JP2011062254A - 光プローブ - Google Patents

光プローブ Download PDF

Info

Publication number
JP2011062254A
JP2011062254A JP2009213657A JP2009213657A JP2011062254A JP 2011062254 A JP2011062254 A JP 2011062254A JP 2009213657 A JP2009213657 A JP 2009213657A JP 2009213657 A JP2009213657 A JP 2009213657A JP 2011062254 A JP2011062254 A JP 2011062254A
Authority
JP
Japan
Prior art keywords
square
cut
optical
catheter sheath
optical probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009213657A
Other languages
English (en)
Other versions
JP5524549B2 (ja
Inventor
Kazuyuki Takahashi
一之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2009213657A priority Critical patent/JP5524549B2/ja
Publication of JP2011062254A publication Critical patent/JP2011062254A/ja
Application granted granted Critical
Publication of JP5524549B2 publication Critical patent/JP5524549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 光画像診断装置に用いられる光プローブにおいて、カテーテルシース内表面での反射抑制の効果を向上させる。
【解決手段】 光画像診断装置の送受信部を有するプローブが内挿された光プローブであって、内表面には、内側方向に向かって凸の四角すい状の凸部600が、軸方向及び円周方向に等間隔で配列されており、前記凸部600は、底面が正方形であり、かつ、該底面と平行な平面で切断した場合の切断面665〜667がいずれも正方形であり、該底面と直交する方向の各位置における前記切断面665〜667の面積が、該底面から該各位置までの距離に比例して減少していることを特徴とする。
【選択図】 図6B

Description

本発明は、光プローブに関するものである。
従来より、動脈硬化の診断や、バルーンカテーテルまたはステント等の高機能カテーテルによる血管内治療時の術前診断、あるいは、術後の結果確認のために、光干渉断層画像診断装置(OCT)や、その改良型である、波長掃引を利用した光干渉断層画像診断装置(OFDI)が利用されている(以下、本明細書において、光干渉断層画像診断装置(OCT)と、波長掃引を利用した光干渉断層画像診断装置(OFDI)とを総称して、「光画像診断装置」と呼ぶこととする)。
このような光画像診断装置では、光の送受信を行う送受信部と光ファイバとが内蔵された光プローブ部を血管内に挿入した状態で、送受信部を回転させながら血管内に測定光を出射し生体組織からの反射光を受光することでラジアル走査を行い、これにより得られた反射光と予め測定光から分割された参照光とを干渉させることで、干渉光に基づく血管の断層画像を描出している。
このような測定原理のため、より高画質な断層画像を描出するためには、送受信部より出射した測定光が効率よく生体組織まで到達し、かつ、生体組織にて反射した反射光が効率よく送受信部まで到達することが不可欠である。
送受信部より出射された測定光を効率よく生体組織に到達させるための構成として、例えば、送受信部より出射された測定光が、カテーテルシース内表面にて反射してしまうのを抑えるための構成が挙げられる。カテーテルシース内表面での反射を抑え、カテーテルシースにおける測定光の透過率を向上させることで、測定光を無駄なく生体組織に到達させることができるからである。
一方で、光を透過する物体の物体表面での入射光の反射を抑えるための表面構造として、近年、「無反射表面構造」が注目されている。「無反射表面構造」とは、光の反射が、急激な屈折率の変化によりもたらされることに着目し、透過物体の表面を無数の円錐体により形成し、滑らかな屈折率分布を実現することで、透過物体表面での反射を抑えるものである。このため、カテーテルシースの内表面に当該無反射表面構造を適用することで、より高画質な断層画像の実現において、一定程度の効果が期待される。
"表面無反射構造作製技術の開発"、[online]、[平成21年8月14日検索]、インターネット<URL:http://www.ostec.or.jp/tec/area/a/a-2/a-2.html>
しかしながら、無数の円錐体により形成される無反射表面構造の場合、反射抑制の効果をより向上させるためには、円錐体のアスペクト比(円錐体の底面の円の径と、円錐体の高さとの比)を大きくすることが必要となってくる。
一方で、アスペクト比を大きくすべく、より細長い形状の円錐体を形成するためには、高い加工精度が要求され、実現性が低いという問題がある。このため、アスペクト比を維持しつつ、反射抑制の効果の高い構造の開発が求められている。
本発明は、上記課題に鑑みてなされたものであり、光画像診断装置に用いられる光プローブにおいて、カテーテルシース内表面での反射抑制の効果を向上させることを目的とする。
上記の目的を達成するために本発明に係る光プローブは以下のような構成を備える。即ち、
カテーテルシース内部において円周方向に回転しながら軸方向に移動する間に、光画像診断装置の光源より伝送された光を連続的に体腔内に送信するとともに、体腔内からの反射光を連続的に受信することで、体腔内の断層画像を生成するための信号を出力可能な送受信部が内挿された光プローブであって、
前記カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部が、前記軸方向及び円周方向に等間隔で配列されており、
前記凸部は、
底面が正方形であり、かつ、該底面と平行な面で切断した場合の切断面がいずれも正方形であり、
該底面と直交する方向の各位置における前記切断面の面積が、該底面から該各位置までの距離に比例して減少していることを特徴とする。
本発明によれば、光画像診断装置に用いられる光プローブにおいて、カテーテルシース内表面での反射抑制の効果を向上させることが可能となる。
本発明の第1の実施形態にかかる光プローブ部が適用される光画像診断装置の外観構成を示す図である。 光干渉断層画像診断装置100の機能構成を示す図である。 波長掃引利用の光干渉断層画像診断装置100の機能構成を示す図である。 光プローブ部の先端部の構成を示す図である。 イメージングコアの断面構成を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。 カテーテルシースの内表面の形状を示す図である。
以下、必要に応じて添付図面を参照しながら本発明の各実施形態を詳細に説明する。
[第1の実施形態]
1.光画像診断装置の外観構成
図1は本発明の第1の実施形態にかかる光プローブ部が適用される光画像診断装置(光干渉断層画像診断装置または波長掃引利用の光干渉断層画像診断装置)100の外観構成を示す図である。
図1に示すように、光画像診断装置100は、光プローブ部101と、スキャナ/プルバック部102と、操作制御装置103とを備え、スキャナ/プルバック部102と操作制御装置103とは、信号線104により接続されている。
光プローブ部101は、直接血管等の体腔内に挿入され、後述するイメージングコアを用いて体腔内部の状態を測定する。スキャナ/プルバック部102は、光プローブ部101と着脱可能に構成されており、内蔵されたモータが駆動することで光プローブ部101に内挿されたイメージングコアのラジアル動作を規定する。
操作制御装置103は、体腔内光干渉断層診断を行うにあたり、各種設定値を入力するための機能や、測定により得られたデータを処理し、断層画像として表示するための機能を備える。
操作制御装置103において、111は本体制御部であり、測定により得られたデータを処理したり、処理結果を出力したりする。111−1はプリンタ/DVDレコーダであり、本体制御部111における処理結果を印刷したり、データとして記憶したりする。
112は操作パネルであり、ユーザは該操作パネル112を介して、各種設定値及び指示の入力を行う。113は表示装置としてのLCDモニタであり、本体制御部111における処理結果を表示する。
2.光干渉断層画像診断装置の機能構成
次に、本実施形態にかかる光画像診断装置100のうち、光干渉断層画像診断装置(OCT)の主たる機能構成について図2を用いて説明する。
209は超高輝度発光ダイオード等の低干渉性光源である。低干渉性光源209は、その波長が1310nm程度で、その可干渉距離(コヒーレント長)が数μm〜10数μm程度であるような短い距離範囲でのみ干渉性を示す低干渉性光を出力する。
このため、この光を2つに分割した後、再び混合した場合には分割した点から混合した点までの2つの光路長の差が数μm〜10数μm程度の短い距離範囲内の場合には干渉光として検出され、それよりも光路長の差が大きい場合には干渉光として検出されることはない。
低干渉性光源209の光は、第1のシングルモードファイバ228の一端に入射され、先端面側に伝送される。第1のシングルモードファイバ228は、途中の光カップラ部208で第2のシングルモードファイバ229及び第3のシングルモードファイバ232と光学的に結合されている。
光カップラ部とは、1つの光信号を2つ以上の出力に分割したり、入力された2つ以上の光信号を1つの出力に結合したりすることができる光学部品であり、低干渉性光源209の光は、当該光カップラ部208により最大で3つの光路に分割して伝送されうる。
第1のシングルモードファイバ228の光カップラ部208より先端側には、スキャナ/プルバック部102が設けられている。スキャナ/プルバック部102内には、非回転部と回転部との間を結合し、光を伝送する光ロータリジョイント203が設けられている。
更に、光ロータリジョイント203内の第4のシングルモードファイバ230の先端側は、光プローブ部101の第5のシングルモードファイバ231と、アダプタ202を介して着脱自在に接続されている。これにより光の送受信を繰り返すイメージングコア201内に挿通され回転駆動可能な第5のシングルモードファイバ231に、低干渉性光源209からの光が伝送される。
第5のシングルモードファイバ231に伝送された光は、イメージングコア201の先端側から血管内の生体組織に対してラジアル動作しながら照射される。そして、生体組織の表面あるいは内部で散乱した反射光の一部はイメージングコア201により取り込まれ、逆の光路を経て第1のシングルモードファイバ228側に戻り、光カップラ部208によりその一部が第2のシングルモードファイバ229側に移る。そして、第2のシングルモードファイバ229の一端から出射され、光検出器(例えばフォトダイオード210)にて受光される。
なお、光ロータリジョイント203の回転駆動部側は回転駆動装置204のラジアル走査モータ205により回転駆動される。また、ラジアル走査モータ205の回転角度は、エンコーダ部206により検出される。更に、スキャナ/プルバック部102は、直線駆動装置207を備え、信号処理部214からの指示に基づいて、イメージングコア201の軸方向(体腔内の末梢方向およびその反対方向)の移動(軸方向動作)を規定している。軸方向動作は、信号処理部214からの制御信号に基づいて、直線駆動装置207が光ロータリジョイント203を含むスキャナを移動させることにより実現される。
この際、光プローブ部101のカテーテルシースは血管内に固定されたままで、カテーテルシースに内挿されているイメージングコア201のみが軸方向に移動することで、血管壁を傷つけることなく軸方向動作が行われる。
一方、第2のシングルモードファイバ229の光カップラ部208より先端側(参照光路)には、参照光の光路長を変える光路長の可変機構216が設けてある。
この光路長の可変機構216は生体組織の深さ方向(測定光の出射の方向)の検査範囲に相当する光路長を高速に変化させる第1の光路長変化手段と、光プローブ部101を交換して使用した場合の個々の光プローブ部101の長さのばらつきを吸収できるように、その長さのバラツキに相当する光路長を変化させる第2の光路長変化手段とを備えている。
第3のシングルモードファイバ232の先端に対向して、この先端とともに1軸ステージ220上に取り付けられ、矢印223に示す方向に移動自在のコリメートレンズ221を介して、グレーティング219が配置されている。また、このグレーティング219(回折格子)と対応するレンズ218を介して微小角度回動可能なガルバノメータ217が第1の光路長変化手段として取り付けられている。このガルバノメータ217はガルバノメータコントローラ224により、矢印222方向に高速に回転される。
ガルバノメータ217はガルバノメータのミラーにより光を反射させるものであり、参照ミラーとして機能するガルバノメータに交流の駆動信号を印加することによりその可動部分に取り付けたミラーを高速に回転させるように構成されている。
つまり、ガルバノメータコントローラ224より、ガルバノメータ217に対して駆動信号が印加され、該駆動信号により矢印222方向に高速に回転することで、参照光の光路長が、生体組織の深さ方向の検査範囲に相当する光路長だけ高速に変化することとなる。この光路差の変化の一周期が一ライン分の干渉光を取得する周期となる。
一方、1軸ステージ220は光プローブ部101を交換した場合に、光プローブ部101の光路長のバラツキを吸収できるだけの光路長の可変範囲を有する第2の光路長変化手段として機能する。さらに、1軸ステージ220はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ部101の先端が生体組織の表面に密着していない場合でも、1軸ステージ220により光路長を微小変化させることにより、生体組織の表面位置からの反射光と干渉させる状態に設定することが可能となる。
光路長の可変機構216で光路長が変えられた光は第3のシングルモードファイバ232の途中に設けられた光カップラ部208で第1のシングルモードファイバ228側から得られた光と混合されて、干渉光としてフォトダイオード210にて受光される。
このようにしてフォトダイオード210にて受光された干渉光は光電変換され、アンプ211により増幅される。
その後、復調器212に入力され、復調器212では干渉した光の信号部分のみを抽出する復調処理を行い、その出力はA/D変換器213に入力される。
A/D変換器213では、干渉光信号を例えば200ポイント分サンプリングして1ラインのデジタルデータ(「干渉光データ」)を生成する。この場合、サンプリング周波数は、光路長の1走査の時間を200で除した値となる。
A/D変換器213で生成されたライン単位の干渉光データは、信号処理部214に入力される。信号処理部214では生体組織の深さ方向の干渉光データをビデオ信号に変換することにより、血管内の各位置での断層画像を生成し、所定のフレームレートでLCDモニタ215(図1の参照番号113に対応する)に出力する。
信号処理部214は、更に光路長調整手段制御装置226と接続されている。信号処理部214は光路長調整手段制御装置226を介して1軸ステージ220の位置の制御を行う。また、信号処理部214はモータ制御回路225と接続され、ラジアル走査モータ205の回転駆動を制御する。
また、信号処理部214は、参照ミラー(ガルバノメータミラー)の光路長の走査を制御するガルバノメータコントローラ224と接続されており、ガルバノメータコントローラ224は信号処理部214へ駆動信号を出力する。モータ制御回路225では、この駆動信号に基づいてガルバノメータコントローラ224と同期をとる。
3.波長掃引利用の光干渉断層画像診断装置の機能構成
次に、本実施形態にかかる光画像診断装置100のうち、波長掃引利用の光干渉断層画像診断装置(OFDI)の主たる機能構成について図3を用いて説明する。
図3は、波長掃引利用の光干渉断層画像診断装置100の機能構成を示す図である。以下、図2を用いて説明した光干渉断層画像診断装置(OCT)との相違点を中心に説明する。
308は波長掃引光源であり、Swept Laserが用いられる。Swept Laserを用いた波長掃引光源308は、SOA315(semiconductor optical amplifier)とリング状に結合された光ファイバ316とポリゴンスキャニングフィルタ(308b)よりなる、Extended−cavity Laserの一種である。
SOA315から出力された光は、光ファイバ316を進み、ポリゴンスキャニングフィルタ308bに入り、ここで波長選択された光は、SOA315で増幅され、最終的にcoupler314から出力される。
ポリゴンスキャニングフィルタ308bでは、光を分光する回折格子312とポリゴンミラー309との組み合わせで波長を選択する。具体的には、回折格子312により分光された光を2枚のレンズ(310、311)によりポリゴンミラー309の表面に集光させる。これによりポリゴンミラー309と直交する波長の光のみが同一の光路を戻り、ポリゴンスキャニングフィルタ308bから出力されることとなるため、ポリゴンミラー309を回転させることで、波長の時間掃引を行うことができる。
ポリゴンミラー309は、例えば、32面体のミラーが使用され、回転数が50000rpm程度である。ポリゴンミラー309と回折格子312とを組み合わせたユニークな波長掃引方式により、高速、高出力の波長掃引が可能である。
Coupler314から出力された波長掃引光源308の光は、第1のシングルモードファイバ330の一端に入射され、先端側に伝送される。第1のシングルモードファイバ330は、途中の光カップラ部334において第2のシングルモードファイバ337及び第3のシングルモードファイバ331と光学的に結合されている。従って、第1のシングルモードファイバ330に入射された光は、この光カップラ部334により最大で3つの光路に分割されて伝送される。
第1のシングルモードファイバ330の光カップラ部334より先端側には、非回転部と回転部との間を結合し、光を伝送する光ロータリジョイント303が設けられている。
更に、光ロータリジョイント303内の第4のシングルモードファイバ335の先端側は、光プローブ部101の第5のシングルモードファイバ336とアダプタ302を介して着脱自在に接続されている。これによりイメージングコア301内に挿通され回転駆動可能な第5のシングルモードファイバ336に、波長掃引光源308からの光が伝送される。
伝送された光は、イメージングコア301の先端側から体腔内の生体組織に対してラジアル動作しながら照射される。そして、生体組織の表面あるいは内部で散乱した反射光の一部がイメージングコア301により取り込まれ、逆の光路を経て第1のシングルモードファイバ330側に戻る。さらに、光カップラ部334によりその一部が第2のシングルモードファイバ337側に移り、第2のシングルモードファイバ337の一端から出射され、光検出器(例えばフォトダイオード319)にて受光される。
なお、光ロータリジョイント303の回転駆動部側は回転駆動装置304のラジアル走査モータ305により回転駆動される。また、ラジアル走査モータ305の回転角度は、エンコーダ部306により検出される。更に、スキャナ/プルバック部102は、直線駆動装置307を備え、信号処理部323からの指示に基づいて、イメージングコア301の軸方向動作を規定する。
一方、第3のシングルモードファイバ331の光カップラ部334と反対側の先端には、参照光の光路長を微調整する光路長の可変機構325が設けられている。
この光路長の可変機構325は光プローブ部101を交換して使用した場合の個々の光プローブ部101の長さのばらつきを吸収できるように、その長さのばらつきに相当する光路長を変化させる光路長変化手段を備えている。
第3のシングルモードファイバ331およびコリメートレンズ326は、その光軸方向に矢印333で示すように移動自在な1軸ステージ332上に設けられており、光路長変化手段を形成している。
具体的には、1軸ステージ332は光プローブ部101を交換した場合に、光プローブ部101の光路長のばらつきを吸収できるだけの光路長の可変範囲を有する光路長変化手段として機能する。さらに、1軸ステージ332はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ部101の先端が生体組織の表面に密着していない場合でも、1軸ステージにより光路長を微小変化させることにより、生体組織の表面位置からの反射光と干渉させる状態に設定することが可能である。
光路長の可変機構325で光路長が微調整された光は第3のシングルモードファイバ331の途中に設けた光カップラ部334で第1のシングルモードファイバ330側から得られた光と混合されて、フォトダイオード319にて受光される。
このようにしてフォトダイオード319にて受光された干渉光は光電変換され、アンプ320により増幅された後、復調器321に入力される。この復調器321では干渉した光の信号部分のみを抽出する復調処理を行い、その出力は干渉光信号としてA/D変換器322に入力される。
A/D変換器322では、干渉光信号を例えば180MHzで2048ポイント分サンプリングして、1ラインのデジタルデータ(干渉光データ)を生成する。なお、サンプリング周波数を180MHzとしたのは、波長掃引の繰り返し周波数を40kHzにした場合に、波長掃引の周期(12.5μsec)の90%程度を2048点のデジタルデータとして抽出することを前提としたものであり、特にこれに限定されるものではない。
A/D変換器322にて生成されたライン単位の干渉光データは、信号処理部323に入力される。信号処理部323では干渉光データをFFT(高速フーリエ変換)により周波数分解して深さ方向のデータを生成し、これを座標変換することにより、血管内の各位置での断層画像を形成し、所定のフレームレートでLCDモニタ317(図1の参照番号113に対応する)に出力する。
信号処理部323は、更に光路長調整手段制御装置318と接続されている。信号処理部323は光路長調整手段制御装置318を介して1軸ステージ332の位置の制御を行う。また、信号処理部323はモータ制御回路324と接続され、モータ制御回路324のビデオ同期信号を受信する。信号処理部323では、受信したビデオ同期信号に同期して断層画像の生成を行う。
また、このモータ制御回路324のビデオ同期信号は、回転駆動装置304にも送られ、回転駆動装置304はビデオ同期信号に同期した駆動信号を出力する。
4.光プローブ部の先端部の構成
次に、光プローブ部101の先端部の構成について図4を用いて説明する。図4において、カテーテルシース401の管腔内部には、測定光を送受信する送受信部413が配されたハウジング411と、それを回転させるための駆動力を伝達する駆動シャフト412とを備えるイメージングコア201、301がほぼ全長にわたって挿通されており、光プローブ部101を形成している。
送受信部413は駆動シャフト412を挿通する光ファイバによって送られた測定光の光軸を側方に反射させる側方照射型のボールレンズにより構成されている。
送受信部413では、体腔内の生体組織に向けて測定光を送信するとともに、体腔内の生体組織からの反射光を受信する。
駆動シャフト412はコイル状に形成され、その内部には信号線(シングルモードの光ファイバ)が配されている。
ハウジング411は、短い円筒状の金属パイプの一部に切り欠き部を有した形状をしており、金属塊からの削りだしやMIM(金属粉末射出成形)等により成形される。ハウジング411は、その内部に送受信部413を有しており、基端側は駆動シャフト412と接続されている。また、先端側には短いコイル状の弾性部材403が設けられている。
弾性部材403はステンレス鋼線材をコイル状に形成したものであり、弾性部材403が先端側に配されることで、イメージングコア201、301の回転時の安定性が向上する。
404は補強コイルであり、カテーテルシース401の先端部分の急激な折れ曲がりを防止する目的で設けられている。
ガイドワイヤルーメン用チューブ402は、ガイドワイヤが挿入可能なガイドワイヤ用ルーメンを有する。ガイドワイヤルーメン用チューブ402は、予め体腔内に挿入されたガイドワイヤを受け入れ、ガイドワイヤによってカテーテルシース401が患部まで導かれるのに使用される。
イメージングコア201、301は、カテーテルシース401の円周方向に対する回転動作及び軸方向に対する軸方向動作を行うことが可能であり、それを覆う駆動シャフト412は、柔軟で、かつ回転をよく伝達できる特性をもつ、例えば、ステンレス等の金属線からなる多重多層密着コイル等により構成されている。
5.イメージングコアの断面構成
次に、イメージングコア201、301の断面構成について説明する。図5は、イメージングコア201、301の断面構成を示す図である。図5に示すように、ハウジング411内には、送受信部としての側方照射型のボールレンズ501が配され、駆動シャフト412内には、クラッド部504とコア部503とから構成される光ファイバ502が配されている。
側方照射型のボールレンズ501は光ファイバ502の先端に溶融接続されており、光ファイバ502の先端より出射された測定光を、その出射方向と略直交する方向に位置する不図示の体腔内の生体組織に向けて集光させた状態で出射する。
側方照射型のボールレンズ(送受信部)501より出射された測定光510は、カテーテルシース401の内表面/外表面を透過して、生体組織に到達する。また、生体組織より反射した反射光511はカテーテルシース401の外表面/内表面を透過して、側方照射型のボールレンズ(送受信部)501にて受信される。
6.カテーテルシース内表面の詳細構造
次に、カテーテルシース401の内表面の構造について説明する。図6Aは、カテーテルシース401の内表面の構造を説明するための図である。
図6Aにおいて(a−1)はカテーテルシース401の斜視図であり、(a−2)はカテーテルシース401の内表面の拡大斜視図である。また、(b−1)はカテーテルシース401の内表面の軸方向及び円周方向の断面形状を説明するための図であり、(b−2)はカテーテルシース401の内表面の軸方向及び円周方向の断面形状の詳細を示す図である。
(a−2)に示すように、カテーテルシース401の内表面には、内側方向に向かって凸形状の四角すい状の凸部が、円周方向及び軸方向に等間隔に配列されている。このように、四角すい状の凸部を、円周方向及び軸方向に等間隔に配列することにより、隣接する凸部同士が隙間なく配列されることとなる。
つまり、従来の無反射表面構造のように、円錐体により形成した場合には、底面の円を隙間なく配列することはできず、入射する光に対して直交する平面が必ず存在していたが、本実施形態のように、四角すい状の凸部により形成した場合には、入射する光に対して直交する平面が存在しなくなる。この結果、円錐体により形成した場合と比べ、反射抑制の効果をより向上させることが可能となる。
なお、上記四角すい状の凸部は、円周方向から見た場合の形状と軸方向から見た場合の形状とが等しくなるように構成されており、各四角すい状の凸部の円周方向及び軸方向の間隔は、0.1μm〜1.0μmとなっているものとする。当該間隔は、カテーテルシース401を透過する測定光または反射光の波長λ(例えば、光干渉断層画像診断装置において用いられる波長(1310nm))よりも短い間隔となっている。
また、本実施形態の場合、(b−1)に示すように、各四角すい状の凸部600は、底面の正方形における対向する辺の中点(611及び612、または、621及び622)と、四角すい状の凸部600の頭頂部分の頂点601とを通る平面(630または640)で切断した場合の、断面の外縁形状(631または651)が、いずれも(b−2)に示す形状となっている(なお、(b−2)では、底面の正方形の中点を結ぶ長さを1として正規化して示している)。
具体的には、アスペクト比(底面の正方形の中点を結ぶ長さと、底面の正方形を基準とした場合の四角すい状の凸部600の頂点601の高さとの比)をaとし、底面の正方形の中点を結ぶ線の各位置をXとすると、底面の正方形の中点を結ぶ線の各位置Xにおける外縁形状(631または651)Yは、
(式1)Y=−4aX(X−1)となる。
ただし、底面の正方形の中点を結ぶ長さを1としている。また、a=1〜10である。
ここで、式1により表される外縁形状を有する凸部600の作用について図6Bを用いて説明する。図6Bの(a)は、式1で表される外縁形状を有する凸部600の各高さ位置(底面の正方形に直交する方向の各位置)において、底面に平行な平面を用いて凸部600を切断した場合の切断面を示している。
図6Bの(a)において、661〜663は、四角すい状の凸部600の各高さ位置における、四角すい状の凸部600の底面に平行な平面である。
また、665〜667は、底面に平行な平面661〜663を用いて凸部600を切断した場合の切断面を表している。更に、664は、四角すい状の凸部600の底面の正方形を表している。
図6Bの(a)からわかるように、四角すい状の凸部600は、底面方向(矢印670)に向かうに従って、切断面(665、666、667)の面積が徐々に増加していき、底面の正方形664の面積に占める切断面(665、666、667)の面積の割合(つまり、カテーテルシース401内表面近傍における空間に占める凸部の割合)も徐々に増加していく。
そして、このときの、切断面の面積の変化を示したのが、図6Bの(b)である。図6Bの(b)は、カテーテルシース401内表面近傍における空間に占める凸部(カテーテルシース内表面の部材)の割合を横軸にとり、底面の正方形に直交する方向の高さ位置(ただし、底面の正方形の中点を結ぶ長さを1とした場合の比)を縦軸にとったグラフである。
図6Bの(b)からわかるように、切断面の面積は、四角すい状の凸部600の底面に直交する方向において、頂点から各高さ位置までの距離に比例して増加する(底面から各高さ位置までの距離に比例して減少している)。
つまり、式1により表される外縁形状は、底面に平行な平面により切断した場合の切断面の面積が、底面に平行な平面の各高さ位置と底面との距離に比例して減少するように形成された形状(頂点から各高さ位置までの距離に比例するように形成された形状)であるといえる。
このように、切断面の面積が、四角すい状の凸部600の底面に直交する方向において、頂点から各高さ位置までの距離に比例して増加するように凸部600が形成された場合、光の入射方向において、空間に占める凸部600の割合(つまり、空間に占めるカテーテルシース内表面部材の割合)が、一定の割合で増加していくこととなり、滑らかな屈折率分布を実現することが可能となる。
つまり、従来の無反射表面構造のように、円錐体で形成した場合には、頂点から各高さ位置までの距離に対して、当該各高さ位置における切断面の面積が、2次関数的に増加していたが、本実施形態のように、式1により表される外縁形状を有することにより、頂点から各高さ位置までの距離に対して、当該各高さ位置における切断面の面積が、一次関数的に比例して増加していくこととなり、従来の無反射表面構造と比較して、より滑らかな屈折率分布を実現することが可能となる。
この結果、カテーテルシース401の内表面での反射率を低減させることが可能となる。
[第2の実施形態]
上記第1の実施形態では、カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部を配列させることとしたが、本発明はこれに限定されず、カテーテルシースの内表面に、内側方向に向かって凹形状の四角すい状の凹部を配列させるようにしてもよい。
図7Aは、本実施形態に係るカテーテルシース401の内表面の構造を説明するための図である。
図7Aにおいて(a−1)はカテーテルシース401の斜視図であり、(a−2)はカテーテルシース401の内表面の拡大斜視図である。また、(b−1)はカテーテルシース401の内表面の軸方向及び円周方向の開口部断面形状を説明するための図であり、(b−2)はカテーテルシース401の内表面の軸方向及び円周方向の開口部断面形状の詳細を示す図である。
(a−2)に示すように、カテーテルシース401の内表面には、内側方向に向かって凹形状の四角すい状の凹部が、円周方向及び軸方向に等間隔に配列されている。このように、四角すい状の凹部を、円周方向及び軸方向に等間隔に配列することにより、隣接する凹部同士が隙間なく配列されることとなる。
つまり、従来の無反射表面構造のように、円錐体により形成した場合には、底面の円を隙間なく配列することはできず、入射する光に対して直交する平面が必ず存在していたが、本実施形態のように、四角すい状の凹部により形成した場合には、入射する光に対して直交する平面が存在しなくなる。この結果、円錐体により形成した場合と比べ、反射抑制の効果をより向上させることが可能となる。
なお、上記四角すい状の凹部は、円周方向から見た場合の形状と軸方向から見た場合の形状とが等しくなるように構成されており、各四角すい状の凹部の円周方向及び軸方向の間隔は、0.1μm〜1.0μmとなっているものとする。当該間隔は、カテーテルシース401を透過する測定光または反射光の波長λ(例えば、光干渉断層画像診断装置において用いられる波長(1310nm))よりも短い間隔となっている。
また、本実施形態の場合、(b−1)に示すように、各四角すい状の凹部700は、上面の正方形の開口部における対向する辺の中点(711及び712、または、721及び722)と、四角すい状の凹部700の底部分の頂点(701)とを通る平面(730または740)で切断した場合の、断面の外縁形状(731または751)が、いずれも(b−2)に示す形状となっている(なお、(b−2)では、上面の正方形の開口部の中点を結ぶ長さを1として正規化して示している)。
具体的には、アスペクト比(上面の正方形の開口部の中点を結ぶ長さと、上面の正方形の開口部を基準とした場合の四角すい状の凹部の頂点701の深さとの比)をaとし、上面の正方形の開口部の中点を結ぶ線の各位置をXとすると、上面の正方形の開口部の中点を結ぶ線の各位置における開口部の外縁形状(731または751)Yは、
(式2)Y=4aX(X−1)となる。
ただし、上面の正方形の開口部の中点を結ぶ長さを1としている。また、a=1〜10である。
ここで、式2により表される外縁形状を有する凹部700の作用について図7Bを用いて説明する。図7Bの(a)は、式2で表される外縁形状を有する凹部700の各高さ位置(上面の正方形の開口部に直交する方向の各位置)において、上面に平行な平面を用いて凹部を切断した場合の切断面を示している。
図7Bの(a)において、761〜763は、四角すい状の凹部700の各深さ位置における、四角すい状の凹部700の上面に平行な平面である。
また、765〜767は、上面に平行な平面761〜763を用いて凹部700を切断した場合の切断面を表している。更に、764は、四角すい状の凹部700の上面の正方形の開口部を表している。
図7Bの(a)からわかるように、四角すい状の凹部700は、頂点方向(矢印770)に向かうに従って、切断面(765、766、767)の開口部の面積が徐々に減少していき、上面の正方形の開口部764の面積に占める切断面(765、766、767)の開口部の面積の割合(つまり、カテーテルシース401内表面近傍における空間の割合)が徐々に減少していく(換言すると、頂点方向に向かうに従って、カテーテルシース内表面の部材の割合が徐々に増加していく)。
そして、このときの、切断面のカテーテルシース内表面の部材の面積の変化を示したのが、図7Bの(b)である。図7Bの(b)は、カテーテルシース401内表面近傍における空間に占めるカテーテルシース内表面の部材の割合を横軸にとり、上面の正方形の開口部に直交する方向の深さ位置(ただし、上面の正方形の開口部の中点を結ぶ長さを1とした場合の比)を縦軸にとったグラフである。
図7Bの(b)からわかるように、切断面におけるカテーテルシース内表面の部材の面積は、四角すい状の凹部700の上面に直交する方向において、上面の開口部から各深さ位置までの距離に比例して増加する(底部の頂点から各深さ位置までの距離に比例して減少する)。
つまり、式2により表される外縁形状は、上面の開口部に平行な平面により切断した場合の切断面のカテーテルシース内表面の部材の面積が、上面の開口部に平行な平面の各深さ位置と上面の開口部との距離に比例するように形成された形状であるといえる。
このように、切断面のカテーテルシース内表面の部材の面積が、四角すい状の凹部700の上面に直交する方向において、上面の開口部から各深さ位置までの距離に比例して増加するように凹部700が形成された場合、光の入射方向において、空間に占めるカテーテルシース内表面の部材の割合が、一定の割合で増加していくこととなり、滑らかな屈折率分布を実現することが可能となる。
つまり、従来の無反射表面構造のように、円錐体で形成した場合には、頂点から各高さ位置までの距離に対して、当該各高さ位置における切断面の面積が、2次関数的に増加していたが、本実施形態のように、式2により表される外縁形状を有することにより、上面から各深さ位置までの距離に対して、当該各深さ位置における切断面のカテーテルシース内表面の部材の面積が、一次関数的に比例して増加していくこととなり、従来の無反射表面構造と比較して、より滑らかな屈折率分布を実現することが可能となる。
この結果、カテーテルシース401の内表面での反射率を低減させることが可能となる。
[第3の実施形態]
上記第1及び第2の実施形態では、カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部または内側方向に向かって凹形状の四角すい状の凹部のいずれかを配列させることとしたが、本発明はこれに限定されず、カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部と、内側方向に向かって凹形状の四角すい状の凹部とを交互に配列させるようにしてもよい。
図8Aは、本実施形態に係るカテーテルシース401の内表面の構造を説明するための図である。
図8Aにおいて(a−1)はカテーテルシース401の斜視図であり、(a−2)はカテーテルシース401の内表面の拡大斜視図である。また、(b−1)はカテーテルシース401の内表面の軸方向及び円周方向の断面形状(または開口部断面形状)を説明するための図であり、(b−2)はカテーテルシース401の内表面の軸方向及び円周方向の断面形状(または開口部断面形状)の詳細を示す図である。
(a−2)に示すように、カテーテルシース401の内表面には、内側方向に向かって凸形状の四角すい状の凸部と、内側方向に向かって凹形状の四角すい状の凹部とが、円周方向及び軸方向に交互に等間隔に配列されている。このように、四角すい状の凸部及び四角すい状の凹部を、円周方向及び軸方向に等間隔に交互に配列することにより、隣接する凸部と凹部とが隙間なく配列されることとなる。
つまり、従来の無反射表面構造のように、円錐体により形成した場合には、底面の円を隙間なく配列することはできず、入射する光に対して直交する平面が必ず存在していたが、本実施形態のように、四角すい状の凸部及び四角すい状の凹部により形成した場合には、入射する光に対して直交する平面が存在しなくなる。この結果、円錐体により形成した場合と比べ、反射抑制の効果をより向上させることが可能となる。
なお、当該四角すい状の凸部及び四角すい状の凹部は、それぞれ円周方向から見た場合の形状と軸方向から見た場合の形状とが等しくなるように構成されており、各四角すい状の凸部と四角すい状の凹部との円周方向及び軸方向の間隔は、0.1μm〜1.0μmとなっているものとする。当該間隔は、カテーテルシース401を透過する測定光または反射光の波長λ(例えば、光干渉断層画像診断装置において用いられる波長(1310nm))よりも短い間隔となっている。
また、本実施形態の場合、(b−1)に示すように、各四角すい状の凸部800及び四角すい状の凹部810、830は、各基準面(凸部800の底面及び凹部810、830の上面)の正方形における対向する辺の中点((b−1)では、811及び812、841及び842のみ図示)と、四角すい状の凸部800の頭頂部分の頂点801及び四角すい状の凹部810または830の底部分の頂点(802または803)とを通る平面(820または850)で切断した場合の、断面の外縁形状(821または851)が、いずれも(b−2)に示す形状となっている(なお、(b−2)では、基準面の正方形の中点を結ぶ長さを1として正規化して示している)。
具体的には、アスペクト比(基準面の正方形の中点を結ぶ長さと、基準面の正方形を基準とした場合の頂点801または頂点802、803の高さ(深さ)との比)をaとし、基準面の正方形の中点を結ぶ線の各位置をXとすると、基準面の正方形の中点を結ぶ線の各位置における外縁形状(821、851)Yは、
(式3)Y=2.67aX(X−1)(X−2)となる。
ただし、基準面の正方形の中点を結ぶ長さを1としている。また、a=1〜10である。
ここで、式3により表される外縁形状を有する四角すい状の凸部800及び四角すい状の凹部830の作用について図8Bを用いて説明する。図8Bの(a)は、式3で表される外縁形状を有する凸部800及び凹部830の各高さ(深さ)位置(基準面の正方形に直交する方向の各高さ(深さ)位置)において、基準面に平行な平面を用いて凸部または凹部を切断した場合の切断面を示している。
図8Bの(a)において、861〜866は、四角すい状の凸部800及び凹部の各高さ(深さ)位置における、基準面に平行な平面である。
また、871〜876は、基準面に平行な平面861〜866を用いて凸部800及び凹部830を切断した場合の切断面を表している。さらに、867は、基準面の正方形を表している。
図8Bの(a)からわかるように、四角すい状の凸部800は、底部の頂点方向(矢印870)に向かうに従って、切断面(871、872、873)の面積が徐々に増加していき、基準面の正方形867の面積に占める切断面(871、872、873)の面積の割合(つまり、カテーテルシース401内表面近傍における空間に占める凸部の割合)も徐々に増加していく。同様に、四角すい状の凹部830は、底部の頂点方向(矢印870)に向かうに従って、切断面(874、875、876)の開口部の面積が徐々に減少していき、基準面の正方形の開口部の面積に占める切断面(874、875、876)の開口部の面積の割合(つまり、カテーテルシース401内表面近傍における空間の割合)が徐々に減少していく(換言すると、頂点方向に向かうに従って、カテーテルシース内表面の部材の割合が徐々に増加していく)。
そして、このときの切断面のカテーテルシース内表面の部材の面積の変化を示したのが、図8Bの(b)である。図8Bの(b)は、カテーテルシース401内表面の近傍における空間に占めるカテーテルシース内表面の部材の割合を横軸にとり、基準面の正方形に直交する方向の高さ(深さ)位置(ただし、基準面の正方形の中点を結ぶ長さを1とした場合の比)を縦軸にとったグラフである。
図8Bの(b)から分かるように、切断面のカテーテルシース内表面の部材の面積は、四角すい状の凸部800及び凹部830の基準面に直交する方向において、凸部800の頂点801から各高さ(深さ)位置までの距離に比例して増加する。
つまり、式3により表される外縁形状は、基準面に平行な平面により切断した場合の切断面のカテーテルシース内表面の部材の面積が、基準面に平行な平面の各高さ(深さ)位置と基準面との距離に比例するように形成された形状であるといえる。
このように、切断面のカテーテルシース内表面の部材の面積が、四角すい状の凸部800及び凹部830の基準面に直交する方向において、基準面から各高さ(深さ)位置までの距離に比例するように凸部及び凹部が形成された場合、光の入射方向において、空間に占めるカテーテルシース内表面の部材の割合が、一定の割合で増加していくこととなり、滑らかな屈折率分布を実現することが可能となる。
つまり、従来の無反射表面構造のように、円錐体で形成した場合には、頂点から各高さ位置までの距離に対して、当該各高さ位置における切断面の面積が、2次関数的に増加していたが、本実施形態のように、式3により表される外縁形状を有することにより、頂点から各高さ(深さ)位置までの距離に対して、当該各高さ(深さ)位置における切断面のカテーテルシース内表面の部材の面積が、一次関数的に比例して増加していくこととなり、従来の無反射表面構造と比較して、より滑らかな屈折率分布を実現することが可能となる。
この結果、カテーテルシース401の内表面での反射率を低減させることが可能となる。
[第4の実施形態]
上記第1の実施形態では、切断面の形状が正方形の場合について説明したが、本発明はこれに限定されず、頂点からの各高さ位置までの距離に比例して、切断面の面積が増加するように形成しさえすれば、切断面の形状は正方形に限られない。
図9は、切断面の形状を円にした場合の凸部900を示す図である。図9の(a)において、961〜963は、凸部900の各高さ位置における凸部900の底面に平行な平面である。
また、971〜973は、底面に平行な平面961〜963を用いて凸部900を切断した場合の切断面を表している。更に、970は、凸部900の底面近傍の円を表している。
図9の(a)からわかるように、凸部900は、底面方向(矢印980)に向かうに従って、切断面(971、972、973)の面積が徐々に増加していき、底面近傍の円970の面積に占める切断面(971、972、973)の面積の割合(つまり、カテーテルシース401内表面近傍における空間に占める割合)も徐々に増加していく。
そして、このときの切断面の面積の変化を示したのが、図9の(b)である。図9の(b)は、カテーテルシース401内表面近傍における空間に占める凸部(カテーテルシース内表面の部材)の割合を横軸にとり、底面の正方形に直交する方向の高さ位置(ただし、底面近傍の円の径の長さを1とした場合の比)を縦軸にとったグラフである。
図9の(b)からわかるように、切断面の面積は、凸部900の底面に直交する方向において、頂点から各高さ位置までの距離に比例して増加する(底面から各高さ位置までの距離に比例して減少する)。
このように、切断面の面積が、凸部900の底面に直交する方向において、頂点から各高さ位置までの距離に比例して増加するように凸部900が形成された場合、光の入射方向において、空間に占める凸部900の割合(つまり、空間に占めるカテーテルシース内表面の部材の割合)が、一定の割合で増加していくこととなり、滑らかな屈折率分布を実現することが可能となる。
なお、底面の形状を円形状としてしまうと、隣接する凸部同士の間に隙間が生じ、入射する光に対して直交する平面が存在してしまうこととなる。このため、本実施形態における凸部では、底面を正方形とし、底面近傍において円形状から正方形へと滑らかな曲面が形成されるように構成されている。
[第5の実施形態]
上記第4の実施形態では、凸部の場合について説明したが、凹部の場合についても同様に形成可能である。また、凸部と凹部とを交互に配列した場合についても同様に形成可能である。
また、上記第1乃至第3の実施形態では、切断面の形状を正方形としたが、本発明はこれに限定されず、他の正多角形であってもよい。

Claims (9)

  1. カテーテルシース内において円周方向に回転しながら軸方向に移動する間に、光画像診断装置の光源より伝送された光を連続的に体腔内に送信するとともに、体腔内からの反射光を連続的に受信することで、体腔内の断層画像を生成するための信号を出力する送受信部が内挿された光プローブであって、
    前記カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部が、前記軸方向及び円周方向に等間隔で配列されており、
    前記凸部は、
    底面が正方形であり、かつ、該底面と平行な平面で切断した場合の切断面がいずれも正方形であり、
    該底面と直交する方向の各位置における前記切断面の面積が、該底面から該各位置までの距離に比例して減少していることを特徴とする光プローブ。
  2. 前記凸部は、0.1μm〜1.0μmの等間隔で配列されていることを特徴とする請求項1に記載の光プローブ。
  3. 前記底面の正方形の対向する辺の中点と、頭頂部の頂点とを通る平面により前記凸部を切断した場合の外縁形状は、前記中点を結ぶ線の各位置をXとし、前記凸部のアスペクト比をaとした場合、前記中点を結ぶ線の長さを1とすると、Y=−4×a×X(X−1)により表されることを特徴とする請求項2に記載の光プローブ。
  4. カテーテルシース内において円周方向に回転しながら軸方向に移動する間に、光画像診断装置の光源より伝送された光を連続的に体腔内に送信するとともに、体腔内からの反射光を連続的に受信することで、体腔内の断層画像を生成するための信号を出力する送受信部が内挿された光プローブであって、
    前記カテーテルシースの内表面に、内側方向に向かって凹形状の四角すい状の凹部が、前記軸方向及び円周方向に等間隔で配列されており、
    前記凹部は、
    上面の開口部が正方形であり、かつ、該上面と平行な平面で切断した場合の切断面がいずれも正方形であり、
    該上面と直交する方向の各位置における前記切断面の開口部の面積が、該上面から該各位置までの距離に比例して減少していることを特徴とする光プローブ。
  5. 前記凹部は、0.1μm〜1.0μmの等間隔で配列されていることを特徴とする請求項4に記載の光プローブ。
  6. 前記上面の正方形の開口部の対向する辺の中点と、底部の頂点とを通る平面により該凹部を切断した場合の外縁形状は、前記中点を結ぶ線の各位置をXとし、前記凹部のアスペクト比をaとした場合、前記中点を結ぶ線の長さを1とすると、Y=4×a×X(X−1)により表されることを特徴とする請求項5に記載の光プローブ。
  7. カテーテルシース内において円周方向に回転しながら軸方向に移動する間に、光画像診断装置の光源より伝送された光を連続的に体腔内に送信するとともに、体腔内からの反射光を連続的に受信することで、体腔内の断層画像を生成するための信号を出力する送受信部が内挿された光プローブであって、
    前記カテーテルシースの内表面に、内側方向に向かって凸形状の四角すい状の凸部と、内側方向に向かって凹形状の四角すい状の凹部とが、前記軸方向及び円周方向に交互に等間隔で配列されており、
    前記凸部は、
    底面が正方形であり、かつ、該底面と平行な平面で切断した場合の切断面がいずれも正方形であり、
    該底面と直交する方向の各位置における前記切断面の面積が、該底面から該各位置までの距離に比例して減少しており、
    前記凹部は、
    上面の開口部が正方形であり、かつ、該上面と平行な平面で切断した場合の切断面がいずれも正方形であり、
    該上面と直交する方向の各位置における前記切断面の開口部の面積が、該上面から該各位置までの距離に比例して減少していることを特徴とする光プローブ。
  8. 前記凸部と前記凹部とは、0.1μm〜1.0μmの等間隔で交互に配列されていることを特徴とする請求項7に記載の光プローブ。
  9. 前記底面の正方形の対向する辺の中点及び前記上面の正方形の開口部の対向する辺の中点と、前記凸部の頭頂部の頂点及び前記凹部の底部の頂点とを通る平面により前記凸部及び前記凹部を切断した場合の外縁形状は、前記中点を結ぶ線の各位置をXとし、前記凸部及び前記凹部のアスペクト比をそれぞれaとした場合、前記各中点を結ぶ線の長さをそれぞれ1とすると、Y=2.67aX(X−1)(X−2)により表されることを特徴とする請求項8に記載の光プローブ。
JP2009213657A 2009-09-15 2009-09-15 光プローブ Active JP5524549B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213657A JP5524549B2 (ja) 2009-09-15 2009-09-15 光プローブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213657A JP5524549B2 (ja) 2009-09-15 2009-09-15 光プローブ

Publications (2)

Publication Number Publication Date
JP2011062254A true JP2011062254A (ja) 2011-03-31
JP5524549B2 JP5524549B2 (ja) 2014-06-18

Family

ID=43949165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213657A Active JP5524549B2 (ja) 2009-09-15 2009-09-15 光プローブ

Country Status (1)

Country Link
JP (1) JP5524549B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131592A (ja) * 2015-01-16 2016-07-25 テルモ株式会社 光ケーブル及び光画像診断装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置
JP2000262461A (ja) * 1999-02-04 2000-09-26 Univ Hospital Of Cleveland 光イメージング装置
JP2007256340A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 反射防止微細構造及び反射防止構造体
JP2007322767A (ja) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd 反射防止構造、反射防止構造体及びその製造方法
JP2009104103A (ja) * 2007-10-01 2009-05-14 Omron Corp 反射防止シート、表示素子及びディスプレイ装置
JP2009198627A (ja) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd 反射防止構造及び反射防止成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置
JP2000262461A (ja) * 1999-02-04 2000-09-26 Univ Hospital Of Cleveland 光イメージング装置
JP2007256340A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 反射防止微細構造及び反射防止構造体
JP2007322767A (ja) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd 反射防止構造、反射防止構造体及びその製造方法
JP2009104103A (ja) * 2007-10-01 2009-05-14 Omron Corp 反射防止シート、表示素子及びディスプレイ装置
JP2009198627A (ja) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd 反射防止構造及び反射防止成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131592A (ja) * 2015-01-16 2016-07-25 テルモ株式会社 光ケーブル及び光画像診断装置

Also Published As

Publication number Publication date
JP5524549B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4768494B2 (ja) 画像診断装置およびその処理方法
JP4838032B2 (ja) 画像診断装置およびその処理方法
JP5956589B2 (ja) 画像診断装置及びその作動方法及びプログラム
JP2007267866A (ja) 画像診断装置およびその処理方法
JP6117772B2 (ja) プローブ及び画像診断装置
WO2011039983A1 (ja) 画像診断装置及びその制御方法
JP6059334B2 (ja) 画像診断装置及び情報処理装置及びそれらの作動方法、プログラム及びコンピュータ可読記憶媒体
JP5592137B2 (ja) 光画像診断装置及びその表示制御方法
JP6013502B2 (ja) 画像診断装置及び情報処理装置及びそれらの制御方法
JP5524947B2 (ja) 画像診断装置及びその作動方法
JPH11148897A (ja) 光イメージング装置
JP2012200532A (ja) 画像診断装置及び表示方法
WO2014041579A1 (ja) 画像診断装置及び画像処理方法
JP6031089B2 (ja) プローブ及び画像診断装置
JP6055463B2 (ja) 断層画像生成装置および作動方法
JP5718819B2 (ja) 画像診断装置及びその制御方法
JP6125615B2 (ja) 画像診断装置及びプログラム
JP5628785B2 (ja) 画像診断装置
JP5508092B2 (ja) 光画像診断装置及びその表示制御方法
JP5524549B2 (ja) 光プローブ
JP6062421B2 (ja) 画像診断装置及びその作動方法
JP5399844B2 (ja) 画像診断装置及びその作動方法
WO2014049641A1 (ja) 画像診断装置及び情報処理装置並びにそれらの制御方法
WO2014049634A1 (ja) 画像診断装置及び情報処理装置及びそれらの制御方法
JP2012210358A (ja) 光干渉断層像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250