JP2011053091A - Bonding member and method of manufacturing the same - Google Patents

Bonding member and method of manufacturing the same Download PDF

Info

Publication number
JP2011053091A
JP2011053091A JP2009202436A JP2009202436A JP2011053091A JP 2011053091 A JP2011053091 A JP 2011053091A JP 2009202436 A JP2009202436 A JP 2009202436A JP 2009202436 A JP2009202436 A JP 2009202436A JP 2011053091 A JP2011053091 A JP 2011053091A
Authority
JP
Japan
Prior art keywords
base material
silicone rubber
sealing member
manufacturing
rubber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009202436A
Other languages
Japanese (ja)
Inventor
Satoshi Miyazawa
聡 宮澤
Yoshinao Taniguchi
義尚 谷口
Kunio Mori
邦夫 森
Katsuhito Mori
克仁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009202436A priority Critical patent/JP2011053091A/en
Publication of JP2011053091A publication Critical patent/JP2011053091A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Micromachines (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding member capable of performing more reliable sealing than before and precisely forming a channel and further effectively suppressing mixture of bubbles on a bonding interface, and to provide a method of manufacturing the bonding member. <P>SOLUTION: A silicone rubber sheet (sealing member) 14 is bonded to the surface 11a of a first base material 11 where the channel (groove section) 13 is formed on the surface 11a by a roller 15, thus adhering the surface 11a of the first base material 11 to the silicone rubber sheet 14. Then, a liquid resin 16 is applied between the silicone rubber sheet 14 and the flat surface 12a of the second base material 12, and the first and second base materials 11, 12 are pressurized while performing heating in that state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細流路を備えるバイオチッププレート等の接合部材及びその製造方法に関する。   The present invention relates to a joining member such as a biochip plate having a fine channel and a method for manufacturing the same.

μ−TAS(Micro-Total Analysis Systems)等に使用されるバイオチッププレートは、透明性に優れ且つ低蛍光の基材同士を貼り合わせた構造である。   A biochip plate used for μ-TAS (Micro-Total Analysis Systems) or the like has a structure in which substrates having excellent transparency and low fluorescence are bonded together.

一方のプレートには流路を構成する溝が設けられており、他方は平板状のプレートであり、これらプレート同士の接合には接着剤を用いる方法と熱圧着を用いる方法が知られている。   One plate is provided with a groove constituting a flow path, and the other is a flat plate. A method using an adhesive and a method using thermocompression bonding are known for joining these plates.

しかしながら接着剤を用いて接合する場合、前記接着剤が溝形状で形成された微細流路内に入り込むため、微細流路が閉塞してしまうことが多かった。また、閉塞まで至らない場合でも、流路の大きさが場所によって変化等して流量が安定しない問題が発生した。一方、このような問題を回避するために接着剤の塗布量を少なくすると接着が不十分で封止不良となりやすかった。また無色透明で且つ低蛍光の接着剤が存在せず、あるいは低蛍光の接着剤であっても溶剤等の影響でプレート側を白濁させてしまう等の不具合が生じた。   However, when bonding is performed using an adhesive, since the adhesive enters the fine channel formed in a groove shape, the fine channel is often blocked. In addition, even when the blockage does not occur, there is a problem that the flow rate is not stable because the size of the flow path varies depending on the location. On the other hand, if the application amount of the adhesive is reduced in order to avoid such a problem, the adhesion is insufficient and the sealing tends to be poor. Further, there is a problem that the transparent and colorless fluorescent agent does not exist, or even the low fluorescent adhesive causes the plate side to become cloudy due to the influence of the solvent or the like.

また熱圧着によりプレート間を接合する場合、接合に時間がかかり、生産性が悪いといった問題があった。また接合に必要な圧力が高く、その結果、微細流路が潰れたり、プレートにクラックが発生する不具合も生じやすかった。また接合面に予め有機溶剤を塗布した場合では、プレートから発生する蛍光や光散乱が増加しやすくなった。   Moreover, when joining between plates by thermocompression bonding, there existed a problem that joining took time and productivity was bad. Moreover, the pressure required for joining is high, and as a result, the fine flow path is crushed and a problem that a crack occurs in the plate is likely to occur. In addition, when an organic solvent was previously applied to the joint surface, fluorescence and light scattering generated from the plate were likely to increase.

国際公開第2008/050791号International Publication No. 2008/050791 特開2008−49311号公報JP 2008-49311 A 特開2006−78414号公報JP 2006-78414 A 特開2006−53094号公報JP 2006-53094 A 特開2008−8880号公報Japanese Patent Laid-Open No. 2008-8880

上記の各特許文献にはいずれもバイオチッププレート(マイクロチッププレート)に関する発明が開示されている。   Each of the above patent documents discloses an invention relating to a biochip plate (microchip plate).

しかしながら特許文献1〜5に記載された発明はいずれも両プレート間を接着シートや接着剤にて接合するものである。   However, all the inventions described in Patent Documents 1 to 5 join both plates with an adhesive sheet or an adhesive.

また、両プレート間にシートを介在させた構成では、接合界面に気泡が混入すると、そこで屈折率が変わってしまい高精度な光学測定を行えないのと、信頼性低下に繋がるため、気泡混入を抑制することは重要な課題であった。   In addition, in the configuration in which a sheet is interposed between both plates, if bubbles are mixed in the joining interface, the refractive index changes there, and high-precision optical measurement cannot be performed. Control was an important issue.

また特許文献5に記載された発明には、溝部が形成されたプレートの表面に接着剤を塗布し、続いてフィルムの蓋材を貼り合わせる工程が開示されている。特許文献5では、接着剤が溝部内に入り込まないように塗布しているが、溝部を避けて接着剤を塗布することは難しいしまた煩雑な塗布作業になる。また仮に溝部を避けて接着剤を塗布できても加圧によって接着剤は溝部内にはみ出しやすく、結局、溝部内に接着剤が入り込まないように制御することは難しい。   The invention described in Patent Document 5 discloses a process of applying an adhesive to the surface of the plate on which the groove is formed, and subsequently bonding a film lid. In Patent Document 5, the adhesive is applied so as not to enter the groove portion. However, it is difficult and difficult to apply the adhesive while avoiding the groove portion. Even if the adhesive can be applied while avoiding the groove, it is easy for the adhesive to protrude into the groove by pressurization, and as a result, it is difficult to control the adhesive so that it does not enter the groove.

そこで本発明は上記従来の課題を解決するためのものであり、特に従来に比べて確実な封止と流路を高精度に形成でき、更には接合界面での気泡混入を効果的に抑制できる接合部材及びその製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, it is possible to form a reliable seal and flow path with high accuracy compared to the conventional technique, and to effectively suppress the bubble mixing at the joining interface. It aims at providing a joining member and its manufacturing method.

本発明は、第1基材と第2基材とを接合して成り、少なくとも検出領域が光透過性とされた接合部材の製造方法において、
凹形状の溝部が形成された前記第1基材の溝形成面に光透過性の封止部材を密着させ、前記溝部の前記溝形成面側の開口を塞ぐ工程、
前記第2基材と前記封止部材間に光透過性の液状樹脂を塗布した状態で、前記第1基材と前記第2基材間を加圧する工程、
を有することを特徴とするものである。
The present invention is a method for manufacturing a bonded member comprising a first base material and a second base material joined together, wherein at least the detection region is made light transmissive.
A step of closely attaching a light-transmitting sealing member to the groove forming surface of the first base material on which the concave groove portion is formed, and closing the opening on the groove forming surface side of the groove portion;
A step of applying pressure between the first base material and the second base material in a state where a light-transmitting liquid resin is applied between the second base material and the sealing member;
It is characterized by having.

本発明では、まず第1基材の溝部が形成された溝形成面に例えばローラーで気泡を押し出しながら、光透過性のシート状の封止部材を密着させ、溝部の前記溝形成面側の開口を塞ぐ。その状態が、図3(a)である。図3(a)(b)は比較例であり、符号1は第1基材であり、符号2がゴムシート(封止部材)である。図3(a)の形態では、流路(溝部)3に圧力が加わると、図3(b)に示すようにゴムシート2が変形して流路3が膨れたり最悪の場合、ゴムシート2が破損する恐れもある。したがって図3に示す比較例の形態では流量を高精度に調整するμ−TASやマイクロリアクタ等に適用できない。   In the present invention, first, a light-transmissive sheet-like sealing member is brought into close contact with the groove forming surface on which the groove portion of the first base material is formed, for example, with a roller, thereby opening the groove portion on the groove forming surface side. Block. This state is shown in FIG. FIGS. 3A and 3B are comparative examples, where reference numeral 1 is a first base material and reference numeral 2 is a rubber sheet (sealing member). 3A, when pressure is applied to the flow path (groove portion) 3, the rubber sheet 2 is deformed as shown in FIG. 3B, and the flow path 3 is swollen or in the worst case, the rubber sheet 2 May be damaged. Therefore, the form of the comparative example shown in FIG. 3 cannot be applied to a μ-TAS or a microreactor that adjusts the flow rate with high accuracy.

そこで本発明は封止部材を第1基材の溝形成面に密着させるとともに、前記封止部材を第1基材と第2基材との間に挟み込み、第2基材の剛性により上記のように例えば流路(溝部)に圧力が加わっても流路の形状が変形するのを防止できる。   Therefore, the present invention brings the sealing member into close contact with the groove forming surface of the first base material, sandwiches the sealing member between the first base material and the second base material, Thus, for example, even if pressure is applied to the flow path (groove portion), the shape of the flow path can be prevented from being deformed.

しかも本発明では封止部材により溝部の開口を塞いで確実な封止を実現でき、また従来のように接着剤を用いた場合のように、溝部が潰されて溝部の大きさが変化してしまう等の不具合は生じない。また、封止部材を介在させることで第1基材と第2基材間を加圧したときに、第1基材及び第2基材にクラックが生じたりまた溝部が潰れるといった不具合を抑制できる。   In addition, in the present invention, the sealing member can block the opening of the groove portion to achieve reliable sealing, and the groove portion is crushed and the size of the groove portion is changed as in the case of using an adhesive as in the prior art. There will be no inconvenience. In addition, when a pressure is applied between the first base material and the second base material by interposing a sealing member, it is possible to suppress problems such as cracks in the first base material and the second base material and crushing of the grooves. .

さらに本発明では、封止部材と第2基材の平坦面間に光透過性の液状樹脂を塗布し、その状態で第1基材と第2基材間を加圧している。液状樹脂は、封止部材と第2基材間の隙間を埋めて気泡を外部へ追い出す。また液状樹脂の塗布により封止部材と第2基材間を滑らしながら位置合わせでき第1基材と第2基材間を高精度に位置合わせすることが可能になる。   Further, in the present invention, a light transmissive liquid resin is applied between the sealing member and the flat surface of the second base material, and the first base material and the second base material are pressurized in that state. The liquid resin fills the gap between the sealing member and the second base material and drives out the bubbles to the outside. In addition, the liquid resin can be applied while sliding between the sealing member and the second base material, and the first base material and the second base material can be aligned with high accuracy.

本発明では、前記封止部材は前記液状樹脂を硬化してシート状に成形したものであることが好ましい。また前記封止部材及び液状樹脂には、2液混合付加反応型のシリコーンゴム材料を使用し、加熱しながら前記第1基材と前記第2基材間を加圧することが好ましい。   In the present invention, it is preferable that the sealing member is formed by curing the liquid resin into a sheet shape. Moreover, it is preferable to use a two-component mixed addition reaction type silicone rubber material for the sealing member and the liquid resin, and pressurize between the first base material and the second base material while heating.

これにより透明性が高く且つ低蛍光にでき、高精度な光学測定を実現でき信頼性が高い接合部材を製造できる。また第1基材と第2基材間のクッション性を効果的に高めることができ、第1基材と第2基材間を加圧したときに、第1基材や第2基材にクラック等が発生するのをより高効果的に防止できる。   As a result, a highly transparent and low fluorescent material can be realized, and a highly accurate optical measurement can be realized and a highly reliable joining member can be manufactured. Moreover, the cushioning property between the first base material and the second base material can be effectively increased, and when the first base material and the second base material are pressurized, the first base material and the second base material The occurrence of cracks and the like can be prevented more effectively.

また本発明では、前記第1基材及び前記第2基材を、シクロオレフィン、ガラス、アクリル樹脂、及びPDMSのうちいずれかにより形成することが好ましい。これにより透明性が高く且つ低蛍光にでき、高精度な光学測定を実現でき信頼性が高い接合部材を製造できる。   Moreover, in this invention, it is preferable to form the said 1st base material and the said 2nd base material by either among cycloolefin, glass, an acrylic resin, and PDMS. As a result, a highly transparent and low fluorescent material can be realized, and a highly accurate optical measurement can be realized and a highly reliable joining member can be manufactured.

また本発明では、前記第1基材と前記第2基材間を分子接着することが好ましい。具体的には、前記第1基材の溝形成面に前記封止部材を密着させる前に、
前記第1基材、前記第2基材及び前記封止部材の少なくともいずれか1つを、以下の化2に示すポリシラン化合物の溶液に浸漬させて、表面に被膜を形成することが好ましい。
Moreover, in this invention, it is preferable to carry out molecular adhesion between the said 1st base material and the said 2nd base material. Specifically, before bringing the sealing member into close contact with the groove forming surface of the first base material,
It is preferable to immerse at least one of the first base material, the second base material, and the sealing member in a polysilane compound solution shown in Chemical Formula 2 below to form a coating on the surface.

Figure 2011053091
Figure 2011053091

ここで、R11〜R1n、及びR212nの計2n個のRは下記に示すA、Bのうちいずれかであり、AとBのモル比は40:60〜60:40の間である。 Here, a total of 2n Rs of R 11 to R 1n and R 21 to 2n is either A or B shown below, and the molar ratio of A and B is between 40:60 and 60:40. It is.

Aは主鎖炭素数2〜5の炭化水素であって、下記のうちいずれかの構造をもち、
CH2=CA・CB・CC・CD・CE
CH2=CA−X−CB・CC・CD
CH2=CA・CB−X−CC・CD
CH2=CA・CB・CC−X−CD
CH2=CA・CB・CC・CD−X−
ただしXは−NH−、−S−、−O−のうちいずれかから選ばれ、
A〜CEは、−CO−、−CH2−、−C(CH32−、−C(C252−、−CH=、−CCH3=、−CC25=、−CCH3(C25)−、のいずれかで、CB〜CEについては空白でもよい。
A is a hydrocarbon having 2 to 5 carbon atoms in the main chain, and has one of the following structures:
CH 2 = C A · C B · C C · C D · C E -
CH 2 = C A -X-C B · C C · C D-
CH 2 = C A · C B -X-C C · C D -
CH 2 = C A · C B · C C -X-C D-
CH 2 = C A · C B · C C · C D -X-
X is selected from any of —NH—, —S—, and —O—,
C A -C E is, -CO -, - CH 2 - , - C (CH 3) 2 -, - C (C 2 H 5) 2 -, - CH =, - CCH 3 =, - CC 2 H 5 =, -CCH 3 (C 2 H 5 )-, and C B to CE may be blank.

また、Bはハロゲンもしくは主鎖炭素数1〜3の炭化水素で、
X−CA・CB・CC
の構造をもつ。ただしXはハロゲンもしくはアルコキシ基、CA〜CCは、−CO−、−CH2−、−C(CH32−、−CH=、−CCH3=、空白、のいずれかから選ばれる。
B is a halogen or a hydrocarbon having 1 to 3 carbon atoms in the main chain,
X-C A・ C B・ C C
It has the structure of X is a halogen or alkoxy group, and C A to C C are selected from any one of —CO—, —CH 2 —, —C (CH 3 ) 2 —, —CH═, —CCH 3 =, and a blank. .

これにより第1基材と第2基材間の接着強度を高めることができる。特に接着剤を用いずに接着できることで従来のように流路が潰れることなく、高精度な寸法で流路を形成できる。   Thereby, the adhesive strength between a 1st base material and a 2nd base material can be raised. In particular, since the bonding can be performed without using an adhesive, the flow path can be formed with a highly accurate dimension without collapsing the flow path as in the prior art.

また本発明における接合部材は、表面に凹形状の溝部が形成された第1基材と、第2基材と、前記第1基材の溝形成面に密着して設けられ、前記溝部の前記溝形成面側の開口を塞ぐ封止部材と、前記封止部材と前記第2基材間に介在する光透過性の樹脂硬化層とを有し、少なくとも検出領域が光透過性とされていることを特徴とするものである。   Moreover, the joining member in the present invention is provided in close contact with the first base material having a concave groove formed on the surface, the second base material, and the groove forming surface of the first base material. It has a sealing member that closes the opening on the groove forming surface side, and a light-transmitting cured resin layer interposed between the sealing member and the second base material, and at least the detection region is light-transmitting. It is characterized by this.

これにより、溝部に対する確実な封止が可能であり、また溝部が潰されることなく高精度な寸法により前記溝部を形成できる。また封止部材と第2基材間に気泡が入り込むのを適切に抑制でき、高精度な光学測定を実現でき、信頼性の高い接合部材にできる。   Thereby, reliable sealing with respect to a groove part is possible, and the said groove part can be formed by a highly accurate dimension, without being crushed. Moreover, it can suppress appropriately that a bubble enters between a sealing member and a 2nd base material, can implement | achieve a highly accurate optical measurement, and can make it a highly reliable joining member.

本発明では、前記封止部材及び前記樹脂硬化層は、2液混合付加反応型のシリコーンゴム材料により形成されることが好ましい。これにより透明性が高く且つ低蛍光を実現でき、より効果的に高精度な光学測定を行うことが可能になる。   In the present invention, the sealing member and the cured resin layer are preferably formed of a two-component mixed addition reaction type silicone rubber material. As a result, high transparency and low fluorescence can be realized, and optical measurement can be performed more effectively and accurately.

本発明によれば、溝部に対する確実な封止が可能であり、また溝部が潰されることなく高精度な寸法により前記溝部を形成できる。また、封止部材と第2基材間に気泡が入り込むのを適切に抑制でき、また第1基材と第2基材間の位置合わせも容易に行うことが可能である。   According to the present invention, the groove portion can be surely sealed, and the groove portion can be formed with a highly accurate dimension without being crushed. Moreover, it can suppress appropriately that a bubble enters between a sealing member and a 2nd base material, and can also perform alignment between a 1st base material and a 2nd base material easily.

本実施形態のバイオチッププレート(接合部材)の製造方法を示す工程図であり、各図は製造工程中のバイオチッププレートを厚さ方向から切断した縦断面図である。It is process drawing which shows the manufacturing method of the biochip plate (joining member) of this embodiment, and each figure is the longitudinal cross-sectional view which cut | disconnected the biochip plate in the manufacturing process from the thickness direction. 図1(d)の一部を拡大して示したバイオチッププレートの部分拡大縦断面図、FIG. 1D is a partially enlarged longitudinal sectional view of a biochip plate showing an enlarged part of FIG. 比較例としてのバイオチッププレートの縦断面図、A longitudinal sectional view of a biochip plate as a comparative example,

図1は本実施形態のバイオチッププレート(接合部材)の製造方法を示す工程図であり、各図は製造工程中のバイオチッププレートを厚さ方向から切断した断面図で示されている。   FIG. 1 is a process diagram showing a method for manufacturing a biochip plate (joining member) according to the present embodiment, and each figure is a cross-sectional view of the biochip plate in the manufacturing process cut from the thickness direction.

本実施形態におけるバイオチッププレート10は、μ−TAS等に適用される。基本的には微細な流路13に微量の検体となる液を流しその液の特性を測定するものである。例えば光源をバイオチッププレートの検出領域(測定領域)に流された検体液に当て、検体から発生する蛍光や、近接場光等の弱い光を測定する。したがってバイオチッププレート10は透明度が高く且つ低蛍光で形成され、少なくとも検出領域(流路13を含む部分)が光透過性とされている。   The biochip plate 10 in this embodiment is applied to μ-TAS or the like. Basically, a minute amount of liquid that is a specimen is passed through the fine flow path 13 and the characteristics of the liquid are measured. For example, a light source is applied to a sample liquid that has flowed to the detection region (measurement region) of the biochip plate, and weak light such as fluorescence generated from the sample or near-field light is measured. Therefore, the biochip plate 10 is formed with high transparency and low fluorescence, and at least the detection region (portion including the flow path 13) is light transmissive.

以下、図1を参照して、本実施形態におけるバイオチッププレート10の製造工程を説明する。   Hereinafter, with reference to FIG. 1, the manufacturing process of the biochip plate 10 in this embodiment is demonstrated.

まず、図1(a)の工程では、プレート状の第1基材11の表面11aに凹形状の流路(溝部)13を形成する。   First, in the process of FIG. 1A, a concave flow path (groove portion) 13 is formed on the surface 11 a of the plate-like first base material 11.

流路13の深さ寸法は、10〜500μm程度である。流路13をエッチング技術等により形成することができる。また流路13の平面形状は使用用途によって種々変更される。   The depth dimension of the flow path 13 is about 10-500 micrometers. The flow path 13 can be formed by an etching technique or the like. Further, the planar shape of the flow path 13 can be variously changed depending on the usage.

本実施形態では図1に示す流路13が形成された第1基材11を、次の化3に示すポリシラン化合物の溶液に浸漬させて、第1基材11の表面11aに被膜を形成することが好適である。なおこの実施形態では表面11aのみならず第1基材11の全周面に前記被膜が形成される。   In the present embodiment, the first base material 11 on which the flow path 13 shown in FIG. 1 is formed is immersed in a polysilane compound solution shown in the following chemical formula 3 to form a film on the surface 11a of the first base material 11. Is preferred. In this embodiment, the coating is formed not only on the surface 11 a but also on the entire peripheral surface of the first base material 11.

Figure 2011053091
Figure 2011053091

ここで、R11〜R1n、及びR212nの計2n個のRは下記に示すA、Bのうちいずれかであり、AとBのモル比は40:60〜60:40の間である。 Here, a total of 2n Rs of R 11 to R 1n and R 21 to 2n is either A or B shown below, and the molar ratio of A and B is between 40:60 and 60:40. It is.

Aは主鎖炭素数2〜5の炭化水素であって、下記のうちいずれかの構造をもち、
CH2=CA・CB・CC・CD・CE
CH2=CA−X−CB・CC・CD
CH2=CA・CB−X−CC・CD
CH2=CA・CB・CC−X−CD
CH2=CA・CB・CC・CD−X−
ただしXは−NH−、−S−、−O−のうちいずれかから選ばれ、
A〜CEは、−CO−、−CH2−、−C(CH32−、−C(C252−、−CH=、−CCH3=、−CC25=、−CCH3(C25)−、のいずれかで、CB〜CEについては空白でもよい。
A is a hydrocarbon having 2 to 5 carbon atoms in the main chain, and has one of the following structures:
CH 2 = C A · C B · C C · C D · C E -
CH 2 = C A -X-C B · C C · C D-
CH 2 = C A · C B -X-C C · C D -
CH 2 = C A · C B · C C -X-C D-
CH 2 = C A · C B · C C · C D -X-
X is selected from any of —NH—, —S—, and —O—,
C A -C E is, -CO -, - CH 2 - , - C (CH 3) 2 -, - C (C 2 H 5) 2 -, - CH =, - CCH 3 =, - CC 2 H 5 =, -CCH 3 (C 2 H 5 )-, and C B to CE may be blank.

また、Bはハロゲンもしくは主鎖炭素数1〜3の炭化水素で、
X−CA・CB・CC
の構造をもつ。ただしXはハロゲンもしくはアルコキシ基、CA〜CCは、−CO−、−CH2−、−C(CH32−、−CH=、−CCH3=、空白、のいずれかから選ばれる。
B is a halogen or a hydrocarbon having 1 to 3 carbon atoms in the main chain,
X-C A・ C B・ C C
It has the structure of X is a halogen or alkoxy group, and C A to C C are selected from any one of —CO—, —CH 2 —, —C (CH 3 ) 2 —, —CH═, —CCH 3 =, and a blank. .

なお、図1(c)の工程に示される第2基材12も、予め、上記の化3に示すポリシラン化合物の溶液に浸漬されて、第2基材12の全周囲面にわたって第1基材11と同様に被膜が形成されている。   In addition, the 2nd base material 12 shown by the process of FIG.1 (c) is also previously immersed in the solution of the polysilane compound shown in said Chemical Formula 3, and a 1st base material is covered over the perimeter surface of the 2nd base material 12. A film is formed in the same manner as in FIG.

さらに図1(b)の工程に示されるシリコーンゴムシート(封止部材)14の表面に前記被膜が形成されてもよい。本実施形態では、第1基材11、第2基材12及びシリコーンゴムシート14のうち少なくともいずれか1つに前記被膜が形成される構成でもよいが、少なくとも接合界面を備える第1基材11及び第2基材12の双方に前記被膜が形成されることが好適である。   Furthermore, the said film may be formed in the surface of the silicone rubber sheet (sealing member) 14 shown by the process of FIG.1 (b). In this embodiment, although the said film may be formed in at least any one among the 1st base material 11, the 2nd base material 12, and the silicone rubber sheet 14, the 1st base material 11 provided with a joining interface at least. It is preferable that the coating film is formed on both the second substrate 12 and the second substrate 12.

続いて、図1(b)の工程では、第1基材11の流路13が形成された表面(流路形成面)11aに光透過性のシリコーンゴムシート14を直接、貼り合わせて密着させる。   Subsequently, in the process of FIG. 1B, the light-transmissive silicone rubber sheet 14 is directly bonded and adhered to the surface (flow path forming surface) 11a of the first base material 11 on which the flow path 13 is formed. .

シリコーンゴムシート14は、その厚さが第1基材11の厚さに比べて薄く且つ軟質である。   The silicone rubber sheet 14 is thinner than the thickness of the first base material 11 and is soft.

シリコーンゴムシート14は、2液混合付加反応型のシリコーンゴム材料を硬化して成形したものであることが好適である。   The silicone rubber sheet 14 is preferably formed by curing a two-component mixed addition reaction type silicone rubber material.

2液型は1液型に比べて、架橋、硬化等の反応を遅延させる必要がなく、架橋剤、硬化剤、反応抑制剤等の添加が少なくて済む。また付加反応型は、メインとなるシリコーン樹脂にビニル基や水素を予め付加しておき、それらが加熱・白金触媒存在下で反応することで架橋する。これに対して、縮合反応型では、添加した架橋剤が自ら分解してゴムを構成する主な樹脂同士を反応させるため、付加型に比べて多くの架橋剤の添加が必要になる。このため、2液混合付加反応型のシリコーンゴムとすることで、シリコーンゴムシート14を無色透明にでき且つ低蛍光に形成できる。また2液混合付加反応型シリコーンゴム材料には触媒として白金が含まれているので組成分析により2液混合付加反応型シリコーンゴム材料であることを立証することが可能である。   Compared to the one-component type, the two-component type does not need to delay reactions such as cross-linking and curing, and the addition of a cross-linking agent, a curing agent, a reaction inhibitor, etc. can be reduced. In addition, in the addition reaction type, a vinyl group or hydrogen is added in advance to the main silicone resin, and they are crosslinked by heating and reaction in the presence of a platinum catalyst. On the other hand, in the condensation reaction type, the added crosslinking agent decomposes itself to cause the main resins constituting the rubber to react with each other, so that more crosslinking agents need to be added than in the addition type. For this reason, by using a two-component mixed addition reaction type silicone rubber, the silicone rubber sheet 14 can be made colorless and transparent and can be formed with low fluorescence. Further, since the two-component mixed addition reaction type silicone rubber material contains platinum as a catalyst, it can be proved by the composition analysis that the two-component mixed addition reaction type silicone rubber material is a two-component mixed addition reaction type silicone rubber material.

図1(b)に示すように、例えばローラー15でシリコーンゴムシート14と第1基材11間に介在する気泡を押し出しながらシリコーンゴムシート14を第1基材11の表面11aに貼り合わせ、前記流路13の表面11a側の開口を塞ぐ。   As shown in FIG. 1B, the silicone rubber sheet 14 is bonded to the surface 11a of the first base material 11 while extruding air bubbles interposed between the silicone rubber sheet 14 and the first base material 11 with a roller 15, for example. The opening on the surface 11a side of the flow path 13 is closed.

上記シリコーンゴムシート14は接着性がない(非接着性である)が、ある程度のタック性を有しているため、貼りあわせるときに気泡を巻き込みやすい。図1(b)に示すようにローラー15によりシリコーンゴムシート14を第1基材11の表面11aに直接貼り合わせることでシリコーンゴムシート14と第1基材11間を気泡を追い出しつつ適切に密着させることが可能である。   The silicone rubber sheet 14 has no adhesiveness (non-adhesiveness), but has a certain degree of tackiness, so that it is easy for air bubbles to be involved when pasting. As shown in FIG. 1 (b), the silicone rubber sheet 14 is directly adhered to the surface 11a of the first base material 11 by the roller 15, so that the silicone rubber sheet 14 and the first base material 11 are properly adhered while expelling air bubbles. It is possible to make it.

シリコーンゴムシート14のシート厚は、0.05〜1mm程度であることが好適である。   The sheet thickness of the silicone rubber sheet 14 is preferably about 0.05 to 1 mm.

本実施形態では、シリコーンゴムシート14に代えて別の封止部材(樹脂シート)を用いることも可能であるが、透明度が高く且つ低蛍光であることが必要でさらに弾性変形が可能で(ゴム弾性を備えることが好適である)、シート状に成形加工できる材質であることが好適である。   In this embodiment, it is possible to use another sealing member (resin sheet) instead of the silicone rubber sheet 14, but it is necessary to have high transparency and low fluorescence, and further elastic deformation is possible (rubber). It is preferable to have elasticity, and a material that can be molded into a sheet shape is preferable.

次に図1(c)に示す工程では、光透過性の液状樹脂16をシリコーンゴムシート14の平坦な表面14aに塗布する。ここで「液状」とは塗布後、流動性を有する状態を指し、液体状のみならずペースト状も含む。粘性やチクソ性が高いものであっても、プレート同士を貼り合わせるために必要なレベルの圧力によって流動し、広がるものは上記「液状」の範疇に含まれる。   Next, in the step shown in FIG. 1C, a light transmissive liquid resin 16 is applied to the flat surface 14 a of the silicone rubber sheet 14. Here, “liquid” refers to a state having fluidity after application, and includes not only liquid but also paste. Even if the viscosity and thixotropy are high, those that flow and spread due to the level of pressure necessary to bond the plates together are included in the category of “liquid”.

液状樹脂16は、シリコーンゴムシート14と同様に、2液混合付加反応型のシリコーンゴム材料であることが好適である。すなわち未硬化のA液とB液の混合液をシリコーンゴムシート14の表面14aに滴下する。   As with the silicone rubber sheet 14, the liquid resin 16 is preferably a two-component mixed addition reaction type silicone rubber material. That is, the uncured liquid mixture of the liquid A and the liquid B is dropped onto the surface 14 a of the silicone rubber sheet 14.

あるいは液状樹脂16を第2基材12の第1基材11との対向面に形成された平坦面12aに塗布してもよいし、第2基材12の平坦面12aと、シリコーンゴムシート14の表面14aの双方に液状樹脂16を塗布してもよい。   Or you may apply | coat the liquid resin 16 to the flat surface 12a formed in the opposing surface with the 1st base material 11 of the 2nd base material 12, and the flat surface 12a of the 2nd base material 12, and the silicone rubber sheet 14 The liquid resin 16 may be applied to both of the surface 14a.

そして図1(d)に示す工程では、第1基材11と第2基材12を貼り合わせ、加熱しながら両者の間に圧力を与えて第1基材11と第2基材12間を接合する。   In the step shown in FIG. 1D, the first base material 11 and the second base material 12 are bonded together, and pressure is applied between the first base material 11 and the second base material 12 while being heated. Join.

液状樹脂16は、加圧によりシリコーンゴムシート14と第2基材12間の隙間に広がり、前記隙間を埋めて気泡を外部へ押し出す。シリコーンゴムシート14の表面14aのタック性は強いため、その表面14aに液状樹脂16を塗布したことにより、巻き込んだ気泡を追い出すことが可能になる。また、第2基材12とシリコーンゴムシート14間を滑らすことができ、その結果、第1基材11と第2基材12間を高精度に位置決めすることが可能になる。   The liquid resin 16 spreads in the gap between the silicone rubber sheet 14 and the second base material 12 by pressurization, fills the gap, and pushes out bubbles to the outside. Since the tackiness of the surface 14a of the silicone rubber sheet 14 is strong, it is possible to drive out entrained bubbles by applying the liquid resin 16 to the surface 14a. Further, the second base 12 and the silicone rubber sheet 14 can be slid, and as a result, the first base 11 and the second base 12 can be positioned with high accuracy.

液状樹脂16は熱硬化されて樹脂硬化層17としてシリコーンゴムシート14と第2基材12との間に介在する(図1(d)参照)。   The liquid resin 16 is thermally cured and interposed as a resin cured layer 17 between the silicone rubber sheet 14 and the second substrate 12 (see FIG. 1D).

ただし上記したように、シリコーンゴムシート14及び液状樹脂16が共に、2液混合付加反応型のシリコーンゴム材料であると、樹脂硬化層17はゴム状となりシリコーンゴムシート14と樹脂硬化層17は図2に示すように一体化する(点線で示す部分がシリコーンゴムシート14と樹脂硬化層17との界面であるが、このような界面を分析できるわけではない)。しかしながら、第1基材11と第2基材12間を加圧して液状樹脂16が外方へ向けて押し出されたときにシリコーンゴムシート14の外周部14bから外方へ向けて突出する突出部17aが樹脂硬化層17に形成されやすく、図2に示す突出部17aの存在により、シリコーンゴムシート14と第2基材12間に樹脂硬化層17が介在していることを立証できる。あるいは、シリコーンゴムシート14と樹脂硬化層17とから成るシートのシート厚が例えば流路13から離れた外周部分で薄くなっていれば、その部分には樹脂硬化層17がないことがわかり、シリコーンゴムシート14と第2基材12間の少なくとも検出領域を含む部分に樹脂硬化層17が介在していることを立証できる。また、シリコーンゴムシート14と樹脂硬化層17とで組成が異なる場合には組成分析によっても立証できる。   However, as described above, when both the silicone rubber sheet 14 and the liquid resin 16 are two-component mixed addition reaction type silicone rubber materials, the cured resin layer 17 becomes rubbery, and the cured silicone rubber sheet 14 and the cured resin layer 17 are not illustrated. 2 are integrated (the portion indicated by the dotted line is the interface between the silicone rubber sheet 14 and the cured resin layer 17, but such an interface cannot be analyzed). However, a protrusion that protrudes outward from the outer peripheral portion 14b of the silicone rubber sheet 14 when the liquid resin 16 is pushed outward by pressurizing between the first base material 11 and the second base material 12. 17 a is easily formed on the cured resin layer 17, and the presence of the protruding portion 17 a shown in FIG. 2 can prove that the cured resin layer 17 is interposed between the silicone rubber sheet 14 and the second substrate 12. Alternatively, if the sheet thickness of the sheet composed of the silicone rubber sheet 14 and the resin cured layer 17 is thin, for example, at the outer peripheral portion away from the flow path 13, it can be seen that there is no resin cured layer 17 in that portion. It can be proved that the cured resin layer 17 is interposed in a portion including at least the detection region between the rubber sheet 14 and the second substrate 12. Further, when the compositions of the silicone rubber sheet 14 and the resin cured layer 17 are different, it can be verified by composition analysis.

図1で説明したように本実施形態は、凹形状の流路13が形成された第1基材11の表面(流路形成面)11aにシリコーンゴムシート(封止部材)14を密着させ流路13の表面11a側の開口を塞ぎ、その後、シリコーンゴムシート14と第2基材12の平坦面12a間に液状樹脂16を塗布して第1基材11と第2基材12間を加圧する製造工程に特徴的部分がある。   As described with reference to FIG. 1, in this embodiment, the silicone rubber sheet (sealing member) 14 is brought into close contact with the surface (flow path forming surface) 11 a of the first base material 11 on which the concave flow path 13 is formed. The opening on the surface 11 a side of the path 13 is closed, and then a liquid resin 16 is applied between the silicone rubber sheet 14 and the flat surface 12 a of the second base 12 to add a gap between the first base 11 and the second base 12. There is a characteristic part in the manufacturing process.

本実施形態では、流路13をシリコーンゴムシート14により適切に封止でき、また第1基材11と第2基材12間を加圧したときシリコーンゴムシート14の弾性変形により確実な封止を実現できる。したがって例えば流路13に注入された検体液の液漏れが生じたりする不具合は生じない。また従来のように接着剤を用いて接合する場合のように流路13の大きさが変化したりあるいは潰れるといった不具合も生じず、流路13を高精度な大きさにて形成できる。また流路13上を封止するシリコーンゴムシート14はシリコーンゴムシート14に比べて剛性の高い第2基材12により抑えられているから流路13に圧力がかかっても流路13の大きさが変化することはなく、またシリコーンゴムシート14が前記圧力により破損したりすることも無い。   In the present embodiment, the flow path 13 can be appropriately sealed with the silicone rubber sheet 14, and when the space between the first base material 11 and the second base material 12 is pressurized, the silicone rubber sheet 14 is securely sealed by elastic deformation. Can be realized. Therefore, for example, there is no problem of leakage of the sample liquid injected into the flow path 13. Further, there is no problem that the size of the flow path 13 is changed or collapsed as in the case of joining using an adhesive as in the prior art, and the flow path 13 can be formed with a highly accurate size. In addition, since the silicone rubber sheet 14 that seals the flow path 13 is suppressed by the second base material 12 that has higher rigidity than the silicone rubber sheet 14, the size of the flow path 13 is maintained even when pressure is applied to the flow path 13. Does not change, and the silicone rubber sheet 14 is not damaged by the pressure.

しかも本実施形態では液状樹脂16により、シリコーンゴムシート14と第2基材12間の隙間を埋めて気泡を外部へ追い出すことが可能になり第2基材12とシリコーンゴムシート14間を適切に密着させることが出来る。このように気泡が入るのを抑制できるため、検出領域(測定領域)に屈折率が異なる媒質の介在を抑制でき、高精度な光学測定を行うことが可能である。さらに、液状樹脂16をシリコーンゴムシート14と第2基材12間に介在させることで、滑りが良くなり第1基材11と第2基材12の位置合わせを高精度に行うことも出来る。   In addition, in the present embodiment, the liquid resin 16 fills the gap between the silicone rubber sheet 14 and the second base material 12 and allows air bubbles to be expelled to the outside, so that the space between the second base material 12 and the silicone rubber sheet 14 is appropriately set. It can be in close contact. Since bubbles can be suppressed in this way, the presence of a medium having a different refractive index in the detection region (measurement region) can be suppressed, and high-precision optical measurement can be performed. Furthermore, by interposing the liquid resin 16 between the silicone rubber sheet 14 and the second base material 12, slipping is improved and the first base material 11 and the second base material 12 can be aligned with high accuracy.

さらに本実施形態の接合方法では従来のような精密な接着塗布(印刷)工程が必要なく、従来に比べて第1基材11と第2基材12間を簡単な接合工程にて接合でき、生産効率を向上させることが可能である。   Furthermore, the bonding method of the present embodiment does not require a precise adhesive coating (printing) process as in the prior art, and the first base material 11 and the second base material 12 can be bonded in a simple bonding process as compared with the prior art. Production efficiency can be improved.

以上により本実施形態のバイオチッププレート(接合部材)10の製造方法に基づけば、流路(溝部)13に対する確実な封止とともに前記流路13を寸法精度良く所定形状で形成でき、さらに第1基材11と第2基材12間に気泡の混入を抑制できる高い透明度且つ低蛍光のバイオチッププレート10を生産性良く製造できる。   Based on the above, based on the manufacturing method of the biochip plate (joining member) 10 of the present embodiment, the flow path 13 can be formed in a predetermined shape with high dimensional accuracy as well as reliable sealing with respect to the flow path (groove portion) 13. A highly transparent and low-fluorescence biochip plate 10 that can suppress the mixing of bubbles between the base material 11 and the second base material 12 can be manufactured with high productivity.

本実施形態において「高い透明度」及び「光透過性」とは、450〜600nm(好ましくは400〜900nm)の波長において光透過率が85%以上(好ましくは90%以上)である状態を指す。   In the present embodiment, “high transparency” and “light transmittance” refer to a state where the light transmittance is 85% or more (preferably 90% or more) at a wavelength of 450 to 600 nm (preferably 400 to 900 nm).

なお、シリコーンゴムシート14を先に第2基材12の平坦面12aに密着させた後、シリコーンゴムシート14と第1基材11の表面11a間に液状樹脂16を塗布して第1基材11と第2基材12間を加圧すると液状樹脂16が流路(溝部)13内に入り込み、流路13を高精度に形成できない。したがって本実施形態では、シリコーンゴムシート14を先に第1基材11の表面11aに密着させた後、シリコーンゴムシート14と第2基材12の平坦面12a間に液状樹脂16を塗布して第1基材11と第2基材12間を加圧している。   In addition, after the silicone rubber sheet 14 is first brought into close contact with the flat surface 12a of the second base material 12, the liquid resin 16 is applied between the silicone rubber sheet 14 and the surface 11a of the first base material 11 to thereby form the first base material. When pressure is applied between 11 and the second substrate 12, the liquid resin 16 enters the flow path (groove) 13, and the flow path 13 cannot be formed with high accuracy. Therefore, in this embodiment, after the silicone rubber sheet 14 is first brought into close contact with the surface 11 a of the first base material 11, the liquid resin 16 is applied between the silicone rubber sheet 14 and the flat surface 12 a of the second base material 12. A pressure is applied between the first base material 11 and the second base material 12.

本実施形態では第1基材11及び第2基材12を、シクロオレフィン、ガラス、アクリル樹脂、及びPDMSのうちいずれかにより形成することが好ましい。第1基材11及び第2基材12は、大量生産によりコストを抑えるためにプラスチック材であることが好ましく、特に、シクロオレフィンポリマー(COP)、あるいはシクロオレフィンコポリマー(COC)により形成されることが好適である。   In the present embodiment, the first base material 11 and the second base material 12 are preferably formed of any one of cycloolefin, glass, acrylic resin, and PDMS. The first base material 11 and the second base material 12 are preferably plastic materials in order to reduce the cost by mass production, and are particularly formed of a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). Is preferred.

COPには、日本ゼオン製の商品名ゼオネックスやゼオノア、日本合成ゴム製の商品名アートンや、COCには、日本化成工業の商品名オプトレッツ、ポリプラスチックス製の商品名トーパスを好ましく使用できる。これらはいずれも無色透明で且つ低蛍光材料である。上記ゼオネックスであると無アルカリガラスの数倍レベルの蛍光に抑えることが出来る。   For COP, the trade names ZEONEX and ZEONOR made by Nippon Zeon, and the trade name "ARTON" made by Nippon Synthetic Rubber, and for COC, the trade name "Optrez" by Nippon Kasei Kogyo, and the trade name "Topass" made by Polyplastics can be preferably used. These are all colorless and transparent and are low fluorescent materials. With ZEONEX, the fluorescence can be suppressed to several times that of alkali-free glass.

また、第1基材11及び第2基材12は、0.5mm〜5mmの厚みのプレートで形成されることが好ましい。   Moreover, it is preferable that the 1st base material 11 and the 2nd base material 12 are formed with a plate with a thickness of 0.5 mm-5 mm.

また上記したように本実施形態では、シリコーンゴムシート14及び液状樹脂16を共に2液混合付加反応型のシリコーンゴム材料で形成することが好適である。これにより、より効果的に透明性が高く且つ低蛍光を実現できる。ところで、シリコーンゴムシート14及び液状樹脂16を共に2液混合付加反応型のシリコーンゴム材料で形成した場合、シリコーンゴムシート14及び液状樹脂16に接着性がない。なおタック性を有するため第1基材11と第2基材12間を貼着できるが接着強度に劣る。このため、十分な接着強度を得るために、本実施形態では、表面11aに流路13が形成された第1基材11及び第1基材11との対向面が平坦面12aである第2基材12を、上記の化3に示すポリシラン化合物の溶液に浸漬させて、第1基材11及び第2基材12の表面に被膜を形成している。   Further, as described above, in the present embodiment, it is preferable that both the silicone rubber sheet 14 and the liquid resin 16 are formed of a two-component mixed addition reaction type silicone rubber material. Thereby, transparency and high fluorescence can be realized more effectively. By the way, when both the silicone rubber sheet 14 and the liquid resin 16 are formed of a two-component mixed addition reaction type silicone rubber material, the silicone rubber sheet 14 and the liquid resin 16 are not adhesive. In addition, since it has tackiness, between the 1st base material 11 and the 2nd base material 12 can be stuck, but it is inferior to adhesive strength. For this reason, in order to obtain sufficient adhesive strength, in this embodiment, the 1st base material 11 in which the flow path 13 was formed in the surface 11a, and the opposing surface with the 1st base material 11 are the 2nd flat surfaces 12a. The base material 12 is immersed in the solution of the polysilane compound shown in Chemical Formula 3 above, and a film is formed on the surfaces of the first base material 11 and the second base material 12.

そして図1(d)の工程にて、第1基材11と第2基材12間を加熱しながら加圧すると、シリコーンゴムシート14と第1基材11間及び樹脂硬化層17と第2基材12間が分子接着により強固に接着される。具体的には被膜の例えばビニル基とシリコーンゴムシート14とが反応し、また被覆のアルコキシ基と基材とが反応して接着強度を高めることができる。   And when it pressurizes between the 1st base material 11 and the 2nd base material 12 in the process of Drawing 1 (d), between silicone rubber sheet 14 and the 1st base material 11, resin hardened layer 17, and the 2nd The substrates 12 are firmly bonded by molecular bonding. Specifically, for example, the vinyl group of the coating reacts with the silicone rubber sheet 14, and the alkoxy group of the coating reacts with the base material to increase the adhesive strength.

ただし本実施形態では分子接着によらず、例えば、検出領域(測定領域)から離れた外周部分に市販の接着剤を塗布して第1基材11と第2基材12間を接着固定してもよいし、あるいは、第1基材11と第2基材12とを外部から圧力を加えた状態(接着等を行わない)で保持することも出来る。   However, in this embodiment, without using molecular adhesion, for example, a commercially available adhesive is applied to the outer peripheral portion away from the detection region (measurement region), and the first base material 11 and the second base material 12 are bonded and fixed. Alternatively, the first base material 11 and the second base material 12 can be held in a state where pressure is applied from the outside (adhesion or the like is not performed).

また図1では、第1基材11と第2基材12とを接合したバイオチッププレート10の製造方法であったが、基材を3層以上の積層構造とすることも可能である。   Moreover, in FIG. 1, although it was the manufacturing method of the biochip plate 10 which joined the 1st base material 11 and the 2nd base material 12, a base material can also be made into the laminated structure of 3 layers or more.

また流路13の形態等によっては、シリコーンゴムシート14の流路13と対向する位置に液を通すための開口部を設けることもあるが、流路13の幅よりシリコーンゴムシート14の開口部の幅を広げておくことで、液状樹脂16が多少、開口部の部分にはみ出しても、液の流れへの影響を最小限に抑えることが可能である。   Depending on the form of the flow path 13 and the like, an opening for allowing the liquid to pass may be provided at a position facing the flow path 13 of the silicone rubber sheet 14, but the opening of the silicone rubber sheet 14 is larger than the width of the flow path 13. By widening the width of the liquid resin, even if the liquid resin 16 protrudes somewhat to the opening portion, it is possible to minimize the influence on the liquid flow.

まず日本ゼオン製のシクロオレフィンコポリマー材料(ゼオネックス480R)を用いて2種類の基材(プレート)を射出成形した。すなわち表面に幅100μm、深さ100μmの溝が縦横に形成された第1基材と、平板状の第2基材とを用意した。いずれの基材も、大きさは75mm×25mm×1mmであった。これら基材を以下の3種類の方法で接合した。   First, two types of substrates (plates) were injection molded using a cycloolefin copolymer material (ZEONEX 480R) manufactured by ZEON. That is, a first base material in which grooves having a width of 100 μm and a depth of 100 μm were formed on the surface vertically and horizontally and a flat plate-like second base material were prepared. All the substrates had a size of 75 mm × 25 mm × 1 mm. These substrates were joined by the following three methods.

(接着剤を用いて接合する方法)
市販の接着剤を用いて第1基材と第2基材間を接合する方法である。第2基材の平坦面に接着剤を少量滴下し、スクレーパーで薄く均一に延ばした後、第1基材の流路形成面側を接着剤の塗布面に対向させてローラーで押圧し、両基材を密着させた。
(Method of joining using adhesive)
In this method, a first base material and a second base material are joined using a commercially available adhesive. After a small amount of adhesive is dropped on the flat surface of the second base material and spread thinly and evenly with a scraper, the flow path forming surface side of the first base material is opposed to the adhesive application surface and pressed with a roller. The substrate was brought into close contact.

また両面接着テープを用いる場合には、まず第2基材の平坦面に両面接着テープを貼り、続いて第1基材の流路形成面側を両面接着テープに対向させてローラーで押圧し、両基材を密着させた。   In the case of using a double-sided adhesive tape, first, the double-sided adhesive tape is first applied to the flat surface of the second substrate, and then the flow path forming surface side of the first substrate is opposed to the double-sided adhesive tape and pressed with a roller. Both substrates were brought into close contact.

7品目の液状接着剤と5品目の両面接着テープを夫々用いて12種類のサンプル(サンプル1〜12)を作製した。   Twelve types of samples (samples 1 to 12) were prepared using 7 items of liquid adhesive and 5 items of double-sided adhesive tape, respectively.

(熱圧着にて接合する方法)
第2基材の表面に少量の溶剤を塗布して、自然乾燥させた後、両基材間を5MPaにて加圧し、110℃で2時間処理してサンプル13を作製した。
(Method of joining by thermocompression bonding)
A small amount of solvent was applied to the surface of the second base material and allowed to dry naturally, and then the pressure between the base materials was increased at 5 MPa and treated at 110 ° C. for 2 hours to prepare Sample 13.

(封止部材(シリコーンゴムシート)と液状樹脂を用いた接合方法)
3種類のシリコーンゴムシートを用いた。1つ目のシートは、熱加硫型ミラブルゴム(厚さ0.5mm)であり、2つ目のシートは、電子線架橋型のシリコーンゴムシート(厚さ0.4mm)であり、3つ目のシートは、信越シリコーン製のKE1935シリコーンシートである。信越シリコーン製の2液混合付加反応型のシリコーンゴム成形材料であるKE1935のA液とB液を混合して型に入れ、熱硬化させてシリコーンゴムシートを作製した。シート厚は0.5mmであった。
(Joining method using sealing member (silicone rubber sheet) and liquid resin)
Three types of silicone rubber sheets were used. The first sheet is a heat-curing type millable rubber (thickness 0.5 mm), the second sheet is an electron beam cross-linking type silicone rubber sheet (thickness 0.4 mm), and the third sheet This sheet is a KE1935 silicone sheet made of Shin-Etsu Silicone. A liquid B and a liquid B of KE1935, which is a two-component mixed addition reaction type silicone rubber molding material made by Shin-Etsu Silicone, were mixed and put into a mold and thermally cured to produce a silicone rubber sheet. The sheet thickness was 0.5 mm.

続いて、各基材と各シリコーンゴムシートとを次の化4に示すビニルメトキシシランの0.5重量%エタノール溶液に室温で3分間浸漬した。   Subsequently, each substrate and each silicone rubber sheet were immersed in a 0.5 wt% ethanol solution of vinylmethoxysilane shown in the following chemical formula 3 for 3 minutes at room temperature.

Figure 2011053091
Figure 2011053091

続いて、各シリコーンゴムシートを夫々第1基材の流路形成面上に載置し、ローラを用いて気泡が入らないようにシートの一端から気泡を追い出しつつシリコーンゴムシートと流路形成面とを密着させた。   Subsequently, each silicone rubber sheet is placed on the flow path forming surface of the first substrate, and the silicone rubber sheet and the flow path forming surface are expelled from one end of the sheet so that bubbles do not enter using a roller. And stuck together.

続いて、各シリコーンゴムシートの表面に未硬化のKE1935のA液とB液との混合液を数滴、滴下し、各第2基材を各シリコーンゴムシートの表面に載置し、両基材を治具で固定した状態で、オーブンにセットして、120℃で5分間プレスしてサンプル14〜16を作製した。   Subsequently, several drops of a mixed liquid of uncured KE1935 liquid A and liquid B are dropped on the surface of each silicone rubber sheet, and each second base material is placed on the surface of each silicone rubber sheet. With the material fixed with a jig, it was set in an oven and pressed at 120 ° C. for 5 minutes to prepare Samples 14-16.

上記各サンプルに対して次の実験を行った。
(破壊強度試験)
各サンプルの四隅を固定し、中央部に上方から一定の速度にて、荷重を加え徐々に増やしていき、第1基材と第2基材とが剥離するか、基材が破壊したときの荷重を測定した。このとき熱圧着で接合したサンプル13での破壊強度3.5kgfを基準にして、この破壊強度を上回る場合を合格(OK)、下回る場合を不合格(NG)とした。
The following experiment was performed on each sample.
(Destructive strength test)
When the four corners of each sample are fixed and the load is gradually increased from above at a constant speed to the center, the first base material and the second base material peel or the base material breaks. The load was measured. At this time, on the basis of the breaking strength of 3.5 kgf in the sample 13 joined by thermocompression bonding, the case where the breaking strength was exceeded was determined to be acceptable (OK), and the case where the breaking strength was below was determined to be unacceptable (NG).

(蛍光の測定)
各サンプルを顕微鏡上にセットし、斜め上から励起光となる532nmの緑色単色光を照射した。一方、顕微鏡の対物レンズからの光を、光路を切り替えてセンサに導けるようになっており、センサには585nmの狭帯域フィルタが付いており、この光の強度をもって相対値であるが蛍光強度とした。
(Measurement of fluorescence)
Each sample was set on a microscope and irradiated with 532 nm green monochromatic light serving as excitation light obliquely from above. On the other hand, the light from the objective lens of the microscope can be guided to the sensor by switching the optical path, and the sensor has a narrow band filter of 585 nm, and the intensity of this light is a relative value, but the fluorescence intensity and did.

なお、第1基材と第2基材とを重ねただけの状態で蛍光測定を行っており、このときの蛍光強度(790)を基準値とした。また各サンプルの蛍光強度を基準値で割り、2倍以内なら好ましい蛍光強度であるとした。   In addition, the fluorescence measurement was performed in a state where the first base material and the second base material were simply overlapped, and the fluorescence intensity (790) at this time was used as a reference value. Further, the fluorescence intensity of each sample was divided by the reference value, and if it was within 2 times, the fluorescence intensity was preferable.

(通液試験)
インクで着色した水滴を流路の入り口から滴下し、流路の出口を小型の真空ポンプで吸ったときに液が流路内に流れ、さらに液が流路外へ漏れ出したり、しみだしたりしなければ合格とした。
(Liquid penetration test)
When water droplets colored with ink are dropped from the inlet of the flow path and the outlet of the flow path is sucked with a small vacuum pump, the liquid flows into the flow path, and the liquid leaks out or oozes out of the flow path. Otherwise, it was accepted.

(目視試験)
白濁や着色等の透明度の変化やムラ、さらには気泡の混入等をチェックした。
(Visual test)
Changes in transparency such as white turbidity and coloring, unevenness, and air bubble contamination were checked.

上記サンプル1〜13の実験結果を表1に、サンプル14〜16の実験結果を表2に示す。   The experimental results of Samples 1 to 13 are shown in Table 1, and the experimental results of Samples 14 to 16 are shown in Table 2.

Figure 2011053091
Figure 2011053091

Figure 2011053091
Figure 2011053091

表1の接着剤を用いて接合したサンプル1〜12のうち、アクリル系の接着剤やシリコーン系の接着剤では、接合強度は十分であったが、蛍光値が非常に高く、さらに通液試験のいくつかのサンプルで結果が不合格(NG)となった。また両面テープを用いたサンプルには目視試験で気泡の存在が確認されたものがあった。   Among samples 1 to 12, which were joined using the adhesives shown in Table 1, acrylic adhesives and silicone adhesives had sufficient joint strength, but the fluorescence value was very high, and the liquid permeability test. Some of the samples failed (NG). Some samples using double-sided tape were confirmed to have air bubbles by a visual test.

また表1に示すようにシアノアクリレート系の接着剤を用いたサンプルでは、接着面の一部が白濁しまた接合強度及び通液試験がいずれも不合格(NG)であった。   Further, as shown in Table 1, in the sample using the cyanoacrylate adhesive, a part of the adhesion surface became cloudy, and both the bonding strength and the liquid permeability test failed (NG).

また熱圧着で接合したサンプル13では、蛍光強度は比較的低くなったが(基準値の約3.7倍)、通液試験が不合格(NG)となり、また流路が潰れていることが確認された。   Further, in sample 13 joined by thermocompression bonding, the fluorescence intensity was relatively low (about 3.7 times the reference value), but the liquid passing test failed (NG), and the flow path was crushed. confirmed.

表2に示すシリコーンゴムシートを用いた接合によるサンプルでは、サンプル14で蛍光強度が白濁のため測定不能となった。サンプル15,16は、いずれも、接合強度、通液試験、及び目視試験が合格(OK)であったが、サンプル15の蛍光強度はやや高くなった。   In the sample obtained by bonding using the silicone rubber sheet shown in Table 2, the fluorescence intensity of sample 14 became cloudy and became unmeasurable. Samples 15 and 16 all passed the bonding strength, the liquid permeability test, and the visual test (OK), but the fluorescence intensity of sample 15 was slightly higher.

サンプル16は、気泡の混入も流路の潰れもなく確実な封止がなされており、表2に示すように、蛍光強度、接合強度、通液試験、及び目視試験の全ての試験で合格であった。そしてサンプル16に実際に件体液を流して光学測定を行ったところ、安定した測定を行うことができた。   The sample 16 is securely sealed without air bubbles or crushing of the flow path. As shown in Table 2, the sample 16 passed all the tests of fluorescence intensity, bonding strength, liquid permeability test, and visual test. there were. When the body fluid was actually flowed through the sample 16 and optical measurement was performed, stable measurement could be performed.

10 バイオチッププレート
11 第1基材
12 第2基材
13 流路
14 シリコーンゴムシート(封止部材)
15 ローラー
16 液状樹脂
17 樹脂硬化層
17a 突出部
10 Biochip Plate 11 First Base Material 12 Second Base Material 13 Channel 14 Silicone Rubber Sheet (Sealing Member)
15 Roller 16 Liquid resin 17 Resin cured layer 17a Protrusion

Claims (8)

第1基材と第2基材とを接合して成り、少なくとも検出領域が光透過性とされた接合部材の製造方法において、
凹形状の溝部が形成された前記第1基材の溝形成面に光透過性の封止部材を密着させ、前記溝部の前記溝形成面側の開口を塞ぐ工程、
前記第2基材と前記封止部材間に光透過性の液状樹脂を塗布した状態で、前記第1基材と前記第2基材間を加圧する工程、
を有することを特徴とする接合部材の製造方法。
In the manufacturing method of the joining member which is formed by joining the first base material and the second base material, and at least the detection region is light transmissive,
A step of closely attaching a light-transmitting sealing member to the groove forming surface of the first base material on which the concave groove portion is formed, and closing the opening on the groove forming surface side of the groove portion;
A step of applying pressure between the first base material and the second base material in a state where a light-transmitting liquid resin is applied between the second base material and the sealing member;
The manufacturing method of the joining member characterized by having.
前記封止部材は前記液状樹脂を硬化してシート状に成形したものである請求項1記載の接合部材の製造方法。   The method for manufacturing a joining member according to claim 1, wherein the sealing member is formed by curing the liquid resin into a sheet shape. 前記封止部材及び前記液状樹脂には、2液混合付加反応型のシリコーンゴム材料を使用し、加熱しながら前記第1基材と前記第2基材間を加圧する請求項1又は2に記載の接合部材の製造方法。   The two-component mixed addition reaction type silicone rubber material is used for the sealing member and the liquid resin, and pressure is applied between the first base material and the second base material while heating. The manufacturing method of the joining member of. 前記第1基材及び前記第2基材を、シクロオレフィン、ガラス、アクリル樹脂、及びPDMSのうちいずれかにより形成する請求項1ないし3のいずれか1項に記載の接合部材の製造方法。   4. The method for manufacturing a joining member according to claim 1, wherein the first base material and the second base material are formed of any one of cycloolefin, glass, acrylic resin, and PDMS. 5. 前記第1基材と前記第2基材間を分子接着する請求項1ないし4のいずれか1項に記載の接合部材の製造方法。   The manufacturing method of the joining member of any one of Claim 1 thru | or 4 which carries out molecular adhesion between the said 1st base material and the said 2nd base material. 前記第1基材の溝形成面に前記封止部材を密着させる前に、
前記第1基材、前記第2基材及び前記封止部材の少なくともいずれか1つを、以下の化1に示すポリシラン化合物の溶液に浸漬させて、表面に被膜を形成する請求項1ないし5のいずれか1項に記載の接合部材の製造方法。
Figure 2011053091
ここで、R11〜R1n、及びR212nの計2n個のRは下記に示すA、Bのうちいずれかであり、AとBのモル比は40:60〜60:40の間である。
Aは主鎖炭素数2〜5の炭化水素であって、下記のうちいずれかの構造をもち、
CH2=CA・CB・CC・CD・CE
CH2=CA−X−CB・CC・CD
CH2=CA・CB−X−CC・CD
CH2=CA・CB・CC−X−CD
CH2=CA・CB・CC・CD−X−
ただしXは−NH−、−S−、−O−のうちいずれかから選ばれ、
A〜CEは、−CO−、−CH2−、−C(CH32−、−C(C252−、−CH=、−CCH3=、−CC25=、−CCH3(C25)−、のいずれかで、CB〜CEについては空白でもよい。
また、Bはハロゲンもしくは主鎖炭素数1〜3の炭化水素で、
X−CA・CB・CC
の構造をもつ。ただしXはハロゲンもしくはアルコキシ基、CA〜CCは、−CO−、−CH2−、−C(CH32−、−CH=、−CCH3=、空白、のいずれかから選ばれる。
Before bringing the sealing member into close contact with the groove forming surface of the first base material,
6. The film is formed on the surface by immersing at least one of the first base material, the second base material, and the sealing member in a polysilane compound solution shown in Chemical Formula 1 below. The manufacturing method of the joining member of any one of these.
Figure 2011053091
Here, a total of 2n R of R 11 to R 1n and R 21 to 2n is either A or B shown below, and the molar ratio of A and B is between 40:60 and 60:40. It is.
A is a hydrocarbon having 2 to 5 carbon atoms in the main chain, and has one of the following structures:
CH 2 = C A · C B · C C · C D · C E -
CH 2 = C A -X-C B · C C · C D-
CH 2 = C A · C B -X-C C · C D -
CH 2 = C A · C B · C C -X-C D-
CH 2 = C A · C B · C C · C D -X-
X is selected from any of —NH—, —S—, and —O—,
C A -C E is, -CO -, - CH 2 - , - C (CH 3) 2 -, - C (C 2 H 5) 2 -, - CH =, - CCH 3 =, - CC 2 H 5 =, -CCH 3 (C 2 H 5 )-, and C B to CE may be blank.
B is a halogen or a hydrocarbon having 1 to 3 carbon atoms in the main chain,
X-C A・ C B・ C C
It has the structure of Where X is a halogen or alkoxy group, and C A to C C are selected from any one of —CO—, —CH 2 —, —C (CH 3 ) 2 —, —CH═, —CCH 3 =, and a blank. .
表面に凹形状の溝部が形成された第1基材と、第2基材と、前記第1基材の溝形成面に密着して設けられ、前記溝部の前記溝形成面側の開口を塞ぐ封止部材と、前記封止部材と前記第2基材間に介在する樹脂硬化層とを有し、少なくとも検出領域が光透過性とされていることを特徴とする接合部材。   Provided in close contact with the groove-forming surface of the first base material, the second base material, and the first base material, each having a concave groove portion formed on the surface, and closing the opening on the groove-forming surface side of the groove portion. A joining member, comprising: a sealing member; and a cured resin layer interposed between the sealing member and the second base material, wherein at least the detection region is light-transmissive. 前記封止部材及び前記樹脂硬化層は、2液混合付加反応型のシリコーンゴム材料により形成される請求項7記載の接合部材。




The joining member according to claim 7, wherein the sealing member and the cured resin layer are formed of a two-component mixed addition reaction type silicone rubber material.




JP2009202436A 2009-09-02 2009-09-02 Bonding member and method of manufacturing the same Withdrawn JP2011053091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202436A JP2011053091A (en) 2009-09-02 2009-09-02 Bonding member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202436A JP2011053091A (en) 2009-09-02 2009-09-02 Bonding member and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011053091A true JP2011053091A (en) 2011-03-17

Family

ID=43942253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202436A Withdrawn JP2011053091A (en) 2009-09-02 2009-09-02 Bonding member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011053091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188677A (en) * 2012-03-13 2013-09-26 Asahi Fr R&D Co Ltd Microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2015199187A (en) * 2014-03-31 2015-11-12 住友ベークライト株式会社 Production method of resin micro channel device and micro channel device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594731A (en) * 1991-09-30 1993-04-16 Daini Shinano Polymer Kk Dazzle preventing sheet for illuminating light display
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2005199394A (en) * 2004-01-16 2005-07-28 Aida Eng Ltd Adhesion method of pdms substrate and the other synthetic resin substrate, and method for manufacturing microchip
JP2005345609A (en) * 2004-06-01 2005-12-15 Fuji Photo Film Co Ltd Scientific phenomenon evaluating device and manufacturing method of the same
JP2006177850A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Channel, liquid measuring apparatus using the same, liquid analyzing apparatus using the liquid metering apparatus, and its liquid measuring method
JP2008049311A (en) * 2006-08-28 2008-03-06 Alps Electric Co Ltd Microchip plate
WO2008050791A1 (en) * 2006-10-25 2008-05-02 Alps Electric Co., Ltd. Microchip plate and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594731A (en) * 1991-09-30 1993-04-16 Daini Shinano Polymer Kk Dazzle preventing sheet for illuminating light display
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2005199394A (en) * 2004-01-16 2005-07-28 Aida Eng Ltd Adhesion method of pdms substrate and the other synthetic resin substrate, and method for manufacturing microchip
JP2005345609A (en) * 2004-06-01 2005-12-15 Fuji Photo Film Co Ltd Scientific phenomenon evaluating device and manufacturing method of the same
JP2006177850A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Channel, liquid measuring apparatus using the same, liquid analyzing apparatus using the liquid metering apparatus, and its liquid measuring method
JP2008049311A (en) * 2006-08-28 2008-03-06 Alps Electric Co Ltd Microchip plate
WO2008050791A1 (en) * 2006-10-25 2008-05-02 Alps Electric Co., Ltd. Microchip plate and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188677A (en) * 2012-03-13 2013-09-26 Asahi Fr R&D Co Ltd Microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JPWO2015098719A1 (en) * 2013-12-27 2017-03-23 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2015199187A (en) * 2014-03-31 2015-11-12 住友ベークライト株式会社 Production method of resin micro channel device and micro channel device

Similar Documents

Publication Publication Date Title
JP4969449B2 (en) Fluid container composed of two plates
JP4993243B2 (en) Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method
KR20120120241A (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
US20090114293A1 (en) Flow cell and process for producing the same
JP2008518225A5 (en)
JP5229215B2 (en) Microchip manufacturing method
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
US8246774B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
JP2013164311A (en) Fluid handing device and manufacturing method therefor
JP2009173894A (en) Method for bonding resin by light irradiation, process for producing resin article, resin article produced using the same, method for producing microchip, and microchip produced using the same
WO2017022285A1 (en) Method for manufacturing optical member
JP2011053091A (en) Bonding member and method of manufacturing the same
Vézy et al. Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP4313682B2 (en) Method for bonding PDMS substrate to other synthetic resin substrate and method for manufacturing microchip
JP5570616B2 (en) Microchip manufacturing method
Sandström et al. One step integration of gold coated sensors with OSTE polymer cartridges by low temperature dry bonding
JP2009166416A (en) Method for manufacturing microchip, and microchip
WO2010016372A1 (en) Microchip
TWI671205B (en) Manufacturing method of laminated body
JP7069830B2 (en) Adhesive sheet, article and manufacturing method of article
JP4693907B2 (en) Microchip plate for biochip and manufacturing method thereof
JP5516954B2 (en) Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
JPWO2009101845A1 (en) Microchip and manufacturing method thereof
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130423