JP2019010610A - Storage structure of heavy metal polluted soil - Google Patents

Storage structure of heavy metal polluted soil Download PDF

Info

Publication number
JP2019010610A
JP2019010610A JP2017128152A JP2017128152A JP2019010610A JP 2019010610 A JP2019010610 A JP 2019010610A JP 2017128152 A JP2017128152 A JP 2017128152A JP 2017128152 A JP2017128152 A JP 2017128152A JP 2019010610 A JP2019010610 A JP 2019010610A
Authority
JP
Japan
Prior art keywords
layer
water
leachate
contaminated soil
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017128152A
Other languages
Japanese (ja)
Other versions
JP6919368B2 (en
Inventor
三浦 俊彦
Toshihiko Miura
俊彦 三浦
憲司 西田
Kenji Nishida
憲司 西田
祐樹 山田
Yuki Yamada
祐樹 山田
智貴 森下
Tomoki Morishita
智貴 森下
甫 長谷川
Hajime Hasegawa
甫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017128152A priority Critical patent/JP6919368B2/en
Publication of JP2019010610A publication Critical patent/JP2019010610A/en
Application granted granted Critical
Publication of JP6919368B2 publication Critical patent/JP6919368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To effectively enhance contact frequency between an adsorbent and a heavy metal in an adsorption layer while making reworkability easy.SOLUTION: A storage structure has a banking body part 1A in which at least a water shielding layer 2 and a polluted soil layer 4 containing a heavy metal are laminated from a foundation side G, and a leachate flowing down on an upper surface of the water shielding layer 3 from the polluted soil layer 4 is introduced to a side surface 2A of the water shielding layer 2, and an adsorption layer 6 which is arranged in contact with at least the side surface 2A of the water shielding layer 2, and in which the leachate leaching from the banking body part 1A is distributed and an adsorbent adsorbing the heavy metal contained in the leachate is mixed.SELECTED DRAWING: Figure 1

Description

本発明は、重金属が含まれる汚染土を貯蔵する貯蔵構造に関する。   The present invention relates to a storage structure for storing contaminated soil containing heavy metals.

掘削で発生するずりには、土壌環境基準で規定される重金属(例えば、カドミウム、鉛、六価クロム、水銀、砒素、セレン、フッ素、ホウ素)が含まれていることがある。土壌溶出量基準や含有量基準に不適合の場合には、重金属の封じ込め措置などの対策を行う必要がある。   The shear generated by excavation may contain heavy metals (for example, cadmium, lead, hexavalent chromium, mercury, arsenic, selenium, fluorine, boron) specified by soil environmental standards. If it does not comply with the soil elution standard or content standard, it is necessary to take measures such as containment of heavy metals.

この対策の一例として吸着層工法がある。吸着層工法とは、降雨等により盛土内に浸透した浸透水に汚染土層内の重金属を溶出させて吸着層に浸出させ、浸出水が吸着層を通過する間に、重金属を吸着材に吸着させることにより、浸出水における重金属の濃度(以下、単に汚染濃度ともいう)を環境に影響を与えないレベルに低減させて排出する工法である。この種の吸着層工法に用いられる一般的な盛土構造として、例えば、特許文献1〜3には、砕石や砂等の母材と吸着材とを混合した吸着層を、汚染土層の下部に略全面に亘って設けた構造が開示されている。   An example of this countermeasure is an adsorption layer method. The adsorption layer method is the method of leaching the heavy metal in the contaminated soil layer into the permeated water that has penetrated into the embankment due to rainfall, etc. and leaching it into the adsorption layer, and adsorbs the heavy metal to the adsorbent while the leachate passes through the adsorption layer. This is a method of discharging by reducing the concentration of heavy metals in the leachate (hereinafter also simply referred to as contamination concentration) to a level that does not affect the environment. As a general embankment structure used for this kind of adsorption layer construction method, for example, in Patent Documents 1 to 3, an adsorption layer in which a base material such as crushed stone or sand and an adsorbent are mixed is provided below the contaminated soil layer. A structure provided over substantially the entire surface is disclosed.

特開2011−240289号公報JP 2011-240289A 特開2012−110852号公報JP 2012-110852 A 特開2014−226589号公報JP 2014-226589 A

ところで、浸出水の汚染濃度を効果的に低減させるには、吸着層に混合される吸着材と浸出水に含まれる重金属との接触頻度(重金属が吸着材に接触して吸着される機会)を高めることが望まれる。   By the way, in order to effectively reduce the contamination concentration of the leachate, the contact frequency between the adsorbent mixed in the adsorbent layer and the heavy metal contained in the leachate (the chance that the heavy metal is adsorbed by contacting the adsorbent) is increased. It is desirable to increase.

上記従来の一般的な盛土構造では、吸着層が汚染土層の下部に広範囲に亘って設けられるため、吸着層の体積は必然的に大きくなる。このため、吸着材の混合量を単純に増加させることにより、吸着材と重金属との接触頻度を高めようとすると、吸着材量が汚染濃度に対して過剰になることで、費用が無駄に嵩むといった課題がある。一方、汚染濃度に対して適量な吸着材を体積の大きい吸着層に混合させると、単位体積当たりの吸着材量が減少することにより接触頻度の低下を招き、汚染濃度を効果的に低減できなくなる課題もある。   In the conventional general embankment structure, since the adsorption layer is provided over a wide range below the contaminated soil layer, the volume of the adsorption layer inevitably increases. For this reason, if the frequency of contact between the adsorbent and the heavy metal is increased by simply increasing the amount of adsorbent mixed, the amount of adsorbent becomes excessive with respect to the contamination concentration, resulting in a wasteful cost. There is a problem. On the other hand, if an adsorbent suitable for the contamination concentration is mixed in an adsorption layer with a large volume, the amount of adsorbent per unit volume will decrease, leading to a decrease in contact frequency, making it impossible to effectively reduce the contamination concentration. There are also challenges.

また、汚染土層からの重金属の浸出が長期化し、これに伴い吸着層の吸着能力が劣化した場合には、吸着層を掘削除去して新たに入れ替える盛土の再施工が必要となる。上記従来の盛土構造では、吸着層が汚染土層の下部全面に亘って敷設されているため、吸着層を入れ替える際には、上層の汚染土層を含めた盛土全体の掘削除去が必要となり、再施工に要する工期の長期化、さらには、工費が嵩むといった課題もある。   In addition, when the leaching of heavy metals from the contaminated soil layer is prolonged and the adsorption capacity of the adsorption layer is deteriorated along with this, it is necessary to reconstruct the embankment to excavate and remove the adsorption layer and replace it with a new one. In the conventional embankment structure, since the adsorption layer is laid across the entire lower surface of the contaminated soil layer, exchanging and removing the entire embankment including the upper contaminated soil layer is necessary when replacing the adsorption layer, There is also a problem that the construction period required for reconstruction is prolonged, and further, the construction cost is increased.

本開示の技術は、再施工性を容易にしつつ、吸着層における吸着材と重金属との接触頻度を効果的に高めることが可能な重金属汚染土の貯蔵構造を提供することを目的とする。   An object of the technology of the present disclosure is to provide a heavy metal-contaminated soil storage structure capable of effectively increasing the contact frequency between an adsorbent and a heavy metal in an adsorption layer while facilitating re-workability.

本開示の技術は、地盤側から少なくとも遮水層及び、重金属を含む汚染土層が積層され、前記汚染土層から前記遮水層の上面に流下する浸出水が当該遮水層の側面に向けて案内される盛土本体部と、前記盛土本体部の外側に、少なくとも前記遮水層の前記側面に接して設けられ、前記盛土本体部から浸出する浸出水を流通させると共に、当該浸出水に含まれる前記重金属を吸着する吸着材が混合された吸着層と、を備えることを特徴とする。   In the technology of the present disclosure, at least a water-impervious layer and a contaminated soil layer containing heavy metals are laminated from the ground side, and leachate flowing from the contaminated soil layer to the upper surface of the water-impervious layer is directed to the side surface of the water-impervious layer. The embankment main body portion guided and the outer side of the embankment main body portion are provided in contact with at least the side surface of the water shielding layer, and the leachate leached from the embankment main body portion is circulated and included in the leachate water. And an adsorbing layer mixed with an adsorbing material that adsorbs the heavy metal.

また、前記盛土本体部の前記遮水層と前記汚染土層との層間に、前記遮水層よりも透水係数の高い排水層が設けられ、前記汚染土層から流下する浸出水が当該排水層内を流れて前記遮水層の前記側面に向けて案内されることが好ましい。   Further, a drainage layer having a higher permeability than the impermeable layer is provided between the impermeable layer and the contaminated soil layer of the embankment main body, and the leachate flowing down from the contaminated soil layer is the drainage layer. It is preferable that the flow guides toward the side surface of the water shielding layer.

また、前記吸着層内に埋設され、前記吸着層内の浸出水の流れを部分的に遮ることにより当該吸着層内における浸出水流路を長くする遮水部材をさらに備えることが好ましい。   Moreover, it is preferable to further include a water shielding member that is embedded in the adsorption layer and lengthens the leachate flow path in the adsorption layer by partially blocking the flow of the leachate in the adsorption layer.

また、前記遮水部材が、前記吸着層内に上下に間隔をおいて互い違いに対向配置されて前記浸出水流路を蛇行させる複数枚の遮水シートであってもよい。   Moreover, the said water-impervious member may be a plurality of water-impervious sheets that are alternately arranged in the adsorbing layer at intervals in the vertical direction and meander the leachate flow path.

また、前記遮水シートが、そのシート面を浸出水の流れ方向上流側から下流側に向かって上り勾配となるように傾斜させて前記吸着層内に埋設されてもよい。   Moreover, the said water-impervious sheet may be embedded in the said adsorption layer, making the sheet | seat surface incline so that it may become an upward gradient toward the downstream from the flow direction upstream of the leaching water.

また、前記遮水部材が、前記吸着層内に鉛直方向に埋設された遮水シートであり、当該遮水シートのシート面と前記遮水層の前記側面との間に浸出水が一時的に堰き止められて滞留するものでもよい。   In addition, the water-impervious member is a water-impervious sheet embedded in the adsorption layer in the vertical direction, and leachate is temporarily between the sheet surface of the impermeable sheet and the side surface of the impermeable layer. It may be retained and retained.

また、前記盛土本体部の少なくとも前記吸着層と接する部位に法面補強層が形成されてもよい。   In addition, a slope reinforcing layer may be formed on at least a portion of the embankment main body that is in contact with the adsorption layer.

本開示の重金属汚染土の貯蔵構造によれば、再施工性を容易にしつつ、吸着層における吸着材と重金属との接触頻度を効果的に高めることができる。   According to the heavy metal contaminated soil storage structure of the present disclosure, it is possible to effectively increase the contact frequency between the adsorbent and the heavy metal in the adsorption layer while facilitating the re-workability.

本実施形態に係る盛土を示す模式的な縦断面図である。It is a typical longitudinal section showing embankment concerning this embodiment. 本実施形態に係る盛土の要部を示す模式的な縦断面図である。It is a typical longitudinal section showing the important section of embankment concerning this embodiment. 本実施形態に係る集水構造を示す模式的な斜視図である。It is a typical perspective view showing the water collection structure concerning this embodiment. 本実施形態に係る盛土の施工手順を説明する模式的図である。It is a mimetic diagram explaining the construction procedure of embankment concerning this embodiment. 本実施形態に係る第2盛土部の再施工手順を説明する模式的図である。It is a schematic diagram explaining the re-construction procedure of the 2nd embankment part which concerns on this embodiment. (A)は、本実施形態に係る盛土における浸出水の流れを模式的に説明する縦断面図である。(B)は、一般的な盛土を示す模式的な縦断面図である。(A) is a longitudinal cross-sectional view schematically illustrating the flow of leachate in the embankment according to the present embodiment. (B) is a schematic longitudinal cross-sectional view which shows a general embankment. 本実施形態に係る吸着層の各種変形例を示す模式的な縦断面図である。It is a typical longitudinal section showing various modifications of an adsorption layer concerning this embodiment. 通水試験用の試験装置を模式的に説明する図である。It is a figure which illustrates typically the test device for a water flow test. (A)は、通水試験の使用材料を説明する図である。(B)は、通水試験の試験ケースを説明する図である。(A) is a figure explaining the material used for a water flow test. (B) is a figure explaining the test case of a water flow test. 通水試験の試験結果を説明する折れ線グラフである。It is a line graph explaining the test result of a water flow test. 他の実施形態に係る盛土を示す模式的な縦断面図である。It is a typical longitudinal section showing embankment concerning other embodiments.

以下、本発明の実施形態を図面に基づいて説明する。図1に示す盛土1は、本発明に係る重金属汚染土の貯蔵構造の一例を示している。盛土1は、側面に法面を有する断面略台形状に形成されており、盛土本体部としての第1盛土部1Aと、第1盛土部1Aの下側法面に隣接して設けられた第2盛土部1Bとを備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embankment 1 shown in FIG. 1 shows an example of a heavy metal contaminated soil storage structure according to the present invention. The embankment 1 is formed in a substantially trapezoidal cross section having a slope on the side surface, and is provided adjacent to the first embankment portion 1A as the embankment main body portion and the lower slope of the first embankment portion 1A. 2 fill sections 1B.

[第1盛土部]
第1盛土部1Aは、地盤Gから順に、遮水層(難透水層)2と、排水層3と、汚染土層4と、第1覆土層5とを積層して構成されている。
[First embankment]
The first embankment portion 1 </ b> A is configured by laminating a water shielding layer (hardly permeable layer) 2, a drainage layer 3, a contaminated soil layer 4, and a first cover soil layer 5 in order from the ground G.

遮水層2は、汚染土層4から排水層3に浸出した浸出水の地盤Gへの浸透を遮るものであり、第1盛土部1Aにおける最下層、具体的には地盤Gの表面に敷設され、その上面には排水層3が積層されている。遮水層2の上面は、水平面状に形成されるか、或は、その外周縁(法頭)に向かって僅かに下る傾斜面状に形成されており、汚染土層4から排水層3に浸出した浸出水が第1盛土部1Aの外周方向へ案内されるようになっている。遮水層2の厚さは、特に限定されないが、例えば30cm〜50cm程度である。   The water shielding layer 2 blocks the permeation of the leachate leached from the contaminated soil layer 4 into the drainage layer 3 into the ground G, and is laid on the bottom layer of the first embankment 1A, specifically, the surface of the ground G. A drainage layer 3 is laminated on the upper surface. The upper surface of the water-impervious layer 2 is formed in a horizontal plane shape, or is formed in an inclined plane shape slightly lowering toward the outer peripheral edge (the head), and from the contaminated soil layer 4 to the drainage layer 3. The leached water that has leached is guided in the outer circumferential direction of the first embankment 1A. Although the thickness of the water shielding layer 2 is not specifically limited, For example, it is about 30 cm-50 cm.

遮水層2は、平面視において、地盤Gの表面に排水層3の下面外周(法尻)よりも広く敷設されており、その側面には所定の勾配角度で傾斜する法面2Aが設けられている。法面2Aの勾配は、特に限定されないが、例えば1:0.5程度とされる。本実施形態において、法面2Aには、好ましくは、平面視ハニカム格子構造のテラセル(登録商標)或は、シート状のジオテキスタイルやジオグリッド等により形成した法面補強層2Bが設けられている。   The water-impervious layer 2 is laid more widely on the surface of the ground G than the outer periphery of the bottom surface of the drainage layer 3 (the buttock) in plan view, and a slope 2A inclined at a predetermined gradient angle is provided on the side surface. ing. The slope of the slope 2A is not particularly limited, but is, for example, about 1: 0.5. In the present embodiment, the slope 2A is preferably provided with a slope reinforcement layer 2B formed of Terracel (registered trademark) having a honeycomb lattice structure in a plan view, or a sheet-like geotextile or geogrid.

遮水層2の透水係数P1は、ため池の遮水基準である1.0×10−7m/s以下に定められている。本実施形態では、山砂70%と粘性土30%の混合土を締め固めることで、透水係数P1が9.20×10−8m/sの遮水層2を形成している。粘性土としては、例えば、関東化成株式会社の商品名「トチクレー」を用いることができる。 The water permeability coefficient P1 of the water shielding layer 2 is set to 1.0 × 10 −7 m / s or less, which is a water shielding standard for the pond. In this embodiment, the water-impervious layer 2 having a hydraulic conductivity P1 of 9.20 × 10 −8 m / s is formed by compacting a mixed soil of 70% mountain sand and 30% viscous soil. As the cohesive soil, for example, trade name “Tochikure” of Kanto Kasei Co., Ltd. can be used.

排水層3は、汚染土層4から浸出した浸出水を遮水層2の上面に沿って第1盛土部1Aの外周方向へ案内するものであり、汚染土層4と遮水層2との層間に形成されている。すなわち、排水層3の下面は遮水層2の上面に接しており、排水層3の上面は汚染土層4の下面に接している。また、排水層3は、平面視において、遮水層2の上面に遮水層2の上面外周(法頭)よりも内側に敷設されており、その側面には所定の勾配角度で傾斜する法面3Aが設けられている。法面3Aの勾配は、特に限定されないが、好ましくは、法面2Aの勾配と同等の1:0.5程度とされる。法面3Aには、好ましくは、テラセル(登録商標)或は、ジオテキスタイルやジオグリッド等により形成した法面補強層3Bが設けられている。   The drainage layer 3 guides the leachate leached from the contaminated soil layer 4 along the upper surface of the impermeable layer 2 toward the outer periphery of the first embankment portion 1A. It is formed between the layers. That is, the lower surface of the drainage layer 3 is in contact with the upper surface of the water shielding layer 2, and the upper surface of the drainage layer 3 is in contact with the lower surface of the contaminated soil layer 4. In addition, the drainage layer 3 is laid on the upper surface of the impermeable layer 2 on the inner side of the upper surface outer periphery (head) of the impermeable layer 2 in a plan view, and the side surface is inclined at a predetermined gradient angle. A surface 3A is provided. The slope of the slope 3A is not particularly limited, but is preferably about 1: 0.5, which is equivalent to the slope of the slope 2A. The slope 3A is preferably provided with a slope reinforcement layer 3B formed of Terracel (registered trademark), geotextile, geogrid or the like.

本実施形態において、排水層3は、砕石と、山砂や川砂等の砂材とを混合した混合材を締め固めることで形成される。排水層3は、例えば、7号砕石90%と山砂10%とを混合した混合材により、遮水層2の上面を覆うように敷均して締め固めることで形成される。このように形成した排水層3では、例えば透水係数P2が1.76×10−3m/sになり、遮水層2の透水係数P1よりも1.0×10m/s以上高い値(P2>P1)になっている。 In the present embodiment, the drainage layer 3 is formed by compacting a mixed material obtained by mixing crushed stone and sand materials such as mountain sand and river sand. The drainage layer 3 is formed by, for example, spreading and compacting the upper surface of the water-impervious layer 2 with a mixed material in which 90% of No. 7 crushed stone and 10% of mountain sand are mixed. In the drainage layer 3 formed in this way, for example, the water permeability coefficient P2 is 1.76 × 10 −3 m / s, which is 1.0 × 10 2 m / s or more higher than the water permeability coefficient P1 of the water shielding layer 2. (P2> P1).

汚染土層4は、掘削などによって生じた汚染土を盛り立てることで形成される。本実施形態の汚染土は砒素を含んだずりである。汚染土層4は、平面視において、排水層3の上面に排水層3の上面外周(法頭)よりも内側に敷設されており、その側面には所定の勾配角度で傾斜する下側法面4A及び、上側法面4Bが設けられている。下側法面4Aの勾配は、好ましくは、各法面2A,3Aの勾配と同等の1:0.5程度とされ、上側法面4Bの勾配は、好ましくは、各法面2A,3A,4Aの勾配よりも小さい1:1.8程度とされる。汚染土層4の透水係数P3は、少なくとも、遮水層2の透水係数P1よりも高い値(P3>P1)になっている。   The contaminated soil layer 4 is formed by raising contaminated soil generated by excavation or the like. The contaminated soil of this embodiment is arsenic-containing shear. The contaminated soil layer 4 is laid on the upper surface of the drainage layer 3 on the inner side of the upper surface outer periphery (the head) of the drainage layer 3 in a plan view, and the lower slope is inclined at a predetermined gradient angle on the side surface. 4A and the upper slope 4B are provided. The slope of the lower slope 4A is preferably about 1: 0.5, which is equivalent to the slope of each slope 2A, 3A, and the slope of the upper slope 4B is preferably each slope 2A, 3A, It is about 1: 1.8 which is smaller than the gradient of 4A. The hydraulic conductivity P3 of the contaminated soil layer 4 is at least a value (P3> P1) higher than the hydraulic conductivity P1 of the water shielding layer 2.

第1覆土層5は、汚染土層4の外表面を覆うことで、汚染土の飛散や流出を防止するものである。この第1覆土層5には砕石や土砂を用いることができる。本実施形態の第1覆土層5は、砕石7号を用いて形成されており、汚染土層4の下側法面4A、上側法面4B及び、上面4Cを一連に覆っている。第1覆土層5のうち、少なくとも下側法面4Aに対応する部位には、テラセル(登録商標)或は、ジオテキスタイルやジオグリッド等により形成した法面補強層5Bが設けられている。   The first cover layer 5 covers the outer surface of the contaminated soil layer 4 to prevent the contaminated soil from scattering or flowing out. The first soil covering layer 5 can be crushed stone or earth and sand. The first soil covering layer 5 of this embodiment is formed using the crushed stone 7 and covers the lower slope 4A, the upper slope 4B, and the upper surface 4C of the contaminated soil layer 4 in series. A slope reinforcing layer 5B formed of Terracel (registered trademark), geotextile, geogrid, or the like is provided at least in a portion corresponding to the lower slope 4A of the first covering layer 5.

[第2盛土部]
第2盛土部1Bは、地盤Gから順に、吸着層6と、第2覆土層7とを積層して構成されている。
[Second fill section]
The 2nd embankment part 1B is comprised by laminating | stacking the adsorption layer 6 and the 2nd covering soil layer 7 in an order from the ground G. As shown in FIG.

吸着層6は、汚染土層4から排水層3を介して浸出する浸出水に含まれる重金属を吸着するものであり、遮水層2及び排水層3の各法面2A,3Aに沿って設けられている。具体的には、図2に示すように、吸着層6は、縦断面を略台形状又は略三角形状とされ、その内側面6Bが遮水層2及び排水層3の各法面2A,3Aと接するように、排水層3の法頭(法面補強層3Bの上端)から遮水層2の法尻(法面補強層2Bの下端)に亘って形成されている。吸着層6の外側面(法面)6Aの勾配は、特に限定されないが、好ましくは、汚染土層4の上側法面4Bの勾配と同等の1:1.8程度とされる。   The adsorption layer 6 adsorbs heavy metals contained in the leachate leached from the contaminated soil layer 4 through the drainage layer 3 and is provided along the slopes 2A and 3A of the water shielding layer 2 and the drainage layer 3. It has been. Specifically, as shown in FIG. 2, the adsorbing layer 6 has a vertical cross section of a substantially trapezoidal shape or a substantially triangular shape, and an inner side surface 6B of each of the slopes 2A and 3A of the water shielding layer 2 and the drainage layer 3. Is formed from the head of the drainage layer 3 (the upper end of the slope reinforcing layer 3B) to the slope of the water shielding layer 2 (the lower end of the slope reinforcing layer 2B). The gradient of the outer surface (slope) 6A of the adsorption layer 6 is not particularly limited, but is preferably about 1: 1.8 which is equivalent to the gradient of the upper slope 4B of the contaminated soil layer 4.

吸着層6は、砕石と、山砂や川砂等の砂材と、重金属の吸着材とを混合した混合材を締め固めることで形成される。本実施形態では、重金属として砒素を対象にしているため、砒素吸着材を用いている。砒素吸着材としては、例えば、石原産業株式会社の商品名「フィックスオール(登録商標)FB」を用いることができる。このフィックスオールFBは、主成分として酸化鉄及び硫酸カルシウムを含み、酸化鉄粒子の比表面積が180m/g以上となっている。 The adsorption layer 6 is formed by compacting a mixed material obtained by mixing crushed stone, sand material such as mountain sand and river sand, and heavy metal adsorbent. In the present embodiment, arsenic is used as the heavy metal, so an arsenic adsorbent is used. As the arsenic adsorbent, for example, trade name “Fixall (registered trademark) FB” of Ishihara Sangyo Co., Ltd. can be used. This Fixall FB contains iron oxide and calcium sulfate as main components, and the specific surface area of the iron oxide particles is 180 m 2 / g or more.

吸着層6は、7号砕石90%と山砂10%を混合した母材に、砒素吸着材を汚染濃度に適した必要量(例えば、30〜50kg/m)添加して混合したものを、地盤Gの表面と、遮水層2及び排水層3の各法面2A,3Aとを覆うように敷均して締め固めることで形成される。このように形成した吸着層6では、例えば透水係数P4が排水層3の透水係数P2と同等の1.76×10−3m/sになり、遮水層2の透水係数P1よりも1.0×10m/s以上高い値(P4≒P2>P1)になっている。 The adsorption layer 6 is obtained by adding a necessary amount (for example, 30 to 50 kg / m 3 ) of an arsenic adsorbent to a base material in which 90% of No. 7 crushed stone and 10% of mountain sand are mixed and mixed. It is formed by spreading and compacting so as to cover the surface of the ground G and the slopes 2A and 3A of the water shielding layer 2 and the drainage layer 3. In the adsorption layer 6 formed in this way, for example, the permeability coefficient P4 is 1.76 × 10 −3 m / s, which is equivalent to the permeability coefficient P2 of the drainage layer 3, and is 1. The value is higher than 0 × 10 2 m / s (P4≈P2> P1).

第2覆土層7は、吸着層6の法面6Aを覆うことで、吸着層6の法面補強層として機能するものである。この第2覆土層7には、第1覆土層5と同様の砕石や土砂等を用いることができる。本実施形態において、第2覆土層7は、好ましくは、テラセル(登録商標)或は、ジオテキスタイルやジオグリッド等により形成されている。   The second soil covering layer 7 functions as a slope reinforcing layer of the adsorption layer 6 by covering the slope 6 </ b> A of the adsorption layer 6. For the second soil covering layer 7, crushed stone, earth and sand, etc. similar to the first soil covering layer 5 can be used. In the present embodiment, the second covering layer 7 is preferably formed of Terracell (registered trademark), geotextile, geogrid, or the like.

[集水構造]
次に、図2,3に基づいて、集水構造20の詳細について説明する。集水構造20は、吸着層6の吸着能力(浸出水の砒素濃度)をモニタリングするものであり、複数本の有孔パイプ部材21A〜Cと、各有孔パイプ部材21A〜Cに対応する複数個の一次集水桝22A〜Cと、各一次集水桝22A〜Cを接続する排水溝23と、各一次集水桝22A〜Cから流出する浸出水を集めて貯留する最終集水桝24(図3にのみ示す)とを備えている。なお、図2中において、符号8は、地盤Gと吸着層6との間に敷設されて浸出水の地盤Gへの浸透を防止する遮水シートを示している。遮水シート8は、好ましくは、各法面補強層2B,3Bの層間から一次集水桝22A〜Cの上縁近傍に亘って敷設されている。
[Water collection structure]
Next, based on FIG.2, 3, the detail of the water collection structure 20 is demonstrated. The water collecting structure 20 is for monitoring the adsorption capacity (arsenic concentration of leachate) of the adsorption layer 6, and includes a plurality of perforated pipe members 21A to 21C and a plurality of perforated pipe members 21A to 21C. Individual primary catchment basins 22A-C, drainage grooves 23 connecting each primary catchment basin 22A-C, and final catchment basin 24 for collecting and storing leachate flowing out from each primary catchment basin 22A-C. (Shown only in FIG. 3). In FIG. 2, reference numeral 8 denotes a water shielding sheet that is laid between the ground G and the adsorption layer 6 and prevents permeation of the leachate into the ground G. The water-impervious sheet 8 is preferably laid between the slope reinforcing layers 2B and 3B from the vicinity of the upper edge of the primary catchment basins 22A to 22C.

有孔パイプ部材21A〜Cは、吸着層6内を流れる浸出水の少なくとも一部を外部に取り出すもので、側面に複数の貫通孔が穿設された基端側を吸着層6内に埋設されている。また、有孔パイプ部材21A〜Cは、側面に貫通孔を有しない先端側を第2覆土層7の外方に突出させている。本実施形態において、各有孔パイプ部材21A〜Cは、図3に示すように、第2覆土層7の法尻の長手方向に適宜間隔(例えば、50〜100m間隔)で配置されており、これら有孔パイプ部材21A〜Cによって吸着層6が複数のモニタリング区間A〜Cに区分されている。   The perforated pipe members 21 </ b> A to 21 </ b> C take out at least a part of the leachate flowing in the adsorption layer 6, and the base end side in which a plurality of through holes are formed in the side surface is embedded in the adsorption layer 6. ing. In addition, the perforated pipe members 21 </ b> A to 21 </ b> C have a tip side that does not have a through-hole on the side surface protruding outward from the second soil covering layer 7. In this embodiment, as shown in FIG. 3, each perforated pipe member 21A-C is arrange | positioned by the space | interval (for example, 50-100m space | interval) suitably in the longitudinal direction of the method bottom of the 2nd covering soil layer 7, The adsorption layer 6 is divided into a plurality of monitoring sections A to C by these perforated pipe members 21A to 21C.

一次集水桝22A〜Cは、例えば、上部が開放した略筐体状のコンクリート製の集水桝であって、各有孔パイプ部材21A〜Cの先端部下方に対応する地盤Gにそれぞれ埋設されている。各一次集水桝22A〜Cには、対応する各有孔パイプ部材21A〜Cから排出される浸出水が貯留される。   The primary water collecting basins 22A to 22C are, for example, substantially casing-shaped concrete water collecting basins that are open at the top, and are embedded in the ground G corresponding to the lower end portions of the perforated pipe members 21A to 21C, respectively. Has been. In each primary catchment 22A-C, leachate discharged from the corresponding perforated pipe members 21A-C is stored.

排水溝23は、例えば、上部が開放したコンクリート製のU字溝であって、第2覆土層7の法尻と隣接する地盤Gに埋設されている。また、排水溝23は、各一次集水桝22A〜Cを接続するように、第2覆土層7の法尻長手方向と略並行に延設されている(図3参照)。排水溝23の溝深は、一次集水桝22A〜Cよりも浅く形成されており、一次集水桝22A〜Cに貯留された浸出水の水位が排水溝23の底面よりも上昇すると、各一次集水桝22A〜Cから排水溝23内に浸出水が流出するようになっている。また、排水溝23の底面は、長手方向の一端側(図3中左側)から他端側(図3中右側)に向かって下る傾斜面状に形成されており、各一次集水桝22A〜Cから排水溝23内に流出した浸出水が排水溝23の他端側へ案内されるようになっている。   The drainage groove 23 is, for example, a concrete U-shaped groove whose upper part is open, and is embedded in the ground G adjacent to the method bottom of the second covering soil layer 7. Moreover, the drainage groove 23 is extended substantially in parallel with the method bottom longitudinal direction of the 2nd covering soil layer 7 so that each primary catchment 22A-C may be connected (refer FIG. 3). The depth of the drainage groove 23 is formed shallower than that of the primary catchment basins 22A to 22C, and when the level of leachate stored in the primary catchment basin 22A to 22C rises above the bottom surface of the drainage trench 23, The leachate flows out into the drainage groove 23 from the primary catchment basins 22A-C. Further, the bottom surface of the drainage groove 23 is formed in an inclined surface shape that descends from one end side in the longitudinal direction (left side in FIG. 3) to the other end side (right side in FIG. 3). The leachate flowing out from C into the drainage groove 23 is guided to the other end of the drainage groove 23.

図3に示す最終集水桝24は、例えば、上部が開放した略筐体状のコンクリート製の集水桝であって、排水溝23の他端(下流側端)が位置する地盤Gに埋設されている。最終集水桝24は、好ましくは、その容積を各一次集水桝22A〜Cよりも大きく形成されている。最終集水桝24内には、各一次集水桝22A〜Cから流出して排水溝23内を流れる浸出水が貯留されるようになっている。   The final catchment 24 shown in FIG. 3 is, for example, a substantially case-like concrete catchment with an open top, embedded in the ground G where the other end (downstream end) of the drainage groove 23 is located. Has been. The final catchment basin 24 is preferably formed with a volume larger than that of each primary catchment basin 22A-C. In the final catchment basin 24, leachate flowing out from the primary catchment basins 22A to 22C and flowing in the drainage groove 23 is stored.

以上のように構成された集水構造20では、以下の手順(1)〜(3)に従い、吸着層6の吸着能力(浸出水の砒素濃度)をモニタリングすることができる。   In the water collecting structure 20 configured as described above, the adsorption capacity (arsenic concentration of leachate) of the adsorption layer 6 can be monitored according to the following procedures (1) to (3).

(1)まず、最終集水桝24内に貯留された浸出水の砒素濃度を計測し、該計測値に変化が確認された場合(例えば、砒素濃度が所定の管理値を超えた場合)には、各一次集水桝22A〜C内に貯留された浸出水の砒素濃度をそれぞれ個別に計測する。   (1) First, the arsenic concentration of leachate stored in the final catchment basin 24 is measured, and when a change in the measured value is confirmed (for example, when the arsenic concentration exceeds a predetermined control value) Measures the arsenic concentration of the leachate stored in each primary catchment 22A-C individually.

(2)各一次集水桝22A〜Cのうち、浸出水の砒素濃度が管理値を超えている一次集水桝22A〜Cが存在すれば、当該一次集水桝22A〜C内の浸出水の砒素濃度を引き続きモニタリングする。   (2) If there is a primary catchment 22A-C in which the arsenic concentration of the leachate exceeds the control value among the primary catchments 22A-C, the leachate in the primary catchment 22A-C Continue to monitor the arsenic concentration.

(3)モニタリングの結果、浸出水の砒素濃度が管理値を超えていれば、当該一次集水桝22A〜Cに対応する有孔パイプ部材21A〜Cのモニタリング区間A〜C(例えば、一次集水桝22B内の浸出水の砒素濃度が管理値を超えていれば、有孔パイプ部材21Bに対応するモニタリング区間B)の吸着層6に吸着能力の劣化が生じていると推定される。このような場合には、該当するモニタリング区間Bの吸着層6及び第2覆土層7を掘削除去して、吸着層6を新たに入れ替える第2盛土部1Bの再施工が行われる。再施工の詳細手順については後述する。   (3) If the arsenic concentration of the leachate exceeds the control value as a result of monitoring, the monitoring sections A to C (for example, the primary collection of the perforated pipe members 21A to C corresponding to the primary catchment 22A to C) If the arsenic concentration of the leachate in the water tank 22B exceeds the control value, it is estimated that the adsorption capacity of the adsorption layer 6 in the monitoring section B) corresponding to the perforated pipe member 21B has deteriorated. In such a case, the adsorption layer 6 and the second soil covering layer 7 in the corresponding monitoring section B are excavated and removed, and the second embankment portion 1B is newly reconstructed to replace the adsorption layer 6 anew. The detailed procedure for reconstructing will be described later.

[施工手順、再施工手順]
次に、図4に基づいて、本実施形態の盛土1の施工手順について説明する。
[Construction procedure, re-construction procedure]
Next, based on FIG. 4, the construction procedure of the embankment 1 of this embodiment is demonstrated.

まず、図4(A)に示すように、地盤Gの表面に、遮水層2となる混合土を敷均して締め固め、その側面に法面補強層2Bを設けることで、遮水層2を形成する。   First, as shown in FIG. 4 (A), the mixed soil to be the water-impervious layer 2 is spread and compacted on the surface of the ground G, and the slope reinforcing layer 2B is provided on the side surface, thereby providing the water-impervious layer. 2 is formed.

次に、図4(B)に示すように、遮水層2の上面に、排水層3となる混合材を遮水層2の法頭よりも内側に敷均して締め固め、その側面に法面補強層3Bを設けることで、排水層3を形成する。   Next, as shown in FIG. 4 (B), on the upper surface of the impermeable layer 2, the mixed material that will become the drainage layer 3 is spread on the inner side of the head of the impermeable layer 2 and compacted. The drainage layer 3 is formed by providing the slope reinforcing layer 3B.

次に、図4(C)に示すように、排水層3の上面に、汚染土層4となる汚染土を排水層3の法頭よりも内側に敷均すと共に、汚染土を覆うように第1覆土層5となる砕石等を敷均して締め固め、さらに、その下側の側面に法面補強層5Bを設ける。これにより、地盤Gから順に、遮水層2、排水層3、汚染土層4及び、第1覆土層5を積層した第1盛土部1Aが完成する。   Next, as shown in FIG. 4 (C), on the upper surface of the drainage layer 3, the contaminated soil that becomes the contaminated soil layer 4 is spread inside the head of the drainage layer 3, and the contaminated soil is covered. A crushed stone or the like to be the first soil covering layer 5 is spread and compacted, and a slope reinforcing layer 5B is provided on the lower side surface. Thereby, the 1st embankment part 1A which laminated | stacked the water-impervious layer 2, the drainage layer 3, the contaminated soil layer 4, and the 1st cover soil layer 5 in order from the ground G is completed.

最後に、図4(D)に示すように、吸着層6となる混合材を、地盤Gの表面及び、各法面補強層2B,3Bの側面に敷均して締め固めることで、吸着層6が形成され、さらに、吸着層6の側面を覆うように第2覆土層7となる砕石等を敷均して締め固めて補強することで、第2盛土部1Bが完成する。   Finally, as shown in FIG. 4 (D), the adsorbing layer 6 is formed by spreading and compacting the mixed material to be the adsorbing layer 6 on the surface of the ground G and the side surfaces of the respective slope reinforcing layers 2B and 3B. 6 is formed, and further, the second embankment portion 1B is completed by laying and compacting and reinforcing the crushed stone or the like to be the second covering soil layer 7 so as to cover the side surface of the adsorption layer 6.

このようにして完成した盛土1は、第1盛土部1Aと、第2盛土部1Bとが分離可能に構成されている。このため、例えば、汚染土層4からの汚染物質の浸出が長期化し、これに伴い吸着層6の吸着能力が劣化した場合には、第1盛土部1Aを掘削除去することなく、第2盛土部1Bのみを掘削除去し、吸着層6を新たに入れ替える再施工を行うことができる。以下、図5に基づいて、第2盛土部1Bの再施工手順について説明する。   The bank 1 thus completed is configured such that the first bank 1A and the second bank 1B can be separated. For this reason, for example, when the leaching of the pollutant from the contaminated soil layer 4 is prolonged and the adsorption capacity of the adsorption layer 6 is deteriorated accordingly, the second embankment is not excavated and removed. Only the part 1B is excavated and removed, and re-construction for newly replacing the adsorption layer 6 can be performed. Hereinafter, based on FIG. 5, the re-construction procedure of the 2nd embankment part 1B is demonstrated.

まず、図5(A)に示すように、吸着能力が劣化した部分の第2盛土部1Bを、第2覆土層7、吸着層6の順に掘削除去する。この際、第1盛土部1Aの法面は、法面補強層2B,3B,5Bにより強固に補強されているので、第2盛土部1Bを除去しても、崩壊することなく、また、亀裂等も生じることなくその形状を維持される。   First, as shown in FIG. 5A, the second embankment portion 1 </ b> B where the adsorption capacity has deteriorated is excavated and removed in the order of the second covering layer 7 and the adsorption layer 6. At this time, the slope of the first embankment portion 1A is strongly reinforced by the slope reinforcement layers 2B, 3B, and 5B. Therefore, even if the second embankment portion 1B is removed, the slope does not collapse and cracks are generated. The shape can be maintained without any occurrence.

次に、図5(B)に示すように、新たな吸着材を含む混合材を、地盤Gの表面及び、各法面補強層2B,3Bの側面に敷均して締め固めることで、新たな吸着層6が形成される。この際、遮水シート8や有孔パイプ部材21A〜Cに劣化や破損等が生じていれば、これらも新たなものに取り換える。   Next, as shown in FIG. 5 (B), a new admixture containing adsorbent is spread on the surface of the ground G and the side surfaces of the respective slope reinforcement layers 2B and 3B and compacted. An adsorbing layer 6 is formed. At this time, if the water-impervious sheet 8 or the perforated pipe members 21A to 21C are deteriorated or damaged, they are also replaced with new ones.

最後に、図5(C)に示すように、新たな吸着層6の側面を覆うように第2覆土層7となる砕石等を敷均して締め固めて補強することで、第2盛土部1Bの再施工を終了する。このように、第2盛土部1Bの再施工を行う際は、第1盛土部1Aを残しつつ、吸着能力が劣化した部分の吸着層6及び、該吸着層6を覆う第2覆土層7のみを掘削除去し、当該除去した個所に新たな吸着層6を入れ替えればよいので、盛土全体の再施工が必要となる従前構造に比べ、工期の短縮化が図られると共に、工費も効果的に削減することができる。また、吸着層6の吸着能力が劣化する都度、汚染土層4を含む第1盛土部1Aを残しつつ、第2盛土部1Bのみを再施工すればよいので、汚染物質の拡散防止を図りつつ、汚染土を長期間に亘って継続的に貯蔵することが可能になる。   Finally, as shown in FIG. 5 (C), the second embankment portion is formed by laying and compacting and reinforcing the crushed stone or the like to become the second covering layer 7 so as to cover the side surface of the new adsorption layer 6. The re-construction of 1B is finished. As described above, when the second embankment portion 1B is reconstructed, only the adsorbing layer 6 of the portion where the adsorbing capacity is deteriorated and the second covering soil layer 7 covering the adsorbing layer 6 while leaving the first embankment portion 1A. The excavation and removal can be done, and a new adsorption layer 6 can be replaced at the removed location. Therefore, the construction period can be shortened and the construction cost can be effectively reduced compared to the conventional structure that requires the entire embankment to be reconstructed. can do. Further, every time the adsorption capacity of the adsorption layer 6 deteriorates, it is only necessary to reconstruct the second embankment portion 1B while leaving the first embankment portion 1A including the contaminated soil layer 4, so that the diffusion of the pollutants is prevented. It becomes possible to store the contaminated soil continuously over a long period of time.

[吸着作用]
次に、本実施形態の盛土1による重金属の吸着作用を説明する。
[Adsorption]
Next, the heavy metal adsorption action by the embankment 1 of the present embodiment will be described.

図6に示すように、降雨等により汚染土層4に浸透した浸透水は、符号F1の矢印で示すように、汚染土層4の内部を流下する。その際、汚染土に含まれる砒素が浸透水に溶出される。このため、浸透水における砒素濃度は汚染土層4の下方になるほど高くなる。浸透水は、汚染土層4の下面から排水層3に浸出する。ここで、排水層3の下面と遮水層2の上面が接しているので、符号F2の矢印で示すように、排水層3に流下した浸出水は、遮水層2の上面に沿って排水層3内を盛土1の外周方向に向かって流れる。排水層3の法面3Aに到達すると、符号F3の矢印で示すように、浸出水は吸着層6を下向きに流れて、吸着層6から地盤Gへと排出される。   As shown in FIG. 6, the permeated water that has permeated into the contaminated soil layer 4 due to rain or the like flows down inside the contaminated soil layer 4 as indicated by an arrow F1. At that time, arsenic contained in the contaminated soil is eluted into the permeated water. For this reason, the arsenic concentration in the permeated water becomes higher as it goes below the contaminated soil layer 4. The permeated water is leached into the drainage layer 3 from the lower surface of the contaminated soil layer 4. Here, since the lower surface of the drainage layer 3 and the upper surface of the impermeable layer 2 are in contact with each other, the leachate flowing down to the drainage layer 3 is drained along the upper surface of the impermeable layer 2 as indicated by the arrow F2. It flows in the layer 3 toward the outer periphery of the embankment 1. When reaching the slope 3A of the drainage layer 3, the leachate flows downward through the adsorption layer 6 and is discharged from the adsorption layer 6 to the ground G as indicated by the arrow F3.

ここで、浸出水に溶出された砒素は、吸着層6の内部を流れている間に吸着材に吸着される。本実施形態において、吸着層6は汚染土層4の下部全面に敷設されることなく、遮水層2及び排水層3の側面に設けられている。すなわち、図6(B)に示すような、吸着層600が遮水層200と汚染土層400との層間に広範囲に亘って敷設された従前の盛土100に比べ、本実施形態では、吸着層6の体積が相対的に小さく抑えられており、略同量の吸着材を混合させた場合には、単位体積当たりに吸着材が多く含まれる(吸着材が集中する)ようになっている。このように、単位体積当たりの吸着材の混合量が多くなると、吸着層6内における砒素と吸着材との接触頻度(接触機会)が確実に高められるようになり、吸着層6から排出される浸出水の砒素濃度を効果的に低減することが可能になる。また、一般的な土木施工上、吸着材を吸着層6に均一に混合させるには、単位体積当たりの吸着材の量を所定量以上(例えば、30〜50kg/m以上)確保することが好ましい。本実施形態では、単位体積当たりの吸着材の混合量が多くなるので、従前の盛土100に比べ、吸着材を均一に混合しやすくなり、施工性を確実に向上することができる。 Here, arsenic eluted in the leachate is adsorbed by the adsorbent while flowing through the adsorption layer 6. In the present embodiment, the adsorption layer 6 is provided on the side surfaces of the water shielding layer 2 and the drainage layer 3 without being laid on the entire lower surface of the contaminated soil layer 4. That is, as shown in FIG. 6B, in this embodiment, the adsorbing layer 600 has an adsorbing layer 600 as compared with the conventional embankment 100 in which the adsorbing layer 600 is laid over a wide range between the water shielding layer 200 and the contaminated soil layer 400. The volume of 6 is kept relatively small, and when approximately the same amount of adsorbent is mixed, a large amount of adsorbent is contained per unit volume (adsorbent concentrates). As described above, when the adsorbent mixing amount per unit volume increases, the contact frequency (contact opportunity) between arsenic and the adsorbent in the adsorbent layer 6 is reliably increased, and the adsorbent 6 is discharged from the adsorbent layer 6. The arsenic concentration of the leachate can be effectively reduced. Further, in order to uniformly mix the adsorbent with the adsorbing layer 6 in general civil engineering work, it is necessary to secure a predetermined amount or more (for example, 30 to 50 kg / m 3 or more) of the adsorbent per unit volume. preferable. In this embodiment, since the mixing amount of the adsorbent per unit volume is increased, it becomes easier to mix the adsorbent more uniformly than the conventional embankment 100, and the workability can be improved reliably.

[変形例]
図7(A)〜(C)は、吸着層6内における浸出水流路を長くすることにより、浸出水に含まれる砒素と吸着材との接触頻度を効果的に高めるようにした吸着層6の各種変形例を示す模式的な縦断面図である。
[Modification]
7A to 7C show the adsorption layer 6 in which the leaching water flow path in the adsorption layer 6 is lengthened to effectively increase the contact frequency between the arsenic contained in the leachate and the adsorbent. It is a typical longitudinal cross-sectional view which shows various modifications.

図7(A)に示す一例は、吸着層6内を略水平方向に延びる複数枚(図示例では2枚)の遮水シート9A,Bを上下に間隔をおいて互い違いに対向配置することで、浸出水流路を略蛇行状に形成したものである。具体的には、上側の第1遮水シート9Aは、吸着層6内を遮水層2の法頭(法面補強層2Bの側面上端)から第2覆土層7の内側面に向かって略水平方向に延びると共に、その先端部と第2覆土層7の内側面との間に浸出水を流下させる流路を確保して吸着層6内に埋設されている。下側の第2遮水シート9Bは、第1遮水シート9Aよりも下方の吸着層6内を第2覆土層7の内側面から遮水層2の法面2Aに向かって略水平方向に延びると共に、その先端部と遮水層2の法面2Aとの間に浸出水を流下させる流路を確保して吸着層6内に埋設されている。   In an example shown in FIG. 7A, a plurality of (two in the illustrated example) water-impervious sheets 9A and B extending in the substantially horizontal direction in the adsorption layer 6 are alternately arranged opposite to each other with an interval therebetween. The leachate flow path is formed in a substantially meandering shape. Specifically, the upper first water-impervious sheet 9 </ b> A substantially extends in the adsorption layer 6 from the head of the water-impervious layer 2 (the upper end of the side surface of the slope reinforcing layer 2 </ b> B) toward the inner surface of the second soil covering layer 7. It extends in the horizontal direction and is embedded in the adsorption layer 6 while ensuring a flow path for allowing the leachate to flow down between its tip and the inner side surface of the second soil covering layer 7. The lower second water-impervious sheet 9B extends in a substantially horizontal direction in the adsorption layer 6 below the first water-impervious sheet 9A from the inner surface of the second cover layer 7 toward the slope 2A of the water-impervious layer 2. It is embedded in the adsorption layer 6 while extending and securing a flow path for allowing the leachate to flow between the front end portion and the slope 2 </ b> A of the water shielding layer 2.

すなわち、排水層3から吸着層6内に浸出した浸出水は、図中矢印F1で示すように、第1遮水シート9Aの上面に沿って流され、第1遮水シート9Aの先端部から第2遮水シート9Bの上面に流下される。さらに、第2遮水シート9Bに流下した浸出水は、図中矢印F2で示すように、第2遮水シート9Bの上面に沿って流され、第2遮水シート9Bの先端から地盤Gの表面に流下されることで、浸出水が吸着層6内を略蛇行状に流されるようになる。このように、吸着層6内の浸出水流路を略蛇行状に長く形成すると、浸出水に含まれる砒素と吸着材との接触頻度が効果的に高められるようになり、浸出水の砒素濃度を確実に低減することが可能になる。   That is, the leachate leached from the drainage layer 3 into the adsorption layer 6 is caused to flow along the upper surface of the first impermeable sheet 9A, as indicated by the arrow F1 in the figure, and from the tip of the first impermeable sheet 9A. It flows down to the upper surface of the second water-impervious sheet 9B. Further, the leachate flowing down to the second water-impervious sheet 9B is caused to flow along the upper surface of the second water-impervious sheet 9B as shown by the arrow F2 in the figure, and from the tip of the second water-impervious sheet 9B to the ground G. By flowing down to the surface, leachate flows in the adsorbing layer 6 in a meandering manner. In this way, when the leachate flow path in the adsorption layer 6 is formed long in a meandering manner, the contact frequency between the arsenic contained in the leachate and the adsorbent is effectively increased, and the arsenic concentration of the leachate is increased. It becomes possible to reduce it reliably.

図7(B)に示す一例は、図7(A)の第1及び第2遮水シート9A,Bを傾斜させたものである。具体的には、上側の第1遮水シート9Aは、遮水層2側から第2覆土層7側に向かって上り勾配となるように、そのシート面を所定の角度で傾斜させている。下側の第2遮水シート9Bは、第2覆土層7側から遮水層2側に向かって上り勾配となるように、そのシート面を所定の角度で傾斜させている。   In the example shown in FIG. 7B, the first and second water shielding sheets 9A and B in FIG. 7A are inclined. Specifically, the upper first water-impervious sheet 9 </ b> A has its sheet surface inclined at a predetermined angle so as to rise upward from the water-impervious layer 2 side toward the second cover soil layer 7 side. The lower second water-impervious sheet 9 </ b> B is inclined at a predetermined angle so that the second water-impervious sheet 9 </ b> B has an upward slope from the second soil covering layer 7 side toward the water-impervious layer 2 side.

すなわち、排水層3から吸着層6内に浸出した浸出水は、図中矢印F1で示すように、第1遮水シート9Aの勾配面を上ると共に、第1遮水シート9Aの先端部から第2遮水シート9Bに流下される。さらに、第2遮水シート9Bに流下した浸出水は、図中矢印F2で示すように、第2遮水シート9Bの勾配面を上ると共に、第2遮水シート9Bの先端から地盤Gの表面に流下されることで、浸出水が吸着層6内を斜めに上りながら略蛇行状に流されるようになる。このように、吸着層6内の浸出水流路を上り勾配を有する蛇行状に形成すると、浸出水の流速が低く抑えられることで、浸出水に含まれる砒素と吸着材との接触頻度が効果的に高められるようになり、浸出水の砒素濃度を確実に低減することが可能になる。   That is, the leachate leached from the drainage layer 3 into the adsorption layer 6 goes up the gradient surface of the first water-impervious sheet 9A as indicated by an arrow F1 in the figure, and the second leachate from the tip of the first water-impervious sheet 9A. 2 Flowed down to the impermeable sheet 9B. Further, the leachate flowing down to the second water-impervious sheet 9B goes up the slope surface of the second water-impervious sheet 9B as indicated by an arrow F2 in the figure, and the surface of the ground G from the tip of the second water-impervious sheet 9B. By flowing down, the leachate flows in a meandering manner while rising obliquely in the adsorption layer 6. Thus, when the leachate flow path in the adsorption layer 6 is formed in a meandering shape having an upward gradient, the flow rate of the leachate is kept low, and the contact frequency between the arsenic contained in the leachate and the adsorbent is effective. Thus, the arsenic concentration of the leachate can be reliably reduced.

図7(C)に示す一例は、吸着層6内に遮水シート9Cをそのシート面が略鉛直方向となるように埋設することで、吸着層6内の浸出水の流れを一時的に堰き止めて滞留させる流路を形成したものである。具体的には、遮水シート9Cは、吸着層6内を地盤Gの表面から遮水層2の法面2Aと略平行に斜め上方に延びると共に、その上端部と第2覆土層7の内側面との間に浸出水を流通させる流路を確保して吸着層6内に埋設されている。   In an example shown in FIG. 7C, the flow of leachate in the adsorption layer 6 is temporarily dammed by embedding a water-impervious sheet 9C in the adsorption layer 6 so that the sheet surface is substantially vertical. A flow path that stops and stays is formed. Specifically, the water-impervious sheet 9 </ b> C extends obliquely upward in the adsorption layer 6 from the surface of the ground G substantially parallel to the slope 2 </ b> A of the water-impervious layer 2, and has an upper end portion and an inner portion of the second soil covering layer 7. It is embedded in the adsorption layer 6 while ensuring a flow path for the leachate to flow between the side surfaces.

すなわち、排水層3から吸着層6内に浸出した浸出水は、図中矢印F1で示すように、遮水層2の法面2Aと遮水シート9Cとの間に堰き止められて滞留し、その水位が遮水シート9Cの上端部よりも上昇すると、図中矢印F2で示すように、遮水シート9Cを超えて流されるようになる。このように、浸出水を吸着層6内に一時的に滞留させると、浸出水に含まれる砒素と吸着材との接触頻度が効果的に高められるようになり、浸出水の砒素濃度を確実に低減することが可能になる。   That is, the leachate leached from the drainage layer 3 into the adsorption layer 6 is retained and retained between the slope 2A of the water shielding layer 2 and the water shielding sheet 9C, as indicated by an arrow F1 in the figure. When the water level rises from the upper end portion of the water-impervious sheet 9C, the water level flows over the water-impervious sheet 9C as indicated by an arrow F2 in the figure. As described above, when the leachate is temporarily retained in the adsorption layer 6, the contact frequency between the arsenic contained in the leachate and the adsorbent can be effectively increased, and the arsenic concentration of the leachate can be reliably ensured. It becomes possible to reduce.

なお、図7(A)〜(C)に示される何れの変形例においても、浸出水流路を形成する部材は遮水シート9A〜Cとして説明したが、吸着層6内に流路を区画できる部材であれば、遮水性を有するプレート部材等であってもよい。   In any of the modifications shown in FIGS. 7A to 7C, the members that form the leachate flow path have been described as the water shielding sheets 9 </ b> A to 9 </ b> C. However, the flow path can be partitioned in the adsorption layer 6. As long as it is a member, it may be a plate member having water shielding properties.

[通水試験]
砒素と吸着材との接触頻度を高めることで砒素の吸着効率が高くなることを、通水試験によって確認した。以下、通水試験について説明する。通水試験は、図8に示す試験装置50を用いて行った。試験装置50は、通水カラム51と、送液チューブ52と、貯留容器53と、送液ポンプ54と、三方弁55と、採取容器56とを備えている。
[Water flow test]
It was confirmed by a water flow test that the adsorption efficiency of arsenic increases by increasing the contact frequency between arsenic and adsorbent. Hereinafter, the water flow test will be described. The water flow test was performed using a test apparatus 50 shown in FIG. The test apparatus 50 includes a water flow column 51, a liquid feeding tube 52, a storage container 53, a liquid feeding pump 54, a three-way valve 55, and a collection container 56.

通水カラム51は、模擬汚染水57を模擬吸着層58に通水させるための部材であり、円筒カラム61と、第1栓部材62と、第2栓部材63と、第1フィルタ材64と、第2フィルタ材65とを備えている。円筒カラム61は、内径が100mmであり、高さ(上下方向の長さ)が150mmである。そして、円筒カラム61の下端を第1栓部材62によって塞ぐと共に第1フィルタ材64を配置した状態で、模擬吸着層58を高さが60mmとなるまで充填する。充填後、模擬吸着層58の上面に第2フィルタ材65を配置した状態で、円筒カラム61の上端を第2栓部材63によって塞いでいる。   The water flow column 51 is a member for allowing the simulated contaminated water 57 to flow through the simulated adsorption layer 58, and includes a cylindrical column 61, a first plug member 62, a second plug member 63, and a first filter material 64. The second filter material 65 is provided. The cylindrical column 61 has an inner diameter of 100 mm and a height (length in the vertical direction) of 150 mm. Then, with the lower end of the cylindrical column 61 closed by the first plug member 62 and the first filter material 64 disposed, the simulated adsorption layer 58 is filled until the height reaches 60 mm. After the filling, the upper end of the cylindrical column 61 is closed by the second plug member 63 in a state where the second filter material 65 is disposed on the upper surface of the simulated adsorption layer 58.

第1栓部材62及び第2栓部材63にはそれぞれ、栓の厚さ方向を貫通する貫通孔が形成されている。そして、第1栓部材62には、第1送液チューブ52Aの下流側端部が挿入され、第2栓部材63には、第2送液チューブ52Bの上流側端部が挿入されている。   Each of the first plug member 62 and the second plug member 63 is formed with a through-hole penetrating in the thickness direction of the plug. The first plug member 62 is inserted with the downstream end of the first liquid supply tube 52A, and the second plug member 63 is inserted with the upstream end of the second liquid supply tube 52B.

貯留容器53には、模擬汚染水57が貯留されるとともに、第1送液チューブ52Aの上流側端部が挿入されている。送液ポンプ54は、第1送液チューブ52Aの途中に設けられており、貯留容器53に貯留された模擬汚染水57を、第1送液チューブ52Aを通じて所定速度で通水カラム51へ供給する。三方弁55は、第2送液チューブ52Bの途中に設けられており、通水カラム51から排出された模擬汚染水57´を、第2送液チューブ52Bの下流側に流すか、廃液容器(不図示)に排出するかを選択する。採取容器56には、第2送液チューブ52bの下流側端部が挿入されており、第2送液チューブ52Bから排出される浸出水57´を採取する。   In the storage container 53, the simulated contaminated water 57 is stored, and the upstream end of the first liquid feeding tube 52A is inserted. The liquid feed pump 54 is provided in the middle of the first liquid feed tube 52A, and supplies the simulated contaminated water 57 stored in the storage container 53 to the water flow column 51 through the first liquid feed tube 52A at a predetermined speed. . The three-way valve 55 is provided in the middle of the second liquid feeding tube 52B, and the simulated contaminated water 57 'discharged from the water flow column 51 is allowed to flow downstream of the second liquid feeding tube 52B, or a waste liquid container ( Select whether to discharge (not shown). The collection container 56 is inserted with the downstream end of the second liquid feeding tube 52b, and collects leachate 57 'discharged from the second liquid feeding tube 52B.

図9(A)に示すように、通水試験では、模擬汚染水57として濃度が0.1mg/Lの砒素溶液を用いた。また、模擬吸着層58の土壌として4号珪砂や6号珪砂を用い、砒素吸着材として前述のフィックスオールFBを用いた。そして、所定割合で砒素吸着材を土壌に混合することにより、模擬吸着層58の基となる混合土を作製した。   As shown in FIG. 9A, an arsenic solution having a concentration of 0.1 mg / L was used as simulated contaminated water 57 in the water flow test. Further, No. 4 silica sand or No. 6 silica sand was used as the soil of the simulated adsorption layer 58, and the above-mentioned Fixall FB was used as the arsenic adsorbent. And the mixed soil used as the base of the simulated adsorption layer 58 was produced by mixing an arsenic adsorbent with soil at a predetermined ratio.

通水試験では、図9(B)に示す6種類の試験ケースA〜Fを対象にした。試験ケースAでは、砒素吸着材を土壌に対して5kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、0.2mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。試験ケースBでは、砒素吸着材を土壌に対して5kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、2mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。試験ケースCでは、砒素吸着材を土壌に対して5kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、20mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。試験ケースDでは、砒素吸着材を土壌に対して20kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、0.2mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。試験ケースEでは、砒素吸着材を土壌に対して20kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、2mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。試験ケースFでは、砒素吸着材を土壌に対して20kg/tの比率で添加及び混合して模擬吸着層58を作製した。そして、20mL/minの通水速度で模擬汚染水57を模擬吸着層58へ通水した。   In the water flow test, six types of test cases A to F shown in FIG. In test case A, a simulated adsorption layer 58 was prepared by adding and mixing an arsenic adsorbent at a rate of 5 kg / t with respect to the soil. Then, the simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 0.2 mL / min. In test case B, a simulated adsorption layer 58 was prepared by adding and mixing an arsenic adsorbent at a rate of 5 kg / t to the soil. The simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 2 mL / min. In test case C, an arsenic adsorbent was added and mixed at a rate of 5 kg / t to the soil to produce a simulated adsorption layer 58. The simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 20 mL / min. In test case D, a simulated adsorption layer 58 was produced by adding and mixing an arsenic adsorbent at a rate of 20 kg / t with respect to the soil. Then, the simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 0.2 mL / min. In test case E, an arsenic adsorbent was added and mixed at a rate of 20 kg / t with respect to the soil to produce a simulated adsorption layer 58. The simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 2 mL / min. In test case F, a simulated adsorption layer 58 was produced by adding and mixing an arsenic adsorbent at a rate of 20 kg / t with respect to the soil. The simulated contaminated water 57 was passed through the simulated adsorption layer 58 at a water flow rate of 20 mL / min.

通水試験の試験結果を図10(A),(B)のグラフに示す。各グラフの縦軸は、採取容器56で採取した浸出水57´に含まれる砒素濃度、すなわち、模擬吸着層58を通過した後の浸出水57´における砒素濃度を示している。また、各グラフの横軸は、模擬吸着層58への通水量を示している。   The test results of the water flow test are shown in the graphs of FIGS. 10 (A) and 10 (B). The vertical axis of each graph indicates the arsenic concentration contained in the leachate 57 ′ collected by the collection container 56, that is, the arsenic concentration in the leachate 57 ′ after passing through the simulated adsorption layer 58. In addition, the horizontal axis of each graph indicates the amount of water passing through the simulated adsorption layer 58.

通水試験では、試験ケースA〜Fのそれぞれについて、模擬吸着層58へ所定量通水する毎に浸出水57´の砒素濃度を測定し、通水量と砒素濃度の関係を取得した。砒素濃度に関し、環境庁告示第46号では、土壌における環境基準値を0.01mg/Lに定めている。このため、通水試験では、砒素濃度が0.01mg/Lに到達するまでの通水量を、各試験ケースで比較した。   In the water flow test, for each of the test cases A to F, the arsenic concentration of the leachate 57 ′ was measured every time a predetermined amount of water passed through the simulated adsorption layer 58, and the relationship between the water flow rate and the arsenic concentration was obtained. Regarding the arsenic concentration, the Environmental Agency Notification No. 46 sets the environmental standard value in soil to 0.01 mg / L. For this reason, in the water flow test, the amount of water flow until the arsenic concentration reached 0.01 mg / L was compared in each test case.

図10(A)に示すように、砒素吸着材を5kg/tの比率で添加した試験ケースA〜Cでは、何れも通水量が約80L程度で砒素濃度は0.01mg/Lを超過した。   As shown in FIG. 10 (A), in test cases A to C in which the arsenic adsorbent was added at a rate of 5 kg / t, the water flow rate was about 80 L and the arsenic concentration exceeded 0.01 mg / L.

図10(B)に示すように、砒素吸着材を20kg/tの比率で添加した試験ケースD〜Fでは、何れも通水量が約200Lに到達するまでの期間に亘って、砒素濃度は略0mg/L近傍で概ね推移した。そして、通水量が約300Lを越えると砒素濃度が上昇し、約400Lで0.01mg/Lに到達した。   As shown in FIG. 10 (B), in all of the test cases D to F to which the arsenic adsorbent was added at a rate of 20 kg / t, the arsenic concentration was almost constant over the period until the water flow reached about 200 L. In general, the level was in the vicinity of 0 mg / L. When the water flow rate exceeded about 300 L, the arsenic concentration increased and reached about 0.01 mg / L at about 400 L.

砒素吸着材を5kg/tの比率で添加した試験ケースA〜Cでは、砒素濃度0.01mg/Lに到達するまでの通水量は約80Lであり、砒素吸着材を20kg/tの比率で添加した試験ケースD〜Fでは、砒素濃度0.01mg/Lに到達するまでの通水量は約400Lであることから、単位体積当たりの砒素吸着材の混合量が多いほど、砒素と砒素吸着材との接触頻度が高められることで、砒素の処理能力が向上することを確認できた。本実施形態の盛土1のように、吸着層6の体積を小さく抑え、単位体積当たりの砒素吸着材の混合量を多くすると、吸着層6内における砒素と砒素吸着材との接触頻度を高められることができる。このため、盛土1では、砒素を吸着層6に効果的に吸着させることができる。   In test cases A to C in which the arsenic adsorbent was added at a rate of 5 kg / t, the water flow rate until the arsenic concentration reached 0.01 mg / L was about 80 L, and the arsenic adsorbent was added at a rate of 20 kg / t. In the test cases D to F, the amount of water flow until the arsenic concentration reaches 0.01 mg / L is about 400 L. Therefore, the larger the amount of arsenic adsorbent mixed per unit volume, the greater the amount of arsenic and arsenic adsorbent. It was confirmed that the arsenic treatment capacity was improved by increasing the contact frequency of arsenic. Like the embankment 1 of this embodiment, if the volume of the adsorption layer 6 is kept small and the amount of the arsenic adsorbent mixed per unit volume is increased, the contact frequency between the arsenic and the arsenic adsorbent in the adsorption layer 6 can be increased. be able to. For this reason, in the embankment 1, arsenic can be effectively adsorbed to the adsorption layer 6.

[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

上記実施形態において、吸着層6は、遮水層2及び排水層3の各法面2A,3Aと接するように設けられるものとして説明したが、例えば、図11に示すように、吸着層6の高さを遮水層2の高さと同程度にし、排水層3を吸着層6の上面まで延設してもよい。この場合も、吸着層6の体積が小さく抑えられ、単位定積当たりの吸着材量が多く確保されることにより、吸着層6内における砒素と吸着材との接触頻度を確実に高めることができる。   In the said embodiment, although the adsorption layer 6 demonstrated as what was provided so that each slope 2A, 3A of the water-impervious layer 2 and the drainage layer 3 might be provided, for example, as shown in FIG. The height may be approximately the same as the height of the water shielding layer 2, and the drainage layer 3 may be extended to the upper surface of the adsorption layer 6. Also in this case, the volume of the adsorbing layer 6 is kept small, and a large amount of adsorbing material per unit volume is ensured, so that the contact frequency between arsenic and the adsorbing material in the adsorbing layer 6 can be reliably increased. .

また、上記実施形態において、遮水層2と汚染土層4との層間には排水層3が設けられるものとして説明したが、当該排水層3を省略して、遮水層2の上面に汚染土層4を直接的に積層してもよい。この場合は、遮水層2と汚染土層4との間に、浸出水を盛土1の幅方向に案内する横樋を設けることが好ましい。   In the above embodiment, the drainage layer 3 is provided between the water-impervious layer 2 and the contaminated soil layer 4. However, the drainage layer 3 is omitted and the upper surface of the impermeable layer 2 is contaminated. The soil layer 4 may be directly laminated. In this case, it is preferable to provide a horizontal gutter for guiding leachate in the width direction of the embankment 1 between the impermeable layer 2 and the contaminated soil layer 4.

また、吸着対象の重金属に関し、上記実施形態では砒素を例に挙げて説明したが、砒素に限定されるものではない。砒素に加え、カドミウム、鉛、六価クロム、水銀、セレン、フッ素、ホウ素など、土壌環境基準で規定される重金属であれば、吸着対象の重金属になる。   Further, the heavy metal to be adsorbed has been described by taking arsenic as an example in the above embodiment, but is not limited to arsenic. In addition to arsenic, cadmium, lead, hexavalent chromium, mercury, selenium, fluorine, boron, and other heavy metals specified by soil environmental standards are heavy metals to be adsorbed.

1…盛土,1A…第1盛土部(盛土本体部),1B…第2盛土部,2…遮水層(難透水層),2A…遮水層の法面,2B…遮水層の法面補強層,3…排水層,3A…排水層の法面,3B…排水層の法面補強層,4…汚染土層,4A…汚染土層の下側法面,4B…汚染土層の上側法面,4C…汚染土層の上面,5…第1覆土層,5B…第1覆土層の法面補強層,6…吸着層,6A…吸着層の法面,7…第2覆土層,9A〜C…遮水シート(遮水部材),20…集水構造,21A〜C…有孔パイプ部材,22A〜C…一次集水桝,23…排水溝,24…最終集水桝,50…通水試験の試験装置,51…通水カラム,52…送液チューブ,52A…第1送液チューブ,52B…第2送液チューブ,53…貯留容器,54…送液ポンプ,55…三方弁,56…採取容器,57…模擬汚染水,57´…浸出水,58…模擬吸着層,61…円筒カラム,62…第1栓部材,63…第2栓部材,64…第1フィルタ材,65…第2フィルタ材,G…地盤 DESCRIPTION OF SYMBOLS 1 ... Embankment, 1A ... 1st embankment part (embankment main-body part), 1B ... 2nd embankment part, 2 ... Water-impervious layer (hard-permeable layer), 2A ... The slope of a water-impervious layer, 2B ... The method of a water-impervious layer Surface reinforcement layer, 3 ... Drainage layer, 3A ... Drainage layer slope, 3B ... Drainage layer slope reinforcement layer, 4 ... Contaminated soil layer, 4A ... Bottom slope of contaminated soil layer, 4B ... Contaminated soil layer Upper slope, 4C ... upper surface of contaminated soil layer, 5 ... first soil cover layer, 5B ... slope reinforcement layer of first soil cover layer, 6 ... adsorption layer, 6A ... slope of adsorption layer, 7 ... second soil cover layer , 9A to C ... Water shielding sheet (water shielding member), 20 ... Catchment structure, 21A to C ... Perforated pipe member, 22A to C ... Primary catchment, 23 ... Drain, 24 ... Final catchment, DESCRIPTION OF SYMBOLS 50 ... Test apparatus of water flow test, 51 ... Water flow column, 52 ... Liquid feed tube, 52A ... 1st liquid feed tube, 52B ... 2nd liquid feed tube, 53 ... Storage container, 54 ... Liquid feed pump, 55 ... Three-way valve 56 ... collection container, 57 ... simulated contaminated water, 57 '... leachate, 58 ... simulated adsorption layer, 61 ... cylindrical column, 62 ... first plug member, 63 ... second plug member, 64 ... first filter material, 65 ... second filter material, G ... ground

Claims (7)

地盤側から少なくとも遮水層及び、重金属を含む汚染土層が積層され、前記汚染土層から前記遮水層の上面に流下する浸出水が当該遮水層の側面に向けて案内される盛土本体部と、
前記盛土本体部の外側に、少なくとも前記遮水層の前記側面に接して設けられ、前記盛土本体部から浸出する浸出水を流通させると共に、当該浸出水に含まれる前記重金属を吸着する吸着材が混合された吸着層と、を備える
ことを特徴とする重金属汚染土の貯蔵構造。
An embankment main body in which at least a water shielding layer and a contaminated soil layer containing heavy metals are laminated from the ground side, and leachate flowing from the contaminated soil layer to the upper surface of the water shielding layer is guided toward the side surface of the water shielding layer. And
An adsorbent that is provided on the outer side of the embankment main body portion so as to be in contact with at least the side surface of the water shielding layer and that circulates the leachate leached from the embankment main body portion and adsorbs the heavy metal contained in the leachate water. And a mixed adsorbing layer. A storage structure for heavy metal contaminated soil.
前記盛土本体部の前記遮水層と前記汚染土層との層間に、前記遮水層よりも透水係数の高い排水層が設けられ、前記汚染土層から流下する浸出水が当該排水層内を流れて前記遮水層の前記側面に向けて案内される
請求項1に記載の重金属汚染土の貯蔵構造。
A drainage layer having a higher permeability than the impermeable layer is provided between the impermeable layer and the contaminated soil layer of the embankment main body, and the leachate flowing down from the contaminated soil layer passes through the drainage layer. The heavy metal contaminated soil storage structure according to claim 1, wherein the heavy metal contaminated soil storage structure is guided toward the side surface of the water shielding layer.
前記吸着層内に埋設され、前記吸着層内の浸出水の流れを部分的に遮ることにより当該吸着層内における浸出水流路を長くする遮水部材をさらに備える
請求項1又は2に記載の重金属汚染土の貯蔵構造。
3. The heavy metal according to claim 1, further comprising a water shielding member that is embedded in the adsorption layer and lengthens the leachate flow path in the adsorption layer by partially blocking the flow of the leachate in the adsorption layer. Contaminated soil storage structure.
前記遮水部材が、前記吸着層内に上下に間隔をおいて互い違いに対向配置されて前記浸出水流路を蛇行させる複数枚の遮水シートである
請求項3に記載の重金属汚染土の貯蔵構造。
The heavy metal-contaminated soil storage structure according to claim 3, wherein the water-impervious member is a plurality of water-impervious sheets that are alternately arranged in the adsorbing layer at intervals in the vertical direction to meander the leachate flow path. .
前記遮水シートが、そのシート面を浸出水の流れ方向上流側から下流側に向かって上り勾配となるように傾斜させて前記吸着層内に埋設された
請求項4に記載の重金属汚染土の貯蔵構造。
5. The heavy metal contaminated soil according to claim 4, wherein the water shielding sheet is embedded in the adsorption layer with the sheet surface inclined so as to rise upward from the upstream side in the flow direction of the leachate. Storage structure.
前記遮水部材が、前記吸着層内に鉛直方向に埋設された遮水シートであり、当該遮水シートのシート面と前記遮水層の前記側面との間に浸出水が一時的に堰き止められて滞留する
請求項3に記載の重金属汚染土の貯蔵構造。
The water-impervious member is a water-impervious sheet embedded in the adsorption layer in the vertical direction, and leachate is temporarily blocked between the sheet surface of the water-impervious sheet and the side surface of the water-impervious layer. The heavy metal contaminated soil storage structure according to claim 3.
前記盛土本体部の少なくとも前記吸着層と接する部位に法面補強層が形成された
請求項1から6の何れか一項に記載の重金属汚染土の貯蔵構造。
The storage structure for heavy metal-contaminated soil according to any one of claims 1 to 6, wherein a slope reinforcing layer is formed at least on a portion of the embankment main body that is in contact with the adsorption layer.
JP2017128152A 2017-06-30 2017-06-30 Storage structure for heavy metal contaminated soil Active JP6919368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128152A JP6919368B2 (en) 2017-06-30 2017-06-30 Storage structure for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128152A JP6919368B2 (en) 2017-06-30 2017-06-30 Storage structure for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2019010610A true JP2019010610A (en) 2019-01-24
JP6919368B2 JP6919368B2 (en) 2021-08-18

Family

ID=65226504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128152A Active JP6919368B2 (en) 2017-06-30 2017-06-30 Storage structure for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP6919368B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081127A (en) * 2017-10-30 2019-05-30 清水建設株式会社 Banking structure, performance maintenance method of adsorption layer, and leakage suppression method of heavy metals
CN110293128A (en) * 2019-07-24 2019-10-01 中国科学院亚热带农业生态研究所 A method of light moderate heavy-metal contaminated soil is repaired using mugwort wormwood artemisia
JP7454481B2 (en) 2020-10-07 2024-03-22 鹿島建設株式会社 Storage facilities and storage methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081127A (en) * 2017-10-30 2019-05-30 清水建設株式会社 Banking structure, performance maintenance method of adsorption layer, and leakage suppression method of heavy metals
CN110293128A (en) * 2019-07-24 2019-10-01 中国科学院亚热带农业生态研究所 A method of light moderate heavy-metal contaminated soil is repaired using mugwort wormwood artemisia
JP7454481B2 (en) 2020-10-07 2024-03-22 鹿島建設株式会社 Storage facilities and storage methods

Also Published As

Publication number Publication date
JP6919368B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI639564B (en) Soil purification method
JP2019010610A (en) Storage structure of heavy metal polluted soil
CN212026360U (en) Underground rigid hazardous waste safety landfill
Bouazza et al. Liner design for waste disposal sites
JP6583619B2 (en) Storage structure for heavy metal contaminated soil
CN110306639B (en) Heavy metal pollution and geological disaster prevention and control system for tailing pond
JP2009133110A (en) Drainage system structure
CN205085133U (en) Dangerous solid waste&#39;s landfill pond
CN103920700B (en) Polluter fixing means in soil
TWI642830B (en) Site improvement method
JP4909721B2 (en) Rainwater storage and penetration facility
JP2012254432A (en) Contaminant adsorption material, contaminant adsorption sheet and method for processing residual dug-up soil
JP2014228470A (en) Purification wall of radionuclide-containing water, and preventing method of soil contamination
DE19938922B4 (en) Groundwater Purification Flow and Treat
JP5176753B2 (en) In-situ containment method
JP5826678B2 (en) Banking using banking material containing harmful substances and banking construction method
JP7079628B2 (en) Purification trout
JP2011240289A (en) Contaminated component diffusion preventive structure, and method of cleaning contaminated soil
JP4105680B2 (en) Water purification device
JP4780550B2 (en) Covering method for landfill waste and seepage water capillary barrier layer for landfill waste
CN205074330U (en) Solid waste landfill processing apparatus
JP5808308B2 (en) Method of adsorbing very low level radioactive material contained in permeated water on zeolite by construction of capillary barrier layer
JP5694815B2 (en) Permeated water purification ground
JP5498104B2 (en) Residual soil disposal structure
JP2013104222A (en) Method for processing rainwater which contains harmful substance and flows into rainwater inlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150