JP2011056430A - Surplus soil disposal structure - Google Patents

Surplus soil disposal structure Download PDF

Info

Publication number
JP2011056430A
JP2011056430A JP2009210337A JP2009210337A JP2011056430A JP 2011056430 A JP2011056430 A JP 2011056430A JP 2009210337 A JP2009210337 A JP 2009210337A JP 2009210337 A JP2009210337 A JP 2009210337A JP 2011056430 A JP2011056430 A JP 2011056430A
Authority
JP
Japan
Prior art keywords
layer
limestone
residual soil
neutralization
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009210337A
Other languages
Japanese (ja)
Other versions
JP5498104B2 (en
Inventor
Mayumi Jo
まゆみ 城
Hajime Yamamoto
肇 山本
Tomoyuki Aoki
智幸 青木
Satoshi Imamura
聡 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2009210337A priority Critical patent/JP5498104B2/en
Publication of JP2011056430A publication Critical patent/JP2011056430A/en
Application granted granted Critical
Publication of JP5498104B2 publication Critical patent/JP5498104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Abstract

<P>PROBLEM TO BE SOLVED: To propose a surplus soil disposal structure which can be employed without limit of physiographic form and can efficiently neutralize acidic water bleeding out of drilling debris. <P>SOLUTION: The surplus soil disposal structure 1 comprises a drilling surplus soil layer 2, a neutralization layer 3 which covers the side faces and bottom face of the drilling surplus soil layer 2 to neutralize acidic water bleeding out of the drilling surplus soil layer 2, and a soil covering layer 4 which covers the upper face of the drilling surplus soil layer 2 to limit the amount of penetrating water, and the neutralization layer 3 contains a neutralizing material containing calcium carbonate as a main component and is made so thick as to keep a needed stagnation time for neutralizing the acidic water and prevent the acidic water from bleeding outside. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、残土処分構造に関する。   The present invention relates to a remaining soil disposal structure.

黄鉄鉱等を含有する掘削ずり等の残土処分では、酸化溶解により生成された酸性水が周辺地盤に滲出することを防止するための対策工を講じる必要がある。   In the disposal of residual soil such as excavations containing pyrite, etc., it is necessary to take measures to prevent acid water generated by oxidative dissolution from leaching to the surrounding ground.

従来、黄鉄鉱を含有する掘削ずりを処分する場合には、消石灰などの中和材を添加混合して処分場に埋設処分するのが一般的である。
ところが消石灰を多量に添加すると、アルカリ汚染を引き起こすおそれがあるため、掘削ずりの汚染濃度と混合量との関係を十分に検討したうえで実施する必要があり、その作業に手間を要していた。
Conventionally, when excavation shears containing pyrite are disposed of, it is common to add and neutralize neutralizing materials such as slaked lime and bury them in a disposal site.
However, adding a large amount of slaked lime may cause alkali contamination, so it was necessary to carry out after careful examination of the relationship between the contamination concentration of excavation shear and the mixing amount, which required time and effort. .

一方、特許文献1には、傾斜地盤上に積み上げられた盛土において、傾斜上端および傾斜下端に傾斜方向に交差するようにアルカリ性材料を含む地中壁を形成した残土処分構造が開示されている。   On the other hand, Patent Document 1 discloses a residual soil disposal structure in which an underground wall containing an alkaline material is formed so as to intersect an inclined upper end and an inclined lower end in an inclined direction in an embankment stacked on an inclined ground.

特開平9−220579号公報JP 9-220579 A

ところが、前記従来の残土処分構造は、傾斜地盤にしか採用することができないため、残土処分場の地形によっては採用することができなかった。
また、地中壁の処理能力以上の浸透水が流入すると、汚染水が周辺地盤に流出するおそれがある。
However, the conventional residual soil disposal structure cannot be employed depending on the topography of the residual soil disposal site because it can be employed only on sloped ground.
In addition, if infiltrated water that exceeds the capacity of the underground wall flows, contaminated water may flow out to the surrounding ground.

そのため、本発明は、地形形状に限定されず採用することが可能で、かつ、掘削ずりから滲出する酸性水を効果的に中和することを可能とした残土処分構造を提案することを課題とする。   Therefore, it is an object of the present invention to propose a residual soil disposal structure that can be employed without being limited to the topographic shape and that can effectively neutralize acidic water that exudes from excavation. To do.

前記課題を解決するために、本発明は、掘削残土層と、前記掘削残土層の側面および底面を覆い前記掘削残土層から滲出する酸性水の中和を行う中和層と、前記掘削残土層の上面を覆い浸透する水量を制限する覆土層と、を備える残土処分構造であって、前記中和層は、炭酸カルシウムを主成分とする中和材から構成され、前記酸性水を中和するために必要な滞留時間を確保して前記酸性水が外部に滲出することがない層厚とされていることを特徴としている。   In order to solve the above-mentioned problems, the present invention provides an excavation residual soil layer, a neutralization layer that covers a side surface and a bottom surface of the excavation residual soil layer, and neutralizes acidic water that exudes from the excavation residual soil layer, and the excavation residual soil layer A residual soil disposal structure comprising a soil covering layer that covers the upper surface of the soil and restricts the amount of water that penetrates, and the neutralizing layer is made of a neutralizing material mainly composed of calcium carbonate, and neutralizes the acidic water Therefore, it has a layer thickness that ensures a necessary residence time and prevents the acidic water from leaching to the outside.

前記中和層の層厚は、前記中和層の浸透水の流速と前記中和するために必要な滞留時間との積を前記中和層の空隙率で除した値以上にするのが望ましい。   The layer thickness of the neutralization layer is preferably not less than a value obtained by dividing the product of the flow rate of the permeated water of the neutralization layer and the residence time necessary for the neutralization by the porosity of the neutralization layer. .

かかる残土処分構造は、掘削残土層内で生成された酸性水を、中和層により中和するため、汚染水が外部に滲出することが防止される。中和層は、酸性水を中和するために必要な反応時間を確保できる厚みを有して形成されているため、効果的に中和することができる。
ここで、炭酸カルシウムを主成分とする中和材には、例えば、石灰岩やドロマイトを使用する。
In such a residual soil disposal structure, acidic water generated in the excavated residual soil layer is neutralized by the neutralization layer, so that the contaminated water is prevented from leaching to the outside. Since the neutralization layer is formed to have a thickness that can secure the reaction time necessary for neutralizing the acidic water, it can be neutralized effectively.
Here, for example, limestone or dolomite is used as the neutralizing material mainly composed of calcium carbonate.

また、掘削残土層の周囲を中和層で覆うのみの簡易な構成のため、施工が容易である。   In addition, the construction is easy due to the simple structure of simply covering the periphery of the excavated soil layer with a neutralization layer.

また、覆土層により外部から掘削残土層に浸透する水量を制限しているため、掘削残土層への水の浸透を均等化し、中和層の層厚を、必要最小限に設定することが可能となる。なお、覆土層には有害物質を含有しておらず、酸性化しない材料を使用することが望ましい。   In addition, the amount of water penetrating from the outside into the excavated residual soil layer is limited by the cover soil layer, so that the water penetration into the excavated residual soil layer can be equalized, and the neutralization layer thickness can be set to the minimum necessary It becomes. In addition, it is desirable to use a material that does not contain harmful substances and does not acidify the soil covering layer.

前記残土処分構造において、前記中和層の透水係数の大きさが前記掘削残土層以上であって、前記掘削残土層の透水係数の大きさが前記覆土層以上に設定すれば、浸透水が各層の境界部において湛水することを防止することが可能となる。   In the residual soil disposal structure, if the water permeability coefficient of the neutralization layer is greater than or equal to the excavation residual soil layer, and the hydraulic conductivity coefficient of the excavation residual soil layer is set to be greater than or equal to the cover soil layer, the permeated water is in each layer. It is possible to prevent water from being drowned at the boundary portion.

本発明によれば、地形形状に限定されず採用することが可能で、かつ、掘削ずりから滲出する酸性水を効果的に中和することを可能とした残土処分構造を構築することが可能となる。   According to the present invention, it is possible to construct a residual soil disposal structure that can be adopted without being limited to topographic shapes and that can effectively neutralize acidic water that exudes from excavation. Become.

本発明の好適な実施の形態に係る残土処分構造の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the remaining soil disposal structure which concerns on suitable embodiment of this invention. 残土処分構造の変形例を示す断面図である。It is sectional drawing which shows the modification of a remaining soil disposal structure. 残土処分構造の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the remaining soil disposal structure. 残土処分構造の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the remaining soil disposal structure. 残土処分構造の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the remaining soil disposal structure. (a)は室内試験で使用したカラムを示す模式図、(b)は石灰岩層の最低層厚の検討結果を示すグラフである。(A) is a schematic diagram which shows the column used by the laboratory test, (b) is a graph which shows the examination result of the minimum layer thickness of a limestone layer.

以下に本発明の好適な実施形態について説明する。
本実施形態にかかる残土処分構造1は、地盤5に形成された凹部(溝等)に掘削ずりを埋設処分するための構造であって、図1に示すように、掘削残土層2と、掘削残土層2の側面および底面を覆う石灰岩層(中和層)3と、掘削残土層2と石灰岩層3の上面を覆う覆土層4とを備えて構成されている。
Hereinafter, preferred embodiments of the present invention will be described.
The remaining soil disposal structure 1 according to the present embodiment is a structure for embedding disposal of excavation shears in a recess (groove or the like) formed in the ground 5, as shown in FIG. A limestone layer (neutralization layer) 3 covering the side surface and bottom surface of the remaining soil layer 2 and a covering soil layer 4 covering the upper surface of the excavated residual soil layer 2 and the limestone layer 3 are configured.

掘削残土層2は、地盤5に形成された凹部に埋設された掘削ずりにより形成されている。本実施形態では、黄鉄鉱含有の掘削ずりを処分する。   The excavation residual soil layer 2 is formed by excavation shear embedded in a recess formed in the ground 5. In the present embodiment, excavation shear containing pyrite is disposed.

掘削残土層2は、所定の厚みで石灰岩層3が敷設された凹部内に掘削ずりを埋設することにより形成されている。   The excavated residual soil layer 2 is formed by burying excavated ladle in a recess in which the limestone layer 3 is laid with a predetermined thickness.

石灰岩層3は、掘削残土層2の側面および底面を覆うように形成された中和層である。
石灰岩層3は、降雨などにより掘削残土層2内に浸透した浸透水が、汚染物質を含有した状態で周辺地盤(地盤5)に滲出することを防止するために設けられた層である。
なお、本実施形態では、中和材として石灰岩を使用するが、中和材は炭酸カルシウムを主成分とする材料であれば石灰岩に限定されるものではなく、例えば、ドロマイトを使用してもよい。
The limestone layer 3 is a neutralization layer formed so as to cover the side surface and the bottom surface of the excavated residual soil layer 2.
The limestone layer 3 is a layer provided to prevent permeated water that has permeated into the excavated residual soil layer 2 due to rainfall or the like from seeping out into the surrounding ground (ground 5) in a state of containing contaminants.
In this embodiment, limestone is used as the neutralizing material. However, the neutralizing material is not limited to limestone as long as it is a material mainly composed of calcium carbonate. For example, dolomite may be used. .

掘削残土層2に水が浸透すると、掘削ずり内の黄鉄鉱の酸化溶解により硫酸酸性水が生成される。石灰岩層3は、石灰岩の炭酸カルシウムにより掘削残土層2から滲出した硫酸酸性水を中和する。
本実施形態では、石灰岩層3の透水係数の大きさが、掘削残土層2の透水係数以上となるように、石灰岩層3を構成する石灰岩の粒径等を設定する。なお、石灰岩層3において使用する石灰岩の種類は限定されるものではなく、適宜選定して使用する。
When water permeates into the excavated soil layer 2, sulfuric acid acidic water is generated by oxidizing and dissolving pyrite in the excavated shear. The limestone layer 3 neutralizes the sulfuric acid acidic water oozed from the excavated residual soil layer 2 with calcium carbonate of limestone.
In this embodiment, the particle size of the limestone that constitutes the limestone layer 3 is set so that the permeability coefficient of the limestone layer 3 is equal to or greater than the permeability coefficient of the excavation residual soil layer 2. In addition, the kind of limestone used in the limestone layer 3 is not limited, and selects and uses it suitably.

石灰岩層3の層厚は、硫酸酸性水を中和するために必要な反応時間(滞留時間)を確保できる厚さに設定する。   The layer thickness of the limestone layer 3 is set to a thickness that can secure the reaction time (retention time) necessary for neutralizing the sulfuric acid acidic water.

石灰岩層3の層厚Hは、まず、算定層厚HSAを算出し、これを最低層厚HSBと比較していずれか大きい方の値を選定することにより設定する。なお、最低層厚HSBは、石灰岩層3を構成する石灰岩の粒径が4.75以上9.5mm未満の場合は4.5cm以上、石灰岩の粒径が0.25以上4.75mm未満の場合は2cm以上とする。ここで、石灰岩の粒径は、ふるい試験(JISA−1204)の結果に基いて決定すればよい。 The thickness H of the limestone layer 3, first, calculates the estimated layer thickness H SA, set by selecting whichever is larger which was compared with the minimum layer thickness H SB. Incidentally, the lowest layer thickness H SB is limestone constituting the limestone layer 3 particle size is of less than 4.75 or more 9.5 mm 4.5 cm or more, the particle size of limestone is less than 0.25 4.75mm In this case, the length is 2 cm or more. Here, the particle size of the limestone may be determined based on the result of the sieve test (JISA-1204).

算定層厚HSAの算出は、石灰岩層3の透水係数kにより算出された石灰岩層3中の浸透水の流速Sと、硫酸酸性水の中和に必要な滞留時間Tとの積を、石灰岩層3の空隙率pで除することにより算出する(式1参照)。 The calculated layer thickness HSA is calculated by calculating the product of the flow rate S of the osmotic water in the limestone layer 3 calculated by the hydraulic conductivity k of the limestone layer 3 and the residence time T necessary for neutralization of the acidic sulfuric acid water. It is calculated by dividing by the porosity p of the layer 3 (see Equation 1).

SA=S×T/(p/100) ・・・式1
ここで、HSA:算定層厚(cm)
S:浸透水の流速(cm/sec)=k×i
T:中和に必要な滞留時間(sec)
p:石灰岩層の空隙率(%)
k:透水係数(cm/sec)
i:動水勾配
H SA = S × T / (p / 100) (1)
Where H SA : Calculated layer thickness (cm)
S: Flow rate of osmotic water (cm / sec) = k × i
T: Residence time required for neutralization (sec)
p: Porosity of limestone layer (%)
k: Permeability coefficient (cm / sec)
i: Hydrodynamic gradient

石灰岩層3は、掘削ずりを投入する前に、層厚Hを確保した状態で地盤5に形成された凹部の表面に敷設する。   The limestone layer 3 is laid on the surface of the recess formed in the ground 5 in a state where the layer thickness H is secured before the excavation shear is introduced.

覆土層4は、掘削残土層2が風雨等により流出することを防止するために、掘削残土層2の上面を覆うように形成された層である。   The soil covering layer 4 is a layer formed so as to cover the upper surface of the excavated residual soil layer 2 in order to prevent the residual excavated soil layer 2 from flowing out due to wind and rain.

覆土層4を構成する材料は、有害物質を含んでおらず、酸性化しない材料であれば限定されるものではなく、適宜材料を選定して形成すればよい。また、覆土層4の層厚も限定されるものではなく、適宜設定することが可能である。本実施形態では、覆土層4の透水係数が掘削残土層2の透水係数よりも小さくなるように、覆土層4を構成する材料を選定する。   The material constituting the soil covering layer 4 is not limited as long as it does not contain harmful substances and does not acidify, and may be formed by appropriately selecting the material. The layer thickness of the soil covering layer 4 is not limited and can be set as appropriate. In this embodiment, the material which comprises the soil covering layer 4 is selected so that the water permeability coefficient of the soil covering layer 4 may become smaller than the water permeability coefficient of the excavation residual soil layer 2.

本実施形態では、掘削残土層2の上面と石灰岩層3の上面とを覆うように、覆土層4を形成する。なお、覆土層4は、少なくとも掘削残土層2の表面(上面)を覆うように形成されていればよく、必ずしも石灰岩層3の表面を覆う必要はない。   In the present embodiment, the soil covering layer 4 is formed so as to cover the upper surface of the excavated residual soil layer 2 and the upper surface of the limestone layer 3. Note that the cover layer 4 only needs to be formed so as to cover at least the surface (upper surface) of the excavated residual soil layer 2, and does not necessarily need to cover the surface of the limestone layer 3.

以上、本実施形態の残土処分構造1によれば、掘削ずりの周囲に石灰岩層3を形成するのみの簡易な構成のため、中和プラント等の設備や当該設備を設置するための用地を確保する必要がなく、簡易かつ安価に構成することが可能である。   As mentioned above, according to the residual soil disposal structure 1 of this embodiment, since it is a simple structure which only forms the limestone layer 3 around excavation shear, the site for installing facilities, such as a neutralization plant, and the said facilities is secured. There is no need to do this, and it is possible to construct the apparatus simply and inexpensively.

また、掘削残土層2の周囲を覆う石灰岩層3の層厚を2cm以上確保しているため、掘削残土層2が含有する黄鉄鉱が酸化溶解することにより生成された硫酸酸性水を中和して、周辺地盤への汚染物質の滲出を防止することができる。   Moreover, since the layer thickness of the limestone layer 3 covering the periphery of the excavated residual soil layer 2 is ensured to be 2 cm or more, the sulfuric acid acidic water generated by oxidizing and dissolving the pyrite contained in the excavated residual soil layer 2 is neutralized. It is possible to prevent the exudation of contaminants to the surrounding ground.

また、石灰岩を使用しているため、水に溶解したとしても、pHは8.5程度しか上昇しないため、アルカリ汚染を引き起こす可能性が低い。   Moreover, since limestone is used, even if it dissolves in water, the pH only rises by about 8.5, so it is less likely to cause alkali contamination.

また、石灰岩層3の透水係数の大きさが掘削残土層2以上であって、掘削残土層2の透水係数の大きさが覆土層4以上に構成されているため、浸透水が各層の境界部で湛水することが防止されている。ゆえに、掘削残土層2と覆土層4との境界に湛水することで覆土が流出することや、掘削残土層2と石灰岩層3との境界に湛水することで水みちが形成されて浸透水が中和されないまま地盤5に滲出することを防止できる。   In addition, since the permeability coefficient of the limestone layer 3 is greater than or equal to the excavation residual soil layer 2 and the hydraulic conductivity coefficient of the excavation residual soil layer 2 is greater than or equal to the covering soil layer 4, It is prevented from flooding. Therefore, flooding occurs at the boundary between the excavation residual soil layer 2 and the cover soil layer 4 and the cover soil flows out, or flooding at the boundary between the excavation residual soil layer 2 and the limestone layer 3 forms a water channel. It is possible to prevent the water from leaching to the ground 5 without being neutralized.

また、掘削残土層2の表面を覆土層4により覆っているため、掘削残土層2に浸透する水(降雨等)の量を調整するとともに、水の浸透を均等化する。これにより、掘削残土層2内において生成される硫酸酸性水の量および濃度を均等化し、石灰岩層3による中和効率をより向上させる。   Moreover, since the surface of the excavation residual soil layer 2 is covered with the covering soil layer 4, the amount of water (rainfall, etc.) penetrating into the excavation residual soil layer 2 is adjusted and water infiltration is equalized. Thereby, the quantity and density | concentration of sulfuric acid acidic water produced | generated in the excavation residual soil layer 2 are equalized, and the neutralization efficiency by the limestone layer 3 is improved more.

なお、残土処分構造1の構成は限定されるものではなく、地盤5の地形等に応じて適宜形成することが可能である。
例えば、平坦な地盤5上に掘削ずりを盛土処分する場合には、図2に示す残土処分構造1aのように、掘削残土層2と、掘削残土層2の側面および底面を覆う石灰岩層3と、掘削残土層2と石灰岩層3の表面を覆う覆土層4とにより構成する。
In addition, the structure of the remaining soil disposal structure 1 is not limited, It can form suitably according to the topography etc. of the ground 5.
For example, when excavating the excavation shear on the flat ground 5, the excavated residual soil layer 2, and the limestone layer 3 covering the side and bottom surfaces of the excavated residual soil layer 2, as in the residual soil disposal structure 1 a shown in FIG. The excavation residual soil layer 2 and the cover soil layer 4 covering the surface of the limestone layer 3 are configured.

残土処分構造1aは、以下の手順により形成する。まず、地盤5上に2cm以上の厚みを確保した状態で敷設された石灰岩層3の上面に、安定勾配を確保した状態で断面台形に掘削残土層2を盛土する。次に、掘削残土層2の側面の覆うように2cm以上の厚みを確保した状態で石灰岩層3を形成する。さらに、掘削残土層2の上面と、石灰岩層3の上面および側面を覆うように覆土層4を形成する。
なお、覆土層4は少なくとも掘削残土層2の表面(上面)を覆うように形成されていればよく、必ずしも石灰岩層3の表面を覆う必要はない。また、石灰岩層3と地盤5との間で湛水することを防止するために、石灰岩層3の下端から覆土層4を貫通する排水管を配管してもよい。
The remaining soil disposal structure 1a is formed by the following procedure. First, the excavated residual soil layer 2 is embanked in a trapezoidal cross section with a stable gradient secured on the upper surface of the limestone layer 3 laid on the ground 5 with a thickness of 2 cm or more secured. Next, the limestone layer 3 is formed in a state where a thickness of 2 cm or more is secured so as to cover the side surface of the excavated residual soil layer 2. Further, the cover soil layer 4 is formed so as to cover the upper surface of the excavated residual soil layer 2 and the upper surface and side surfaces of the limestone layer 3.
Note that the soil cover layer 4 only needs to be formed so as to cover at least the surface (upper surface) of the excavated residual soil layer 2, and does not necessarily need to cover the surface of the limestone layer 3. In order to prevent flooding between the limestone layer 3 and the ground 5, a drain pipe penetrating the cover soil layer 4 from the lower end of the limestone layer 3 may be provided.

また、図3に示す残土処分構造1bまたは図4に示す残土処分構造1cのように、石灰岩層3と地盤5との間に、石灰岩層3よりも透水係数が小さい敷土層6を形成することで、石灰岩層3内での浸透水の滞留時間を長くする構成としてもよい。   Moreover, like the residual soil disposal structure 1b shown in FIG. 3 or the residual soil disposal structure 1c shown in FIG. 4, a soil layer 6 having a smaller hydraulic conductivity than the limestone layer 3 is formed between the limestone layer 3 and the ground 5. Therefore, the residence time of the permeated water in the limestone layer 3 may be increased.

残土処分構造1b、1cによれば、石灰岩層3を構成する石灰岩の粒径を大きくしても、所望の滞留時間を確保できるため、掘削残土層2から滲出した硫酸酸性水を中和することができる。
ここで、敷土層6を構成する材料は、地盤5よりも細粒の材料により構成するのが望ましい。なお、敷土層6を構成する材料として、覆土層4と同じ材料を使用してもよい。
According to the remaining soil disposal structures 1b and 1c, even if the particle size of the limestone constituting the limestone layer 3 is increased, a desired residence time can be secured, so that the sulfuric acid acid water leached from the excavated residual soil layer 2 is neutralized. Can do.
Here, it is desirable that the material constituting the clay layer 6 is made of a material having finer grains than the ground 5. Note that the same material as that of the soil covering layer 4 may be used as the material constituting the covering layer 6.

また、地盤5が傾斜している場合には、傾斜面(法面)に沿って盛土を行うことで残土処分構造1dに形成してもよい。   Moreover, when the ground 5 is inclined, the remaining soil disposal structure 1d may be formed by embankment along an inclined surface (slope).

法面に沿って残土処分構造1dを形成する場合には、法面に沿って石灰岩層3bを形成し、石灰岩層3b上に掘削残土層2を、安定勾配を確保した状態で形成する。そして、掘削残土層2の側面(法面)を石灰岩層3aにより覆う。さらに、掘削残土層2および石灰岩層3(3a,3b)の表面を覆土層4により覆う。   When the remaining soil disposal structure 1d is formed along the slope, the limestone layer 3b is formed along the slope, and the excavated residual soil layer 2 is formed on the limestone layer 3b while ensuring a stable gradient. And the side surface (slope) of the excavation residual soil layer 2 is covered with the limestone layer 3a. Furthermore, the surface of the excavation residual soil layer 2 and the limestone layer 3 (3a, 3b) is covered with the covering soil layer 4.

残土処分構造1dにおいて、掘削残土層2と石灰岩層3aとに跨って排水管7,7を配管することで、硫酸酸性水を石灰岩層3aに誘導してもよい。このとき、石灰岩層3aに浸透した硫酸酸性水は石灰岩層3aの傾斜に沿って流下することで十分な滞留時間を確保することができるため、石灰岩層3aに使用される石灰岩は粒径が他方の石灰岩層3bで使用される石灰岩の粒径に比べて大きなものでもよい。   In the residual soil disposal structure 1d, the sulfuric acid acidic water may be guided to the limestone layer 3a by piping the drain pipes 7 and 7 across the excavated residual soil layer 2 and the limestone layer 3a. At this time, since the sulfuric acid acid water that has permeated into the limestone layer 3a can flow along the slope of the limestone layer 3a to ensure a sufficient residence time, the limestone used for the limestone layer 3a has the other particle size. The particle size of the limestone used in the limestone layer 3b may be larger.

なお、残土処分構造1dの最下部には、透水係数の大きい材料により排水口8を形成し、石灰岩層3からの排水が可能となるように構成する。なお、排水口8には、石灰岩を配置してもよいし、排水管を配管してもよい。   In addition, the drainage port 8 is formed in the lowest part of the residual soil disposal structure 1d with a material with a large hydraulic conductivity so that drainage from the limestone layer 3 is possible. The drain port 8 may be provided with limestone or a drain pipe.

本発明は、前述の実施形態に限られず、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

次に、石灰岩層の層厚の設定方法に係る実施例を示す。
本実施例では、カラム10を利用した室内試験により、石灰岩層の最低層厚HSBの検討を行った。
Next, the Example which concerns on the setting method of the layer thickness of a limestone layer is shown.
In the present embodiment, the indoor test using a column 10, was investigated lowest layer thickness H SB limestone layer.

本試験は、図6(a)に示すように、石灰岩11が投入されたカラム10に、下部から0.01mol/Lの硫酸水溶液12を流入させて、カラム10内の石灰岩11を通過させた後、上部から排出された水溶液13のpHを測定することで、石灰岩層による中和特性を測定した。   In this test, as shown in FIG. 6A, a 0.01 mol / L sulfuric acid aqueous solution 12 was flowed from the lower part into the column 10 into which the limestone 11 was introduced, and the limestone 11 in the column 10 was passed through. Then, the neutralization characteristic by a limestone layer was measured by measuring pH of the aqueous solution 13 discharged | emitted from the upper part.

本試験では、石灰岩の粒径が4.75以上9.5mm未満(ケース1)と、粒径が2.0以上4.75mm未満(ケース2)と、粒径が0.25以上2.0mm未満(ケース3)と、の3ケースについて測定を行った(表1参照)。   In this test, the particle size of limestone is 4.75 to 9.5 mm (case 1), the particle size is 2.0 to 4.75 mm (case 2), and the particle size is 0.25 to 2.0 mm. Less than (case 3) were measured (see Table 1).

Figure 2011056430
Figure 2011056430

中和能力は、水質汚濁防止法排水基準を満たすように、酸性水を少なくともpH5.8まで中和する能力を最低基準とした。
石灰岩は中和反応が進むにしたがって消費されるから、カラム内の石灰岩高さは中和反応の進行にともなって減少する。
The minimum neutralization ability was defined as the ability to neutralize acidic water to at least pH 5.8 so as to satisfy the water pollution prevention method drainage standard.
Since limestone is consumed as the neutralization reaction proceeds, the limestone height in the column decreases with the progress of the neutralization reaction.

本試験では、カラム10内に石灰岩を補充することなく、石灰岩11の高さを低くなる方向に変化させて、流量一定にて硫酸水溶液12をカラム10(石灰岩11)内に流入させて、pHの中和効果を測定した。本試験によれば、石灰岩高さが所定値を越えると必要な中和反応をしなくなるポイントが明らかになる。
本試験の結果を図6(b)に示す。ここで、図面において符号C1,C2,C3は、それぞれケース1、ケース2、ケース3を示している。
In this test, without replenishing the limestone in the column 10, the height of the limestone 11 is changed in a decreasing direction, and the sulfuric acid aqueous solution 12 is caused to flow into the column 10 (limestone 11) at a constant flow rate to adjust the pH. The neutralization effect of was measured. According to this test, the point at which the necessary neutralization reaction does not occur when the limestone height exceeds a predetermined value becomes clear.
The result of this test is shown in FIG. Here, in the drawings, reference numerals C1, C2, and C3 indicate case 1, case 2, and case 3, respectively.

図6(b)に示すように、ケース1(C1)の場合は、石灰岩の高さ(層厚)が4.5cm以下になると、pHが低下し、中和効果が上記最低基準を満たさなくなった。また、ケース2(C2)およびケース3(C3)の場合は、石灰岩の高さ(層厚)が2cm以下になると、pHの値が上下して、中和効果が不安定となった。したがって、石灰岩層の最低層厚HSBとしては、石灰岩11の粒径が4.75以上9.5mm未満の場合は4.5cm、石灰岩11の粒径が0.25以上4.75mm未満の場合は2cmに設定すればよく、石灰岩層3の層厚は2cm以上であればよいことが実証された。 As shown in FIG. 6B, in case 1 (C1), when the height (layer thickness) of the limestone is 4.5 cm or less, the pH is lowered and the neutralization effect does not satisfy the above minimum standard. It was. In case 2 (C2) and case 3 (C3), when the height (layer thickness) of limestone was 2 cm or less, the pH value increased and decreased, and the neutralization effect became unstable. Therefore, the lowest layer thickness H SB limestone layer, if the particle size of the limestone 11 is less than 4.75 or more 9.5 mm 4.5 cm, when the particle diameter of the limestone 11 is less than 0.25 or more 4.75mm It was demonstrated that the thickness of the limestone layer 3 should be 2 cm or more.

1 残土処分構造
2 掘削残土層
3 石灰岩層
4 覆土層
5 地盤
6 敷土層
7 排水管
8 排水口
1 Waste soil disposal structure 2 Excavated soil layer 3 Limestone layer 4 Covering layer 5 Ground 6 Soil layer 7 Drain pipe 8 Drain port

Claims (3)

掘削残土層と、前記掘削残土層の側面および底面を覆い前記掘削残土層から滲出する酸性水の中和を行う中和層と、前記掘削残土層の上面を覆い浸透する水量を制限する覆土層と、を備える残土処分構造であって、
前記中和層は、炭酸カルシウムを主成分とする中和材から構成され、前記酸性水を中和するために必要な滞留時間を確保して前記酸性水が外部に滲出することがない層厚とされていることを特徴とする残土処分構造。
The excavated residual soil layer, the neutralization layer that covers the side and bottom surfaces of the excavated residual soil layer and neutralizes the acid water that exudes from the excavated residual soil layer, and the covered soil layer that covers the upper surface of the excavated residual soil layer and limits the amount of water that penetrates A residual soil disposal structure comprising:
The neutralization layer is composed of a neutralizing material mainly composed of calcium carbonate, and has a layer thickness that ensures the residence time necessary to neutralize the acidic water and prevents the acidic water from leaching to the outside. The remaining soil disposal structure is characterized by that.
前記中和層の層厚が、前記中和層の浸透水の流速と中和に必要な滞留時間との積を前記中和層の空隙率で除した値以上であることを特徴とする、請求項1に記載の残土処分構造。   The layer thickness of the neutralization layer is not less than a value obtained by dividing the product of the flow rate of permeated water of the neutralization layer and the residence time required for neutralization by the porosity of the neutralization layer, The residual soil disposal structure according to claim 1. 前記中和層の透水係数の大きさが前記掘削残土層以上であって、前記掘削残土層の透水係数の大きさが前記覆土層以上であることを特徴とする、請求項1または請求項2に記載の残土処分構造。   The magnitude of the hydraulic conductivity of the neutralization layer is greater than or equal to the excavated residual soil layer, and the magnitude of the hydraulic conductivity of the excavated residual soil layer is greater than or equal to the covered soil layer. The remaining soil disposal structure described in 1.
JP2009210337A 2009-09-11 2009-09-11 Residual soil disposal structure Active JP5498104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210337A JP5498104B2 (en) 2009-09-11 2009-09-11 Residual soil disposal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210337A JP5498104B2 (en) 2009-09-11 2009-09-11 Residual soil disposal structure

Publications (2)

Publication Number Publication Date
JP2011056430A true JP2011056430A (en) 2011-03-24
JP5498104B2 JP5498104B2 (en) 2014-05-21

Family

ID=43944712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210337A Active JP5498104B2 (en) 2009-09-11 2009-09-11 Residual soil disposal structure

Country Status (1)

Country Link
JP (1) JP5498104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175356B1 (en) * 2021-08-04 2022-11-18 東急建設株式会社 Method of designing the amount of neutralizing agent to be added to excavation muck

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631491A (en) * 1979-08-21 1981-03-30 Ebara Infilco Co Ltd Neutralization of acidic water containing hydrogen chloride and sulfuric acid
JPS5785414A (en) * 1980-11-15 1982-05-28 Takuma Sogo Kenkyusho:Kk Reclamation construction work
JPH09220579A (en) * 1996-02-14 1997-08-26 Nippon Shibitsuku Consultant Kk Neutralization treatment structure of river water
JPH09510909A (en) * 1993-12-29 1997-11-04 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッド Composition or method for reducing or preventing metal and acid contaminants in rock drain
JP2000140786A (en) * 1998-11-06 2000-05-23 Ohbayashi Corp Waste disposal plant
JP2001157883A (en) * 1999-12-02 2001-06-12 Ohbayashi Corp Method for treating incineration ash and industrial waste disposal site using the same
JP2003154327A (en) * 2001-11-22 2003-05-27 Central Res Inst Of Electric Power Ind Landfill structure of disposal site for alkaline waste such as coal ash
JP2006026472A (en) * 2004-07-13 2006-02-02 Asahi Kagaku Kogyo Co Ltd Method for neutralizing alkali soil and leachate from the soil
KR100693809B1 (en) * 2006-05-25 2007-03-12 손효상 The system and method about neutralization of water and stabilization of soil using alkalinity liner when making a pile the muck which has the pyrite
JP2010242452A (en) * 2009-04-09 2010-10-28 Ohbayashi Corp Construction method for muck bank, and banking structure of muck bank
JP2011056429A (en) * 2009-09-11 2011-03-24 Taisei Corp Surplus soil disposal structure and method of setting layer thickness of neutralizing layer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631491A (en) * 1979-08-21 1981-03-30 Ebara Infilco Co Ltd Neutralization of acidic water containing hydrogen chloride and sulfuric acid
JPS5785414A (en) * 1980-11-15 1982-05-28 Takuma Sogo Kenkyusho:Kk Reclamation construction work
JPH09510909A (en) * 1993-12-29 1997-11-04 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッド Composition or method for reducing or preventing metal and acid contaminants in rock drain
JPH09220579A (en) * 1996-02-14 1997-08-26 Nippon Shibitsuku Consultant Kk Neutralization treatment structure of river water
JP2000140786A (en) * 1998-11-06 2000-05-23 Ohbayashi Corp Waste disposal plant
JP2001157883A (en) * 1999-12-02 2001-06-12 Ohbayashi Corp Method for treating incineration ash and industrial waste disposal site using the same
JP2003154327A (en) * 2001-11-22 2003-05-27 Central Res Inst Of Electric Power Ind Landfill structure of disposal site for alkaline waste such as coal ash
JP2006026472A (en) * 2004-07-13 2006-02-02 Asahi Kagaku Kogyo Co Ltd Method for neutralizing alkali soil and leachate from the soil
KR100693809B1 (en) * 2006-05-25 2007-03-12 손효상 The system and method about neutralization of water and stabilization of soil using alkalinity liner when making a pile the muck which has the pyrite
JP2010242452A (en) * 2009-04-09 2010-10-28 Ohbayashi Corp Construction method for muck bank, and banking structure of muck bank
JP2011056429A (en) * 2009-09-11 2011-03-24 Taisei Corp Surplus soil disposal structure and method of setting layer thickness of neutralizing layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175356B1 (en) * 2021-08-04 2022-11-18 東急建設株式会社 Method of designing the amount of neutralizing agent to be added to excavation muck

Also Published As

Publication number Publication date
JP5498104B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5291927B2 (en) Fresh water storage and intake system
KR100693809B1 (en) The system and method about neutralization of water and stabilization of soil using alkalinity liner when making a pile the muck which has the pyrite
JP5628014B2 (en) Impermeable wall structure
JP5525218B2 (en) Waste soil disposal structure and neutralization layer thickness setting method
JP2009133110A (en) Drainage system structure
JP5498104B2 (en) Residual soil disposal structure
JP5152801B2 (en) Ground improvement method
Dagenais et al. Monitoring at the Lorraine mine site: a follow up on the remediation plan
JP2019010610A (en) Storage structure of heavy metal polluted soil
JP5659693B2 (en) Condensation method and condensate system
JP2010242452A (en) Construction method for muck bank, and banking structure of muck bank
JP2008194544A (en) Groundwater neutralization method of heavy metal- containing acidic soil
JP2008133598A (en) Rainwater storage and penetration tank
James et al. Geotechnical aspects of sabkha at Jubail, Saudi Arabia
JP2009112969A (en) Method for treating acid soil
CN103999592A (en) Method for avoiding vegetation degradation of acid mine waste rock yard
JP2004322017A (en) Drainage system for multi-layer earth cover
JP2018162632A (en) Ground freezing method
JP2007262831A (en) Back-filling method for underground excavated hole
JP2019194408A (en) Impermeable and permeation recovery method in ground
Dong et al. Performance of consolidation techniques for improvement of newly deposited dredged mud by scale model test
JP2917174B2 (en) Underground wall
CN219386276U (en) One-time dam-building tailing pond seepage drainage system
CN207620080U (en) Leachate site guide structure
KR102589606B1 (en) System and Method for Remediation of Polluted Ground Water and for Recharge of Ground Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5498104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250