JP2011064647A - Quality evaluation method of silica fume for high-strength concrete - Google Patents

Quality evaluation method of silica fume for high-strength concrete Download PDF

Info

Publication number
JP2011064647A
JP2011064647A JP2009217710A JP2009217710A JP2011064647A JP 2011064647 A JP2011064647 A JP 2011064647A JP 2009217710 A JP2009217710 A JP 2009217710A JP 2009217710 A JP2009217710 A JP 2009217710A JP 2011064647 A JP2011064647 A JP 2011064647A
Authority
JP
Japan
Prior art keywords
silica fume
water
reducing agent
viscosity
strength concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217710A
Other languages
Japanese (ja)
Other versions
JP5246562B2 (en
Inventor
Eiichi Maruyama
栄一 丸山
Shinichiro Sato
愼一郎 佐藤
Tomokazu Danzuka
伴和 団塚
Tomoharu Oba
智晴 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009217710A priority Critical patent/JP5246562B2/en
Publication of JP2011064647A publication Critical patent/JP2011064647A/en
Application granted granted Critical
Publication of JP5246562B2 publication Critical patent/JP5246562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality evaluation method of a silica fume for a high-strength concrete which simply and intuitively evaluates the dispersibility of the silica fume in a premise for manufacturing the high-strength concrete. <P>SOLUTION: A sample slurry is manufactured by kneading the silica fume having a water-powder ratio of 350-450%, water and a water reducing agent of 3 wt.% or more and less than 5 wt.% relative to the silica fume. A viscosity of the sample slurry is measured by using a viscosity measuring instrument as an inexpensive and highly portable rotation viscometer. The dispersibility of the silica fume can be simply and intuitively evaluated in the premise for manufacturing the high-strength concrete. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、高強度コンクリート用シリカフュームの品質評価方法、詳しくは高強度コンクリートに対して、流動性および強度を高める混和材として添加されるシリカフュームの分散性を評価可能な高強度コンクリート用シリカフュームの品質評価方法に関する。   The present invention relates to a method for evaluating the quality of silica fume for high-strength concrete, and more specifically, the quality of silica fume for high-strength concrete capable of evaluating the dispersibility of silica fume added as an admixture that increases fluidity and strength to high-strength concrete. It relates to the evaluation method.

高強度コンクリートは、通常、水セメント比を小さくして、単位セメント量を増やすことで強度発現性を高めている。このため、コンクリートの流動性が低下し、施工性が悪くなる傾向があり、高性能減水剤などの添加量を増加するなどで対処していた。また、単位セメント量が多いため、水和発熱量も増加することから、施工後の構造体の耐久性が低下する。そこで、CS(2CaO・SiO)が主成分の低発熱セメントに、シリカフュームを添加することで、これらの問題を解決している。 High-strength concrete usually increases strength development by decreasing the water cement ratio and increasing the unit cement amount. For this reason, the fluidity of concrete tends to deteriorate and workability tends to deteriorate, and measures have been taken, for example, by increasing the amount of addition of a high-performance water reducing agent. Moreover, since the amount of unit cement is large, the hydration heat generation amount is also increased, so that the durability of the structure after construction is lowered. Therefore, these problems are solved by adding silica fume to the low heat-generating cement mainly composed of C 2 S (2CaO · SiO 2 ).

一般的に、シリカフュームは、平均粒径が0.1μm以下の超微粒子であり、一次粒子が凝集し、二次粒子(平均粒径20μm程度)として存在している。そのため、シリカフュームをセメントなどに混合し、コンクリートを製造する際には、シリカフュームが一次粒子まで分散されることで、マイクロフィラー効果および最密充填効果によりコンクリートの流動性が高まって、高強度化が期待される。これにより、高強度コンクリートに使用されるシリカフュームには、一次粒子まで分散し易いものが望まれる。   In general, silica fume is ultrafine particles having an average particle size of 0.1 μm or less, and primary particles are aggregated to exist as secondary particles (average particle size of about 20 μm). Therefore, when silica fume is mixed with cement or the like to produce concrete, the silica fume is dispersed up to the primary particles, which increases the fluidity of the concrete due to the micro filler effect and the close-packing effect, thereby increasing the strength. Be expected. Thereby, what is easy to disperse | distribute to a primary particle is desired for the silica fume used for high-strength concrete.

そこで、従来、シリカフュームの粒子の分散性を評価する方法として、超音波を外力としてシリカフュームを分散させるレーザ回析式粒度分布測定装置を用いて、シリカフュームの粒度分布を測定することで、1μm以下の粒子径のシリカフュームの割合を測定し、シリカフュームの分散度を判定する方法が知られている(例えば、特許文献1)。
また、従来、セメント組成物、無機混和材、骨材、減水剤および水からなる高強度コンクリート用材料として、セメント組成物を、クリンカ鉱物組成中のビーライト量が45〜75質量%、アルミネート相が4.0質量%以下で、比表面積が3000〜4500cm/g、SO量が1.5〜4.5質量%で、半水石膏の割合が石膏の全体量に対して80質量%以下である低熱ポルトランドセメント70〜84質量部と、シリカフューム16〜30質量部とから構成された材料に、水、高性能減水剤を加えたペーストについて、Vロート試験器からの流下時間、または、Lフロー試験器を使用したLフロー初速度によって、シリカフュームの品質を評価する方法が知られている(特許文献2)。
Therefore, conventionally, as a method for evaluating the dispersibility of particles of silica fume, by measuring the particle size distribution of silica fume using a laser diffraction type particle size distribution measuring apparatus that disperses silica fume using ultrasonic waves as an external force, the particle size distribution of 1 μm or less is measured. A method is known in which the silica fume dispersion degree is determined by measuring the proportion of silica fume having a particle size (for example, Patent Document 1).
Conventionally, as a high-strength concrete material comprising a cement composition, an inorganic admixture, an aggregate, a water reducing agent, and water, the cement composition has a belite content of 45 to 75% by mass in a clinker mineral composition, and an aluminate. The phase is 4.0% by mass or less, the specific surface area is 3000 to 4500 cm 2 / g, the amount of SO 3 is 1.5 to 4.5% by mass, and the proportion of hemihydrate gypsum is 80 mass with respect to the total amount of gypsum. % For a paste composed of 70 to 84 parts by mass of low heat Portland cement and 16 to 30 parts by mass of silica fume and water and a high-performance water reducing agent, A method for evaluating the quality of silica fume by the initial L flow velocity using an L flow tester is known (Patent Document 2).

特許第3300993号公報Japanese Patent No. 3300993 特開2007−119257号公報JP 2007-119257 A

しかしながら、特許文献1のシリカフュームの評価方法では、超音波発生装置およびレーザ回析式粒度分布測定装置などの特殊な設備が必要であった。これにより、シリカフュームが実際に使用される現場ではなく、試験室などでそのテストを行う必要があった。
しかも、シリカフュームの分散性の評価は、シリカフュームに関係しない、例えば特許文献2に記載されたセメントの品質などの別の要因に影響され易かった。そのため、実験的には有効な評価方法であるが、製造現場でシリカフュームの品質確認には適さなかった。
However, the silica fume evaluation method of Patent Document 1 requires special equipment such as an ultrasonic generator and a laser diffraction particle size distribution measuring device. As a result, it was necessary to perform the test in a test room or the like, not on the site where the silica fume was actually used.
Moreover, the evaluation of the dispersibility of the silica fume was easily influenced by other factors not related to the silica fume, such as the quality of cement described in Patent Document 2. Therefore, although it is an effective evaluation method experimentally, it was not suitable for confirming the quality of silica fume at the production site.

そこで、発明者は、鋭意研究の結果、シリカフュームと減水剤と水とを混練して得た試料スラリーにおいて、減水剤の添加量の増加に伴いシリカフュームの枯渇凝集後に発生する枯渇再安定化現象に着目した。すなわち、試料スラリー中に減水剤がごく低濃度存在する場合には、減水剤の架橋形成によりシリカフュームは凝集作用を示す。その後、減水剤の濃度の増加(中濃度)とともに、シリカフュームの粒子表面に減水剤の吸着層が形成され、吸着層間の立体反発効果により、シリカフュームの安定化が促進される(立体安定化)。しかしながら、減水剤の濃度がさらに増加すれば(やや高濃度)、過剰な非吸着状態の減水剤がフリー分子として枯渇凝集効果を及ぼし、ゆるやかなシリカフュームの凝集を誘起させる。さらに、減水剤の濃度を増大させれば(高濃度)、減水剤はシリカフューム間にも侵入し、シリカフュームの粒子間の接近を妨害し、枯渇再安定化を引き起こす。   Therefore, as a result of earnest research, the inventor found that the sample slurry obtained by kneading silica fume, a water reducing agent, and water was subjected to a depletion re-stabilization phenomenon that occurred after depletion and aggregation of silica fume as the amount of water reducing agent added increased. Pay attention. That is, when the water reducing agent is present in a very low concentration in the sample slurry, the silica fume exhibits an aggregating action due to the crosslinking formation of the water reducing agent. Thereafter, with the increase in the concentration of the water reducing agent (medium concentration), an adsorption layer of the water reducing agent is formed on the surface of the silica fume particles, and the stabilization of the silica fume is promoted by the steric repulsion effect between the adsorption layers (steric stabilization). However, if the concentration of the water reducing agent is further increased (slightly high concentration), the excessive non-adsorbed water reducing agent exerts a depleting aggregation effect as a free molecule and induces a gentle aggregation of silica fume. Furthermore, if the concentration of the water reducing agent is increased (high concentration), the water reducing agent also enters between the silica fume, impedes access between the silica fume particles and causes depletion re-stabilization.

このようなシリカフュームの枯渇凝集後の枯渇再安定化を利用し、試料スラリーの粘度およびシリカフュームの良不良の判定を行う。具体的には、まず減水剤(添加量;3%以上5%未満)が添加された水に、所定量のシリカフュームを分散させて試料スラリーを作製する。次に、試料スラリーの粘度を、レーザ回析式粒度分布測定装置に比べて安価で運搬が容易な回転粘度計により測定する。その測定の結果が、50mPa・s以下であれば1μm以下のシリカフュームの割合がシリカフュームの分散性に対する良不良の判定基準となる30%以上となるため、良品のシリカフュームと評価する。一方、50mPa・sを超えれば1μm以下のシリカフュームの割合が30%未満となり、不良のシリカフュームと評価する。この測定結果は、超音波分散方式を採用した従来法による測定結果と相関する。その結果、シリカフュームの分散性を高強度コンクリートの製造現場で簡易、かつ直接的に評価が可能であることを知見し、この発明を完成させた。   Using such depletion re-stabilization after depletion of silica fume, the viscosity of the sample slurry and the quality of the silica fume are judged. Specifically, first, a sample slurry is prepared by dispersing a predetermined amount of silica fume in water to which a water reducing agent (addition amount: 3% or more and less than 5%) is added. Next, the viscosity of the sample slurry is measured with a rotational viscometer that is cheaper and easier to transport than a laser diffraction particle size distribution analyzer. If the measurement result is 50 mPa · s or less, the proportion of silica fume of 1 μm or less is 30% or more, which is a criterion for determining good or bad with respect to the dispersibility of the silica fume. On the other hand, if it exceeds 50 mPa · s, the proportion of silica fume of 1 μm or less becomes less than 30%, and it is evaluated as defective silica fume. This measurement result correlates with the measurement result obtained by the conventional method employing the ultrasonic dispersion method. As a result, it was found that the dispersibility of silica fume can be easily and directly evaluated at the production site of high-strength concrete, and the present invention was completed.

この発明は、シリカフュームの分散性を高強度コンクリートの製造現場で簡易、かつ直接的に評価することができる高強度コンクリート用シリカフュームの品質評価方法を提供することを目的としている。   An object of the present invention is to provide a quality evaluation method for silica fume for high-strength concrete, which can easily and directly evaluate the dispersibility of silica fume at the production site of high-strength concrete.

請求項1に記載の発明は水粉体比が350〜450%のシリカフュームと水と、このシリカフュームに対して3重量%以上5重量%未満の減水剤とを混練することで試料スラリーを作製し、得られた該試料スラリーを測定容器に入れ、回転粘度計により粘度を測定し、測定した粘度の値が、50mPa・s以下であれば良品とし、50mPa・sを超えれば不良品とする高強度コンクリート用シリカフュームの品質評価方法である。   The invention according to claim 1 is to prepare a sample slurry by kneading a silica fume having a water powder ratio of 350 to 450%, water, and a water reducing agent of 3 wt% or more and less than 5 wt% with respect to the silica fume. The obtained sample slurry is put into a measuring container, and the viscosity is measured with a rotational viscometer. If the measured viscosity value is 50 mPa · s or less, it is judged as good, and if it exceeds 50 mPa · s, it is regarded as defective. This is a quality evaluation method for silica fume for high strength concrete.

請求項1に記載の発明によれば、シリカフュームと水と減水剤とを混練し、試料スラリーを作製する。このとき、シリカフュームと水との水粉体比は350〜450%で、減水剤の添加量はシリカフュームに対して3重量%以上5重量%未満である。
その後、試料スラリーを測定容器に入れ、回転粘度計により粘度を測定する。その結果、測定値が50mPa・s以下であれば、1μm以下のシリカフュームの割合が30%以上となり、良品のシリカフュームと評価する(図2のグラフ)。一方、50mPa・sを超えれば、1μm以下のシリカフュームの割合が30%未満となり、不良のシリカフュームと評価する。この評価方法が正しいことは、超音波分散方式を採用した従来法による測定結果と相関がある点から明らかである(図1および図3のグラフ、表1〜3(SF1〜SF6の銘柄名などは表4参照))。なお、表1は図1のグラフを数値化したデータ、表2は図2のグラフを数値化したデータ、表3は図3のグラフを数値化したデータである。
According to the first aspect of the present invention, silica fume, water and a water reducing agent are kneaded to prepare a sample slurry. At this time, the water powder ratio of silica fume and water is 350 to 450%, and the amount of water reducing agent added is 3% by weight or more and less than 5% by weight with respect to the silica fume.
Thereafter, the sample slurry is put in a measurement container, and the viscosity is measured with a rotational viscometer. As a result, if the measured value is 50 mPa · s or less, the ratio of silica fume of 1 μm or less is 30% or more, and it is evaluated as a good silica fume (graph in FIG. 2). On the other hand, if it exceeds 50 mPa · s, the proportion of silica fume of 1 μm or less becomes less than 30%, and it is evaluated as a defective silica fume. It is clear that this evaluation method is correct from the point of correlation with the measurement results obtained by the conventional method employing the ultrasonic dispersion method (graphs of FIGS. 1 and 3, Tables 1 to 3 (brand names of SF1 to SF6, etc.) See Table 4)). Table 1 is data obtained by digitizing the graph of FIG. 1, Table 2 is data obtained by digitizing the graph of FIG. 2, and Table 3 is data obtained by digitizing the graph of FIG.

Figure 2011064647
Figure 2011064647

Figure 2011064647
Figure 2011064647

Figure 2011064647
Figure 2011064647

このように、水粉体比が350〜450%のシリカフュームと水と、このシリカフュームに対して3重量%以上5重量%未満の減水剤とを混練することで試料スラリーを作製し、その後、粘度測定器として、従来のレーザ回析式粒度分布測定装置に比べて安価で、携帯性が高い回転粘度計を用いて試料スラリーの粘度を測定するように構成したので、シリカフュームの分散性を、特定の実験室でない高強度コンクリートの製造現場で、簡便かつ直接的に評価することができる。   In this way, a sample slurry is prepared by kneading silica fume having a water powder ratio of 350 to 450%, water, and a water reducing agent of 3 wt% or more and less than 5 wt% with respect to the silica fume. The measuring instrument is configured to measure the viscosity of the sample slurry using a rotational viscometer that is cheaper and more portable than conventional laser diffraction particle size distribution analyzers. It can be easily and directly evaluated at a manufacturing site of high-strength concrete that is not a laboratory.

高強度コンクリートは、CS(2CaO・SiO)を主成分としたセメントに、シリカフュームを、セメントに対して4〜21質量%混合して高強度コンクリート用セメント組成物を作製し、その後、高強度コンクリート用セメント組成物と、粗骨材と、細骨材と、水と、減水剤とを所定割合でミキサに投入し、これらを混練することで作製される。なお、シリカフュームに代えて石灰石微粉末を使用する場合もある。
シリカフュームの銘柄としては、例えば、エジプト(エファコ)Lot;2508,エジプト(エファコ)Lot;3308,エジプト(エファコ)Lot;4208、エジプト(エファコ)Lot;3507、エジプト(エファコ)Lot;0707、エジプト(エファコ)Lot;2408、江西湊源珪業有限責任公司(中国)、中国SiO=95%(神鋼商事)、アメリカグローブ社セルマ工場SFなどが挙げられる。これらの品質を表4に示す。表4中、分散性の値は、レーザ回析式粒度分布測定装置による測定値である。
High-strength concrete, C 2 S and (2CaO · SiO 2) in the cement as a main component, silica fume, to produce a high-strength concrete cementitious composition by mixing 4-21 wt% with respect to the cement, then, The cement composition for high-strength concrete, coarse aggregate, fine aggregate, water, and a water reducing agent are put into a mixer at a predetermined ratio, and these are kneaded. In some cases, fine limestone powder may be used instead of silica fume.
As the brand of silica fume, for example, Egypt (Efaco) Lot; 2508, Egypt (Efaco) Lot; 3308, Egypt (Efaco) Lot; 4208, Egypt (Efaco) Lot; 3507, Egypt (Efaco) Lot; 0707, Egypt ( Efaco) Lot: 2408, Jiangxi Yuyuan Si Industry Co., Ltd. (China), China SiO 2 = 95% (Shinko Corporation), Selma Factory SF of America Grove Company, etc. These qualities are shown in Table 4. In Table 4, the dispersibility value is a value measured by a laser diffraction particle size distribution measuring apparatus.

Figure 2011064647
Figure 2011064647

シリカフュームのSiOの含有率は金属シリコンでは95%以上と高いが、フェロシリコンでは85〜95%である。85%未満では、JIS A 6207「コンクリート用シリカフューム」の品質規格を満足できない他、SiOによるポゾラン反応が期待できない。シリカフュームのSiOの好ましい含有率は90%以上である。この範囲であれば、モルタル,コンクリート中に存在するCa(OH)とのポゾラン活性が向上するというさらに好適な効果が得られる。
シリカフュームの平均粒径が1.0μmを超えれば、シリカフュームを混和したフレッシュコンクリートの流動性が低下するほか、最密充填効果の低下、または、ポゾラン活性の低下など、シリカフュームの特性を低下させる。シリカフュームの好ましい平均粒径は0.1〜0.3μmである。この範囲であれば、フレッシュコンクリートの流動性の向上、最密充填効果による圧縮強度の向上というさらに好適な効果が得られる。
The content of SiO 2 in silica fume is as high as 95% or more for metal silicon, but 85 to 95% for ferrosilicon. If it is less than 85%, the quality standard of JIS A 6207 “silica fume for concrete” cannot be satisfied, and a pozzolanic reaction due to SiO 2 cannot be expected. The preferable content of SiO 2 in silica fume is 90% or more. If it is this range, the more suitable effect that the pozzolanic activity with Ca (OH) 2 which exists in mortar and concrete will improve is acquired.
If the average particle size of the silica fume exceeds 1.0 μm, the fluidity of the fresh concrete mixed with the silica fume decreases, and the characteristics of the silica fume such as a decrease in the close-packing effect or a decrease in the pozzolanic activity are decreased. The preferable average particle diameter of the silica fume is 0.1 to 0.3 μm. If it is this range, the more suitable effect of the improvement of the fluidity of fresh concrete and the improvement of the compressive strength by the close-packing effect will be acquired.

シリカフュームと水との水粉体比が350%未満であれば、シリカフュームの分散性の良悪に関係なく、スラリー粘度は高くなる。また、450%を超えれば、シリカフュームの分散性の良悪に関係なく、スラリー粘度は低くなる。シリカフュームと水との好ましい水粉体比は、390〜410%である。この範囲であれば、シリカフュームの分散性の良悪に応じて、スラリー粘度の差が明確になるというさらに好適な効果が得られる。
水としては、例えば水道水を採用することができる。
If the water powder ratio of silica fume and water is less than 350%, the slurry viscosity becomes high regardless of the dispersibility of the silica fume. On the other hand, if it exceeds 450%, the slurry viscosity becomes low regardless of the dispersibility of the silica fume. A preferable water powder ratio of silica fume and water is 390 to 410%. If it is this range, according to the dispersibility of a silica fume, the more suitable effect that the difference of slurry viscosity will become clear will be acquired.
For example, tap water can be used as the water.

減水剤としては、例えば高性能減水剤(ポリカルボン酸エーテル系化合物である竹本油脂株式会社製のチューポールSSP−104など)を採用することができる。その他、高性能AE減水剤でもよい。
減水剤のシリカフュームに対する添加量が3重量%未満では、シリカフュームの分散性が良くても、スラリー粘度は高くなる。また、5重量%以上であれば、シリカフュームの分散性が悪くても、スラリー粘度は低くなる。シリカフュームに対する減水剤の好ましい添加量は3.0〜4.0重量%である。この範囲であれば、シリカフュームの分散性の良悪に応じて、スラリーの粘度の差が明確になるというさらに好適な効果が得られる。
As the water reducing agent, for example, a high performance water reducing agent (Tupole SSP-104 manufactured by Takemoto Yushi Co., Ltd. which is a polycarboxylic acid ether compound) can be employed. In addition, a high-performance AE water reducing agent may be used.
When the amount of the water reducing agent added to the silica fume is less than 3% by weight, the slurry viscosity is high even if the dispersibility of the silica fume is good. Moreover, if it is 5 weight% or more, even if the dispersibility of a silica fume is bad, slurry viscosity will become low. The preferred amount of water reducing agent added to silica fume is 3.0 to 4.0% by weight. If it is this range, the more suitable effect that the difference of the viscosity of a slurry will become clear according to the dispersibility of a silica fume is acquired.

シリカフューム、水、減水剤の混練は、ミキサによる混練を採用することができる。
混練は、例えばシリカフュームと水と減水剤とのうち、何れか2つの材料をあらかじめ混練し、その後、残り1つの材料を追加投入して再び混練してもよい。その他、これらの3つを同時に投入し、混練してもよい。
Kneading with a mixer can be employed for kneading silica fume, water, and water reducing agent.
For kneading, for example, any two materials of silica fume, water, and water reducing agent may be kneaded in advance, and then the remaining one material may be additionally added and kneaded again. In addition, these three may be charged simultaneously and kneaded.

回転粘度計とは、円筒あるいは円板、あるいは球などの物体(ロータ)を流体中で回転させる際、その物体が流体の粘性抵抗によるトルクを受けることを利用した粘度計である。
回転粘度計の種類としては、例えば、東機産業株式会社製低粘度用回転粘度計(TV−10M型)、または、中・高粘度用回転粘度計(TV−10 H型)などを採用することができる。
回転粘度計による粘度の測定条件は、試料スラリーの温度が0〜40℃(好ましくは18℃〜25℃)、ロータの回転数が低粘度型装置の場合は0.3〜60rpm、中〜高粘度型装置の場合は2〜100rpmであり、試料の粘度に応じて、適切な機種およびロータを選択することで、10〜2000mPa・sの相対粘度が測定可能である。
A rotational viscometer is a viscometer utilizing the fact that when an object (rotor) such as a cylinder, a disk, or a sphere is rotated in a fluid, the object receives torque due to the viscous resistance of the fluid.
As a type of rotational viscometer, for example, a rotational viscometer for low viscosity (TV-10M type) manufactured by Toki Sangyo Co., Ltd. or a rotational viscometer for medium / high viscosity (TV-10 H type) is adopted. be able to.
Viscosity measurement conditions using a rotational viscometer are as follows: the temperature of the sample slurry is 0 to 40 ° C. (preferably 18 ° C. to 25 ° C.), the rotation speed of the rotor is 0.3 to 60 rpm, and the medium to high In the case of a viscosity type apparatus, it is 2 to 100 rpm, and a relative viscosity of 10 to 2000 mPa · s can be measured by selecting an appropriate model and rotor according to the viscosity of the sample.

回転粘度計による試料スラリーの測定値が50mPa・s以下であれば、シリカフュームの分散性が良好とされる1μm以下の粒子の割合が30%以上となる(図2のグラフ)。そのため、シリカフュームは良品と判定される。これに対して、測定値が50mPa・sを超えれば、シリカフュームの分散性が良好とされる1μm以下の粒子の割合が30%未満となり、シリカフュームは不良と判定される。   If the measured value of the sample slurry by a rotational viscometer is 50 mPa · s or less, the proportion of particles having a size of 1 μm or less, which indicates good dispersibility of silica fume, is 30% or more (graph in FIG. 2). Therefore, the silica fume is determined as a non-defective product. On the other hand, if the measured value exceeds 50 mPa · s, the proportion of particles having a size of 1 μm or less, which indicates good dispersibility of silica fume, is less than 30%, and the silica fume is determined to be defective.

請求項2に記載の発明は、前記シリカフュームと水と減水剤との混練には、攪拌羽根を有するミキサが使用され、その混練時には、前記攪拌羽根を5000〜12000rpmで回転させて攪拌する請求項1に記載の高強度コンクリート用シリカフュームの品質評価方法である。   In the invention described in claim 2, a mixer having a stirring blade is used for kneading the silica fume, water and a water reducing agent, and at the time of kneading, the stirring blade is rotated at 5000 to 12000 rpm and stirred. 1 is a method for evaluating the quality of silica fume for high-strength concrete according to 1.

請求項2に記載の発明によれば、シリカフュームと水と減水剤とをミキサの容器に投入し、攪拌羽根を5000〜12000rpmで回転させて攪拌することで、試料スラリーの材料を混練する。これにより、2次粒子として存在するシリカフュームを1次粒子まで分散させ、かつ、シリカフュームの粒子表面に減水剤の成分を有効に接触させることができる。   According to the second aspect of the present invention, the material of the sample slurry is kneaded by putting silica fume, water, and a water reducing agent into the container of the mixer and rotating the stirring blade at 5000 to 12000 rpm and stirring. Thereby, the silica fume which exists as a secondary particle can be disperse | distributed to a primary particle, and the component of a water reducing agent can be effectively contacted to the particle | grain surface of a silica fume.

攪拌羽根の回転速度が、5000rpm未満では2次粒子の凝集力が強いため、シリカフューム粒子が分散しない。また、12000rpmを超えれば、市販のミキサの能力を超えるため、特別な攪拌機が必要になる。攪拌羽根の好ましい回転速度は、6000〜10000rpmである。この範囲であれば、シリカフューム粒子に与える分散力が最も効率的となり、比較的容易に2次粒子が分散しやすいというさらに好適な効果が得られる。   When the rotation speed of the stirring blade is less than 5000 rpm, the cohesive force of the secondary particles is strong, so that the silica fume particles are not dispersed. Moreover, since it will exceed the capability of a commercially available mixer if it exceeds 12000 rpm, a special stirrer is required. A preferable rotation speed of the stirring blade is 6000 to 10,000 rpm. If it is this range, the dispersive force given to a silica fume particle | grain will become most efficient, and the more suitable effect that a secondary particle will be easy to disperse | distribute comparatively easily will be acquired.

請求項3に記載の発明は、シリカフュームと水と減水剤との混練時間が50〜70秒である請求項2に記載の高強度コンクリート用シリカフュームの品質評価方法である。   Invention of Claim 3 is the quality evaluation method of the silica fume for high-strength concrete of Claim 2 whose kneading time of a silica fume, water, and a water reducing agent is 50 to 70 second.

請求項3に記載の発明によれば、ミキサによるシリカフュームと水と減水剤との混練時間を、攪拌羽根の回転を5000〜12000rpmで50〜70秒としたので、シリカフュームの分散性の良悪に応じてスラリーの粘度の差が明確になる。   According to the third aspect of the present invention, since the mixing time of the silica fume, water, and water reducing agent by the mixer is 50 to 70 seconds at 5000 to 12000 rpm with the rotation of the stirring blade, the dispersibility of the silica fume is improved. Accordingly, the difference in viscosity of the slurry becomes clear.

シリカフュームと水と減水剤との混練時間が50秒未満では、シリカフューム粒子を1次粒子まで分散できず、粘度が高くなる。また、70秒を超えれば、一旦分散したシリカフューム粒子が再凝集を起こし、粘度が高くなる。好ましい混練時間は、55〜65秒である。この範囲であれば、シリカフュームの分散性の良悪に応じてスラリーの粘度の差が明確になる。   If the kneading time of silica fume, water and water reducing agent is less than 50 seconds, the silica fume particles cannot be dispersed to the primary particles, and the viscosity becomes high. Moreover, if it exceeds 70 seconds, the silica fume particle | grains once disperse | distributed will raise | generate agglomeration, and a viscosity will become high. A preferable kneading time is 55 to 65 seconds. If it is this range, the difference of the viscosity of a slurry will become clear according to the dispersibility of a silica fume.

請求項1に記載の発明によれば、まず水粉体比が350〜450%のシリカフュームと水と、シリカフュームに対して3重量%以上5重量%未満の減水剤とを混練することで試料スラリーを作製する。その後、粘度測定器として、従来のレーザ回析式粒度分布測定装置のような高価かつ大型で特殊な測定器を必要とせず、安価で携帯性が高い回転粘度計を用いて試料スラリーの粘度を測定する。その結果、高強度コンクリートの製造に使用されるシリカフュームの品質について、JISで規定される性能以外に、コンクリートの流動性の向上、および高強度化に関与する分散性を評価することができる。しかも、このシリカフュームの分散性を、特定の実験室でない高強度コンクリートの製造現場で、簡便かつ直接的に評価することができる。   According to the first aspect of the present invention, first, a sample slurry is prepared by kneading a silica fume having a water powder ratio of 350 to 450%, water, and a water reducing agent of 3 wt% or more and less than 5 wt% with respect to the silica fume. Is made. After that, the viscosity of the sample slurry can be measured using a rotary viscometer that is inexpensive and highly portable, and does not require an expensive, large, and special measuring device like a conventional laser diffraction particle size distribution measuring device. taking measurement. As a result, with respect to the quality of silica fume used for the production of high-strength concrete, in addition to the performance defined by JIS, it is possible to evaluate the dispersibility involved in improving the fluidity of concrete and increasing the strength. Moreover, the dispersibility of the silica fume can be easily and directly evaluated at a production site of high-strength concrete that is not a specific laboratory.

請求項2に記載の発明によれば、混練時には、ミキサに投入されたシリカフュームと水と減水剤とを、攪拌羽根を5000〜12000rpmで回転させて混練するので、従来の超音波による分散力と同等の外力を与えることができ、シリカフューム粒子を1次粒子まで分散させることができる。   According to the second aspect of the invention, at the time of kneading, the silica fume, water, and water reducing agent charged in the mixer are kneaded by rotating the stirring blades at 5000 to 12000 rpm. Equivalent external force can be applied, and silica fume particles can be dispersed to primary particles.

請求項3に記載の発明によれば、ミキサによるシリカフュームと水と減水剤との混練時間を、攪拌羽根を5000〜12000rpmで50〜70秒としたので、シリカフューム粒子を分散させるのに十分な時間であり、かつ、再凝集を起こさないような適切な時間である。   According to the invention described in claim 3, the kneading time of the silica fume, water, and water reducing agent by the mixer is set to 50 to 70 seconds at 5000 to 12000 rpm for the stirring blade, so that the time sufficient to disperse the silica fume particles. And an appropriate time that does not cause re-aggregation.

シリカフュームの銘柄別の減水剤の添加量と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the water reducing agent according to brand of silica fume, and the viscosity of a sample slurry. シリカフュームの分散性と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the dispersibility of a silica fume and the viscosity of a sample slurry. シリカフュームの減水剤の添加量と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the water reducing agent of a silica fume, and the viscosity of a sample slurry. この発明の実施例に係る高強度コンクリート用シリカフュームの品質評価方法におけるシリカフュームの銘柄別の減水剤の添加量と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the water reducing agent according to the brand of silica fume, and the viscosity of a sample slurry in the quality evaluation method of the silica fume for high-strength concrete which concerns on the Example of this invention. この発明の実施例に係る高強度コンクリート用シリカフュームの品質評価方法におけるシリカフュームの銘柄別の水粉体比と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the water powder ratio according to the brand of the silica fume in the quality evaluation method of the silica fume for high-strength concrete which concerns on the Example of this invention, and the viscosity of a sample slurry. この発明の実施例に係る高強度コンクリート用シリカフュームの品質評価方法におけるシリカフュームの銘柄別の試料スラリーの混練時間と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the kneading | mixing time of the sample slurry according to the brand of the silica fume in the quality evaluation method of the silica fume for high-strength concrete which concerns on the Example of this invention, and the viscosity of a sample slurry. この発明の実施例に係る高強度コンクリート用シリカフュームの品質評価方法におけるシリカフュームの銘柄別のミキサに搭載された攪拌羽根の回転数と試料スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of the stirring blade mounted in the mixer according to the brand of the silica fume in the quality evaluation method of the silica fume for high-strength concrete which concerns on the Example of this invention, and the viscosity of a sample slurry.

以下、この発明の実施例を具体的に説明する。ただし、この発明はこれに限定されるものではない。   Examples of the present invention will be specifically described below. However, the present invention is not limited to this.

(1)使用材料
この発明に使用される材料を以下の表5に示す。
(1) Materials Used The materials used in the present invention are shown in Table 5 below.

Figure 2011064647
Figure 2011064647

なお、表5中の高性能減水剤SSP―104は、ポリカルボン酸系グラフトコポリマーを主成分とするアニオン型高分子界面活性剤である。   Note that the high-performance water reducing agent SSP-104 in Table 5 is an anionic polymer surfactant mainly composed of a polycarboxylic acid-based graft copolymer.

(2)試料スラリー(シリカフュームスラリー)の製造
表5に示す6種類の銘柄(SF1〜SF6)のシリカフューム毎に、シリカフューム100g、減水剤および水400g(うち減水剤0〜10g)を市販の高速攪拌ミキサに投入し、攪拌羽根を8000rpmで60秒間高速回転することで、これらを混練して各試料スラリーを作製した。
(2) Production of sample slurry (silica fume slurry) Commercially available high-speed stirring of 100 g of silica fume, a water reducing agent and 400 g of water (of which 0 to 10 g of water reducing agent) is carried out for each of the six types of silica fume (SF1 to SF6) shown in Table 5. The sample slurry was put into a mixer and kneaded by rotating the stirring blade at a high speed of 8000 rpm for 60 seconds to prepare each sample slurry.

〔シリカフュームの銘柄別の品質(分散性)評価試験〕
次に、前記(2)試料スラリーの製造方法に則って作製された6種類の試料スラリーを、1つの銘柄ごと測定容器に移し、回転粘度計によりこれらの粘度を測定した。
室温20±2℃、相対湿度85%RH以上に管理された試験室で、スラリーの作製に使用する水の温度は20±1℃とし、シリカフュームの温度は20±3℃とした。
試料スラリーの粘度が100mPa・s以下であれば、TV−10M型粘度計を使用し、また試料スラリーの粘度が100mPa・s未満であればTV−10H型を使用し、試料スラリーの粘度を測定した。
粘度計での計測時間は1回あたり20秒間とし、各試料について3回測定を行い、その平均値を測定値とした。測定容器には、500mlのポリビーカーを使用した。
その結果を、図4のグラフおよび表6に示す。
[Quality (dispersibility) evaluation test by brand of silica fume]
Next, six kinds of sample slurries prepared according to the method for producing the sample slurry (2) were transferred to a measuring container for each brand, and their viscosities were measured with a rotational viscometer.
In a test room controlled at a room temperature of 20 ± 2 ° C. and a relative humidity of 85% RH or higher, the temperature of water used for preparing the slurry was 20 ± 1 ° C., and the temperature of silica fume was 20 ± 3 ° C.
If the viscosity of the sample slurry is 100 mPa · s or less, use a TV-10M type viscometer. If the viscosity of the sample slurry is less than 100 mPa · s, use the TV-10H type to measure the viscosity of the sample slurry. did.
The measurement time with the viscometer was 20 seconds per time, and each sample was measured three times, and the average value was taken as the measured value. A 500 ml poly beaker was used as a measurement container.
The results are shown in the graph of FIG.

Figure 2011064647
Figure 2011064647

図4のグラフおよび表6から明らかなように、既往のレーザ回析式粒度分布測定装置により良品とされたSF1〜SF4は、減水剤の添加量が3%以上5%未満のとき、粘度が50mPa・s以下で、分散性はシリカフュームが良好とされる1μm以下の粒子の割合が30%以上となった(図2のグラフ)。一方、不良のSF5およびSF6は、粘度が50mPa・sを超え、その分散性は1μm以下の粒子の割合が30%未満であった。すなわち、50mPa・sを超えるシリカフュームは分散性が著しく不良、または、粒径が大きいシリカフューム(顆粒状)であると評価され、実施例の評価方法と従来法による評価方法との間に相関があることが実証された。   As is apparent from the graph of FIG. 4 and Table 6, SF1 to SF4, which are regarded as non-defective products by the conventional laser diffraction particle size distribution analyzer, have a viscosity of 3% or more and less than 5%. At 50 mPa · s or less, the dispersibility was such that the proportion of particles of 1 μm or less for which silica fume was good was 30% or more (graph in FIG. 2). On the other hand, defective SF5 and SF6 had a viscosity exceeding 50 mPa · s, and the dispersibility was such that the proportion of particles of 1 μm or less was less than 30%. That is, silica fume exceeding 50 mPa · s is evaluated as silica fume (granular) having extremely poor dispersibility or a large particle size, and there is a correlation between the evaluation method of the example and the evaluation method by the conventional method. It was proved.

ここで、図5のグラフおよび表7を参照して、シリカフュームと水との水粉体比の違いによるシリカフューム(SF3,SF4,SF6)の分散性の変化を調べた結果を報告する。具体的には、シリカフューム(100gで一定)と水との水粉体比を300〜500%で変動させたときの試料スラリーの粘度を示す。その他は、上述の実施例と同じ条件で試験を行った。   Here, with reference to the graph of FIG. 5 and Table 7, the result of investigating the change in the dispersibility of silica fume (SF3, SF4, SF6) due to the difference in the water powder ratio between silica fume and water will be reported. Specifically, the viscosity of the sample slurry when the water powder ratio of silica fume (constant at 100 g) and water is varied from 300 to 500% is shown. Other than that, the test was performed under the same conditions as in the above-described Examples.

Figure 2011064647
Figure 2011064647

図5のグラフおよび表7から明らかなように、水粉体比が350〜450%では、試料スラリーの粘度が50mPa・s以下となり、シリカフュームが良好とされる1μm以下の粒子の割合が30%以上であった。   As is apparent from the graph of FIG. 5 and Table 7, when the water powder ratio is 350 to 450%, the viscosity of the sample slurry is 50 mPa · s or less, and the proportion of particles of 1 μm or less that makes silica fume good is 30%. That was all.

次に、図6のグラフおよび表8を参照して、攪拌羽根による試料スラリーの混練時間の違いによるシリカフューム(SF3,SF4,SF6)の分散性の変化を調べた結果を報告する。具体的には、混練時間を50〜70秒間で変動させたときの試料スラリーの粘度を示す。その他は、上述した実施例と同じ条件で試験を行った。   Next, with reference to the graph of FIG. 6 and Table 8, the result of investigating the change in the dispersibility of silica fume (SF3, SF4, SF6) due to the difference in the kneading time of the sample slurry by the stirring blade will be reported. Specifically, the viscosity of the sample slurry when the kneading time is varied from 50 to 70 seconds is shown. The other conditions were tested under the same conditions as in the above-described example.

Figure 2011064647
Figure 2011064647

図6のグラフおよび表8から明らかなように、試料スラリーの混練時間が50〜70秒間では、試料スラリーの粘度が50mPa・s以下となり、シリカフュームが良好とされる1μm以下の粒子の割合が30%以上であった。   As is apparent from the graph of FIG. 6 and Table 8, when the kneading time of the sample slurry is 50 to 70 seconds, the viscosity of the sample slurry is 50 mPa · s or less, and the proportion of particles of 1 μm or less that makes silica fume good is 30. % Or more.

次いで、図7のグラフおよび表9を参照して、ミキサに搭載された攪拌羽根の回転数の違いによるシリカフューム(SF3,SF4,SF6)の分散性の変化を調べた結果を報告する。その他は、上述の実施例と同じ条件で試験を行った。   Next, referring to the graph of FIG. 7 and Table 9, the results of examining the change in the dispersibility of silica fume (SF3, SF4, SF6) due to the difference in the rotation speed of the stirring blades mounted on the mixer will be reported. Other than that, the test was performed under the same conditions as in the above-described Examples.

Figure 2011064647
Figure 2011064647

図7のグラフおよび表9から明らかなように、攪拌羽根の回転数を8000rpm(ミキサA)、その回転数を139rpm(ミキサB)、その回転数を500rpm(ミキサC)とした場合、回転数が8000rpmのときのみ、試料スラリーの粘度が50mPa・s以下となり、シリカフュームが良好とされる1μm以下の粒子の割合が30%以上であった。   As apparent from the graph of FIG. 7 and Table 9, when the rotation speed of the stirring blade is 8000 rpm (mixer A), the rotation speed is 139 rpm (mixer B), and the rotation speed is 500 rpm (mixer C), the rotation speed Only when the sample slurry was 8000 rpm, the viscosity of the sample slurry was 50 mPa · s or less, and the proportion of particles of 1 μm or less considered good for silica fume was 30% or more.

この発明は、高性能・高品質吹付コンクリート、または、超高層建築物用高強度コンクリートなどに添加されるシリカフュームの分散性の評価に有用である。   The present invention is useful for evaluating the dispersibility of silica fume added to high-performance and high-quality shotcrete or high-strength concrete for high-rise buildings.

Claims (3)

水粉体比が350〜450%のシリカフュームと水と、このシリカフュームに対して3重量%以上5重量%未満の減水剤とをミキサに投入して混練することで試料スラリーを作製し、
得られた該試料スラリーを測定容器に入れ、回転粘度計により粘度を測定し、
測定した粘度の値が、50mPa・s以下であれば良品とし、50mPa・sを超えれば不良品とする高強度コンクリート用シリカフュームの品質評価方法。
A sample slurry is prepared by putting a silica fume having a water powder ratio of 350 to 450%, water, and a water reducing agent having a water content of 3 wt% or more and less than 5 wt% with respect to the silica fume into a mixer and kneading.
Put the obtained sample slurry in a measurement container, measure the viscosity with a rotational viscometer,
A method for evaluating the quality of silica fume for high-strength concrete, when the measured viscosity value is 50 mPa · s or less, which is a non-defective product, and when it exceeds 50 mPa · s, a defective product.
前記シリカフュームと水と減水剤との混練には、攪拌羽根を有するミキサが使用され、
その混練時には、前記攪拌羽根を5000〜12000rpmで回転させて攪拌する請求項1に記載の高強度コンクリート用シリカフュームの品質評価方法。
A mixer having a stirring blade is used for kneading the silica fume, water and a water reducing agent,
The method for evaluating the quality of silica fume for high-strength concrete according to claim 1, wherein the stirring blade is stirred by rotating the stirring blade at 5000 to 12000 rpm.
シリカフュームと水と減水剤との混練時間が50〜70秒である請求項2に記載の高強度コンクリート用シリカフュームの品質評価方法。   The method for evaluating the quality of silica fume for high-strength concrete according to claim 2, wherein the kneading time of silica fume, water and water reducing agent is 50 to 70 seconds.
JP2009217710A 2009-09-18 2009-09-18 Quality evaluation method of silica fume for high strength concrete Active JP5246562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217710A JP5246562B2 (en) 2009-09-18 2009-09-18 Quality evaluation method of silica fume for high strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217710A JP5246562B2 (en) 2009-09-18 2009-09-18 Quality evaluation method of silica fume for high strength concrete

Publications (2)

Publication Number Publication Date
JP2011064647A true JP2011064647A (en) 2011-03-31
JP5246562B2 JP5246562B2 (en) 2013-07-24

Family

ID=43951042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217710A Active JP5246562B2 (en) 2009-09-18 2009-09-18 Quality evaluation method of silica fume for high strength concrete

Country Status (1)

Country Link
JP (1) JP5246562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439223A (en) * 2013-09-06 2013-12-11 广东中烟工业有限责任公司 Method for determining gluing viscosity of water-based adhesive and application thereof
JP2019045195A (en) * 2017-08-30 2019-03-22 株式会社竹中工務店 Evaluation method of silica fume, method of producing concrete composition, concrete composition and concrete cured body
CN111240284A (en) * 2020-01-17 2020-06-05 陈欣 Quality control method for simulating liquid slurry product yield in production process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059182B2 (en) * 1978-11-03 1985-12-24 デンシトアクテイ−ゼルスカブ hydraulic composite material
JP2002137947A (en) * 2000-10-27 2002-05-14 Sumitomo Osaka Cement Co Ltd Silica fume slurry for admixing cement
JP3300993B2 (en) * 1991-09-25 2002-07-08 株式会社竹中工務店 Manufacturing method of hydraulic material
JP2007119257A (en) * 2005-10-24 2007-05-17 Mitsubishi Materials Corp Method for producing high-strength concrete material and high-strength hardened body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059182B2 (en) * 1978-11-03 1985-12-24 デンシトアクテイ−ゼルスカブ hydraulic composite material
JP3300993B2 (en) * 1991-09-25 2002-07-08 株式会社竹中工務店 Manufacturing method of hydraulic material
JP2002137947A (en) * 2000-10-27 2002-05-14 Sumitomo Osaka Cement Co Ltd Silica fume slurry for admixing cement
JP2007119257A (en) * 2005-10-24 2007-05-17 Mitsubishi Materials Corp Method for producing high-strength concrete material and high-strength hardened body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013012581; 牧野真之、岸谷孝一、江口清、中込昭: '高強度域のコンクリートに用いるシリカフェームの品質評価に関する研究' コンクリート工学年次論文報告集 Vol.15,No.1, 199306, Page.315-320 *
JPN6013012583; 中込昭、岸谷孝一、江口清、梶田秀幸: 'シリカフュームの品質評価に関する研究' コンクリート工学年次論文報告集 Vol.13,No.1, 199106, Page.285-290 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439223A (en) * 2013-09-06 2013-12-11 广东中烟工业有限责任公司 Method for determining gluing viscosity of water-based adhesive and application thereof
JP2019045195A (en) * 2017-08-30 2019-03-22 株式会社竹中工務店 Evaluation method of silica fume, method of producing concrete composition, concrete composition and concrete cured body
CN111240284A (en) * 2020-01-17 2020-06-05 陈欣 Quality control method for simulating liquid slurry product yield in production process
CN111240284B (en) * 2020-01-17 2023-03-10 陈欣 Quality control method for simulating liquid slurry product yield in production process

Also Published As

Publication number Publication date
JP5246562B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Laskar et al. Rheological behavior of high performance concrete with mineral admixtures and their blending
Ahari et al. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials
Lai et al. Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers
Flores et al. Performance of Portland cement pastes containing nano-silica and different types of silica
Rao et al. Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2)
Lachemi et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste
Yahia et al. Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio
Tayeb et al. Effect of marble powder on the properties of self-compacting sand concrete
Asghari et al. Which parameters, other than the water content, influence the robustness of cement paste with SCC consistency?
Yen et al. Flow behaviour of high strength high-performance concrete
CN106478030B (en) Mattess cement-base wear-resistant material and preparation method thereof of nickel slag preparation
JP2006176397A (en) High-fluidity mortar composition and its manufacturing method
Diederich et al. Simple tools for achieving self-compacting ability of concrete according to the nature of the limestone filler
Bouziani et al. Correlation between v-funnel and mini-slump test results with viscosity
Kwan et al. Effects of SP on flowability and cohesiveness of cement-sand mortar
JP5246562B2 (en) Quality evaluation method of silica fume for high strength concrete
Soualhi et al. Rheology of ordinary and low-impact environmental concretes
JP2004203733A (en) Method of producing mortar/concrete, and cement used for producing mortar/concrete
JP4477657B2 (en) Method for determining the proportion of finely divided powder in shotcrete, method for dividing and mixing the shotcrete obtained by this decision method and method for determining the proportion of thickener added to shotcrete
Toussaint et al. Reducing shear thickening of cement-based suspensions
Shirzadi Javid et al. Investigating the effects of mixing time and mixing speed on rheological properties, workability, and mechanical properties of self-consolidating concretes
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
Dhanapal et al. Investigations on the influence of binders toward rheological behavior of cementitious pastes
Sakai et al. Effects of shape and packing density of powder particles on the fluidity of cement pastes with limestone powder
JP7079157B2 (en) Blast furnace slag powder, cement composition and mortar composition containing blast furnace slag powder, and method for predicting fluidity of cement composition.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Ref document number: 5246562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250