電池の過充電時における安全性を高めることができる。シクロヘキシルベンゼンやその誘導体は、所定の電位以上となった場合に重合して正極表面に被膜を形成する。そのため、この被膜によって過充電時における正極と非水電解液との反応が抑制されることから、リチウム二次電池の安全性が向上する。   In addition, cyclohexylbenzene or a derivative thereof (1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene, 1-chloro-4-cyclohexylbenzene, 1-bromo-4-cyclohexylbenzene, 1-iodo-4-cyclohexylbenzene, and the like) are preferably contained, thereby improving the safety of the lithium secondary battery during overcharging. Cyclohexylbenzene and its derivatives are polymerized to form a film on the surface of the positive electrode when the potential exceeds a predetermined potential. For this reason, the reaction between the positive electrode and the non-aqueous electrolyte during overcharging is suppressed by this coating, so that the safety of the lithium secondary battery is improved.

リチウム二次電池の製造に用いる非水電解液中のシクロヘキシルベンゼンまたはその誘導体の量は、その使用による効果をより良好に確保する観点から、非水電解液の溶媒100質量部に対して、0.5質量部以上とすることが好ましい。ただし、非水電解液中のシクロヘキシルベンゼンまたはその誘導体の量が多すぎると、電池特性の低下を引き起こす虞がある。よって、リチウム二次電池の製造に用いる非水電解液中のシクロヘキシルベンゼンまたはその誘導体の量は、非水電解液の溶媒100質量部に対して、3質量部以下とすることが好ましい。   The amount of cyclohexylbenzene or a derivative thereof in the non-aqueous electrolyte used for the production of the lithium secondary battery is 0 with respect to 100 parts by mass of the solvent of the non-aqueous electrolyte from the viewpoint of better securing the effect of its use. It is preferable to be 5 parts by mass or more. However, if the amount of cyclohexylbenzene or its derivative in the non-aqueous electrolyte is too large, the battery characteristics may be deteriorated. Therefore, the amount of cyclohexylbenzene or a derivative thereof in the non-aqueous electrolyte used for manufacturing the lithium secondary battery is preferably 3 parts by mass or less with respect to 100 parts by mass of the solvent of the non-aqueous electrolyte.

また、非水電解液には、電池の安全性や充放電サイクル特性、高温貯蔵性といった特性を更に向上させる目的で、ビニレンカーボネート類、環状硫黄化合物(1,3−プロパンサルトン、1,4−ブタンスルトン、3−フェニル−1,3−プロパンサルトン、4−フェニル−1,4−ブタンスルトンなど)、ジフェニルジスルフィド、ビフェニル、ビニルエチルカーボネート、フルオロベンゼンなどの添加剤を適宜加えることもできる。   In addition, non-aqueous electrolytes include vinylene carbonates, cyclic sulfur compounds (1,3-propane sultone, 1, 4 for the purpose of further improving characteristics such as battery safety, charge / discharge cycle characteristics, and high-temperature storage characteristics. -Butane sultone, 3-phenyl-1,3-propane sultone, 4-phenyl-1,4-butane sultone, etc.), diphenyl disulfide, biphenyl, vinyl ethyl carbonate, fluorobenzene and the like may be added as appropriate.

電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層電極体や、更にこれを巻回した巻回電極体の形態で用いることができる。   The electrode can be used in the form of a laminated electrode body in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or a wound electrode body in which this is wound.

なお、積層電極体や巻回電極体を形成する際には、多孔質膜Aが正極に対向し、多孔質膜Bが負極に対向するようにセパレータを配置することが好ましい。   When forming the laminated electrode body or the wound electrode body, it is preferable to arrange the separator so that the porous film A faces the positive electrode and the porous film B faces the negative electrode.

例えば、シクロヘキシルベンゼンまたはその誘導体を含有する非水電解液を用いた場合、これらは電池の通常の使用電位域においても僅かながら重合し、形成された重合物がセパレータの空港に侵入して目詰まりを引き起こし、電池特性を低下させることがある。しかしながら、セパレータの多孔質膜Aが正極に対向している場合には、シクロヘキシルベンゼンまたはその誘導体の重合物によるセパレータ空孔の目詰まりを抑制することができる。   For example, when non-aqueous electrolytes containing cyclohexylbenzene or its derivatives are used, they polymerize slightly even in the normal operating potential range of the battery, and the formed polymer enters the separator airport and becomes clogged. Battery characteristics may be deteriorated. However, when the porous film A of the separator faces the positive electrode, clogging of the separator pores due to the polymer of cyclohexylbenzene or its derivative can be suppressed.

また、R値が0.1以上0.5以下といった表面が低結晶性の炭素材で被覆された黒鉛を負極活物質に使用した負極を用いて巻回電極体を形成すると、前記黒鉛の表面が粗面であるため、セパレータの強度によってはセパレータが圧縮され、短絡をしていなくても電極間の距離が小さくなって、充放電サイクルの際に容量低下を生じて信頼性が損なわれる場合もある。しかし、本発明の電池では、多孔質膜Aおよび多孔質膜Bを有することで強度が高められた本発明のセパレータを使用しているために前記の信頼性低下を抑制でき、より強度の大きな多孔質膜Bが負極に対向するようにセパレータを配置することで、前記の信頼性低下の抑制効果をより高めることができる。   Further, when a wound electrode body is formed using a negative electrode in which graphite whose surface is coated with a low crystalline carbon material having an R value of 0.1 or more and 0.5 or less is used as a negative electrode active material, When the separator is compressed depending on the strength of the separator, the distance between the electrodes is reduced even if there is no short circuit, the capacity is reduced during the charge / discharge cycle, and the reliability is impaired There is also. However, in the battery of the present invention, since the separator of the present invention whose strength is increased by having the porous film A and the porous film B is used, the above-described decrease in reliability can be suppressed, and the strength is increased. By arranging the separator so that the porous membrane B faces the negative electrode, the effect of suppressing the above-described reliability reduction can be further enhanced.

本発明の電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Examples of the form of the battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

本発明のリチウム二次電池は、異常過熱時における安全性と負荷特性とに優れていることから、こうした特性を生かして、パワーツール用の電源用途を始めとして、従来から知られているリチウム二次電池と同様の用途に好ましく適用することができる。   Since the lithium secondary battery of the present invention is excellent in safety and load characteristics at the time of abnormal overheating, the lithium secondary battery, which has been conventionally known, is used for power tools for power tools. It can be preferably applied to the same application as the secondary battery.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
(1)多孔質膜A形成用スラリー(スラリーA)の調製
概略球状のベーマイト5kgにイオン交換水5kgと水系分散剤(ポリカルボン酸アンモニウム塩を40質量%含有)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで1時間解砕処理をして分散液を調製した。得られた分散液の一部を採取し、その中のベーマイトの平均粒子径(D50%)を、レーザー散乱式粒度分布計(堀場製作所製「LA−920」)を用い、屈折率を1.65として測定したところ、0.6μmであった。また、解砕処理後の分散液の一部を120℃で真空乾燥し、SEM観察をしたところ、ベーマイト粒子の形状はほぼ球状であった。
Example 1
(1) Preparation of slurry for forming porous membrane A (slurry A) 5 kg of ion-exchanged water and 0.5 kg of an aqueous dispersant (containing 40% by mass of polycarboxylic acid ammonium salt) are added to 5 kg of roughly spherical boehmite. Dispersion was prepared by crushing for 1 hour with a ball mill having a product volume of 20 L and a rotation rate of 40 times / min. A part of the obtained dispersion was collected, and the average particle diameter (D50%) of boehmite therein was measured using a laser scattering type particle size distribution meter (“LA-920” manufactured by Horiba, Ltd.). When measured as 65, it was 0.6 μm. Further, when a part of the dispersion after the pulverization treatment was vacuum-dried at 120 ° C. and observed by SEM, the shape of the boehmite particles was almost spherical.

更に、前記分散液500gに、水系バインダ(変性ポリブチルアクリレートを45質量%含有するディスパージョン)17gを加え、スリーワンモーターで3時間攪拌してスラリーAを得た。   Further, 17 g of an aqueous binder (a dispersion containing 45% by mass of modified polybutyl acrylate) was added to 500 g of the dispersion, and the mixture was stirred for 3 hours with a three-one motor to obtain slurry A.

(2)多孔質膜B形成用スラリー(スラリーB)の調製
概略金平糖形状で平均粒子径が4μmのベーマイト(密度:3.04g/cm)5kgにイオン交換水5kgと水系分散剤(ポリカルボン酸アンモニウム塩を40質量%含有)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、SEM観察をしたところ、ベーマイト粒子の形状はほぼ板状であった。そのうち、100個の粒子の寸法測定をして理論比表面積を算出した。なお、粒子中の最大長さを粒子径(I)、厚みを粒子径(II)とした。
(2) Preparation of slurry for forming porous membrane B (slurry B) 5 kg of boehmite (density: 3.04 g / cm 3 ) having an average slab shape and an average particle size of 4 μm, and 5 kg of ion-exchanged water and an aqueous dispersant (polycarbon) 0.5 kg of acid ammonium salt was added), and the mixture was crushed for 10 hours with a ball mill with an internal volume of 20 L and a rotation number of 40 times / min to prepare a dispersion. When a part of the treated dispersion was vacuum-dried at 120 ° C. and observed by SEM, the shape of the boehmite particles was almost plate-like. Among them, the size of 100 particles was measured to calculate the theoretical specific surface area. The maximum length in the particles was defined as the particle diameter (I), and the thickness was defined as the particle diameter (II).

また、乾燥後の粒子0.3gを取り出し、日本ベル社製「ベルソープミニ」を用いて比表面積(BET法による比表面積)を測定した。   Moreover, 0.3 g of particles after drying was taken out, and the specific surface area (specific surface area by BET method) was measured using “Bell Soap Mini” manufactured by Bell Japan.

更に、前記分散液500gに、水系バインダ(変性ポリブチルアクリレートを45質量%含有するディスパージョン)17gを加え、スリーワンモーターで3時間攪拌してスラリーBを得た。   Furthermore, 17 g of an aqueous binder (a dispersion containing 45% by mass of modified polybutyl acrylate) was added to 500 g of the dispersion, and the mixture was stirred for 3 hours with a three-one motor to obtain slurry B.

(3)セパレータの作製
リチウムイオン電池用セパレータに使用されるPE製微多孔質膜(幅300mm、厚み16μm)の両面にコロナ放電処理を施し、その片面にスラリーAを、もう一方の面にスラリーBを、それぞれダイコーターを用いて塗布し、乾燥して、多孔質膜A(厚み2μm)および多孔質膜B(厚み2μm)を有するセパレータを作製した。なお、前記セパレータにおける多孔質膜A中の無機微粒子A(ベーマイト)の体積含有率(多孔質膜Aの構成成分の全体積中の体積含有率。多孔質膜A中の無機微粒子Aの体積含有率について、以下同じ。)は90体積%であり、多孔質膜B中の無機微粒子B(ベーマイト)の体積含有率(多孔質膜Bの構成成分の全体積中の体積含有率)は90体積%であった。
(3) Production of separator Corona discharge treatment was applied to both sides of a PE microporous membrane (width 300 mm, thickness 16 μm) used in a lithium ion battery separator, slurry A on one side and slurry on the other side. Each of B was applied using a die coater and dried to prepare a separator having a porous film A (thickness 2 μm) and a porous film B (thickness 2 μm). In addition, the volume content of the inorganic fine particles A (boehmite) in the porous film A in the separator (the volume content in the total volume of the constituent components of the porous film A. The volume content of the inorganic fine particles A in the porous film A. The same applies hereinafter)) is 90% by volume, and the volume content of inorganic fine particles B (boehmite) in the porous membrane B (volume content in the total volume of the constituent components of the porous membrane B) is 90 volumes. %Met.

(実施例2)
平均粒子径が0.2μmの球状アルミナを無機微粒子Aに用いた以外は、実施例1と同様にしてスラリーAを調製した。また、ボールミルの解砕処理時間を9時間としてスラリーBを調製した以外は、実施例1と同様にしてスラリーBを調製した。そして、これらのスラリーAおよびスラリーBを用いた以外は、実施例1と同様にしてセパレータを作製した。なお、前記セパレータにおける多孔質膜A中の無機微粒子Aの体積含有率は90体積%であった。
(Example 2)
A slurry A was prepared in the same manner as in Example 1 except that spherical alumina having an average particle size of 0.2 μm was used for the inorganic fine particles A. A slurry B was prepared in the same manner as in Example 1 except that the slurry B was prepared with a ball mill crushing time of 9 hours. And the separator was produced like Example 1 except having used these slurry A and slurry B. The volume content of the inorganic fine particles A in the porous film A in the separator was 90% by volume.

(実施例3)
平均粒子径が1.0μmの球状ベーマイトを無機微粒子Aに用いた以外は、実施例1と同様にしてスラリーAを調製した。また、ボールミルの解砕処理時間を14時間としてスラリーBを調製した以外は、実施例1と同様にしてスラリーBを調製した。そして、これらのスラリーAおよびスラリーBを用いた以外は、実施例1と同様にしてセパレータを作製した。なお、前記セパレータにおける多孔質膜A中の無機微粒子Aの体積含有率は90体積%であった。
(Example 3)
A slurry A was prepared in the same manner as in Example 1 except that spherical boehmite having an average particle diameter of 1.0 μm was used for the inorganic fine particles A. A slurry B was prepared in the same manner as in Example 1 except that the slurry B was prepared with a ball mill crushing time of 14 hours. And the separator was produced like Example 1 except having used these slurry A and slurry B. The volume content of the inorganic fine particles A in the porous film A in the separator was 90% by volume.

(実施例4)
平均粒子径が2.0μmの球状アルミナを無機微粒子Aに用いた以外は、実施例1と同様にしてスラリーAを調製し、このスラリーAを用いた以外は、実施例1と同様にしてセパレータを作製した。
Example 4
A slurry A was prepared in the same manner as in Example 1 except that spherical alumina having an average particle size of 2.0 μm was used for the inorganic fine particles A, and a separator was prepared in the same manner as in Example 1 except that this slurry A was used. Was made.

(実施例5)
ボールミルの解砕処理時間を5時間としてスラリーBを調製した以外は、実施例1と同様にしてセパレータを作製した。なお、スラリーBの調製に用いた解砕処理後の分散液の一部を120℃で真空乾燥し、SEM観察をしたところ、ベーマイト粒子は板状粒子が一部凝集していた。
(Example 5)
A separator was prepared in the same manner as in Example 1 except that the slurry B was prepared with a ball mill crushing time of 5 hours. A part of the crushed dispersion used for the preparation of slurry B was vacuum-dried at 120 ° C. and observed by SEM. As a result, the plate-like particles of the boehmite particles were partially agglomerated.

(比較例1)
スラリーBに代えて実施例1で調製したスラリーAを用いた以外は、実施例1と同様にしてセパレータを作製した。
(Comparative Example 1)
A separator was produced in the same manner as in Example 1 except that the slurry A prepared in Example 1 was used instead of the slurry B.

(比較例2)
スラリーAに代えて実施例1で調製したスラリーBを用いた以外は、実施例1と同様にしてセパレータを作製した。
(Comparative Example 2)
A separator was produced in the same manner as in Example 1 except that the slurry B prepared in Example 1 was used instead of the slurry A.

実施例1〜5および比較例1、2のセパレータについて、以下の方法によって熱収縮率を測定した。各セパレータを、それぞれ10×10cmに切り出して試験片を作製し、これらの試験片を郵便用封筒の中に収めて、150℃に調整した恒温槽内に1時間放置した。その後各試験片の縦横両方の寸法を測定し、以下の式に基づいて熱収縮率を算出し、試験片の縦方向の熱収縮率と横方向の熱収縮率のうち、より大きい方の値を、そのセパレータの熱収縮率とした。
熱収縮率(%) = 100×(a−b)/b
(前記式中、a:恒温槽内に放置後の試験片の縦方向または横方向の長さ、b:恒温槽に入れる前の試験片の縦方向または横方向の長さ、である。)
About the separator of Examples 1-5 and Comparative Examples 1 and 2, the thermal contraction rate was measured with the following method. Each separator was cut out to 10 × 10 cm to prepare test pieces, and these test pieces were placed in a mail envelope and left in a thermostat adjusted to 150 ° C. for 1 hour. Then, measure both the vertical and horizontal dimensions of each test piece, calculate the heat shrinkage rate based on the following formula, and choose the larger value of the vertical heat shrinkage rate and the horizontal heat shrinkage rate of the test piece. Was defined as the thermal contraction rate of the separator.
Thermal contraction rate (%) = 100 × (ab) / b
(In the above formula, a is the length in the vertical direction or the horizontal direction of the test piece after being left in the thermostat, and b is the length in the vertical or horizontal direction of the test piece before being put in the thermostatic bath.)

また、各実施例および比較例でセパレータの作製に用いたPE製微多孔質膜についても、比較例3として同様の熱収縮率測定を行った。これらの結果を、多孔質層Aおよび多孔質層Bに含まれる無機微粒子の形態と併せて表1に示す。   Further, the same heat shrinkage rate measurement as that of Comparative Example 3 was performed for the PE microporous membrane used for manufacturing the separator in each of the Examples and Comparative Examples. These results are shown in Table 1 together with the form of the inorganic fine particles contained in the porous layer A and the porous layer B.

Figure 2011065850
Figure 2011065850

表1に示すように、実施例1〜5のセパレータは150℃の高温度に曝しても収縮率が低く、耐熱性に優れている。よって、これらのセパレータを用いてリチウム二次電池を構成した場合には、電池内温度が高くなっても、セパレータの収縮による正負極間の短絡を抑制することができるため、高い安全性を有する電池となる。一方、多孔質膜を形成していない比較例3のセパレータ(通常のセパレータ)は収縮率が高い。比較例1のセパレータも通常のセパレータである比較例5のセパレータより熱収縮率は低いが、実施例のセパレータにはおよばなかった。   As shown in Table 1, the separators of Examples 1 to 5 have a low shrinkage and excellent heat resistance even when exposed to a high temperature of 150 ° C. Therefore, when a lithium secondary battery is configured using these separators, even if the temperature in the battery becomes high, a short circuit between the positive and negative electrodes due to the shrinkage of the separator can be suppressed, and thus high safety is achieved. It becomes a battery. On the other hand, the separator (comparative separator) of Comparative Example 3 in which no porous film is formed has a high shrinkage rate. The separator of Comparative Example 1 also had a thermal contraction rate lower than that of the separator of Comparative Example 5 which is a normal separator, but did not reach that of the separator of the example.

次に、実施例1〜3および比較例1〜3の各セパレータを用いて、リチウム二次電池を作製した。   Next, lithium secondary batteries were produced using the separators of Examples 1 to 3 and Comparative Examples 1 to 3.

(実施例6)
(1)正極の作製
正極活物質であるLiCoO:70質量部、LiNi0.8Co0.2:15質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダであるPVDF:5質量部を、N−メチル−2−ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚みが15μmのアルミニウム箔の両面に間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、正極を作製した。更にこの正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
(Example 6)
(1) Production of positive electrode LiCoO 2 as positive electrode active material: 70 parts by mass, LiNi 0.8 Co 0.2 O 2 : 15 parts by mass, acetylene black as a conductive additive: 10 parts by mass, and PVDF as a binder : 5 parts by mass was mixed so that N-methyl-2-pyrrolidone (NMP) was used as a solvent to prepare a positive electrode mixture-containing paste. This paste is intermittently applied to both sides of an aluminum foil having a thickness of 15 μm to be a current collector, dried, and then subjected to a calendar treatment to adjust the thickness of the positive electrode mixture layer so that the total thickness becomes 150 μm. The positive electrode was produced by cutting to a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

(2)負極の作製
平均粒径D50%が18μm、d002が0.338nm、比表面積が3.2m/gである黒鉛Aと、平均粒径D50%が16μm、d002が0.336nmの黒鉛Bを用い、ラマン分光法によりR値を求めた。黒鉛Aまたは黒鉛Bの極微量を曇ガラスに付着させたものをターゲットとした。各サンプルフォルダーをレーザーラマン測定装置(Jovan Yvon社製「U−1000」)に設置し、1μmに集光させたアルゴンイオンレーザー(波長514.5nm、出力250mW)を照射し、後方散乱によりラマン散乱を集光し、集光時間1sec、送りステップ1cm−1で1200〜1800cm−1の範囲を3回積算させてラマンスペクトルを得た。得られたラマンスペクトルから算出したR値は黒鉛Aが0.18、黒鉛Bが0.05であった。
(2) the negative electrode fabricated average particle size D50% of 18 [mu] m, d 002 is 0.338 nm, and the graphite A having a specific surface area of 3.2 m 2 / g, an average particle diameter D50% is 16 [mu] m, d 002 is 0.336nm R value was obtained by Raman spectroscopy using graphite B. A target in which a very small amount of graphite A or graphite B was attached to a frosted glass was used as a target. Each sample folder was placed in a laser Raman measuring device (“U-1000” manufactured by Jovan Yvon), irradiated with an argon ion laser (wavelength 514.5 nm, output 250 mW) focused on 1 μm, and Raman scattering by backscattering. was condensed and integration time 1 sec, thereby integrating three times the range of the 1200~1800Cm -1 at a feed step 1 cm -1 to obtain a Raman spectrum. The R value calculated from the obtained Raman spectrum was 0.18 for graphite A and 0.05 for graphite B.

黒鉛Aと黒鉛Bとを質量比85:15で混合した混合物:98質量部と、カルボキシメチルセルロース:1質量部と、SBR:1質量部とを、水の存在下で混合してスラリー状の負極合剤含有ぺーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚みが10μmの集電体の両面に間欠塗布し、乾燥した後、カレンダー処理を行って全厚が142μmになるように負極合剤層の厚みを調整した。共焦点レーザー顕微鏡を用いて求めた前記負極の負極合剤層表面の算術平均粗さ(Ra)は、0.75μmであった。その後、これを幅45mmになるように切断して、負極を得た。更にこの負極の銅箔の露出部にタブを溶接してリード部を形成した。   A mixture of graphite A and graphite B mixed at a mass ratio of 85:15: 98 parts by mass, carboxymethylcellulose: 1 part by mass, and SBR: 1 part by mass in the presence of water to form a slurry-like negative electrode A mixture-containing paste was prepared. This negative electrode mixture-containing paste is intermittently applied on both sides of a current collector made of copper foil with a thickness of 10 μm, dried, and then subjected to calendering so that the total thickness of the negative electrode mixture layer is 142 μm. It was adjusted. The arithmetic mean roughness (Ra) of the negative electrode mixture layer surface of the negative electrode obtained using a confocal laser microscope was 0.75 μm. Then, this was cut | disconnected so that it might become 45 mm in width, and the negative electrode was obtained. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

(3)電池の組み立て
前記の正極と前記の負極と実施例1のセパレータとを、多孔質膜Aを正極に、多孔質膜Bを負極にそれぞれ対向させつつ重ね合わせ、渦巻状に巻回して巻回電極体とした。この巻回電極体を押しつぶして扁平状にし、角形の外装缶内に装填した。更に、非水電解液(エチレンカーボネート、エチルメチルカーボネートを体積比で1:2に混合した溶媒に、LiPFを濃度1.2mol/lで溶解し、シクロヘキシルベンゼンを溶媒100質量部に対して1.0質量部の割合で添加したもの)を注入した後に封止を行ってリチウム二次電池を作製した。なお、この電池は、缶の上部に内圧が上昇した場合に圧力を下げるための開裂ベントを備えている。
(3) Battery assembly The positive electrode, the negative electrode, and the separator of Example 1 were overlapped with the porous film A facing the positive electrode and the porous film B facing the negative electrode, and wound in a spiral shape. A wound electrode body was obtained. The wound electrode body was crushed into a flat shape and loaded into a rectangular outer can. Further, LiPF 6 was dissolved at a concentration of 1.2 mol / l in a non-aqueous electrolyte (a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2), and cyclohexylbenzene was added to 1 part by mass of 100 parts by mass of the solvent. (Added at a rate of 0.0 part by mass) was injected and sealed to prepare a lithium secondary battery. This battery is provided with a cleavage vent for lowering the pressure when the internal pressure rises at the top of the can.

(実施例7、8および比較例4〜6)
セパレータを表2に示すものに変更した以外は、実施例6と同様にしてリチウム二次電池を作製した。
(Examples 7 and 8 and Comparative Examples 4 to 6)
A lithium secondary battery was produced in the same manner as in Example 6 except that the separator was changed to that shown in Table 2.

(実施例9)
負極活物質に実施例6で用いたものと同じR値が0.05の黒鉛Bのみを用いた以外は実施例6と同様にして負極を作製し、この負極を用いた以外は実施例6と同様にしてリチウム二次電池を作製した。
Example 9
A negative electrode was produced in the same manner as in Example 6 except that only the graphite B having the same R value of 0.05 as that used in Example 6 was used as the negative electrode active material, and Example 6 was used except that this negative electrode was used. In the same manner, a lithium secondary battery was produced.

実施例6〜9および比較例4〜6のリチウム二次電池について、以下の特性試験を行った。これらの結果を表2に示す。   About the lithium secondary battery of Examples 6-9 and Comparative Examples 4-6, the following characteristic tests were done. These results are shown in Table 2.

<耐電圧試験>
非水電解液注入前の実施例6〜9および比較例4〜6のリチウム二次電池各20個に対して、500V(AC60Hz)の電圧を印可し、5mA以上の電流が流れた電池を不良とし、その発生個数を調べた。
<Withstand voltage test>
A voltage of 500 V (AC 60 Hz) was applied to each of the 20 lithium secondary batteries of Examples 6 to 9 and Comparative Examples 4 to 6 before injection of the non-aqueous electrolyte, and a battery in which a current of 5 mA or more flowed was defective. And the number of occurrences was examined.

耐電圧試験は、短絡をしていなくても電極間の距離が小さくなり、極端な場合、充放電サイクルに伴って容量低下しやすくなる充放電サイクル信頼性を、どの程度確保できるか知るための試験手段である。一定の耐電圧に対して、絶縁破壊が起こらなければ電極間距離が基準以上に保たれていることを意味する。ここでは差異を明確にするために高めの値で試験している。   In order to know how much charge / discharge cycle reliability can be secured, the withstand voltage test reduces the distance between the electrodes even if they are not short-circuited. It is a test means. If the dielectric breakdown does not occur for a certain withstand voltage, it means that the distance between the electrodes is maintained above the reference. In order to clarify the difference here, a higher value is tested.

耐電圧の試験電圧は、通常の短絡のチェックだけであれば正の電圧なら1Vでもよいが、更に信頼性を上げるためには50V以上が望ましく、100V以上がより望ましく、300V以上が特に望ましい。また、試験電圧は高いに越したことはないが、過剰品質になるので2000V以下が望ましい。更に、判定電流値は、コンデンサとしての電流は流れるので、Ah値で表した場合の電池の0.2Cの放電容量をG(Ah)としたとき、2G(mA)以上が望ましく、4G(mA)以上がより望ましい。また、判定電流値は、高く設定しすぎると検出率が下がるので、20G(mA)以下が望ましく、10G(mA)以下がより望ましい。今回の実施例および比較例の電池の放電容量Gは1.2(Ah)であるので、5mAは4G(mA)以上、10G(mA)以下である。この耐電圧試験を電池製造工程に組みいれることにより、製造された電池の信頼性がさらに高くなるので望ましい。   The test voltage of the withstand voltage may be 1V if it is a positive voltage if only a normal short circuit check is performed, but it is preferably 50V or more, more preferably 100V or more, and particularly preferably 300V or more in order to further improve the reliability. Moreover, although the test voltage has never exceeded a high level, 2000V or lower is desirable because of excessive quality. Furthermore, since the current as a capacitor flows, the determination current value is preferably 2 G (mA) or more when the discharge capacity of the battery at 0.2 C in terms of Ah value is G (Ah), and is preferably 4 G (mA). The above is more desirable. In addition, since the detection rate decreases if the determination current value is set too high, it is preferably 20 G (mA) or less, and more preferably 10 G (mA) or less. Since the discharge capacity G of the batteries of this example and the comparative example is 1.2 (Ah), 5 mA is 4 G (mA) or more and 10 G (mA) or less. By incorporating this withstand voltage test into the battery manufacturing process, the reliability of the manufactured battery is further increased, which is desirable.

<負荷特性試験>
実施例6〜9および比較例4〜6のリチウム二次電池について、1Cの定電流および4.2Vの定電圧における充電(充電時間は3時間規制)をし、その後0.2Cの定電流で電池電圧が2.75Vになるまで放電して、0.2Cでの放電容量を得た。次に、各電池を前記と同様の条件で充電し、その後、2Cの定電流で電池電圧が2.75Vになるまで放電して、2Cでの放電容量を得た。0.2Cでの放電容量に対する2Cでの放電容量の割合を百分率(%)で表して、各電池の負荷特性を評価した(表2では、「2C/0.2C容量割合」と記載している)。
<Load characteristic test>
The lithium secondary batteries of Examples 6 to 9 and Comparative Examples 4 to 6 were charged at a constant current of 1 C and a constant voltage of 4.2 V (charging time was regulated for 3 hours), and then at a constant current of 0.2 C It discharged until the battery voltage became 2.75V, and the discharge capacity in 0.2C was obtained. Next, each battery was charged under the same conditions as described above, and then discharged at a constant current of 2C until the battery voltage reached 2.75V to obtain a discharge capacity at 2C. The ratio of the discharge capacity at 2C to the discharge capacity at 0.2C was expressed as a percentage (%), and the load characteristics of each battery were evaluated (in Table 2, "2C / 0.2C capacity ratio" is described. )

<過充電試験>
実施例6〜9および比較例4〜6のリチウム二次電池について、1Cの定電流で15Vになるまで充電し、発火の有無を調べた。
<Overcharge test>
About the lithium secondary battery of Examples 6-9 and Comparative Examples 4-6, it charged until it became 15V with the constant current of 1C, and the presence or absence of ignition was investigated.

<−5℃・10%充電での充電電流測定>
実施例6〜9および比較例4〜6のリチウム二次電池を−5℃の恒温槽内に5時間静置し、その後、各電池について、4.2Vまで1200mA(1.0C)の定電流で充電を行い、4.2Vに達した後は4.2Vで定電圧充電を行い、充電深度(規格容量に対する実際に充電した容量の割合)が10%に達したときの電流値を測定した。なお、表2では、各電池の電流値を、実施例9の電池の値を100とした場合の相対値で示す。
<Measurement of charge current at -5 ° C and 10% charge>
The lithium secondary batteries of Examples 6 to 9 and Comparative Examples 4 to 6 were allowed to stand in a thermostatic bath at −5 ° C. for 5 hours, and then, for each battery, a constant current of 1200 mA (1.0 C) to 4.2 V. After reaching 4.2V, constant voltage charging was performed at 4.2V, and the current value was measured when the charging depth (the ratio of the actually charged capacity to the standard capacity) reached 10%. . In Table 2, the current value of each battery is shown as a relative value when the value of the battery of Example 9 is 100.

Figure 2011065850
Figure 2011065850

表2に示すように、実施例6〜9のリチウム二次電池では、2C/0.2C容量割合が大きく、負荷特性が良好である。また、板状の無機微粒子Bを含有する多孔質膜Bを形成せずに、PE製微多孔質膜の両面に、塊状の無機微粒子Aを含有する多孔質膜を形成した比較例1のセパレータを使用した比較例4の電池、および通常のセパレータである比較例3のセパレータを使用した比較例6の電池は、2C/0.2C容量割合が実施例6〜9の電池と同等であるが、前記の通り、使用したセパレータの熱収縮率が大きいため、高温下における安全性が実施例6〜9の電池よりも劣る。   As shown in Table 2, the lithium secondary batteries of Examples 6 to 9 have a large 2C / 0.2C capacity ratio and good load characteristics. Further, the separator of Comparative Example 1 in which the porous film containing the massive inorganic fine particles A was formed on both surfaces of the PE microporous film without forming the porous film B containing the plate-like inorganic fine particles B. The battery of Comparative Example 4 using the separator and the battery of Comparative Example 6 using the separator of Comparative Example 3 which is a normal separator have the same 2C / 0.2C capacity ratio as the batteries of Examples 6-9. As described above, since the separator used has a large thermal shrinkage rate, the safety at high temperatures is inferior to that of the batteries of Examples 6-9.

これに対し、PE製微多孔膜の両面に、板状の無機微粒子Bを含有する多孔質膜を形成した比較例2のセパレータを用いた比較例5の電池では、2C/0.2C容量割合が小さく、負荷特性が劣っている。   On the other hand, in the battery of Comparative Example 5 using the separator of Comparative Example 2 in which the porous film containing the plate-like inorganic fine particles B was formed on both surfaces of the PE microporous film, the capacity ratio was 2C / 0.2C. The load characteristics are inferior.

また、実施例、比較例によらず、多孔質膜を形成したセパレータを用いた電池では、耐電圧試験における不良の発生がみられなかった。   Moreover, regardless of the examples and comparative examples, in the battery using the separator formed with the porous film, no defect was observed in the withstand voltage test.

更に、実施例6〜9の電池は、シクロヘキシルベンゼンを含有する非水電解液を使用しており、過充電試験時に発火が見られず、過充電時の安全性が良好である。また、負極活物質にR値およびd002が好適な黒鉛を使用した実施例6〜8の電池は、R値が小さい黒鉛を使用した実施例9よりも、−5℃・10%充電における充電電流値が大きく、低温での充電特性が優れている。 Furthermore, the batteries of Examples 6 to 9 use a non-aqueous electrolyte solution containing cyclohexylbenzene, and are not ignited during an overcharge test, so that the safety during overcharge is good. In addition, the batteries of Examples 6 to 8 using graphite having an R value and d 002 suitable for the negative electrode active material were charged at −5 ° C. and 10% charging than Example 9 using graphite having a small R value. The current value is large and the charging characteristics at low temperature are excellent.

1 ポリオレフィン製微多孔質膜
2 多孔質膜A
3 多孔質膜B
1 Polyolefin microporous membrane 2 Porous membrane A
3 Porous membrane B

Claims (7)

ポリオレフィン製微多孔質膜の片面に、塊状の無機微粒子Aを主体として含む多孔質膜Aを有し、かつ前記ポリオレフィン製微多孔質膜の他面に、板状の無機微粒子Bを主体として含む多孔質膜Bを有することを特徴とする電池用セパレータ。   One side of the polyolefin microporous membrane has a porous membrane A mainly containing massive inorganic fine particles A, and the other side of the polyolefin microporous membrane mainly contains plate-like inorganic fine particles B. A battery separator comprising a porous membrane B. 多孔質膜Aに含まれる無機微粒子Aは、平均粒子径が0.2〜1μmである請求項1に記載の電池用セパレータ。   The battery separator according to claim 1, wherein the inorganic fine particles A contained in the porous membrane A have an average particle diameter of 0.2 to 1 μm. 多孔質膜Bに含まれる無機微粒子Bは、BET法による比表面積が7〜10m/gである請求項1または2に記載の電池用セパレータ。 3. The battery separator according to claim 1, wherein the inorganic fine particles B contained in the porous membrane B have a specific surface area of 7 to 10 m 2 / g by BET method. 正極、負極、非水電解液およびセパレータを有するリチウム二次電池であって、
前記セパレータが請求項1〜3のいずれかに記載の電池用セパレータであることを特徴とするリチウム二次電池。
A lithium secondary battery having a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
The lithium secondary battery, wherein the separator is the battery separator according to any one of claims 1 to 3.
セパレータの多孔質膜Aが正極に対向し、多孔質膜Bが負極に対向している請求項4に記載のリチウム二次電池。   The lithium secondary battery according to claim 4, wherein the porous film A of the separator faces the positive electrode, and the porous film B faces the negative electrode. 非水電解液が、シクロヘキシルベンゼンまたはその誘導体を含有している請求項4または5に記載のリチウム二次電池。   The lithium secondary battery according to claim 4 or 5, wherein the nonaqueous electrolytic solution contains cyclohexylbenzene or a derivative thereof. 負極は、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.1〜0.5で、002面の面間隔d002が0.338nm以下の黒鉛を負極活物質として含有している請求項4〜6のいずれかに記載のリチウム二次電池。 The negative electrode is in R value 0.1 to 0.5, which is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum, the surface spacing d 002 of (002) lattice planes of the following 0.338nm The lithium secondary battery according to any one of claims 4 to 6, comprising graphite as a negative electrode active material.
JP2009215222A 2009-09-17 2009-09-17 Battery separator and lithium secondary battery Active JP5234817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215222A JP5234817B2 (en) 2009-09-17 2009-09-17 Battery separator and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215222A JP5234817B2 (en) 2009-09-17 2009-09-17 Battery separator and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011065850A true JP2011065850A (en) 2011-03-31
JP5234817B2 JP5234817B2 (en) 2013-07-10

Family

ID=43951900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215222A Active JP5234817B2 (en) 2009-09-17 2009-09-17 Battery separator and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5234817B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094004A1 (en) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 Lithium secondary battery
JP2013161634A (en) * 2012-02-03 2013-08-19 Toyota Industries Corp Electrode housing separator, electrode body, electricity storage device and vehicle
WO2013146342A1 (en) * 2012-03-26 2013-10-03 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN103947010A (en) * 2011-11-25 2014-07-23 日产自动车株式会社 Separator for electrical device, and electrical device using same
JP2016113592A (en) * 2014-12-18 2016-06-23 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate sheet and printed wiring board
JP2016170858A (en) * 2015-03-11 2016-09-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2017530513A (en) * 2014-08-13 2017-10-12 エルジー・ケム・リミテッド Laminated / folded electrode assembly and manufacturing method thereof
CN109346650A (en) * 2018-10-25 2019-02-15 苏州捷力新能源材料有限公司 A kind of lithium ion battery separator and preparation method of the mixed painting of ceramics PVDF
WO2020079964A1 (en) * 2018-10-17 2020-04-23 株式会社日立製作所 Secondary battery, battery pack, and power system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837562B1 (en) 2015-11-06 2018-03-12 삼성에스디아이 주식회사 Separator for rechargeable battery and rechargeable battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327371A (en) * 2003-04-28 2004-11-18 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007324073A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Lithium secondary battery, its separator and its manufacturing method
JP2009009947A (en) * 1998-05-20 2009-01-15 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2009032682A (en) * 2007-06-28 2009-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery
JP2009070726A (en) * 2007-09-14 2009-04-02 Teijin Ltd Method for manufacturing nonaqueous electrolyte battery
JP2009199793A (en) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009947A (en) * 1998-05-20 2009-01-15 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2004327371A (en) * 2003-04-28 2004-11-18 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007324073A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Lithium secondary battery, its separator and its manufacturing method
JP2009032682A (en) * 2007-06-28 2009-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery
JP2009070726A (en) * 2007-09-14 2009-04-02 Teijin Ltd Method for manufacturing nonaqueous electrolyte battery
JP2009199793A (en) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd Lithium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947010A (en) * 2011-11-25 2014-07-23 日产自动车株式会社 Separator for electrical device, and electrical device using same
EP2784842A4 (en) * 2011-11-25 2015-05-06 Nissan Motor Separator for electrical device, and electrical device using same
WO2013094004A1 (en) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 Lithium secondary battery
JP2013161634A (en) * 2012-02-03 2013-08-19 Toyota Industries Corp Electrode housing separator, electrode body, electricity storage device and vehicle
JP5344107B1 (en) * 2012-03-26 2013-11-20 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101489627B1 (en) * 2012-03-26 2015-02-04 미쓰비시 쥬시 가부시끼가이샤 Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2013146342A1 (en) * 2012-03-26 2013-10-03 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9252412B2 (en) 2012-03-26 2016-02-02 Mitsubishi Plastics, Inc. Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2017530513A (en) * 2014-08-13 2017-10-12 エルジー・ケム・リミテッド Laminated / folded electrode assembly and manufacturing method thereof
JP2016113592A (en) * 2014-12-18 2016-06-23 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate sheet and printed wiring board
JP2016170858A (en) * 2015-03-11 2016-09-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery, and manufacturing method thereof
WO2020079964A1 (en) * 2018-10-17 2020-04-23 株式会社日立製作所 Secondary battery, battery pack, and power system
CN109346650A (en) * 2018-10-25 2019-02-15 苏州捷力新能源材料有限公司 A kind of lithium ion battery separator and preparation method of the mixed painting of ceramics PVDF

Also Published As

Publication number Publication date
JP5234817B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5234817B2 (en) Battery separator and lithium secondary battery
JP5234662B2 (en) Battery separator and lithium secondary battery
JP5588437B2 (en) Electrochemical element separator and electrochemical element using the same
JP5576740B2 (en) Electrochemical element
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5525630B2 (en) Non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101485387B1 (en) Separator for electrochemical device, electrochemical device using same, and method for producing the separator for electrochemical device
JP5805160B2 (en) Battery separator, battery separator manufacturing method, and lithium secondary battery
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5235109B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5317130B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JP5247657B2 (en) Non-aqueous electrolyte battery
JP5429811B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP5451426B2 (en) Battery separator and lithium ion secondary battery using the same
JP2008226566A (en) Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
KR100873570B1 (en) Organic/inorganic composite porous film and electrochemical device prepared thereby
JP5359444B2 (en) Lithium ion secondary battery
JP5348800B2 (en) Lithium ion secondary battery
JP2011181195A (en) Lithium ion secondary battery
JP2012033268A (en) Electrochemical element
JP2010135313A (en) Electrochemical element
JP2017073330A (en) Nonaqueous electrolyte secondary battery
JP2010277723A (en) Electrochemical element
JP5478733B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250