JP2011052357A - Heat-insulating lighting film material and method for producing the same - Google Patents

Heat-insulating lighting film material and method for producing the same Download PDF

Info

Publication number
JP2011052357A
JP2011052357A JP2009204496A JP2009204496A JP2011052357A JP 2011052357 A JP2011052357 A JP 2011052357A JP 2009204496 A JP2009204496 A JP 2009204496A JP 2009204496 A JP2009204496 A JP 2009204496A JP 2011052357 A JP2011052357 A JP 2011052357A
Authority
JP
Japan
Prior art keywords
heat
film material
oxide
resin
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204496A
Other languages
Japanese (ja)
Other versions
JP5360656B2 (en
Inventor
Toshiya Karino
俊也 狩野
Tamotsu Gomibuchi
保 五味渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2009204496A priority Critical patent/JP5360656B2/en
Publication of JP2011052357A publication Critical patent/JP2011052357A/en
Application granted granted Critical
Publication of JP5360656B2 publication Critical patent/JP5360656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting film material having light transmission properties, a high freedom of hue such as transparency, colored transparency, colored translucency and colored opacity, and excellent heat-insulation effect. <P>SOLUTION: The heat-insulating lighting film material (1) is a flexible film material including a fiber base cloth (2) and a flexible resin coating layer (3) formed on at least one surface of the cloth and has a light transmittance (measured by JIS Z8722.5.4 (condition g)) of 3-70%, wherein at least one layer of the flexible resin coating layer has a sea-island structure comprising an incompatible mixture formed by synthetic resin blend, and either one of the sea component (4) and the island component (5) of the sea-island structure contains a thermally controllable coloring agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は遮熱性を有する採光膜材に関するものである。更に詳しく述べるならば、本発明は、光線透過性があり、透明、着色透明、着色半透明、着色不透明等、色相面の自由度が高く、しかも優れた遮熱性を有し、特に日除けテント、日除けモニュメント、装飾テント、テント倉庫、イベント向けテント、トラック幌、ブラインド、間仕切り、シートシャッター、農園芸用シート等に好適に用いられる、遮熱性採光膜材及びその製造方法に関するものである。   The present invention relates to a daylighting film material having a heat shielding property. More specifically, the present invention is light transmissive, transparent, colored transparent, colored translucent, colored opaque, etc., has a high degree of freedom of hue surface, and has excellent heat shielding properties, in particular, a sun tent, The present invention relates to a heat-shielding daylighting film material and a method for producing the same, which are preferably used for sunshade monuments, decorative tents, tent warehouses, event tents, truck hoods, blinds, partitions, sheet shutters, agricultural and horticultural sheets, and the like.

繊維基布に可撓性樹脂をコーティング法、ディッピング法、カレンダー法やTダイ押出し法などの方法により被覆した膜材は、組立及び施工が容易であり、色相及び構造等のデザインの自由度が高い等の理由から、日除けテント、日除けモニュメント、装飾テント、テント倉庫、イベント向けテント、トラック幌、ブラインド等広い分野で利用されている。しかしながら、従来の膜材は、太陽輻射線に含まれる近赤外線に対する透過性又は吸収性が高く、このため膜材の表面側から透過又は吸収された赤外線が膜材の裏面側の空間を直接暖め、また吸収された赤外線は膜材の温度を上昇させて輻射熱として膜材裏面側からも放出される。このため、例えば上記膜材をテント倉庫に用いた場合、夏場の強い太陽光線の下では内部の温度が極度に高くなるため、人が長時間作業することが困難であり、またそれを日除けテントに用いた場合は、まぶしさを防ぎ、紫外線を減少させる効果はあるけれども、冷涼効果に関してはほとんど認められないのが実情であった。テント倉庫の場合、通常の建築物同様冷房を用いれば内部の温度を下げることも可能であるが、冷房の効率が非常に低く、エネルギーコストやそれに伴う環境面への負担を考えると、従来のテント倉庫は、実用上好ましいものではなかった。   A film material in which a flexible resin is coated on a fiber base fabric by a coating method, a dipping method, a calendar method, a T-die extrusion method, or the like is easy to assemble and install, and has a high degree of freedom in design such as hue and structure. Because of its high price, it is used in a wide range of fields such as awning tents, awning monuments, decorative tents, tent warehouses, event tents, truck hoods, and blinds. However, the conventional film material is highly transmissive or absorbing near infrared rays contained in solar radiation, so that the infrared light transmitted or absorbed from the surface side of the film material directly warms the space on the back side of the film material. The absorbed infrared rays are also emitted from the back side of the film material as radiant heat by raising the temperature of the film material. For this reason, for example, when the above-mentioned film material is used in a tent warehouse, the internal temperature becomes extremely high under the strong sunlight in summer, so that it is difficult for humans to work for a long time, and it is also possible to use the awning tent. When it is used for the above, it has the effect of preventing glare and reducing ultraviolet rays, but the fact is that the cooling effect is hardly recognized. In the case of a tent warehouse, it is possible to lower the internal temperature by using cooling as in a normal building, but the cooling efficiency is very low, and considering the energy costs and the environmental burden associated with it, A tent warehouse was not preferred in practice.

上記の問題に対して、白色の膜材、例えば酸化チタン等の白色顔料を可撓性樹脂層に練り込んだ膜材を用いた場合、太陽輻射に含まれる赤外線を散乱させ、遮熱性を示すことが知られている。このような白色膜材の実用化において、特別な附帯加工を必要としないので安価に遮熱性を得ることができるが、白色顔料を多量に必要とすることにより、光線透過率が低くなり、例えばこの様な膜材を用いたテント倉庫内部では、日中でも照明が必要となるという問題があった。この他の遮熱性膜材としては、可撓性樹脂層に金属粉末を練り込む方法(例えば、特許文献1および2参照)も行われているが、これらも前記白色顔料を用いた膜材と同様に、採光性及び色相選択の自由度が低いものであった。また顔料を用いる遮熱技術は、例えば、白色顔料を、近赤外線反射性および/または近赤外線透過性色素により被覆した有彩色及び黒色の複合顔料(例えば、特許文献3参照)が知られている。この顔料は、近赤外線に対して反射性を有する白色顔料を、近赤外線に対して吸収のない有機色素で被覆する事により、可視光線領域における着色と近赤外線領域の反射とを両立させたものである。これによれば、膜材の色相をある程度自由に選択でき、さらに所望の遮熱性も得ることができるが、これらの顔料を膜材の可撓性樹脂被覆層にそのまま練りこむのでは、白色顔料を用いた場合同様遮光性が大きいため、所望の採光性を得ることができないという問題点があった。この他、平均粒子径300nm〜2000nm、屈折率1.3〜3.0の白色顔料に、有機の赤外線反射性顔料、又はSi、Zr、Mg、Ca、Fe、Mn等の元素の酸化物、複酸化物、炭化物及び窒化物等を被覆した、遮熱性顔料を含む遮熱塗料(例えば、特許文献4参照)も提案されている。この遮熱塗料に含まれる顔料は300nm〜2000nmの粒子径を有することで、可視光線の散乱が低下し近赤外線が効果的に散乱され、塗料に用いた場合色相にあまり影響を与えずに遮熱性が得られるものであるが、少量の添加では遮熱性が不充分であり、大量に加えると遮光性が大きくなるため、テント等の膜材に用いたとき、遮熱性と採光性を共に得ることは困難であった。   For the above problem, when using a white film material, for example, a film material in which a white pigment such as titanium oxide is kneaded in a flexible resin layer, infrared rays contained in solar radiation are scattered, and heat shielding properties are exhibited. It is known. In practical use of such a white film material, it is possible to obtain heat shielding properties at low cost because no special auxiliary processing is required, but by requiring a large amount of white pigment, the light transmittance decreases, for example Inside the tent warehouse using such a film material, there was a problem that lighting was necessary even during the day. As another heat-shielding film material, a method of kneading metal powder into a flexible resin layer (for example, see Patent Documents 1 and 2) is also performed. Similarly, the daylighting and the degree of freedom in hue selection were low. In addition, as a heat shielding technique using a pigment, for example, a chromatic and black composite pigment obtained by coating a white pigment with a near-infrared reflective and / or near-infrared transparent pigment (see, for example, Patent Document 3) is known. . This pigment is a white pigment that reflects near-infrared, and is coated with an organic dye that does not absorb near-infrared, so that both coloring in the visible light region and reflection in the near-infrared region are achieved. It is. According to this, the hue of the film material can be freely selected to some extent, and the desired heat shielding property can also be obtained. However, if these pigments are kneaded as they are into the flexible resin coating layer of the film material, a white pigment can be obtained. Since the light shielding property is large as in the case of using a light source, there is a problem that a desired lighting property cannot be obtained. In addition, a white pigment having an average particle diameter of 300 nm to 2000 nm and a refractive index of 1.3 to 3.0, an organic infrared reflective pigment, or an oxide of an element such as Si, Zr, Mg, Ca, Fe, Mn, A thermal barrier coating containing a thermal barrier pigment coated with a double oxide, carbide, nitride, or the like has also been proposed (see, for example, Patent Document 4). The pigment contained in this thermal barrier paint has a particle diameter of 300 nm to 2000 nm, so that the scattering of visible light is reduced and the near infrared ray is effectively scattered. When used in the paint, the pigment is not affected much. Heat resistance is obtained, but heat shielding properties are insufficient when added in a small amount, and since light shielding properties increase when added in large amounts, both heat shielding properties and daylighting properties are obtained when used for film materials such as tents. It was difficult.

また、遮熱性を向上させるために、膜材の構成の中に発泡層を設けることも知られているが、このような膜材は太陽輻射線に含まれる近赤外線を、膜材がその表面側で吸収し、それにより上昇した膜材表面側の熱の裏面側への伝播を発泡層によって防止するというものである。この場合、若し赤外線が透過してしまうと充分な遮熱効果が得られないので、遮熱効果を高めるためには、膜材中に顔料、充填剤などを多量に添加したり、或は発泡層を厚くする必要があり、このようにすると採光性が低くなるという問題があった。また発泡層を部分的に圧縮して、この圧縮部分で透光性を高めるという方法も提案されているが(例えば、特許文献5参照)、圧縮部分の面積が多すぎれば結果的に遮熱効果が低下してしまい、少なければ透光性が不足するという問題があった。さらに、発泡層を有する膜材は、その厚さが厚いために取り扱い性が悪く、また、機械的強度も不充分となるため、テントなどの膜構造物には不適切な材料であった。金属薄膜や金属酸化物薄膜の赤外線反射性を応用することなどについても検討もなされており、例えば、粗目編織物に金属箔を転写させることにより、金属充実部(粗目編織物の糸部分)と金属欠如部(粗目編織物の目あき部分)を設け、この粗目編織物の金属転写側に透明フィルム層を貼り、その反対側に基体シートを形成することにより、遮熱効果と採光効果の両方を高めることが知られている(例えば、特許文献6参照)。この構成の膜材においては、透明フィルム層及び/又は基体シートに着色することにより色相をある程度自由に設定する事が可能となるが、金属を転写した側では金属光沢を伴う光輝性の高い色調しか選択する事ができず、色相の自由度としては不充分なものであり、それに加えて、耐候性が不充分であるという問題があった。その他の遮熱膜材として、真空蒸着又はスパッタリング法等によりインジウム/スズ酸化物(ITO)やアンチモン/スズ酸化物(ATO)等金属酸化物薄膜、金属薄膜、もしくは金属薄膜を透明高屈折率物質薄膜で挟んで形成された遮熱層を有する透明遮熱薄膜(例えば、特許文献7〜9参照)が知られており、この遮熱層は、可視光線を透過し赤外線は反射するという機能を持っているため、これらを膜材表面に形成すれば、膜材の色相を自由に選択でき、可視光線透過率にもさほど影響を与えることなく遮熱性を付与する事が可能となる。さらに、金属薄膜または金属酸化物薄膜と、金属酸化物の微細粒子または近赤外線吸収性色素を含む可撓性樹脂層を組み合わせた採光性遮熱膜材(例えば、特許文献10参照)も提案されており、この構成によれば、それぞれの遮熱性を合わせた効果が期待される。しかし、真空蒸着又はスパッタリング法を用いる遮熱層の形成には、大がかりな減圧設備を必要とするので汎用性に乏しく、しかも可塑剤や添加物を多量に含む肉厚の膜材に、前記遮熱層を含ませるという技術応用は困難なものであった。よって現在までのところ、遮熱効果と採光性とを兼ね備え、しかも彩色の自由度が高い実用的テント構造物用の膜材はまだ提供されていない。   In order to improve heat insulation, it is also known to provide a foam layer in the structure of the film material. Such a film material is capable of absorbing near-infrared rays contained in solar radiation, and the film material on its surface. The foam layer prevents the heat on the surface side of the film material that has been absorbed by the side from rising to the back side. In this case, if infrared rays are transmitted, a sufficient heat shielding effect cannot be obtained. Therefore, in order to increase the heat shielding effect, a large amount of pigment, filler, etc. is added to the film material, or There is a problem that it is necessary to increase the thickness of the foamed layer. In addition, a method of partially compressing the foam layer and increasing translucency at the compressed portion has also been proposed (see, for example, Patent Document 5). There is a problem that the effect is reduced, and if the amount is small, the translucency is insufficient. Furthermore, since the film material having a foam layer is thick, the film material is not easy to handle, and the mechanical strength is insufficient. Therefore, the film material is unsuitable for a film structure such as a tent. The application of infrared reflectivity of metal thin films and metal oxide thin films has also been studied. For example, by transferring a metal foil to a coarse knitted fabric, the metal solid portion (the yarn portion of the coarse knitted fabric) and By providing a metal-deficient part (open area of the coarse knitted fabric), applying a transparent film layer to the metal transfer side of this coarse knitted fabric, and forming a base sheet on the opposite side, both heat shielding effect and lighting effect Is known to increase (see, for example, Patent Document 6). In the film material having this configuration, it is possible to set the hue to some extent by coloring the transparent film layer and / or the base sheet. However, on the side where the metal is transferred, the color tone having high glossiness with metallic luster is obtained. However, there is a problem that the degree of freedom of hue is insufficient, and in addition, the weather resistance is insufficient. As other thermal barrier film materials, metal oxide thin films such as indium / tin oxide (ITO) and antimony / tin oxide (ATO), metal thin films, or metal thin films can be made of a transparent high refractive index material by vacuum deposition or sputtering. A transparent heat-shielding thin film (see, for example, Patent Documents 7 to 9) having a heat-shielding layer sandwiched between thin films is known, and this heat-shielding layer has a function of transmitting visible light and reflecting infrared light. Therefore, if these are formed on the surface of the film material, the hue of the film material can be freely selected, and it is possible to impart heat shielding properties without significantly affecting the visible light transmittance. Further, a light-collecting heat shielding film material (for example, see Patent Document 10) in which a metal thin film or metal oxide thin film and a flexible resin layer containing fine particles of metal oxide or a near-infrared absorbing dye are combined has also been proposed. Therefore, according to this configuration, an effect that combines the respective heat shielding properties is expected. However, the formation of a thermal barrier layer using vacuum deposition or sputtering requires a large-scale decompression facility, so that it is not very versatile, and it is applied to the thick film material containing a large amount of plasticizers and additives. Technical application of including a thermal layer was difficult. Therefore, up to now, a film material for a practical tent structure having both a heat shielding effect and a daylighting property and having a high degree of coloring freedom has not yet been provided.

特開平8−49171号公報JP-A-8-49171 特開平6−146166号公報JP-A-6-146166 特開2002−249676号公報JP 2002-249676 A 特開2005−97462号公報JP-A-2005-97462 特公昭57−55066号公報Japanese Patent Publication No.57-55066 特公平4−60428号公報Japanese Patent Publication No. 4-60428 特開昭51−66841号公報Japanese Patent Laid-Open No. 51-66841 特公昭63−5263号公報Japanese Patent Publication No. 63-5263 特公平6−28938号公報Japanese Examined Patent Publication No. 6-28938 特開2003−251728号公報JP 2003-251728 A

本発明は、上記従来技術の問題点を解決し、透明、着色透明、着色半透明、着色不透明等、色相面の自由度が高く、透光性があり、優れた近赤外線遮蔽性を有し、特に日除けテント、日除けモニュメント、装飾テント、テント倉庫、イベント向けテント、トラック幌、ブラインド、間仕切り、シートシャッター、農園芸用シート等に好適に用いられる、遮熱性に優れた採光膜材を、提供しようとするものである。   The present invention solves the above-mentioned problems of the prior art, has a high degree of freedom in hue, transparent, colored transparent, colored translucent, colored opaque, etc., has translucency, and has excellent near-infrared shielding properties. In particular, we provide daylighting film materials with excellent heat-shielding properties that are suitable for use in awning tents, awning monuments, decorative tents, tent warehouses, event tents, truck hoods, blinds, partitions, sheet shutters, agricultural and horticultural sheets, etc. It is something to try.

本発明者は、上記の課題を解決するために、鋭意検討の結果、少なくとも1層の可撓性樹脂被覆層が合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、前記海島構造において、海成分または島成分のいずれか一方が熱制御性着色剤を含む事により、光線透過性があり、色相の自由度が高く、かつ遮熱性に優れた膜材が得られることを見いだし、本発明を完成するに至った。   In order to solve the above problems, the present inventor has made a sea-island structure in which at least one flexible resin coating layer is composed of an incompatible mixture of a synthetic resin blend as a result of intensive studies. It has been found that a film material having light transmittance, a high degree of freedom in hue, and excellent heat shielding properties can be obtained by including one of the sea component and the island component with a heat-controllable colorant. The invention has been completed.

すなわち本発明の遮熱性採光膜材は、繊維基布及びその少なくとも1面上に形成された可撓性樹脂被覆層を含み、光線透過率(JIS Z8722.5.4(条件g)により測定)が3〜70%の可撓性膜材であって、前記可撓性樹脂被覆層の少なくとも1層が、合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、さらに前記海島構造において、海成分または島成分のいずれか一方が熱制御性着色剤を含むものである。本発明の遮熱性採光膜材は、前記海島構造において、海成分を構成する合成樹脂の屈折率と島成分を構成する合成樹脂の屈折率に差を有し、その屈折率差が0.05以上であり、かつ、前記海成分中に分散する前記島成分の平均粒子径が0.5〜20.0μmであることが好ましい。本発明の遮熱性採光膜材は、前記熱制御性着色剤として、金属酸化物微粒子、金属複合酸化物微粒子、及び近赤外線吸収性物質から選ばれた1種以上を含むことが好ましい。本発明の遮熱性採光膜材において、前記金属酸化物微粒子が、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズから選ばれた1種以上であることが好ましい。本発明の遮熱性採光膜材において、前記金属複合酸化物微粒子が、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含んでなる金属複合酸化物から選ばれた1種以上であることが好ましい。本発明の遮熱性採光膜材において、前記近赤外線吸収性物質が、フタロシアニン系化合物、ナフトールキノン系化合物、イモニウム系化合物、アントラキノン系化合物、アミニウム系化合物、及びニッケル−チオール系錯体化合物から選ばれた1種以上であることが好ましい。本発明の遮熱性採光膜材は、前記可撓性樹脂被覆層上に防汚層が設けられ、サンシャインウエザオメーター耐候促進試験(JIS K7350-4)による、1000時間後の光沢度(JIS K7105.5.2)保持率が、80〜100%であることが好ましい。本発明の遮熱性採光膜材は、前記可撓性樹脂被覆層上に防汚層が設けられ、屋外曝露前と1年後との色差ΔE(JIS K7105.5.4)が、0.1〜5.0であることが好ましい。本発明の遮熱性採光膜材は、前記防汚層が、光触媒性物質を含むことが好ましい。本発明の遮熱性採光膜材の製造方法は、繊維基布と、海成分または島成分のいずれか一方が熱制御性着色剤を含む海島構造を有する可撓性樹脂被覆層と、を含む遮熱性採光膜材において、前記海島構造を合成樹脂非相溶対により構成し、この合成樹脂非相溶対を成す一方を熱制御性着色剤含有合成樹脂として、この熱制御性着色剤含有合成樹脂と、前記合成樹脂非相溶対を成すもう一方の合成樹脂とを混合して、前記海成分中に分散する前記島成分の平均粒子径を0.5〜20.0μmとすることが好ましい。本発明の遮熱性採光膜材の製造方法は、前記海島構造において、海成分を構成する合成樹脂の屈折率と島成分を構成する合成樹脂の屈折率に差を有し、その屈折率差が0.05以上であることが好ましい。本発明の遮熱性採光膜材の製造方法は、前記熱制御性着色剤が、金属酸化物微粒子、金属複合酸化物微粒子、及び近赤外線吸収性物質から選ばれた1種以上を含むことが好ましい。本発明の遮熱性採光膜材の製造方法において、前記金属酸化物微粒子が、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズから選ばれた1種以上を含むことが好ましい。本発明の遮熱性採光膜材の製造方法において、前記金属複合酸化物微粒子が、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含んでなる金属複合酸化物から選ばれた1種以上を含むことが好ましい。本発明の遮熱性採光膜材の製造方法において、前記近赤外線吸収性物質が、フタロシアニン系化合物、ナフトールキノン系化合物、イモニウム系化合物、アントラキノン系化合物、アミニウム系化合物、及びニッケル−チオール系錯体化合物から選ばれた1種以上を含むことが好ましい。   That is, the heat insulating daylighting film material of the present invention includes a fiber base fabric and a flexible resin coating layer formed on at least one surface thereof, and has a light transmittance (measured according to JIS Z8722.5.4 (condition g)) of 3. -70% flexible membrane material, wherein at least one of the flexible resin coating layers has a sea-island structure made of an incompatible mixture of a synthetic resin blend, and in the sea-island structure, Alternatively, either one of the island components contains a heat-controllable colorant. In the sea-island structure, the heat-shielding daylighting film material of the present invention has a difference between the refractive index of the synthetic resin constituting the sea component and the refractive index of the synthetic resin constituting the island component, and the refractive index difference is 0.05. The average particle size of the island component dispersed in the sea component is preferably 0.5 to 20.0 μm. The heat-shielding daylighting film material of the present invention preferably contains at least one selected from metal oxide fine particles, metal composite oxide fine particles, and near-infrared absorbing materials as the heat-controllable colorant. In the heat-shielding daylighting film material of the present invention, the metal oxide fine particles are titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, tin-doped indium oxide, indium. It is preferable that it is 1 or more types chosen from dope tin oxide and antimony dope tin oxide. In the heat-shielding daylighting film material of the present invention, the metal composite oxide fine particles include two or more of titanium, zinc, antimony, iron, nickel, cobalt, chromium, magnesium, copper, manganese, aluminum, niobium, and silicon. It is preferable that it is 1 or more types selected from the metal complex oxide containing a component. In the heat-shielding daylighting film material of the present invention, the near-infrared absorbing material is selected from phthalocyanine compounds, naphtholquinone compounds, imonium compounds, anthraquinone compounds, aminium compounds, and nickel-thiol complex compounds. One or more are preferable. The heat-shielding daylighting film material of the present invention is provided with an antifouling layer on the flexible resin coating layer, and the glossiness after 1000 hours (JIS K7105) according to the sunshine weatherometer weathering accelerated test (JIS K7350-4). .5.2) The retention is preferably 80 to 100%. The heat-shielding daylighting film material of the present invention has an antifouling layer provided on the flexible resin coating layer, and a color difference ΔE (JIS K7105.5.4) between outdoor exposure and after one year is 0.1-5. 0.0 is preferred. In the heat shielding daylighting film material of the present invention, the antifouling layer preferably contains a photocatalytic substance. The method for producing a heat-shielding daylighting film material of the present invention includes a fiber base fabric and a flexible resin coating layer having a sea-island structure in which either a sea component or an island component contains a heat-controllable colorant. In the thermal daylighting film material, the sea-island structure is constituted by a synthetic resin incompatible couple, and one of the synthetic resin incompatible couple is used as a thermal control colorant-containing synthetic resin. It is preferable that the average particle diameter of the island component dispersed in the sea component is 0.5 to 20.0 μm by mixing with the other synthetic resin forming the synthetic resin incompatible pair. The method for producing a heat-shielding daylighting film material of the present invention has a difference between the refractive index of the synthetic resin constituting the sea component and the refractive index of the synthetic resin constituting the island component in the sea-island structure, and the refractive index difference is It is preferable that it is 0.05 or more. In the method for producing a heat-shielding daylighting film material according to the present invention, the heat-controllable colorant preferably contains one or more selected from metal oxide fine particles, metal composite oxide fine particles, and near-infrared absorbing materials. . In the method for producing a heat-shielding daylighting film material of the present invention, the metal oxide fine particles include titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, tin-doped oxide. It is preferable to include at least one selected from indium, indium-doped tin oxide, and antimony-doped tin oxide. In the method for producing a heat-shielding daylighting film material of the present invention, the metal composite oxide fine particles are selected from the group consisting of titanium, zinc, antimony, iron, nickel, cobalt, chromium, magnesium, copper, manganese, aluminum, niobium, and silicon. It is preferable to include at least one selected from metal complex oxides including at least one component. In the method for producing a heat-shielding daylighting film material of the present invention, the near-infrared absorbing substance is composed of a phthalocyanine compound, a naphtholquinone compound, an imonium compound, an anthraquinone compound, an aminium compound, and a nickel-thiol complex compound. It is preferable to include at least one selected.

本発明によれば、光線透過性があり、透明、着色透明、着色半透明、着色不透明等、色相面の自由度が高く、優れた遮熱性を有する採光膜材を、特別な生産設備を必要とせず、生産性良く、製造して提供することが可能となる。本発明の遮熱性採光膜材は、可視光線を透過し、赤外線を遮蔽する効果を有するため、明るくて涼しい環境を提供することが可能であり、特に日除けテント、日除けモニュメント、装飾テント、テント倉庫、イベント向けテント、トラック幌、ブラインド、間仕切り、シートシャッター、農園芸用シート等に好適に用いることができる。   According to the present invention, there is a need for a special production facility for a daylighting film material having light transmittance, high transparency in hue, such as transparent, colored transparent, colored translucent, and colored opaque, and having excellent heat shielding properties. Instead, it can be manufactured and provided with high productivity. Since the heat-shielding daylighting film material of the present invention has an effect of transmitting visible light and shielding infrared rays, it is possible to provide a bright and cool environment, and in particular, a awning tent, a awning monument, a decorative tent, and a tent warehouse. It can be suitably used for event tents, truck hoods, blinds, partitions, sheet shutters, agricultural and horticultural sheets, and the like.

本発明の遮熱性採光膜材の一例を示し、熱可塑性樹脂被覆層が海島構造を有 し、島成分が熱制御性着色剤を含む状態を示す図The figure which shows an example of the heat-shielding daylighting film material of the present invention, and shows a state where the thermoplastic resin coating layer has a sea-island structure and the island component contains a heat-controllable colorant. 本発明の遮熱性採光膜材の一例を示し、熱可塑性樹脂被覆層が海島構造を有 し、海成分が熱制御性着色剤を含む状態を示す図The figure which shows an example of the heat-shielding daylighting film material of the present invention, and shows a state where the thermoplastic resin coating layer has a sea-island structure and the sea component contains a heat-controllable colorant.

本発明の遮熱性採光膜材は、繊維基布と、その少なくとも1面上に形成された可撓性樹脂被覆層とを有する可撓性膜材であって、前記可撓性樹脂被覆層の少なくとも1層が、合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、さらに前記海島構造において、海成分または島成分のいずれか一方が熱制御性着色剤を含むものである。また、本発明の遮熱性採光膜材の製造方法は、繊維基布と、海成分または島成分のいずれか一方が熱制御性着色剤を含む海島構造を有する可撓性樹脂被覆層と、を含む遮熱性採光膜材において、前記海島構造を合成樹脂非相溶対により構成し、この合成樹脂非相溶対を成す一方を熱制御性着色剤含有合成樹脂として、この熱制御性着色剤含有合成樹脂と、前記合成樹脂非相溶対を成すもう一方の合成樹脂とを混合して、前記海成分中に分散する前記島成分の平均粒子径を0.5〜20.0μmとするものである。   The heat-shielding daylighting film material of the present invention is a flexible film material having a fiber base fabric and a flexible resin coating layer formed on at least one surface thereof. At least one layer has a sea-island structure composed of an incompatible mixture of a synthetic resin blend, and in the sea-island structure, either the sea component or the island component contains a heat-controllable colorant. The method for producing a heat-shielding daylighting film material of the present invention includes a fiber base fabric and a flexible resin coating layer having a sea-island structure in which either a sea component or an island component contains a heat-controllable colorant. In the heat-shielding daylighting film material comprising, the sea-island structure is constituted by a synthetic resin incompatible couple, and one of the synthetic resin incompatible couple is used as a heat-controllable colorant-containing synthetic resin, and the heat-controllable colorant is contained. A synthetic resin is mixed with the other synthetic resin forming the synthetic resin incompatible pair so that the average particle size of the island component dispersed in the sea component is 0.5 to 20.0 μm. is there.

本発明の遮熱性採光膜材の形態は、ターポリン、帆布等の防水性膜材、またはメッシュシートである。このうち帆布やメッシュシートは、有機溶剤に可溶化した可撓性樹脂、水中で乳化重合された可撓性樹脂エマルジョン(ラテックス)、あるいは可撓性樹脂を水中に強制分散させ安定化したディスパージョン樹脂などの水分散樹脂、軟質ポリ塩化ビニル樹脂ペーストゾル、等を用いるディッピング加工(繊維布帛への両面加工)、及びコーティング加工(繊維布帛への片面加工、または両面加工)等によって製造することができる。ターポリンはカレンダー成型法、またはTダイス押出法により成型されたフィルム又はシートを、繊維基布の片面または両面に接着層を介在して積層する方法、あるいは繊維布帛の両面に目抜け空隙部を介して熱ラミネート積層する方法により製造することが好ましく、さらにディッピング加工、またはコーティング加工と、フィルム積層の組み合わせ方法によっても実施可能である。本発明の採光膜材は不透明着色もしくは透明着色ターポリン、および帆布の場合、その光線透過率(JIS Z8722.5.4(条件g))は3〜35%、メッシュシート、透明ターポリンの場合10〜70%であることが好ましい。   The form of the heat insulating daylighting film material of the present invention is tarpaulin, a waterproof film material such as canvas, or a mesh sheet. Among them, canvas and mesh sheets are dispersions in which a flexible resin solubilized in an organic solvent, a flexible resin emulsion (latex) emulsion-polymerized in water, or a dispersion in which the flexible resin is forcibly dispersed in water. It can be manufactured by dipping using a water-dispersed resin such as resin, soft polyvinyl chloride resin paste sol, etc. (double-sided processing on fiber fabric), coating processing (single-sided processing or double-sided processing on fiber fabric), etc. it can. Tarpaulin is a method in which a film or sheet molded by a calendar molding method or a T-die extrusion method is laminated with an adhesive layer on one or both sides of a fiber base fabric, or through a void space on both sides of a fiber fabric. It is preferable to manufacture by a method of heat laminating and laminating, and further, it can be carried out by a combination of dipping processing or coating processing and film lamination. In the case of the daylighting membrane material of the present invention, opaque colored or transparent colored tarpaulin, and canvas, the light transmittance (JIS Z8722.5.4 (condition g)) is 3 to 35%, and mesh sheet and transparent tarpaulin is 10 to 70%. It is preferable that

本発明において、可撓性樹脂被覆層は、合成樹脂ブレンドの溶融、または合成樹脂ブレンドの液状合成樹脂の攪拌混合物により公知の加工方法によって成型される。本発明で好ましく用いられる合成樹脂としては、例えば、塩化ビニル樹脂、塩化ビニル系共重合体樹脂、オレフィン樹脂(PE,PPなど)、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂(PET,PEN,PBTなど)、ポリエステル系共重合体樹脂、フッ素含有共重合体樹脂、シリコーン樹脂、シリコーンゴム、ポリカーボネート、ポリアミド、ポリエーテル、ポリエステルアミド、ポリフェニレンスルフィド、ポリエーテルエステル、ビニルエステル樹脂、不飽和ポリエステル樹脂など、光線透過率が高く可撓性のある熱可塑性樹脂および硬化性樹脂が挙げられる。   In the present invention, the flexible resin coating layer is molded by a known processing method by melting a synthetic resin blend or by stirring a liquid synthetic resin in a synthetic resin blend. Synthetic resins preferably used in the present invention include, for example, vinyl chloride resins, vinyl chloride copolymer resins, olefin resins (PE, PP, etc.), olefin copolymer resins, urethane resins, urethane copolymer resins. , Acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, styrene copolymer resin, polyester resin (PET, PEN, PBT, etc.), polyester copolymer resin Fluorine-containing copolymer resin, silicone resin, silicone rubber, polycarbonate, polyamide, polyether, polyester amide, polyphenylene sulfide, polyether ester, vinyl ester resin, unsaturated polyester resin, etc. Some thermoplastics and curable resins That.

本発明において少なくとも1層の可撓性樹脂被覆層は、合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、この合成樹脂ブレンドの組み合わせについて、非相溶であれば特に制限はない。非相溶の組合せ例としては、塩化ビニル樹脂とポリエチレン、塩化ビニル樹脂とポリプロピレン、塩化ビニル樹脂とスチレン樹脂、塩化ビニル樹脂とスチレン系共重合樹脂、塩化ビニル樹脂とシリコーン樹脂、塩化ビニル樹脂とフッ素含有共重合体樹脂、塩化ビニル樹脂とビニルエステル樹脂、ポリスチレンとポリエチレン、ポリスチレンとポリプロピレン、ウレタン樹脂とポリエチレン、ウレタン樹脂とポリプロピレン、ポリエステル樹脂とポリエチレン、ポリエステル樹脂とポリプロピレン、ポリアミドとポリカーボネート、アクリル樹脂とポリスチレン、アクリル樹脂とポリカーボネート、ポリアミドとスチレン樹脂、ポリアミドとポリプロピレンなど2種類の合成樹脂のブレンドが好ましい。これらの非相溶の可撓性樹脂対に対して、さらに別種の可撓性樹脂を含有することもできる。   In the present invention, at least one flexible resin coating layer has a sea-island structure composed of an incompatible mixture of a synthetic resin blend, and the combination of the synthetic resin blends is not particularly limited as long as it is incompatible. Examples of incompatible combinations include vinyl chloride resin and polyethylene, vinyl chloride resin and polypropylene, vinyl chloride resin and styrene resin, vinyl chloride resin and styrene copolymer resin, vinyl chloride resin and silicone resin, vinyl chloride resin and fluorine. Containing copolymer resin, vinyl chloride resin and vinyl ester resin, polystyrene and polyethylene, polystyrene and polypropylene, urethane resin and polyethylene, urethane resin and polypropylene, polyester resin and polyethylene, polyester resin and polypropylene, polyamide and polycarbonate, acrylic resin and polystyrene A blend of two types of synthetic resins such as acrylic resin and polycarbonate, polyamide and styrene resin, and polyamide and polypropylene is preferable. Another kind of flexible resin can be further contained with respect to these incompatible flexible resin pairs.

これらの非相溶混合物は相分離構造を示す白濁概観の海島構造であることが好ましい。この海島構造において海成分と島成分は種類の異なる樹脂で構成され、例えば合成樹脂Aと合成樹脂Bからなる非相溶混合物において、合成樹脂Aと合成樹脂Bとの比率設定により、海成分を合成樹脂Aで構成し、島成分を合成樹脂Bで構成することができ、また海成分を合成樹脂Bで構成し、島成分を合成樹脂Aで構成することもできる。島成分を構成する合成樹脂の比率は、海成分を構成する合成樹脂の体積に対して3〜50体積%が好ましく、5〜40体積%がより好ましい。海島構造を有する可撓性樹脂被覆層全体に対する島成分含有率は2.9〜33.3体積%が好ましく、4.7〜28.6体積%がより好ましい。また非相溶の可撓性樹脂対A−Bに対して、さらに別種の可撓性樹脂Cを含有する場合、海島構造において島成分が可撓性樹脂Bによる島成分と可撓性樹脂Cによる島成分で構成されてもよく、同様に島成分が可撓性樹脂Aによる島成分と可撓性樹脂Cによる島成分で構成されてもよい。本発明において海島構造を有する可撓性樹脂被覆層の厚さは、0.05〜1.0mm、好ましくは0.1〜0.5mmである。   These incompatible mixtures are preferably sea-island structures with a cloudy appearance showing a phase separation structure. In this sea-island structure, the sea component and the island component are composed of different types of resins. For example, in an incompatible mixture composed of synthetic resin A and synthetic resin B, the sea component is determined by setting the ratio of synthetic resin A and synthetic resin B. It can be composed of the synthetic resin A, the island component can be composed of the synthetic resin B, the sea component can be composed of the synthetic resin B, and the island component can be composed of the synthetic resin A. The ratio of the synthetic resin constituting the island component is preferably 3 to 50% by volume, more preferably 5 to 40% by volume with respect to the volume of the synthetic resin constituting the sea component. The island component content with respect to the entire flexible resin coating layer having a sea-island structure is preferably 2.9 to 33.3% by volume, and more preferably 4.7 to 28.6% by volume. Further, when another type of flexible resin C is contained in the incompatible flexible resin pair AB, the island component is composed of the flexible resin B and the flexible resin C in the sea-island structure. The island component may be composed of the island component of the flexible resin A and the island component of the flexible resin C. In the present invention, the thickness of the flexible resin coating layer having a sea-island structure is 0.05 to 1.0 mm, preferably 0.1 to 0.5 mm.

本発明の海島構造を有する可撓性樹脂被覆層において、海成分または島成分のいずれか一方が熱制御性着色剤を含んで着色されている。海成分または島成分のいずれか一方を着色した可撓性樹脂被覆層を形成するには、例えば、非相溶混合物を構成する2種類の合成樹脂を含むゾル、溶液、分散液、未硬化液等の樹脂混合液のいずれか一方をあらかじめ着色し、この着色樹脂混合液と非着色樹脂混合液を合わせて撹拌混合して、島成分の平均粒子径を0.5〜20.0μmに調製した非相溶樹脂混合物液を、繊維基布に対してディッピング加工あるいはコーティング加工により被覆する方法や、非相溶混合物を構成する2種類の合成樹脂のいずれか一方をあらかじめ着色し、非着色合成樹脂と着色合成樹脂とを溶融混合して、島成分の平均粒子径を0.5〜20.0μmに調製した非相溶樹脂混合物を、カレンダー成型法、またはTダイス押出法によりフィルム又はシートに成型し、繊維基布に積層する方法などを採ることができる。これらの方法により、着色海成分と非着色島成分による構成、または非着色海成分と着色島成分による構成の可撓性樹脂被覆層を得ることができる。本発明の混合物では着色合成樹脂成分は非相溶対の非着色合成樹脂成分と交じり合うことは無いから、非着色合成樹脂成分が着色合成樹脂成分に含まれる着色剤によって着色されることはない。本発明において海島構造は、海成分と島成分が各々異なる着色剤により着色されていてもよい。海成分または島成分を着色する着色剤は、少なくとも1種が熱制御性を有する。また本発明の採光膜材において可撓性樹脂被覆層は、海成分または島成分のいずれか一方が着色されていることで、被覆層全体が着色されているのに比べて、光線透過性を向上させると同時に、良好な遮熱性を確保することができる。本発明の採光膜材において可撓性樹脂被覆層は島成分が着色されていることが好ましい。   In the flexible resin coating layer having the sea-island structure of the present invention, either the sea component or the island component is colored with a heat-controllable colorant. In order to form a flexible resin coating layer colored with either a sea component or an island component, for example, a sol, a solution, a dispersion, an uncured solution containing two types of synthetic resins constituting an incompatible mixture Any one of the resin mixed solutions such as the above was colored in advance, and the colored resin mixed solution and the non-colored resin mixed solution were mixed and stirred to prepare an average particle size of the island component to 0.5 to 20.0 μm. A method of coating the incompatible resin mixture liquid on the fiber base fabric by dipping or coating, or by coloring one of the two types of synthetic resins constituting the incompatible mixture in advance, And a colored synthetic resin are melt-mixed and an incompatible resin mixture prepared with an average particle size of 0.5 to 20.0 μm is formed into a film or sheet by a calendar molding method or a T-die extrusion method. In addition, a method of laminating the fiber base fabric can be adopted. By these methods, it is possible to obtain a flexible resin coating layer composed of a colored sea component and a non-colored island component or a structure composed of a non-colored sea component and a colored island component. In the mixture of the present invention, the colored synthetic resin component does not mix with the non-compatible non-colored synthetic resin component, so the non-colored synthetic resin component is not colored by the colorant contained in the colored synthetic resin component. . In the present invention, the sea-island structure may be colored with a different colorant between the sea component and the island component. At least one colorant that colors the sea component or the island component has thermal controllability. Further, in the daylighting film material of the present invention, the flexible resin coating layer has light transmittance as compared with the case where the entire coating layer is colored because either the sea component or the island component is colored. At the same time, good heat shielding properties can be secured. In the daylighting film material of the present invention, it is preferable that the flexible resin coating layer has an island component colored.

本発明の海島構造を有する可撓性樹脂被覆層において、可視光領域の光380〜780nmをあまり散乱させず、780nmを超える赤外線をより多く散乱させることができれば、光線透過率が向上し、遮熱性も向上する効果が期待できる。その様な効果を得るためには、島成分の平均粒子径が0.5〜20μmであり、かつ、海成分と島成分の屈折率差が0.05以上であることが好ましい。海成分と島成分の屈折率が異なることで、界面における屈折散乱現象により光が散乱される。海成分と島成分の屈折率は、いずれの側が高くてもかまわないが、海成分よりも島成分の屈折率が高いことが好ましい。海成分と島成分の屈折率差が0.05未満であると、界面における屈折散乱現象が充分に起こらず、充分な赤外線散乱効果が得られず、遮熱性が向上しないことがある。島成分の好ましい平均粒子径は、海成分と島成分の屈折率差によって異なり、例えば屈折率差が0.05であれば、島成分の平均粒子径は5〜19μmである事が好ましく、屈折率差が0.2であれば、島成分の平均粒子径は1〜5μmであることが好ましい。島成分の平均粒子径が0.5μm未満であると、界面における屈折散乱現象により可視光領域の一部で光の散乱が大きくなり、光線透過率が低下したり、可視領域の光を部分的に散乱することにより、可撓性樹脂被覆層が着色されているように見えることがある。島成分の平均粒子径が20μmを超えると、可視光線全域に亘る散乱を起こし、光線透過率が低下することがある。島成分の形状は球状、歪んだ球状、碁石状、ラグビーボール状などである。なお、屈折率はD線を光源とするアッベ屈折率計により求めることができる。また、島成分の平均粒子径は、顕微鏡拡大写真から一定面積中に分布する島成分の径を測定し、平均する事で求められる。   In the flexible resin coating layer having the sea-island structure of the present invention, if light 380 to 780 nm in the visible light region is not scattered so much and more infrared rays exceeding 780 nm can be scattered, the light transmittance is improved and the light shielding is performed. The effect of improving thermal properties can be expected. In order to obtain such an effect, it is preferable that the average particle diameter of the island component is 0.5 to 20 μm and the difference in refractive index between the sea component and the island component is 0.05 or more. Due to the difference in the refractive index between the sea component and the island component, light is scattered by the refractive scattering phenomenon at the interface. The refractive index of the sea component and the island component may be higher on either side, but the island component preferably has a higher refractive index than the sea component. If the difference in refractive index between the sea component and the island component is less than 0.05, the refractive scattering phenomenon at the interface does not sufficiently occur, and a sufficient infrared scattering effect cannot be obtained, and the heat shielding property may not be improved. The preferred average particle size of the island component varies depending on the difference in refractive index between the sea component and the island component. For example, if the refractive index difference is 0.05, the average particle size of the island component is preferably 5 to 19 μm. If the rate difference is 0.2, the average particle size of the island components is preferably 1 to 5 μm. If the average particle size of the island component is less than 0.5 μm, the light scattering increases in part of the visible light region due to the refraction and scattering phenomenon at the interface, and the light transmittance decreases or the light in the visible region is partially The flexible resin coating layer may appear to be colored due to scattering. When the average particle diameter of the island component exceeds 20 μm, scattering over the entire visible light region may occur, and the light transmittance may be lowered. The shape of the island component is a sphere, a distorted sphere, a meteorite shape, a rugby ball shape, or the like. The refractive index can be obtained by an Abbe refractometer using the D line as a light source. Moreover, the average particle diameter of an island component is calculated | required by measuring and averaging the diameter of the island component distributed in a fixed area from a microscope enlarged photograph.

本発明の海成分または島成分の着色に用いる熱制御性着色剤としては、金属酸化物微粒子、金属複合酸化物微粒子、及び近赤外線吸収性物質から選ばれた1種以上を含むことが遮熱性を得るために効果的である。   The heat-controllable colorant used for coloring the sea component or island component of the present invention contains at least one selected from metal oxide fine particles, metal composite oxide fine particles, and near-infrared absorbing materials. Is effective to obtain.

本発明に用いられる金属酸化物微粒子としては、赤外線を反射する金属酸化物からなる粒子であれば特に制限はなく、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化マンガン、酸化バリウム、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、酸化銅、酸化モリブデン、酸化コバルト、酸化イットリウム、酸化セリウム、酸化ビスマス、酸化ケイ素、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズなどが例示され、中でも酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズが好ましく用いられる。これらの金属酸化物微粒子は単独で用いても良く、2種以上を併用して用いることもできる。また、これらの内、特に酸化チタン、酸化亜鉛、酸化タングステン等の光触媒活性を示す物質については、光触媒活性を抑制するために、表面が例えば二酸化珪素(シリカ)や酸化アルミニウム(アルミナ)などでコーティングされていても良い。金属酸化物微粒子の粒子径には特に制限は無く、通常入手可能な平均粒子径1〜10000nmの粒子から適宜選択して用いることができ、平均粒子径20〜5000nmの粒子がより好ましく用いられる。特に可視光線の透過性を高めて高い光線透過率を得、かつ近赤外線を選択的に散乱させて高い遮熱性を得るためには、金属酸化物微粒子の屈折率にもよるが、平均粒子径350〜2000nmの粒子が好ましく、また、光線透過率を高め、かつ透視性のある可撓性樹脂層を得るには、平均粒子径20〜100nmの粒子が好ましく用いられる。海成分及び島成分に含む金属酸化物微粒子は、海成分または島成分を構成する合成樹脂に対して0.1〜30質量%、好ましくは0.5〜10質量%である。添加量が0.1質量%未満では赤外線反射効果が不充分となって、充分な遮熱性が得られないことがある。また添加量が30質量部を超えると光線透過率が低下して、充分な採光性が得られなくなることがある。   The metal oxide fine particles used in the present invention are not particularly limited as long as they are particles made of a metal oxide that reflects infrared rays. Titanium oxide, zinc oxide, aluminum oxide, magnesium oxide, manganese oxide, barium oxide, tin oxide , Zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, copper oxide, molybdenum oxide, cobalt oxide, yttrium oxide, cerium oxide, bismuth oxide, silicon oxide, tin-doped indium oxide, indium-doped tin oxide, And antimony-doped tin oxide, etc., among which titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, tin-doped indium oxide, indium-doped tin oxide, and the like Antimony-doped tin oxide is preferably used. These metal oxide fine particles may be used alone or in combination of two or more. In addition, among these substances, particularly for substances exhibiting photocatalytic activity such as titanium oxide, zinc oxide, and tungsten oxide, the surface is coated with, for example, silicon dioxide (silica) or aluminum oxide (alumina) to suppress the photocatalytic activity. May be. There is no restriction | limiting in particular in the particle diameter of metal oxide microparticles | fine-particles, It can select suitably from the normally available particle | grains of the average particle diameter of 1-10000 nm, and a particle | grain with an average particle diameter of 20-5000 nm is used more preferable. In particular, in order to increase the transmittance of visible light to obtain a high light transmittance and to selectively scatter near infrared rays to obtain a high heat shielding property, the average particle diameter depends on the refractive index of the metal oxide fine particles. Particles having an average particle diameter of 20 to 100 nm are preferably used in order to obtain a flexible resin layer having high light transmittance and transparency. The metal oxide fine particles contained in the sea component and the island component are 0.1 to 30% by mass, preferably 0.5 to 10% by mass with respect to the synthetic resin constituting the sea component or the island component. When the addition amount is less than 0.1% by mass, the infrared reflection effect is insufficient, and sufficient heat shielding properties may not be obtained. On the other hand, if the addition amount exceeds 30 parts by mass, the light transmittance may be lowered, and sufficient lighting properties may not be obtained.

本発明に用いられる金属複合酸化物微粒子としては、チタン(Ti)、亜鉛(Zn)、アンチモン(Sb)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、マグネシウム(Mg)、銅(Cu)、マンガン(Mn)、アルミニウム(Al)、ニオブ(Nb)、及びケイ素(Si)の内2種以上の成分を含む無機着色顔料から選択して用いることができ、また、これらを2種以上含むものであれば、上記以外の成分を更に含む金属複合酸化物微粒子を用いることができる。具体的には、例えばCo−Al、Co−Al−Cr、Co−Al−Cr−Ti、Co−Mg−Sn、Co−Ni−Ti、Co−Zn−Ni−Ti、Co−Zn−Cr−Ti、Co−Sb−Ni−Ti、Co−Nb−Ni−Ti、Nb−Ni−Ti、Co−Si、Sn−Cr−Ti、Zn−Cr−Ti、Zn−Cr−Fe、Co−Zn−Cr−Fe、Co−Ni−Cr−Fe−Si、Co−Cr−Mg−Zn−Al、Co−Mn−Cr−Fe、Co−Fe−Cr、Co−Cr−Ni、Co−Cr、Cu−Mn−Cr、Cu−Mn−Fe、Cu−Cr、Mn−Fe、Zn−Fe、Cr−Fe、Cr−Fe−Zn−Ti、Pb−Sb−Fe、Pb−Sb−Al、Ni−Sb、Ni−W、Ni−W−Ti、Fe−W−Ti、Fe−Zn−Ti、Fe−Al−Ti、Fe−Ti、Fe−Mo、Cr−Sb、Cr−Sb−Ti、Mn−Sb−Ti、Ti−Sb−Ni、Cr−Sn、Fe−Co−Mn−Ni、Ti−Sb−CrおよびZr−Feなどの成分からなる複合酸化物を例示することができ、これらの内所望の色相を有する粒子を単独で、あるいは2種以上を併用して用いることができる。特に、Co−Al、Co−Al−Cr、Co−Zn−Ni−Ti、Co−Zn−Cr−Ti、Co−Cr−Mg−Zn−Al、Co−Fe−Cr、Cr−Fe、Cr−Fe−Zn−Ti、Fe−Zn−Ti、Fe−Al−Ti、Cr−Sb−Ti、Mn−Sb−Ti、およびTi−Sb−Niの成分からなる金属複合酸化物は、赤外線反射性に優れ、本発明に好ましく用いることができる。金属複合酸化物微粒子の粒子径には特に制限は無く、平均粒子径が1〜10000nmの粒子から適宜選択して用いることができ、平均粒子径が20〜5000nmの粒子がより好ましく用いられる。特に可視光線の透過性を高めて、遮熱性とともに高い光線透過率を得るためには、平均粒子径350〜2000nmの粒子が好ましく、また、光線透過率を高め、かつ透視性のある可撓性樹脂層を得るには、平均粒子径20〜100nmの粒子が好ましく用いられる。海成分及び島成分に含む金属複合酸化物微粒子は、海成分または島成分を構成する合成樹脂に対して0.05〜30質量%、好ましくは0.5〜10質量%である。金属複合酸化物微粒子の添加量が0.05質量%未満では着色が不充分になることがある。また添加量が30質量部を超えると光線透過率が低下して、充分な採光性が得られなくなることがある。   The metal composite oxide fine particles used in the present invention include titanium (Ti), zinc (Zn), antimony (Sb), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), magnesium ( Mg), copper (Cu), manganese (Mn), aluminum (Al), niobium (Nb), and inorganic color pigments containing two or more components of silicon (Si) can be used. As long as it contains two or more of these, metal composite oxide fine particles further containing components other than those described above can be used. Specifically, for example, Co-Al, Co-Al-Cr, Co-Al-Cr-Ti, Co-Mg-Sn, Co-Ni-Ti, Co-Zn-Ni-Ti, Co-Zn-Cr- Ti, Co-Sb-Ni-Ti, Co-Nb-Ni-Ti, Nb-Ni-Ti, Co-Si, Sn-Cr-Ti, Zn-Cr-Ti, Zn-Cr-Fe, Co-Zn- Cr-Fe, Co-Ni-Cr-Fe-Si, Co-Cr-Mg-Zn-Al, Co-Mn-Cr-Fe, Co-Fe-Cr, Co-Cr-Ni, Co-Cr, Cu- Mn—Cr, Cu—Mn—Fe, Cu—Cr, Mn—Fe, Zn—Fe, Cr—Fe, Cr—Fe—Zn—Ti, Pb—Sb—Fe, Pb—Sb—Al, Ni—Sb, Ni-W, Ni-W-Ti, Fe-W-Ti, Fe-Zn-Ti, Fe- l-Ti, Fe-Ti, Fe-Mo, Cr-Sb, Cr-Sb-Ti, Mn-Sb-Ti, Ti-Sb-Ni, Cr-Sn, Fe-Co-Mn-Ni, Ti-Sb- Complex oxides composed of components such as Cr and Zr—Fe can be exemplified, and among these, particles having a desired hue can be used alone or in combination of two or more. In particular, Co—Al, Co—Al—Cr, Co—Zn—Ni—Ti, Co—Zn—Cr—Ti, Co—Cr—Mg—Zn—Al, Co—Fe—Cr, Cr—Fe, Cr— Metal composite oxides composed of Fe-Zn-Ti, Fe-Zn-Ti, Fe-Al-Ti, Cr-Sb-Ti, Mn-Sb-Ti, and Ti-Sb-Ni components are infrared reflective. It is excellent and can be preferably used in the present invention. There is no restriction | limiting in particular in the particle diameter of metal complex oxide microparticles | fine-particles, It can select suitably from a particle | grain with an average particle diameter of 1-10000 nm, and a particle | grain with an average particle diameter of 20-5000 nm is used more preferable. In particular, particles having an average particle diameter of 350 to 2000 nm are preferable in order to increase the transmittance of visible light and obtain a high light transmittance as well as a heat shielding property, and also increase the light transmittance and have flexibility with transparency. In order to obtain a resin layer, particles having an average particle diameter of 20 to 100 nm are preferably used. The metal composite oxide fine particles contained in the sea component and the island component are 0.05 to 30% by mass, preferably 0.5 to 10% by mass with respect to the synthetic resin constituting the sea component or the island component. If the amount of the metal composite oxide fine particles added is less than 0.05% by mass, coloring may be insufficient. On the other hand, if the addition amount exceeds 30 parts by mass, the light transmittance may be lowered, and sufficient lighting properties may not be obtained.

本発明に用いられる近赤外線吸収性物質としては、例えば、フタロシアニン系化合物、ナフトールキノン系化合物、イモニウム系化合物、アントラキノン系化合物、アルミニウム系化合物、及びニッケル−チオール系錯体化合物などを用いることができ、これらは特開昭51−135886号公報、特開昭56−143242号公報、特開昭58−13676号公報、特開昭60−23451号公報、特開昭61−115958号公報、特開昭63−295578号公報、特開平4−174402号公報、特開平5−93160号公報、特開平5−222302号公報、及び特開平6−264050号公報などに記されている公知の色素から選んで用いることができる。海成分及び島成分に含む近赤外線吸収性物質は、海成分または島成分を構成する合成樹脂に対して0.01〜3.0質量%が好ましく、特に好ましくは0.1〜1.0質量%である。添加量が0.01質量%未満では赤外線吸収効果が不充分となって、充分な遮熱性が得られないことがある。また添加量が3.0質量部を超えると光線透過率が低下して、充分な採光性が得られなくなることがある。   As the near infrared ray absorbing substance used in the present invention, for example, phthalocyanine compounds, naphtholquinone compounds, imonium compounds, anthraquinone compounds, aluminum compounds, nickel-thiol complex compounds, and the like can be used. These are disclosed in JP 51-135886, JP 56-143242, JP 58-13676, JP 60-23451, JP 61-115958, JP 63-295578, JP-A-4-174402, JP-A-5-93160, JP-A-5-222302, JP-A-6-264050, etc. Can be used. The near infrared ray absorbing substance contained in the sea component and the island component is preferably 0.01 to 3.0% by mass, particularly preferably 0.1 to 1.0% by mass with respect to the synthetic resin constituting the sea component or the island component. %. When the addition amount is less than 0.01% by mass, the infrared absorption effect is insufficient and sufficient heat shielding properties may not be obtained. On the other hand, if the amount added exceeds 3.0 parts by mass, the light transmittance may be reduced, and sufficient lighting properties may not be obtained.

本発明の採光膜材において、可撓性樹脂被覆層には、この他に必要に応じて公知の添加剤を含んでいても良い。添加剤としては、例えば、帯電防止剤、難燃剤、可塑剤、可撓性付与剤、充填剤、接着剤、架橋剤、紫外線吸収剤、酸化防止剤、安定剤、滑剤、加工助剤、レベリング剤、消泡剤、抗菌剤、防黴剤、蛍光増白剤、蛍光顔料、有機顔料、蓄光顔料などが挙げられる。   In the daylighting film material of the present invention, the flexible resin coating layer may contain other known additives as necessary. Examples of the additive include an antistatic agent, a flame retardant, a plasticizer, a flexibility imparting agent, a filler, an adhesive, a crosslinking agent, an ultraviolet absorber, an antioxidant, a stabilizer, a lubricant, a processing aid, and a leveling. Agents, antifoaming agents, antibacterial agents, antifungal agents, fluorescent whitening agents, fluorescent pigments, organic pigments, phosphorescent pigments and the like.

本発明の採光膜材において、経時的な汚れの付着による遮熱効果及び、光線透過性の低下を防止し、且つ美観を維持するために、可撓性樹脂被覆層上に少なくとも1層の防汚層が設けられていることが好ましい。防汚層は採光膜材の遮熱性及び光線透過性を損なわず、極度の隠蔽性を伴わないものである限り、その形成方法及び素材に特に限定はない。このような防汚層は例えば、溶剤に可溶化されたアクリル系樹脂もしくはフッ素系樹脂の少なくとも1種以上からなる樹脂溶液あるいは樹脂分散液を塗布して形成した塗膜、これらにシリカ微粒子、またはコロイダルシリカを含む塗膜、オルガノシリケート及び/又はその縮合体を含む塗布剤で塗布し親水性被膜層を形成したもの、光触媒性無機材料(例えば光触媒性酸化チタン)と結着剤とを含む塗布剤を塗布し光触媒層を形成したもの、少なくとも最外表面がフッ素系樹脂により形成されたフィルムを接着剤もしくは熱溶融加工により積層したもの、等から適宜選択することができる。   In the daylighting film material of the present invention, in order to prevent the heat-shielding effect due to the adhesion of dirt over time and the decrease in light transmittance, and to maintain the aesthetic appearance, at least one layer of anti-reflection coating is provided on the flexible resin coating layer. A dirty layer is preferably provided. The antifouling layer is not particularly limited in its formation method and material as long as it does not impair the heat shielding property and light transmittance of the daylighting film material and does not have extreme concealing properties. Such an antifouling layer is, for example, a coating film formed by applying a resin solution or a resin dispersion composed of at least one of an acrylic resin or a fluorine resin solubilized in a solvent, silica fine particles, or A coating containing colloidal silica, a coating containing an organosilicate and / or its condensate to form a hydrophilic coating layer, a coating containing a photocatalytic inorganic material (eg photocatalytic titanium oxide) and a binder It can be appropriately selected from those in which a photocatalyst layer is formed by applying an agent, and those obtained by laminating a film having at least the outermost surface formed of a fluororesin by an adhesive or hot melt processing.

前記防汚層上に汚れが堆積したり、防汚層が劣化して着色を生じたりすると、汚れ及び/又は着色により、可視光線および赤外線の吸収が増大し、それによって採光性と遮熱効果が低下することがある。このため防汚層は、初期の光沢と色相を維持可能なことが好ましい。具体的には、サンシャインウエザオメーター耐候促進試験(JIS K7350-4)1000時間後の光沢度(JIS K7105.5.2)保持率が、80〜100%、特に90〜100%であることが好ましく、屋外曝露1年後の色差ΔE(JIS K7105.5.4)が、0.1〜5.0であることが好ましい。防汚層と可撓性樹脂被覆層との間には、必要に応じて、防汚層と可撓性樹脂被覆層との接着性を向上させるための接着層、光触媒による樹脂の分解を妨げるための保護層、樹脂被覆層に含まれる添加剤が防汚層に移行するのを妨げるための添加剤移行防止層、等が形成されていてもよい。また、本発明の採光膜材の、防汚層が形成された面とは反対の面に、防汚層との高周波加熱融着性及び熱風融着性を付与するための裏面接着層が形成されていてもよい。あるいは、採光膜材をロール状に巻き取って保管している間に、裏面側の接着層もしくは可撓性樹脂被覆層に含まれる添加剤が、防汚層上に移行して防汚性が低下するのを防ぐために、裏面側(防汚層とは反対の面)に添加剤移行防止層が形成されていても良い。   When dirt accumulates on the antifouling layer or the antifouling layer deteriorates to cause coloring, the absorption of visible light and infrared rays increases due to the fouling and / or coloring. May decrease. Therefore, it is preferable that the antifouling layer can maintain the initial gloss and hue. Specifically, the glossiness (JIS K7105.5.2) retention after 1000 hours of sunshine weatherometer weather resistance acceleration test (JIS K7350-4) is preferably 80 to 100%, particularly preferably 90 to 100%. The color difference ΔE (JIS K7105.5.4) after one year of outdoor exposure is preferably 0.1 to 5.0. Between the antifouling layer and the flexible resin coating layer, if necessary, an adhesive layer for improving the adhesion between the antifouling layer and the flexible resin coating layer, or preventing the resin from being decomposed by the photocatalyst. For example, an additive migration preventing layer for preventing the additive contained in the protective layer and the resin coating layer from migrating to the antifouling layer may be formed. In addition, a back surface adhesive layer for imparting high-frequency heat fusion property and hot air fusion property to the antifouling layer is formed on the surface opposite to the surface on which the antifouling layer is formed of the daylighting film material of the present invention. May be. Alternatively, while the daylighting film material is rolled up and stored, the additive contained in the adhesive layer on the back side or the flexible resin coating layer is transferred onto the antifouling layer and has antifouling properties. In order to prevent the lowering, an additive migration preventing layer may be formed on the back surface side (the surface opposite to the antifouling layer).

本発明の防汚層は、特に光触媒性物質を含む事が好ましい。本発明に用いる光触媒性物質としては、(1).酸化チタン(特にアナターゼ型)、酸化タングステン、酸化鉄、酸化亜鉛、酸化インジウム、酸化バナジウム、酸化ビスマス、鉄−タングステン酸化物等の光触媒性金属酸化物、(2).(1)の金属酸化物に銀、プラチナ、金、銅、ロジウム、パラジウム、ルテニウム、イリジウムなどの金属およびそれらの金属の化合物を助触媒として添加(担持)した助触媒添加(担持)型光触媒、(3).(1)の光触媒性金属酸化物に窒素、炭素、硫黄、リン、ホウ素、フッ素等をドープしたアニオンドープ型光触媒、(4).(1)の光触媒性金属酸化物にクロム、ニオブ、マンガン、コバルト、バナジウム、鉄、ニッケル等の遷移金属イオンをドープしたカチオンドープ型光触媒、(5).(1)の光触媒性金属酸化物にアニオンとカチオンの両方をドープした共ドープ型光触媒、(6).(1)の光触媒性金属酸化物に白金、パラジウム、ロジウムなど貴金属のハロゲン化物を担持させた金属ハロゲン化物担持型光触媒、(7).(1)の光触媒性金属酸化物から部分的に酸素を引き抜いた酸素欠損型光触媒、等を好ましく用いることができる。光触媒は、上記から1種、または2種以上を組み合わせて選択して用いることができる。   The antifouling layer of the present invention preferably contains a photocatalytic substance. Examples of the photocatalytic substance used in the present invention include (1). Photocatalytic metal oxides such as titanium oxide (especially anatase type), tungsten oxide, iron oxide, zinc oxide, indium oxide, vanadium oxide, bismuth oxide, iron-tungsten oxide, (2). A cocatalyst-added (supported) photocatalyst obtained by adding (supporting) a metal such as silver, platinum, gold, copper, rhodium, palladium, ruthenium, and iridium as a promoter to the metal oxide of (1); (3). An anion-doped photocatalyst obtained by doping the photocatalytic metal oxide of (1) with nitrogen, carbon, sulfur, phosphorus, boron, fluorine, or the like; (4). (5) a cation-doped photocatalyst obtained by doping the photocatalytic metal oxide of (1) with a transition metal ion such as chromium, niobium, manganese, cobalt, vanadium, iron, or nickel; A co-doped photocatalyst obtained by doping the photocatalytic metal oxide of (1) with both an anion and a cation, (6). A metal halide-supported photocatalyst obtained by supporting a noble metal halide such as platinum, palladium or rhodium on the photocatalytic metal oxide of (1), (7). The oxygen deficient photocatalyst obtained by partially extracting oxygen from the photocatalytic metal oxide (1), etc. can be preferably used. A photocatalyst can be selected and used from the above, or one or a combination of two or more.

光触媒性物質を含有する防汚層の形成方法としては、例えば光触媒の粒子またはゾルと結着剤とを含む塗布剤を塗布して光触媒性物質を含有する防汚層を形成する方法、光触媒性物質の溶液からゾルゲル法により光触媒性物質を含有する防汚層を形成する方法、スパッタリング法、イオンプレーティング法、CVD法などにより光触媒性物質を含有する防汚層を形成する方法、等従来公知の方法で形成することができる。結着剤としては、光触媒によって分解され難く、かつ皮膜形成能を有する、例えば、フッ素系樹脂、シリコーン系樹脂、アクリルフッ素共重合樹脂、アクリルシリコーン共重合樹脂、などの有機系バインダーや、ポリシラザン、有機シリケート化合物、またはその低縮合物の加水分解物(シラノール基含有シラン化合物)の何れか1種以上によるケイ素化合物縮合層であることが好ましく、これらに更にシリカゾル、アルミナゾル、チタンゾルの何れか1種以上を含んでいてもよい。光触媒性物質を含有する防汚層には、光触媒性物質の粒子またはゾルを10〜70質量%、特に20〜60質量%含有することが好ましい。   Examples of the method for forming an antifouling layer containing a photocatalytic substance include a method of forming an antifouling layer containing a photocatalytic substance by applying a coating agent containing photocatalyst particles or sol and a binder, Conventionally known methods such as a method for forming an antifouling layer containing a photocatalytic substance from a solution of the substance by a sol-gel method, a method for forming an antifouling layer containing a photocatalytic substance by a sputtering method, an ion plating method, a CVD method, etc. It can form by the method of. As the binder, it is difficult to be decomposed by a photocatalyst and has a film forming ability, for example, an organic binder such as a fluorine resin, a silicone resin, an acrylic fluorine copolymer resin, an acrylic silicone copolymer resin, polysilazane, It is preferably a silicon compound condensation layer composed of any one or more of an organic silicate compound or a hydrolyzate (silanol group-containing silane compound) of a low condensate thereof, and further any one of silica sol, alumina sol, and titanium sol. The above may be included. The antifouling layer containing a photocatalytic substance preferably contains 10 to 70% by mass, particularly 20 to 60% by mass of particles or sol of the photocatalytic substance.

本発明の採光膜材に使用する繊維基布に用いられる繊維としては、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維などの合成繊維、木綿、麻などの天然繊維、アセテートなどの半合成繊維、ガラス繊維、シリカ繊維、アルミナ繊維、炭素繊維などの無機繊維が挙げられ、これらは単独または2種以上からなる混用繊維によって構成されていてもよく、その形状はマルチフィラメント糸条、短繊維紡績糸条、モノフィラメント糸条、スプリットヤーン糸条、テープヤーン糸条などいずれであってもよい。本発明に使用される繊維基布は、織布、編布、不織布のいずれでもよい。織布を用いる場合、平織、綾織、繻子織、模紗織などいずれの構造をとるものでもよいが、平織織物は、得られる採光膜材の縦緯物性バランスに優れているため好ましく用いられる。編布を用いるときはラッセル編の緯糸挿入トリコットが好ましく用いられる。これら編織物は、少なくともそれぞれ、糸間間隙をおいて平行に配置された経糸及び緯糸を含む糸条により構成された粗目状の編織物(空隙率は最大80%、好ましくは5〜50%)、及び非粗目状編織物(糸条間に実質上間隙が形成されていない編織物)を包含する。不織布としてはスパンボンド不織布などが使用できる。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理などが施されていても良い。   The fibers used for the fiber base fabric used in the daylighting membrane material of the present invention include synthetic fibers such as polypropylene fiber, polyethylene fiber, polyester fiber, nylon fiber, and vinylon fiber, natural fibers such as cotton and hemp, and half fibers such as acetate. Examples thereof include inorganic fibers such as synthetic fibers, glass fibers, silica fibers, alumina fibers, and carbon fibers. These fibers may be composed of single or a mixture of two or more kinds, and the shape thereof is a multifilament yarn, a short fiber. Any of fiber spun yarn, monofilament yarn, split yarn yarn, tape yarn yarn and the like may be used. The fiber base fabric used in the present invention may be any of woven fabric, knitted fabric and non-woven fabric. When a woven fabric is used, it may have any structure such as a plain weave, twill weave, satin weave, and patterned weave, but a plain weave fabric is preferably used because it has an excellent balance of the longitudinal properties of the obtained daylighting membrane material. When using a knitted fabric, a weft insertion tricot of Russell knitting is preferably used. These knitted fabrics are each a coarse knitted fabric composed of yarns including warps and wefts arranged in parallel with a gap between yarns (the porosity is 80% at maximum, preferably 5 to 50%) And non-coarse knitted fabric (knitted fabric with substantially no gap formed between yarns). As the nonwoven fabric, a spunbond nonwoven fabric can be used. The fiber base fabric may be subjected to water repellent treatment, water absorption prevention treatment, adhesion treatment, flame retardant treatment, and the like as necessary.

本発明を下記実施例、および比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited thereto.

下記実施例において、光線透過率、遮熱率、光沢保持率、屋外曝露1年後の色差評価のための試験方法は下記の通りである。
(I)光線透過率
JIS Z8722.5.4(条件g)に従いミノルタ分光測色計CM−3600dを用いて測定した。
(II)遮熱率
試験環境:内径が、高さ45cm×幅35cm×長さ35cmの外気温遮断性と気密性とを有する箱型構造体の天井部中央に白熱ランプ(100V,500Wのフォトリフレクタランプ:デイライトカラー用:東芝(株))を取り付けて、遮熱性評価の試験環境を構成した。次に、たて・よこともに0.5cmの正方形の断面積を有するアクリル樹脂製角材棒を梁として、外径が、高さ5cm×幅10cm×長さ15cmの箱型フレームを瞬間接着剤で組み立て、箱型フレームの4側面、上面部、及び底面部に、試験膜材を、その表面が外向きとなるように、両面テープで貼り付けて固定し、気密性の試験箱を準備した。また、この試験箱内部の底面部の中央には熱流量計(Shothrm HFM熱流量計:昭和電工(株)製)のセンサーを取り付けて固定した。試験膜材で被覆した試験箱(比較時には試験膜材の装着がないものを使用)を、箱型構造体の底面部の中央に取り付けて、ランプの中心点と試験箱の中心点とを結ぶ直線の方向が鉛直方向に重なるように固定した。この箱型構造体内部におけるランプ先端から試験箱の天井部までの距離は35cmであった。尚、箱形構造体は20℃の恒温室内に設置した。
試験:試験膜材を装着しない試験箱を箱型構造体に入れて密閉状態に置き、ランプを点灯し、熱流量(kcal/m2h)を1分ごとに測定し、30分後の熱流量qn(kcal/m2h)を測定した。箱型構造体内の温度を恒温室内と同じ20℃まで戻した後、試験膜材を装着した試験箱を箱型構造体に入れて密閉状態に置き、ランプを点灯し、熱流量(kcal/m2h)を1分ごとに測定し、30分後の熱流量qc(kcal/m2h)を測定し、下記式により遮熱率を求めた。遮熱率は、数値が大きい程、遮熱性が高いものと判断した。
遮熱率(%)=〔(qn−qc)/qn〕×100
(III )光沢保持率
JIS K7105.5.2の光沢度試験方法により、試験膜材の表面側の初期の光沢度GSb(60°)と、サンシャインウエザオメーター耐候促進試験(JIS K7350-4)1000時間後の光沢度GSa(60°)とを測定し、下記式より光沢保持率を求めた。
光沢保持率(%)=〔GSa(60°)/GSb(60°)〕×100
(IV)屋外曝露1年後の色差
屋外曝露台上に、試験膜材の表面を上にして南向きに傾斜角30度に設置して屋外曝露試験を行い、初期の試験膜材表面の色を基準とし、曝露12ケ月後の試験膜材表面の色との色差ΔE(JIS K7105.5.4)を測定した。
In the following examples, the light transmittance, the heat shielding rate, the gloss retention, and the test method for evaluating the color difference after one year of outdoor exposure are as follows.
(I) Light transmittance
It measured using Minolta spectrocolorimeter CM-3600d according to JIS Z8722.5.4 (condition g).
(II) Heat insulation rate
Test environment : Incandescent lamp (100V, 500W photoreflector lamp: daylight color) at the center of the ceiling of a box-shaped structure with an inside diameter of 45cm x width 35cm x length 35cm. Use: Toshiba Corp.) was attached, and a test environment for thermal insulation evaluation was configured. Next, a box-shaped frame with an outer diameter of 5 cm (height) x 10 cm (width) x 15 cm (length) is used as an adhesive with a square square cross section of 0.5 cm. An airtight test box was prepared by assembling and fixing the test membrane material to the four side surfaces, the upper surface portion, and the bottom surface portion of the box-type frame with a double-sided tape so that the surface thereof was outward. Further, a sensor of a heat flow meter (Shotrm HFM heat flow meter: manufactured by Showa Denko KK) was attached and fixed at the center of the bottom surface inside the test box. Attach a test box coated with a test membrane material (use a test membrane without a test membrane material for comparison) to the center of the bottom of the box-type structure, and connect the center point of the lamp to the center point of the test box The straight line direction was fixed so as to overlap the vertical direction. The distance from the lamp tip to the ceiling of the test box in the box structure was 35 cm. The box-shaped structure was installed in a constant temperature room at 20 ° C.
Test : Put a test box with no test membrane material in a box structure and keep it sealed, turn on the lamp, measure the heat flow (kcal / m 2 h) every minute, heat after 30 minutes The flow rate qn (kcal / m 2 h) was measured. After returning the temperature in the box structure to 20 ° C, the same as in the temperature-controlled room, put the test box with the test membrane material in the box structure, put it in a sealed state, turn on the lamp, and heat flow (kcal / m 2 h) was measured every minute, the heat flow rate qc (kcal / m 2 h) after 30 minutes was measured, and the heat shielding rate was determined by the following formula. The heat shielding rate was judged to be higher as the numerical value was higher.
Heat shielding rate (%) = [(qn−qc) / qn] × 100
(III) Gloss retention
According to the glossiness test method of JIS K7105.5.2, the initial glossiness G Sb (60 °) on the surface side of the test membrane material and the glossiness G after 1000 hours of sunshine weatherometer accelerated weathering test (JIS K7350-4) Sa (60 °) was measured, and the gloss retention was determined from the following formula.
Gloss retention (%) = [G Sa (60 °) / G Sb (60 °)] × 100
(IV) Color difference after one year of outdoor exposure An outdoor exposure test was conducted by setting the surface of the test membrane material facing upward on the outdoor exposure table at an inclination angle of 30 degrees southward, and the color of the initial test membrane material surface. The color difference ΔE (JIS K7105.5.4) from the surface color of the test membrane material 12 months after the exposure was measured.

下記実施例において、繊維基布として以下の基布を用いた。
基布1:下記組織で質量230g/m2のポリエステル短繊維紡績糸非粗目状長尺平織物
295.3dtex(20番手)/2×295.3dtex(20番手)/2
───────────────────────
55 × 48(本/25.4mm)
基布2:下記組織で質量210g/m2のポリエステルマルチフィラメント粗目状長尺
平織物
833dtex(750d)/3×833dtex(750d)/3
───────────────────────
11 × 11(本/25.4mm)
基布3:下記組織で質量140g/m2のポリエステルマルチフィラメント粗目状長尺
平織物
833dtex(750d)×833dtex(750d)
───────────────────────
19 × 20(本/25.4mm)
基布4:下記組織で質量85g/m2のポリエステルマルチフィラメント粗目状長尺
平織物
1111dtex(1000d)×1111dtex(1000d)
───────────────────────
10 × 10(本/25.4mm)
In the following examples, the following base fabrics were used as the fiber base fabrics.
Base fabric 1: Polyester short fiber spun yarn non-coarse long plain woven fabric having the following structure and a mass of 230 g / m 2
295.3dtex (20th) /2×295.3dtex (20th) / 2
───────────────────────
55 x 48 (book / 25.4mm)
Base fabric 2: Polyester multifilament coarse long plain fabric with the following structure and mass of 210 g / m 2
833dtex (750d) / 3 × 833dtex (750d) / 3
───────────────────────
11 x 11 (book / 25.4mm)
Base fabric 3: Polyester multifilament coarse long plain fabric with the following structure and mass of 140 g / m 2
833dtex (750d) x 833dtex (750d)
───────────────────────
19 x 20 (book / 25.4mm)
Base fabric 4: Polyester multifilament coarse long plain fabric with a mass of 85 g / m 2 in the following structure
1111dtex (1000d) × 1111dtex (1000d)
───────────────────────
10 x 10 (pieces / 25.4mm)

[実施例1]
下記配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合2の白着色ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して35質量%加えて撹拌し、白着色ビニルエステル樹脂を均一分散させ非相溶樹脂混合物液1を得た。配合2において、熱制御性着色剤としては平均粒子径1000nmの酸化チタン粒子を用いた。この樹脂混合物液1の液バス中に基布1を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行い、さらにその片面に鏡面エンボス処理を施した。これにより基布1の両面への付着、および内部含浸した状態で、非相溶樹脂混合物液1が300g/m付着して、海島構造を有する可撓性樹脂被覆層が形成された採光膜材を得た。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。この採光膜材について、鏡面エンボス処理を施した側を表(おもて)面として各種評価を行った。結果を表1に示す。
<配合1>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部

<配合2>
ビニルエステル樹脂 100質量部
(商標:ネオポール8319:日本ユピカ(株) )
硬化剤 1質量部
(ジ−(4−tert−ブチルシクロヘキシル)パ−オキシジカ-ボネ-ト)
熱制御性着色剤(酸化チタン:平均粒子径1000nm) 5質量部
[Example 1]
Add the white colored vinyl ester resin stirred mixture of the following formulation 2 to the stirred mixture of the soft vinyl chloride resin paste of the following formulation 1 with respect to the mass of the vinyl chloride resin alone and stir to obtain the white colored vinyl ester resin. It was made to disperse | distribute uniformly and the incompatible resin mixture liquid 1 was obtained. In Formula 2, titanium oxide particles having an average particle diameter of 1000 nm were used as the heat-controllable colorant. The base fabric 1 is immersed in the liquid bath of the resin mixture liquid 1 and pulled up, and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, heat-treated at 190 ° C. for 1 minute, and then one side thereof. Was subjected to a mirror embossing treatment. Thus, the daylighting film in which the flexible resin coating layer having the sea-island structure was formed by adhering 300 g / m 2 of the incompatible resin mixture liquid 1 in a state where the base fabric 1 was adhered to both surfaces and internally impregnated. The material was obtained. When the flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. For this daylighting film material, various evaluations were performed with the side subjected to the mirror embossing treatment as the front surface. The results are shown in Table 1.
<Formulation 1>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Zinc stearate (stabilizer) 2 parts by mass Stearic acid Barium (stabilizer) 2 parts by weight UV absorber: 0.5 parts by weight of benzotriazole

<Formulation 2>
100 parts by weight of vinyl ester resin (Trademark: Neopol 8319: Nippon Iupika Co., Ltd.)
1 part by weight of curing agent (di- (4-tert-butylcyclohexyl) peroxydicarbonate)
Thermally controllable colorant (titanium oxide: average particle size 1000 nm) 5 parts by mass

[実施例2]
実施例1と同様にして得た膜材の、鏡面エンボス処理を施した側の可撓性樹脂被覆層上に、下記配合3の防汚層塗工液をグラビアコーターによりコーティング加工し、120℃で3分間乾燥した。これによって片面に塗布量:5g/mの防汚層が形成された採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合3>
フルオロオレフィンビニルエーテル樹脂 100質量部
(商標:フロロトップ1053:旭硝子(株):固形分50質量%)
イソホロン系イソシアネート硬化剤 10質量部
(商標:タケネートD−140N:武田薬品工業(株):固形分75質量%)
シリカ(商標:ファインシールX37:(株)トクヤマ) 5質量部
メチルエチルケトン 100質量部
[Example 2]
On the flexible resin coating layer on the side subjected to the mirror embossing treatment of the film material obtained in the same manner as in Example 1, an antifouling layer coating solution of the following formulation 3 was coated with a gravure coater, and 120 ° C. For 3 minutes. Thus, a daylighting film material having an antifouling layer with a coating amount of 5 g / m 2 formed on one surface was obtained. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 3>
100 parts by mass of fluoroolefin vinyl ether resin (Trademark: Fluorotop 1053: Asahi Glass Co., Ltd .: solid content 50% by mass)
Isophorone isocyanate curing agent 10 parts by mass (Trademark: Takenate D-140N: Takeda Pharmaceutical Co., Ltd .: solid content 75% by mass)
Silica (Trademark: Fine Seal X37: Tokuyama Corporation) 5 parts by weight Methyl ethyl ketone 100 parts by weight

[実施例3]
下記配合4の白着色軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合5のビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して35質量%加えて撹拌し、ビニルエステル樹脂を均一分散させた非相溶樹脂混合物液3を用いて、実施例1と同様にして、海島構造を有する可撓性樹脂被覆層を形成した。配合4において、熱制御性着色剤としては平均粒子径1000nmの酸化チタン粒子を用いた。基布1に対する非相溶樹脂混合物液3の付着は300g/mであった。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が無色の島成分を構成しており、軟質塩化ビニル樹脂が白色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。次いで、実施例2と同様にして、鏡面エンボス処理を施した側の可撓性樹脂被覆層上に塗布量:5g/mの防汚層を形成し、採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合4>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
熱制御性着色剤(酸化チタン:平均粒子径1000nm) 2質量部

<配合5>
ビニルエステル樹脂 100質量部
(商標:ネオポール8319:日本ユピカ(株) )
硬化剤 1質量部
(ジ−(4−tert−ブチルシクロヘキシル)パ−オキシジカ-ボネ-ト)
[Example 3]
To the stirring mixture of the white colored soft vinyl chloride resin paste of the following formulation 4, 35% by mass of the vinyl ester resin stirring mixture of the following formulation 5 is added with respect to the mass of the vinyl chloride resin alone and stirred to uniformly disperse the vinyl ester resin. A flexible resin coating layer having a sea-island structure was formed in the same manner as in Example 1 by using the incompatible resin mixture liquid 3 thus prepared. In Formula 4, titanium oxide particles having an average particle diameter of 1000 nm were used as the heat-controllable colorant. The adhesion of the incompatible resin mixture liquid 3 to the base fabric 1 was 300 g / m 2 . When this flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a colorless island component, and the soft vinyl chloride resin constituted a white sea component. The average particle size of the island components was 6.7 μm. Next, in the same manner as in Example 2, an antifouling layer having a coating amount of 5 g / m 2 was formed on the flexible resin coating layer on the side subjected to the mirror embossing treatment to obtain a daylighting film material. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 4>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Zinc stearate (stabilizer) 2 parts by mass Stearic acid 2 parts by weight of barium (stabilizer) UV absorber: 0.5 parts by weight of benzotriazole series 2 parts by weight of heat-controllable colorant (titanium oxide: average particle size 1000 nm)

<Formulation 5>
100 parts by weight of vinyl ester resin (Trademark: Neopol 8319: Nippon Iupika Co., Ltd.)
1 part by weight of curing agent (di- (4-tert-butylcyclohexyl) peroxydicarbonate)

[実施例4]
下記配合6の軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合7の白着色シリコーン樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して13質量%加えて撹拌し、白着色シリコーン樹脂を均一分散させた非相溶樹脂混合物液4を得た。配合7の熱制御性着色剤として平均粒子径600nmの酸化亜鉛粒子を用いた。この非相溶樹脂混合物液4の液バス中に基布1を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行い、シートを得た。これにより基布1の両面への付着、および内部含浸した状態で、非相溶樹脂混合物液4が270g/m付着して、海島構造を有する可撓性樹脂被覆層が形成された。次にPETフィルムの1面上に非相溶樹脂混合物液4を0.05mm厚でコートし、これを先に作成したシートの片面に重ね、電気炉で180℃×5分間加熱して非相溶樹脂混合物液4を固化させてからPETフィルムを除去して、65g/mの平滑な可撓性樹脂被覆層を形成した。これらの可撓性樹脂被覆層を顕微鏡観察すると、シリコーン樹脂が白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は3.4μmであった。次いで、可撓性樹脂被覆層に下記配合8の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/mの樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合8の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、前記樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、下記配合9の接着・保護層形成用塗布液を平滑な可撓性樹脂被覆層側に形成された添加剤移行防止層上にグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を形成し、さらに、その接着・保護層上に下記配合10の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの光触媒性物質含有防汚層が平滑面側に形成された採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合6>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
リン酸トリクレジル(可塑剤) 50質量部
リン酸クレジルフェニル(可塑剤) 46質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部

<配合7>
CY52−110(東レダウコーニングシリコーン(株)社製シリコーン樹脂)
A液 50質量部
B液 50質量部
熱制御性着色剤(酸化亜鉛粒子:平均粒子径600nm) 7質量部

<配合8>
ビニリデンフルオライド−テトラフルオロエチレン共重合体樹脂 20質量部
(商標:カイナー7201:エルフ・アトケム・ジャパン(株))
シリカ:(商標:ニップシールE−75:東ソー・シリカ(株)) 5質量部
MEK(溶剤) 80質量部
<配合9>
シリコン含有量3mol%のアクリルシリコン樹脂を8質量%(固形分)含有する
エタノール−酢酸エチル(50/50質量比)溶液 100質量部
メチルシリケートMS51(コルコート(株))の
20%エタノール溶液(ポリシロキサン) 8質量部
γ−グリシドキシプロピルトリメトキシシラン(シランカップリング剤) 1質量部
<配合10>
酸化チタン含有量10質量%に相当する硝酸酸性酸化チタンゾルを分散させた
水−エタノール(50/50質量比)溶液 50質量部
酸化珪素含有量10質量%に相当する硝酸酸性シリカゾルを分散させた
水−エタノール(50/50質量比)溶液 50質量部
[Example 4]
The white colored silicone resin stirred mixture of the following formulation 7 is added to the stirred mixture of the soft vinyl chloride resin paste of the following formulation 6 with respect to the mass of the vinyl chloride resin alone and stirred to uniformly disperse the white colored silicone resin. An incompatible resin mixture solution 4 was obtained. As the heat-controllable colorant of Formulation 7, zinc oxide particles having an average particle diameter of 600 nm were used. The base fabric 1 is dipped in the liquid bath of this incompatible resin mixture liquid 4, pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. A sheet was obtained. As a result, in a state where the base fabric 1 was adhered to both surfaces and impregnated inside, the incompatible resin mixture liquid 4 was adhered at 270 g / m 2 to form a flexible resin coating layer having a sea-island structure. Next, an incompatible resin mixture liquid 4 is coated on one surface of the PET film to a thickness of 0.05 mm, and this is overlaid on one side of the previously prepared sheet, and heated in an electric furnace at 180 ° C. for 5 minutes to produce a non-phase. After the molten resin mixture liquid 4 was solidified, the PET film was removed to form a 65 g / m 2 smooth flexible resin coating layer. When these flexible resin coating layers were observed with a microscope, the silicone resin constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 3.4 μm. Next, a composition liquid of the following formulation 8 was applied to the flexible resin coating layer with a gravure coater, dried at 120 ° C. for 1 minute, and then cooled to form a 5 g / m 2 resin intermediate layer on both surfaces. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 8 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, As a result, a total of 10 g / m 2 of additive migration preventing layers composed of the resin intermediate layer and the additional resin layer were formed on both sides. Next, a coating solution for forming an adhesion / protection layer having the following composition 9 was applied on an additive migration prevention layer formed on the smooth flexible resin coating layer side with a gravure coater, dried at 100 ° C. for 1 minute, and then cooled. Then, an adhesion / protection layer of 1.5 g / m 2 is formed, and a coating solution for forming an antifouling layer having the following composition 10 is applied onto the adhesion / protection layer with a gravure coater, at 120 ° C. for 2 minutes. After drying, it was cooled to obtain a daylighting film material in which a 1.5 g / m 2 photocatalytic substance-containing antifouling layer was formed on the smooth surface side. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 6>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by mass tricresyl phosphate (plasticizer) 50 parts by mass cresylphenyl phosphate (plasticizer) 46 parts by mass zinc stearate (stabilizer) 2 parts by mass barium stearate ( Stabilizer) 2 parts by mass
Ultraviolet absorber: 0.5 parts by mass of benzotriazole series

<Formulation 7>
CY52-110 (silicone resin manufactured by Toray Dow Corning Silicone Co., Ltd.)
Liquid A 50 parts by mass Liquid B 50 parts by mass Thermally controllable colorant (zinc oxide particles: average particle diameter 600 nm) 7 parts by mass

<Formulation 8>
20 parts by mass of vinylidene fluoride-tetrafluoroethylene copolymer resin (Trademark: Kyner 7201: Elf Atchem Japan Co., Ltd.)
Silica: (Trademark: NipSeal E-75: Tosoh Silica Co., Ltd.) 5 parts by mass MEK (solvent) 80 parts by mass <Formulation 9>
Ethanol-ethyl acetate (50/50 mass ratio) solution containing 8 mass% (solid content) of acrylic silicon resin having a silicon content of 3 mol% 100 mass parts 20% ethanol solution of methyl silicate MS51 (Colcoat Co., Ltd.) Siloxane) 8 parts by mass γ-glycidoxypropyltrimethoxysilane (silane coupling agent) 1 part by mass <Formulation 10>
Water-ethanol (50/50 mass ratio) solution in which a nitric acid acidic titanium oxide sol corresponding to a titanium oxide content of 10% by mass is dispersed 50 parts by mass Water in which a nitric acid acidic silica sol corresponding to a silicon oxide content of 10% by mass is dispersed -50 parts by mass of ethanol (50/50 mass ratio) solution

[実施例5]
下記配合11のシリコーン樹脂攪拌混合物の攪拌混合物に、下記配合12の白着色軟質塩化ビニル樹脂ペーストを、シリコーン樹脂単体の質量に対して15質量%加えて撹拌し、白着色軟質塩化ビニル樹脂ペーストを均一分散させた非相溶樹脂混合物液5を用いて、実施例4と同様にして、海島構造を有する可撓性樹脂被覆層を形成した。配合12の熱制御性着色剤として平均粒子径600nmの酸化亜鉛粒子を用いた。基布1の両面への付着、および内部含浸した非相溶樹脂混合物液5は225g/mであり、片面に形成された平滑な可撓性樹脂被覆層は55g/mであった。これらの可撓性樹脂被覆層を顕微鏡観察すると、塩化ビニル樹脂が白色の島成分を構成しており、シリコーン樹脂が無色の海成分を構成していた。島成分の平均粒子径は3.4μmであった。次いで、実施例4と同様にして、合計10g/mの添加剤移行防止層を両面に形成し、平滑な可撓性樹脂被覆層側に形成された添加剤移行防止層上に1.5g/mの接着・保護層を形成し、接着・保護層上に更に1.5g/mの光触媒性物質含有防汚層を形成して、採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合11>
CY52−110(東レダウコーニングシリコーン(株)社製シリコーン樹脂)
A液 50質量部
B液 50質量部

<配合12>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
リン酸トリクレジル(可塑剤) 50質量部
リン酸クレジルフェニル(可塑剤) 46質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
熱制御性着色剤(酸化亜鉛粒子:平均粒子径600nm) 9質量部
[Example 5]
Add the white colored soft vinyl chloride resin paste of the following formulation 12 to the stirred mixture of the silicone resin stirred mixture of the following formulation 11 with respect to the mass of the silicone resin alone and stir to obtain the white colored soft vinyl chloride resin paste. A flexible resin coating layer having a sea-island structure was formed in the same manner as in Example 4 using the uniformly dispersed incompatible resin mixture liquid 5. Zinc oxide particles having an average particle size of 600 nm were used as the heat-controllable colorant of Formulation 12. The incompatible resin mixture liquid 5 adhered to both surfaces of the base fabric 1 and internally impregnated was 225 g / m 2 , and the smooth flexible resin coating layer formed on one surface was 55 g / m 2 . When these flexible resin coating layers were observed with a microscope, the vinyl chloride resin constituted a white island component and the silicone resin constituted a colorless sea component. The average particle size of the island components was 3.4 μm. Next, in the same manner as in Example 4, a total of 10 g / m 2 of the additive migration preventing layer was formed on both sides, and 1.5 g was formed on the additive migration preventing layer formed on the smooth flexible resin coating layer side. / M 2 adhesion / protection layer was formed, and a 1.5 g / m 2 photocatalytic substance-containing antifouling layer was further formed on the adhesion / protection layer to obtain a daylighting film material. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 11>
CY52-110 (silicone resin manufactured by Toray Dow Corning Silicone Co., Ltd.)
Liquid A 50 parts by mass Liquid B 50 parts by mass

<Formulation 12>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by mass tricresyl phosphate (plasticizer) 50 parts by mass cresylphenyl phosphate (plasticizer) 46 parts by mass zinc stearate (stabilizer) 2 parts by mass barium stearate ( Stabilizer) 2 parts by mass
Ultraviolet absorber: 0.5 parts by mass of benzotriazole-based thermal control colorant (zinc oxide particles: average particle size 600 nm) 9 parts by mass

[実施例6]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合13の黄着色ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して35質量%加えて撹拌し、黄着色ビニルエステル樹脂を均一分散させた非相溶樹脂混合物液6を用いて、実施例1と同様にして、海島構造を有する可撓性樹脂被覆層を形成した。配合13の熱制御性着色剤として平均粒子径600nmのCr−Sb−Tiの複合酸化物(黄色)を用いた。基布1に対する非相溶樹脂混合物液6の付着は300g/mであった。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が黄色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。次いで、実施例4と同様にして、合計10g/mの添加剤移行防止層を両面に形成し、鏡面エンボスを施した側に形成された添加剤移行防止層上に1.5g/mの接着・保護層を形成し、接着・保護層上に更に1.5g/mの光触媒性物質含有防汚層を形成して、採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合13>
ビニルエステル樹脂 100質量部
(商標:ネオポール8319:日本ユピカ(株) )
硬化剤 1質量部
(ジ−(4−tert−ブチルシクロヘキシル)パ−オキシジカ-ボネ-ト)
熱制御性着色剤(Cr−Sb−Ti複合酸化物:平均粒子径600nm) 5質量部
[Example 6]
To the stirring mixture of the soft vinyl chloride resin paste of Formulation 1, 35% by mass of the stirring mixture of yellow colored vinyl ester resin of Formula 13 shown below is added to the mass of the vinyl chloride resin alone and stirred to uniformly distribute the yellow colored vinyl ester resin. A flexible resin coating layer having a sea-island structure was formed in the same manner as in Example 1 using the dispersed incompatible resin mixture liquid 6. As the heat-controllable colorant of Formula 13, a Cr—Sb—Ti complex oxide (yellow) having an average particle diameter of 600 nm was used. The adhesion of the incompatible resin mixture liquid 6 to the base fabric 1 was 300 g / m 2 . When this flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a yellow island component and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. Next, in the same manner as in Example 4, a total of 10 g / m 2 of additive transfer prevention layer was formed on both sides, and 1.5 g / m 2 on the additive transfer prevention layer formed on the side subjected to mirror embossing. An antifouling layer containing a photocatalytic substance of 1.5 g / m 2 was further formed on the adhesive / protective layer to obtain a daylighting film material. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 13>
100 parts by weight of vinyl ester resin (Trademark: Neopol 8319: Nippon Iupika Co., Ltd.)
1 part by weight of curing agent (di- (4-tert-butylcyclohexyl) peroxydicarbonate)
Thermally controllable colorant (Cr—Sb—Ti composite oxide: average particle size 600 nm) 5 parts by mass

[実施例7]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合14の黒着色ビニルエステル樹脂を、塩ビ樹脂単体の質量に対して35質量%加えて撹拌し、黒着色ビニルエステル樹脂を均一分散させた非相溶樹脂混合物液7を用いて、実施例2と同様にして、海島構造を有する可撓性樹脂被覆層を形成した。配合14の熱制御性着色剤として、フタロシアニン系の色素(黒色:最大吸収波長880nm)を用いた。基布1の両面への付着、および内部含浸した非相溶樹脂混合物液7は300g/mであった。これらの可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が黒色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。次いで、実施例4と同様にして、合計10g/mの添加剤移行防止層を両面に形成し、平滑な可撓性樹脂被覆層側に形成された添加剤移行防止層上に1.5g/mの接着・保護層を形成し、接着・保護層上に更に1.5g/mの光触媒性物質含有防汚層を形成して、採光膜材を得た。この採光膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表1に示す。
<配合14>
ビニルエステル樹脂 100質量部
(商標:ネオポール8319:日本ユピカ(株) )
硬化剤 1質量部
(ジ−(4−tert−ブチルシクロヘキシル)パ−オキシジカ-ボネ-ト)
熱制御性着色剤(商標:イーエクスカラーHA−1:(株)日本触媒) 0.1質量部
[Example 7]
To the stirring mixture of the soft vinyl chloride resin paste of Formulation 1, 35% by mass of the black colored vinyl ester resin of Formula 14 below was added to the mass of the vinyl chloride resin alone and stirred to uniformly disperse the black colored vinyl ester resin. Using the incompatible resin mixture liquid 7, a flexible resin coating layer having a sea-island structure was formed in the same manner as in Example 2. As the heat-controllable colorant of Formulation 14, a phthalocyanine-based dye (black: maximum absorption wavelength: 880 nm) was used. The incompatible resin mixture liquid 7 adhered to both surfaces of the base fabric 1 and internally impregnated was 300 g / m 2 . When these flexible resin coating layers were observed with a microscope, the vinyl ester resin constituted a black island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. Next, in the same manner as in Example 4, a total of 10 g / m 2 of the additive migration preventing layer was formed on both sides, and 1.5 g was formed on the additive migration preventing layer formed on the smooth flexible resin coating layer side. / M 2 adhesion / protection layer was formed, and a 1.5 g / m 2 photocatalytic substance-containing antifouling layer was further formed on the adhesion / protection layer to obtain a daylighting film material. Various evaluations were performed on this daylighting film material using the side on which the antifouling layer was formed as the surface. The results are shown in Table 1.
<Formulation 14>
100 parts by weight of vinyl ester resin (Trademark: Neopol 8319: Nippon Iupika Co., Ltd.)
1 part by weight of curing agent (di- (4-tert-butylcyclohexyl) peroxydicarbonate)
Thermally controllable colorant (Trademark: EEX Color HA-1: Nippon Shokubai Co., Ltd.) 0.1 parts by mass

[比較例1]
非相溶樹脂混合物液1の代わりに、配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物を用いた以外は、実施例2と同様にして膜材を得た。この膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表2に示す。
[Comparative Example 1]
A film material was obtained in the same manner as in Example 2 except that a stirring mixture of the soft vinyl chloride resin paste of Formulation 1 was used instead of the incompatible resin mixture liquid 1. This film material was subjected to various evaluations using the side on which the antifouling layer was formed as the surface. The results are shown in Table 2.

[比較例2]
非相溶樹脂混合物液3の代わりに、配合4の白着色軟質塩化ビニル樹脂ペーストの攪拌混合物を用いた以外は、実施例3と同様にして膜材を得た。この膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表2に示す。
[Comparative Example 2]
A film material was obtained in the same manner as in Example 3 except that a stirred mixture of white colored soft vinyl chloride resin paste of Formulation 4 was used instead of the incompatible resin mixture liquid 3. This film material was subjected to various evaluations using the side on which the antifouling layer was formed as the surface. The results are shown in Table 2.

[比較例3]
配合2の白着色ビニルエステル樹脂攪拌混合物から酸化チタンを省略した以外は、実施例2と同様にして膜材を得た。この膜材について、防汚層が形成された側を表面として各種評価を行った。結果を表2に示す。
[Comparative Example 3]
A membrane material was obtained in the same manner as in Example 2 except that titanium oxide was omitted from the white colored vinyl ester resin stirring mixture of Formulation 2. This film material was subjected to various evaluations using the side on which the antifouling layer was formed as the surface. The results are shown in Table 2.

実施例1〜7の採光膜材は、可撓性樹脂被覆層が合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、かつ、海成分または島成分のいずれか一方が熱制御性着色剤を含んでおり、初期の遮熱率及び光線透過率が高い値を示していた。また、実施例2〜7については可撓性樹脂被覆層上に少なくとも1層の防汚層が設けられおり、防汚層のサンシャインウエザオメーター耐候促進試験(JIS K7350-4)1000時間後の光沢保持率が80%以上で、屋外曝露1年後の防汚層色差が5以下を満たしており、屋外曝露1年後の遮熱率び光線透過率がほとんど低下する事無く維持されていた。特に防汚層が光触媒性物質を含む実施例4〜7については、屋外曝露1年後でも色相および光沢度の変化はほとんどみられず、遮熱率び光線透過率もほとんど変化が見られなかった。実施例2と実施例3は、それぞれ島成分に着色した例と海成分に着色した例であり、何れの場合でも高い遮熱率を示していた。光線透過率については、実施例3の方が低い値を示しているが、これは可撓性樹脂被覆層に占める体積比の大きな海成分に着色したため、可視光線が多く散乱されたためであると考えられる。ただし、実施例3と比較例2(可撓性樹脂被覆層が海島構造を有さず、可撓性樹脂被覆層全体に着色)との比較においては、実施例3の遮熱率が大きく上回っており、しかも光線透過率もわずかに優れていた。実施例4と実施例5は、何れも島成分に着色した例であるが、それぞれ海成分と島成分のベースとなる樹脂が逆であり、実施例4は島成分の屈折率よりも海成分の屈折率が高く、実施例5は海成分の屈折率よりも島成分の屈折率が高い構成である。これらは、光線透過率に関しては同等であったが、遮熱率に関しては海成分の屈折率よりも島成分の屈折率が高い実施例5の方が僅かに優れた結果であった。この結果より、海成分の屈折率よりも島成分の屈折率が高い方が、海成分と島成分の界面での屈折散乱現象による遮熱性向上効果が高いことがわかる。実施例6は、島成分を赤外線反射性の金属複合酸化物で着色した例であり、遮熱性は島成分に金属酸化物により白着色した実施例2に比べてやや劣るものの、有彩色に着色された採光膜材が得られ、しかも島成分に熱制御性着色剤を含まない比較例3に比べて高い遮熱率を示していた。実施例7は、島成分に赤外線吸収性物質を含んで着色した例であり、遮熱率および光線透過率ともに島成分に金属酸化物により白着色した実施例2に比べてやや劣るものの、島成分に熱制御性着色剤を含まない比較例3に比べて高い遮熱率を示していた。比較例1の膜材は、可撓性樹脂被覆層が海島構造を有さず、熱制御性着色剤も含まないため、実施例2に比べて光線透過率は高いものの、遮熱性を有さない膜材であった。比較例2の膜材は、可撓性樹脂被覆層全体に含まれる熱制御性着色剤により比較例1の膜材に比べて遮熱率は高いものの、可撓性樹脂層が海島構造を有さないため、光線透過率は大幅に低い値であった。比較例3の膜材は、熱制御性着色剤を含まないため、光線透過率は比較例1と同程度に高く、海島構造を有しているため、海成分と島成分の界面での屈折散乱現象により、比較例1よりは高い遮熱率を示したが、海成分、島成分共に熱制御性着色剤を含有しないため、遮熱性向上効果は不充分であった。   The daylighting film materials of Examples 1 to 7 have a sea-island structure in which the flexible resin coating layer is made of an incompatible mixture of a synthetic resin blend, and either the sea component or the island component is colored with heat controllability. The initial heat-shielding rate and light transmittance were high. In Examples 2 to 7, at least one antifouling layer was provided on the flexible resin coating layer, and the antifouling layer was subjected to a sunshine weatherometer accelerated weathering test (JIS K7350-4) after 1000 hours. Gloss retention rate is 80% or more, antifouling layer color difference after 1 year of outdoor exposure satisfies 5 or less, and heat insulation rate and light transmittance after 1 year of outdoor exposure were maintained with almost no decrease. . In particular, in Examples 4 to 7 in which the antifouling layer contains a photocatalytic substance, there is almost no change in hue and gloss even after one year of outdoor exposure, and there is almost no change in the heat shielding rate and light transmittance. It was. Examples 2 and 3 are an example in which the island component is colored and an example in which the sea component is colored, respectively. In either case, the heat shielding rate is high. Regarding the light transmittance, Example 3 shows a lower value, but this is because a sea component having a large volume ratio in the flexible resin coating layer was colored, and thus a large amount of visible light was scattered. Conceivable. However, in comparison with Example 3 and Comparative Example 2 (the flexible resin coating layer does not have a sea-island structure and the entire flexible resin coating layer is colored), the heat shielding rate of Example 3 is significantly higher. In addition, the light transmittance was slightly superior. Example 4 and Example 5 are examples in which the island component is colored, but the resin serving as the base of the sea component and the island component is opposite, and in Example 4, the sea component is higher than the refractive index of the island component. In Example 5, the island component has a higher refractive index than the sea component. Although these were the same in terms of light transmittance, the results of Example 5 in which the refractive index of the island component was higher than the refractive index of the sea component were slightly superior with respect to the heat shielding rate. From this result, it can be seen that the higher the refractive index of the island component than the refractive index of the sea component, the higher the heat shielding effect by the refractive scattering phenomenon at the interface between the sea component and the island component. Example 6 is an example in which the island component is colored with an infrared-reflective metal composite oxide, and the heat shielding property is slightly inferior to Example 2 in which the island component is white-colored with a metal oxide, but is colored in a chromatic color. The obtained daylighting film material was obtained, and the heat shielding rate was higher than that of Comparative Example 3 in which the island component did not contain the heat-controllable colorant. Example 7 is an example in which the island component is colored by including an infrared absorbing substance, and both the heat shielding rate and the light transmittance are slightly inferior to Example 2 in which the island component is white-colored with a metal oxide. The heat shielding rate was higher than that of Comparative Example 3 in which the component did not contain a heat-controllable colorant. The film material of Comparative Example 1 has a heat shielding property although the flexible resin coating layer does not have a sea-island structure and does not contain a heat-controllable colorant, but has a higher light transmittance than that of Example 2. There was no film material. Although the film material of Comparative Example 2 has a higher heat shielding rate than the film material of Comparative Example 1 due to the heat-controllable colorant contained in the entire flexible resin coating layer, the flexible resin layer has a sea-island structure. Therefore, the light transmittance was significantly low. Since the film material of Comparative Example 3 does not contain a heat-controllable colorant, the light transmittance is as high as that of Comparative Example 1 and has a sea-island structure, so refraction at the interface between the sea component and the island component. Although the heat shielding rate was higher than that of Comparative Example 1 due to the scattering phenomenon, both the sea component and the island component did not contain a heat-controllable colorant, and thus the heat shielding effect was insufficient.

[実施例8]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、配合2の白着色ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して80質量%加えて撹拌し、白着色ビニルエステル樹脂を均一分散させた非相溶樹脂混合物液8を得た。この非相溶樹脂混合物液8の液バス中に基布2を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより非相溶樹脂混合物液8が250g/m2含浸付着して、海島構造を有する可撓性樹脂被覆層が形成されたメッシュ状の膜材を得た。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が白色の島成分を構成しており、軟質塩ビ樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.4μmであった。次いで、前記メッシュ状膜材を、配合9の接着・保護層処理液に浸漬後、マングルロールで圧搾し、100℃で1分間乾燥した後冷却して、1.0g/mの接着保護層を形成した。更に接着保護層付メッシュ状膜材を配合10の防汚層形成用塗布液に浸漬後、マングルロールで圧搾し、100℃で1分間乾燥した後冷却して、1.5g/mの光触媒性物質含有防汚層を形成し、メッシュ状の採光膜材を形成した。このメッシュ状採光膜材については、表裏の構造上の差が無いため、膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表3に示す。
[Example 8]
Add 80% by mass of the white colored vinyl ester resin stirred mixture of Formula 2 to the stirred mixture of the soft vinyl chloride resin paste of Formula 1 with respect to the mass of the vinyl chloride resin alone, and uniformly disperse the white colored vinyl ester resin. An incompatible resin mixture liquid 8 was obtained. The base fabric 2 was dipped in the liquid bath of this incompatible resin mixture liquid 8, pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. . As a result, the incompatible resin mixture liquid 8 was impregnated with 250 g / m 2 to obtain a mesh-like film material on which a flexible resin coating layer having a sea-island structure was formed. When this flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a white island component, and the soft PVC resin constituted a colorless sea component. The average particle size of the island components was 6.4 μm. Subsequently, the mesh-like film material is immersed in an adhesion / protection layer treatment solution of Formulation 9, then pressed with mangle roll, dried at 100 ° C. for 1 minute, and then cooled to obtain a 1.0 g / m 2 adhesion protection layer. Formed. Further, after immersing the mesh-like film material with an adhesion protective layer in the coating solution for forming the antifouling layer of Formulation 10, squeezed with mangle roll, dried at 100 ° C. for 1 minute, cooled, and 1.5 g / m 2 photocatalyst. An antifouling layer containing an active substance was formed to form a mesh-shaped daylighting film material. Since there was no structural difference between the front and back surfaces of the mesh-shaped daylighting film material, various evaluations were performed with a mark on one surface after the film material was formed and the side with the mark as the surface. The results are shown in Table 3.

[比較例4]
非相溶樹脂混合物液8の代わりに、配合4の白着色軟質塩化ビニル樹脂ペーストの攪拌混合物を用いた以外は、実施例8と同様にしてメッシュ状の膜材を得た。このメッシュ状膜材については、表裏の構造上の差が無いため、膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表3に示す。
[Comparative Example 4]
A mesh-like film material was obtained in the same manner as in Example 8 except that a stirred mixture of white colored soft vinyl chloride resin paste of Formulation 4 was used instead of the incompatible resin mixture liquid 8. Since there was no structural difference between the front and back surfaces of the mesh-like film material, various evaluations were performed using a mark on one surface after the film material was formed and the side with the mark as the surface. The results are shown in Table 3.

実施例8は粗目状の基布に海島状の可撓性樹脂を含浸被覆したメッシュ状の採光膜材である。メッシュの目を通して赤外線が透過するため、実施例1〜7に比べて遮熱率は低いが、光線透過率では大きく上回っており、更に、メッシュの目を通して膜材の向こう側を透視できる採光膜材であった。また、比較例4(可撓性樹脂被覆層が海島構造を有さず白に着色)との比較においては、表3に示したとおり、実施例8が光線透過率、遮熱率ともに優れていた。   Example 8 is a mesh-shaped daylighting film material obtained by impregnating and covering a coarse base fabric with a sea-island flexible resin. Since infrared rays are transmitted through the mesh eyes, the heat shielding rate is low as compared with Examples 1 to 7, but the light transmittance is much higher, and the daylighting film can be seen through the other side of the membrane material through the mesh eyes. It was a material. Further, in comparison with Comparative Example 4 (the flexible resin coating layer does not have a sea-island structure and is colored white), as shown in Table 3, Example 8 is excellent in both light transmittance and heat shielding rate. It was.

[実施例9]
下記配合15の軟質フッ素樹脂の熱溶融混練物に、下記配合16の白着色塩化ビニル樹脂の熱溶融混練物を軟質フッ素樹脂単体の質量に対して10質量%加えてバンバリーミキサーで熱溶融混練し、白着色塩化ビニル樹脂を均一分散させ非相溶樹脂混合物9を得た。この樹脂混合物9を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム9−1を成型した。一方、下記配合15の軟質フッ素樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム9−2を成型した。次いで、得られたフィルム9−1とフィルム9−2の中間に基布3を挿入し、熱圧着により積層して採光膜材を得た。フィルム9−1からなる可撓性樹脂被覆層を顕微鏡観察すると、塩化ビニル樹脂が白色の島成分を構成しており、軟質フッ素樹脂が無色の海成分を構成していた。島成分の平均粒子径は2.8μmであった。この採光膜材について、フィルム9−1を積層した側を表面として各種評価を行った。結果を表4に示す。
<配合15>
軟質フッ素樹脂 100質量部
(四フッ化エチレン−六フッ化プロピレン−フッ化ビニリデン三元共重合体樹脂)

<配合16>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
リン酸トリクレジル(可塑剤) 50質量部
リン酸クレジルフェニル(可塑剤) 46質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
熱制御性着色剤(酸化チタン粒子:平均粒子径1000nm) 5質量部
[Example 9]
To the hot melt kneaded product of the soft fluorine resin of the following formulation 15 is added 10% by mass of the hot-melt kneaded product of the white colored vinyl chloride resin of the following blend 16 with respect to the mass of the soft fluororesin alone, and then hot melt kneaded with a Banbury mixer. Then, an incompatible resin mixture 9 was obtained by uniformly dispersing the white colored vinyl chloride resin. The resin mixture 9 was passed through four calendar rolls set at 180 ° C. to form a film 9-1 having a thickness of 0.25 mm. On the other hand, a hot melt kneaded product of soft fluororesin with the following formulation 15 was passed through four calender rolls set at 180 ° C. to form a transparent film 9-2 having a thickness of 0.25 mm. Next, the base fabric 3 was inserted between the obtained film 9-1 and film 9-2 and laminated by thermocompression bonding to obtain a daylighting film material. When the flexible resin coating layer made of the film 9-1 was observed with a microscope, the vinyl chloride resin constituted a white island component, and the soft fluororesin constituted a colorless sea component. The average particle size of the island components was 2.8 μm. For this daylighting film material, various evaluations were performed using the side on which the film 9-1 was laminated as the surface. The results are shown in Table 4.
<Formulation 15>
100 parts by mass of soft fluororesin (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer resin)

<Formulation 16>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Tricresyl phosphate (plasticizer) 50 parts by mass Cresylphenyl phosphate (plasticizer) 46 parts by mass Zinc stearate (stabilizer) 2 parts by mass Barium stearate (stabilizer) 2 parts by mass
Ultraviolet absorber: 0.5 parts by mass of benzotriazole-based thermal control colorant (titanium oxide particles: average particle size 1000 nm) 5 parts by mass

[実施例10]
下記配合17の軟質塩化ビニル樹脂の熱溶融混練物に、下記配合18の白着色スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、白着色スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物10を得た。熱制御性着色剤として平均粒子径1000nmの酸化チタン粒子を用いた。この非相溶樹脂混合物10を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム10−1を成型した。一方、下記配合17の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム10−2を成型した。次いで、得られたフィルム10−1とフィルム10−2の中間に基布3を挿入し、熱圧着により積層してシートを得た。フィルム10−1からなる可撓性樹脂被覆層を顕微鏡観察すると、スチレンブタジエンブロックコポリマーが白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は10.5μmであった。次に、実施例3と同様にしてシート両面に添加剤移行防止層を形成し、フィルム10−1側の添加剤移行防止層上に接着・保護層を形成し、さらに接着・保護層上に1.5g/mの防汚層を形成して採光膜材を得た。この採光膜材について、フィルム10−1を積層した側を表面として各種評価を行った。結果を表4に示す。
<配合17>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部

<配合18>
スチレン・ブタジエンブロックコポリマー 100質量部
(旭化成ケミカルズ(株)社製、商品名:アサフレックス830)
熱制御性着色剤(酸化チタン粒子:平均粒子径1000nm) 5質量部
[Example 10]
Add 20% by mass of the hot-melt kneaded mixture of the white colored styrene butadiene block copolymer of the following formulation 18 to the hot-melt kneaded product of the soft vinyl chloride resin of the following formulation 17 with the Banbury mixer. By melt-kneading, an incompatible resin mixture 10 in which a white colored styrene butadiene block copolymer was uniformly dispersed was obtained. Titanium oxide particles having an average particle diameter of 1000 nm were used as the heat controllable colorant. This incompatible resin mixture 10 was passed through four calendar rolls set at 180 ° C. to form a film 10-1 having a thickness of 0.25 mm. On the other hand, a hot melt kneaded product of soft vinyl chloride resin having the following composition 17 was passed through four calender rolls set at 180 ° C. to form a transparent film 10-2 having a thickness of 0.25 mm. Next, the base fabric 3 was inserted between the obtained films 10-1 and 10-2, and laminated by thermocompression to obtain a sheet. When the flexible resin coating layer made of the film 10-1 was observed with a microscope, the styrene-butadiene block copolymer constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 10.5 μm. Next, an additive migration prevention layer is formed on both sides of the sheet in the same manner as in Example 3, an adhesion / protection layer is formed on the additive migration prevention layer on the film 10-1 side, and further on the adhesion / protection layer. A 1.5 g / m 2 antifouling layer was formed to obtain a daylighting film material. For this daylighting film material, various evaluations were performed using the side on which the film 10-1 was laminated as the surface. The results are shown in Table 4.
<Formulation 17>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Zinc stearate (stabilizer) 2 parts by mass Barium stearate ( Stabilizer) 2 parts by weight UV absorber: 0.5 parts by weight of benzotriazole

<Formulation 18>
100 parts by mass of styrene / butadiene block copolymer (product name: Asaflex 830, manufactured by Asahi Kasei Chemicals Corporation)
Thermally controllable colorant (titanium oxide particles: average particle size 1000 nm) 5 parts by mass

[実施例11]
下記配合19の黄着色軟質塩化ビニル樹脂の熱溶融混練物に、配合18の白着色スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、白着色スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物11を得た。配合19の熱制御性着色剤として平均粒子径50nmのCr−Sb−Tiの複合酸化物(黄色)を用いた。この非相溶樹脂混合物11を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム11−1を成型した。一方、配合17の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム11−2を成型した。次いで、得られたフィルム11−1とフィルム11−2の中間に基布3を挿入し、熱圧着により積層してシートを得た。フィルム11−1からなる可撓性樹脂層を顕微鏡観察すると、スチレンブタジエンブロックコポリマーが白色の島成分を構成しており、軟質塩化ビニル樹脂が黄色の海成分を構成していた。島成分の平均粒子径は10.5μmであった。次に、実施例3と同様にしてシート両面に添加剤移行防止層を形成し、フィルム11−1側の添加剤移行防止層上に接着・保護層を形成し、さらに接着・保護層上に1.5g/mの光触媒性物質含有防汚層を形成して採光膜材を得た。この採光膜材について、フィルム11−1を積層した側を表面として各種評価を行った。結果を表4に示す。
<配合19>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
熱制御性着色剤(Cr−Sb−Tiの複合酸化物:平均粒子径50nm) 2質量部
[Example 11]
Add 20% by mass of the hot-melt kneaded mixture of the white-colored styrene butadiene block copolymer of Formulation 18 to the hot-melt kneaded product of the yellow-colored soft vinyl chloride resin of Formulation 19 shown below with respect to the mass of the vinyl chloride resin alone, using a Banbury mixer. The incompatible resin mixture 11 in which the white colored styrene butadiene block copolymer was uniformly dispersed was obtained by hot melt kneading. As a heat-controllable colorant of Formulation 19, a complex oxide (yellow) of Cr—Sb—Ti having an average particle diameter of 50 nm was used. This incompatible resin mixture 11 was passed through four calendar rolls set at 180 ° C. to form a film 11-1 having a thickness of 0.25 mm. On the other hand, a hot melt kneaded product of the soft vinyl chloride resin of Formulation 17 was passed through four calender rolls set at 180 ° C. to form a transparent film 11-2 having a thickness of 0.25 mm. Next, the base fabric 3 was inserted between the obtained film 11-1 and film 11-2 and laminated by thermocompression bonding to obtain a sheet. When the flexible resin layer made of the film 11-1 was observed with a microscope, the styrene-butadiene block copolymer constituted a white island component, and the soft vinyl chloride resin constituted a yellow sea component. The average particle size of the island components was 10.5 μm. Next, an additive migration prevention layer is formed on both sides of the sheet in the same manner as in Example 3, an adhesion / protection layer is formed on the additive migration prevention layer on the film 11-1 side, and further on the adhesion / protection layer. A 1.5 g / m 2 photocatalytic substance-containing antifouling layer was formed to obtain a daylighting film material. For this daylighting film material, various evaluations were performed using the side on which the film 11-1 was laminated as the surface. The results are shown in Table 4.
<Formulation 19>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Antimony trioxide (flame retardant) 10 parts by mass Zinc stearate ( Stabilizer) 2 parts by weight Barium stearate (stabilizer) 2 parts by weight UV absorber: benzotriazole-based 0.5 part by weight Thermally controllable colorant (Cr-Sb-Ti composite oxide: average particle size 50 nm) 2 Parts by mass

[実施例12]
実施例11と同様にして、採光膜材を得た。ただし、配合19における熱制御性着色剤を、平均粒子径50nmのCo−Al複合酸化物(青色)2質量部とし、青色着色軟質塩化ビニル樹脂の熱溶融混練物に、配合18の白着色スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えて均一分散させた非相溶樹脂混合物12から、厚さ0.25mmのフィルム12−1を成型し、フィルム11−1の代わりに用いた。フィルム12−1からなる可撓性樹脂層を顕微鏡観察すると、スチレンブタジエンブロックコポリマーが白色の島成分を構成しており、軟質塩化ビニル樹脂が青色の海成分を構成していた。島成分の平均粒子径は10.5μmであった。この採光膜材の、フィルム12−1を積層した側を表面として各種評価を行った。結果を表4に示す。
[Example 12]
In the same manner as in Example 11, a daylighting film material was obtained. However, the heat-controllable colorant in Formulation 19 is 2 parts by mass of Co-Al composite oxide (blue) having an average particle diameter of 50 nm, and the white-colored styrene of Formulation 18 is added to a hot-melt kneaded product of blue-colored soft vinyl chloride resin. A film 12-1 having a thickness of 0.25 mm was formed from an incompatible resin mixture 12 in which a hot melt kneaded product of a butadiene block copolymer was added and uniformly dispersed by adding 20% by mass with respect to the mass of the vinyl chloride resin alone. It used instead of the film 11-1. When the flexible resin layer made of the film 12-1 was observed with a microscope, the styrene-butadiene block copolymer constituted a white island component, and the soft vinyl chloride resin constituted a blue sea component. The average particle size of the island components was 10.5 μm. Various evaluations were performed using the side of the daylighting film material on which the film 12-1 was laminated as the surface. The results are shown in Table 4.

[比較例5]
非相溶樹脂混合物11から成型したフィルム11−1の代わりに、配合19の黄色着色軟質塩化ビニル樹脂の熱溶融混練物から成型した、厚さ0.25mmの黄色着色軟質塩化ビニル樹脂フィルムを用いた以外は実施例8と同様にして膜材を得た。この膜材の、黄色着色軟質塩化ビニル樹脂フィルムを積層した側を表面として各種評価を行った。結果を表4に示す。
[Comparative Example 5]
Instead of the film 11-1 molded from the incompatible resin mixture 11, a yellow colored soft vinyl chloride resin film having a thickness of 0.25 mm molded from a hot-melt kneaded product of the yellow colored soft vinyl chloride resin of Formulation 19 is used. A membrane material was obtained in the same manner as in Example 8 except that. Various evaluations were performed using the surface of the film material on which the yellow colored soft vinyl chloride resin film was laminated as the surface. The results are shown in Table 4.

実施例9および10は、可撓性樹脂被覆層としてカレンダーフィルムを基布の両面に積層した採光膜材である。一方の面に、島成分に金属酸化物を含む可撓性樹脂層が積層され、もう一方の面には透明なフィルムが積層されており、どちらも実施例1〜5と同等の高い光線透過率と遮熱率を示していた。実施例9と実施例10を比較すると、島成分体積比において実施例9の方が大きく、そのため実施例10よりも遮熱率が高く、透光率は低い値を示していた。実施例11及び12は、実施例10における可撓性樹脂被覆層の海成分に更に金属複合酸化物からなる有彩色の熱制御性着色剤を加えた構成であり、ある程度の光線透過率を維持しつつ、高い遮熱性を示す、有彩色の遮熱性採光膜材が得られた。実施例10よりも実施例11及び12の光線透過率が低いのは、有彩色の熱制御性着色剤により可視光線の一部が吸収あるいは反射されたことによるものだが、海成分への着色にも熱制御性の金属複合酸化物を用いることで遮熱率は同等かあるいはむしろ高い値を示していた。また、実施例11と比較例5(可撓性樹脂被覆層全体が熱制御性着色剤により黄色に着色されており、海島構造を有さない)との比較によれば、実施例11は可撓性樹脂層が海島構造を有し、島成分に金属酸化物を含有することでことで、遮熱率が大幅に高い値を示していた。   Examples 9 and 10 are daylighting membrane materials in which a calendar film is laminated on both sides of a base fabric as a flexible resin coating layer. A flexible resin layer containing a metal oxide as an island component is laminated on one side, and a transparent film is laminated on the other side, both having high light transmission equivalent to those of Examples 1 to 5. Rate and heat insulation rate. When Example 9 and Example 10 were compared, Example 9 was larger in the island component volume ratio, so that the heat shielding rate was higher than Example 10 and the translucency was low. In Examples 11 and 12, the sea component of the flexible resin coating layer in Example 10 is further added with a chromatic color heat-controllable colorant composed of a metal composite oxide, and a certain degree of light transmittance is maintained. However, a chromatic color heat insulating daylighting film material exhibiting high heat insulating properties was obtained. The reason why the light transmittance of Examples 11 and 12 is lower than that of Example 10 is that a part of visible light is absorbed or reflected by the chromatic color heat-controllable colorant. However, by using a heat-controllable metal composite oxide, the heat shielding rate was equivalent or rather high. Further, according to a comparison between Example 11 and Comparative Example 5 (the entire flexible resin coating layer is colored yellow with a heat-controllable colorant and does not have a sea-island structure), Example 11 is acceptable. The flexible resin layer had a sea-island structure, and the heat shielding rate was significantly high because the island component contained a metal oxide.

[実施例13]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、配合2の白着色ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して60質量%加えて撹拌し、白着色ビニルエステル樹脂を均一分散させ非相溶樹脂混合物液13を得た。得られた非相溶樹脂混合物液13の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより非相溶樹脂混合物液13が70g/m含浸付着し、可撓性樹脂被覆層が形成されたメッシュ状の繊維基布を得た。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。次いで、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルムに成型し、先に得たメッシュ状の繊維基布の両面に熱圧着により積層して、透視性のあるシートを得た。次いで、積層したカレンダーフィルム上に配合8の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/mの樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合8の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、前記樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、配合9の接着・保護層形成用塗布液を添加剤移行防止層上にグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を両面に形成し、さらに、その接着・保護層上に配合10の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの光触媒性物質含有防汚層が両面に形成された採光膜材を得た。この採光膜材については、表裏の構造上の差が無いため、採光膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表5に示す。
[Example 13]
60 wt% of the white colored vinyl ester resin stirred mixture of Formulation 2 is added to the stirred mixture of the soft vinyl chloride resin paste of Formulation 1 with respect to the mass of the vinyl chloride resin alone, and the white colored vinyl ester resin is uniformly dispersed. An incompatible resin mixture liquid 13 was obtained. The base fabric 4 is immersed in the liquid bath of the obtained incompatible resin mixture liquid 13 and pulled up, and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. went. As a result, the incompatible resin mixture liquid 13 was impregnated with 70 g / m 2 to obtain a mesh-like fiber base fabric on which a flexible resin coating layer was formed. When the flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. Subsequently, the hot-melt kneaded product of the soft vinyl chloride resin of Formulation 18 was passed through four calender rolls set at 180 ° C. to form a transparent film having a thickness of 0.25 mm, and the mesh-like fiber base fabric obtained previously A sheet with transparency was obtained by laminating both surfaces of the sheet by thermocompression bonding. Next, the composition solution of Formulation 8 was applied on the laminated calendar film with a gravure coater, dried at 120 ° C. for 1 minute, and then cooled to form a 5 g / m 2 resin intermediate layer on both sides. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 8 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, As a result, a total of 10 g / m 2 of additive migration preventing layers composed of the resin intermediate layer and the additional resin layer were formed on both sides. Next, the adhesive / protective layer-forming coating solution of Formulation 9 was applied onto the additive migration-preventing layer with a gravure coater, dried at 100 ° C. for 1 minute, and then cooled to a 1.5 g / m 2 adhesive / protective layer. Is coated on the adhesive / protective layer with a gravure coater, dried at 120 ° C. for 2 minutes, and then cooled to a 1.5 g / m 2 photocatalyst. A daylighting film material in which an antifouling layer containing an active substance was formed on both surfaces was obtained. Since there was no structural difference between the front and back surfaces of this daylighting film material, various evaluations were performed with a mark on one surface after the daylighting film material was formed and the side with the mark as the surface. The results are shown in Table 5.

[実施例14]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより軟質塩化ビニル樹脂ペースト撹拌混合物が70g/m含浸付着し、可撓性樹脂被覆層が形成されたメッシュ状の繊維基布を得た。一方、実施例10と同様にして得た非相溶樹脂混合物10を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム14−1を成型し、また、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム14−2を成型した。次いで、得られたフィルム14−1とフィルム14−2の中間に、先に得たメッシュ状の繊維基布を挿入し、熱圧着により積層してシートを得た。フィルム14−1からなる可撓性樹脂層を顕微鏡観察すると、スチレンブタジエンブロックコポリマーが白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は10.5μmであった。次いで、実施例13と同様にして積層したカレンダーフィルム上に配合8の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/m2の樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合8の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、前記樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、配合9の接着・保護層形成用塗布液を添加剤移行防止層上にグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を両面に形成し、さらに、その接着・保護層上に配合10の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの防汚層が両面に形成された採光膜材を得た。この採光膜材について、フィルム14−1を積層した側を表面として各種評価を行った。評価結果を表5に示す。
[Example 14]
Substrate 4 is dipped in a liquid bath of a stirred mixture of the soft vinyl chloride resin paste of Formulation 1. The fabric is pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. Went. As a result, a stirring mixture of soft vinyl chloride resin paste was impregnated with 70 g / m 2 to obtain a mesh-like fiber base fabric on which a flexible resin coating layer was formed. On the other hand, the immiscible resin mixture 10 obtained in the same manner as in Example 10 was passed through four calender rolls set at 180 ° C. to form a 0.25 mm-thick film 14-1, and the composition 18 soft A polyvinyl chloride resin hot melt kneaded product was passed through four calendar rolls set at 180 ° C. to form a transparent film 14-2 having a thickness of 0.25 mm. Next, the obtained mesh-like fiber base fabric was inserted between the obtained films 14-1 and 14-2, and laminated by thermocompression to obtain a sheet. When the flexible resin layer made of the film 14-1 was observed with a microscope, the styrene-butadiene block copolymer constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 10.5 μm. Next, the composition liquid of Formulation 8 was coated on a calender film laminated in the same manner as in Example 13 with a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form a 5 g / m 2 resin intermediate layer on both surfaces. did. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 8 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, As a result, a total of 10 g / m 2 of additive migration preventing layers composed of the resin intermediate layer and the additional resin layer were formed on both sides. Next, the adhesive / protective layer-forming coating solution of Formulation 9 was applied onto the additive migration-preventing layer with a gravure coater, dried at 100 ° C. for 1 minute, and then cooled to a 1.5 g / m 2 adhesive / protective layer. Further, a coating solution for forming an antifouling layer of Formulation 10 was applied onto the adhesive / protective layer with a gravure coater, dried at 120 ° C. for 2 minutes, and then cooled to 1.5 g / m 2 of antifouling layer. A daylighting film material having a dirty layer formed on both sides was obtained. For this daylighting film material, various evaluations were performed using the side on which the film 14-1 was laminated as the surface. The evaluation results are shown in Table 5.

[実施例15]
実施例1と同様にして得た非相溶樹脂混合物液1の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより非相溶樹脂混合物液1が70g/m含浸付着して可撓性樹脂被覆層が形成されたメッシュ状の繊維基布を得た。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。一方、配合18の軟質塩化ビニル樹脂の熱溶融混練物に、配合19の白着色スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して17質量%加えてバンバリーミキサーで熱溶融混練し、白着色スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物15を得た。この非相溶樹脂混合物15を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム15−1を成型した。また、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム15−2を成型した。次いで、得られたフィルム15−1とフィルム15−2の中間に、先に得たメッシュ状の繊維基布を挿入し、熱圧着により積層してシートを得た。フィルム15−1からなる可撓性樹脂被覆層を顕微鏡観察すると、スチレンブタジエンブロックコポリマーが白色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は10.5μmであった。次いで、積層したカレンダーフィルム上に配合8の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/mの樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合8の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、前記樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、配合9の接着・保護層形成用塗布液を添加剤移行防止層上にグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を両面に形成し、さらに、その接着・保護層上に配合10の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの光触媒性物質含有防汚層が両面に形成された採光膜材を得た。この採光膜材について、フィルム15−1を積層した側を表面として各種評価を行った。評価結果を表5に示す。
[Example 15]
After immersing the base fabric 4 in the liquid bath of the incompatible resin mixture liquid 1 obtained in the same manner as in Example 1 and pulling it up, the base cloth 4 is pressed with a mangle roll and gelled at 150 ° C. for 1 minute. Heat treatment was carried out at a temperature of 1 minute. As a result, an incompatible resin mixture liquid 1 was impregnated with 70 g / m 2 to obtain a mesh-like fiber base fabric on which a flexible resin coating layer was formed. When the flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. On the other hand, 17% by mass of the hot-melt kneaded mixture of the white-colored styrene butadiene block copolymer of Formulation 19 is added to the hot-melt kneaded product of the soft vinyl chloride resin of Formulation 18 with respect to the mass of the vinyl chloride resin alone, and heated with a Banbury mixer. By melt-kneading, an incompatible resin mixture 15 in which a white colored styrene butadiene block copolymer was uniformly dispersed was obtained. This incompatible resin mixture 15 was passed through four calendar rolls set at 180 ° C. to form a film 15-1 having a thickness of 0.25 mm. In addition, a hot melt kneaded product of the soft vinyl chloride resin of Formulation 18 was passed through four calendar rolls set at 180 ° C. to form a transparent film 15-2 having a thickness of 0.25 mm. Subsequently, the mesh-like fiber base fabric obtained previously was inserted between the obtained films 15-1 and 15-2, and laminated by thermocompression to obtain a sheet. When the flexible resin coating layer made of the film 15-1 was observed with a microscope, the styrene-butadiene block copolymer constituted a white island component, and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 10.5 μm. Next, the composition solution of Formulation 8 was applied on the laminated calendar film with a gravure coater, dried at 120 ° C. for 1 minute, and then cooled to form a 5 g / m 2 resin intermediate layer on both sides. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 8 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, As a result, a total of 10 g / m 2 of additive migration preventing layers composed of the resin intermediate layer and the additional resin layer were formed on both sides. Next, the adhesive / protective layer-forming coating solution of Formulation 9 was applied onto the additive migration-preventing layer with a gravure coater, dried at 100 ° C. for 1 minute, and then cooled to a 1.5 g / m 2 adhesive / protective layer. Is coated on the adhesive / protective layer with a gravure coater, dried at 120 ° C. for 2 minutes, and then cooled to a 1.5 g / m 2 photocatalyst. A daylighting film material in which an antifouling layer containing an active substance was formed on both surfaces was obtained. For this daylighting film material, various evaluations were performed using the side on which the film 15-1 was laminated as the surface. The evaluation results are shown in Table 5.

[実施例16]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物に、配合14の黒着色ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して60質量%加えて撹拌し、黒着色ビニルエステル樹脂を均一分散させ非相溶樹脂混合物液16を得た。得られた非相溶樹脂混合物液16の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより非相溶樹脂混合物液16が70g/m含浸付着し、可撓性樹脂被覆層が形成されたメッシュ状の繊維基布を得た。この可撓性樹脂被覆層を顕微鏡観察すると、ビニルエステル樹脂が黒色の島成分を構成しており、軟質塩化ビニル樹脂が無色の海成分を構成していた。島成分の平均粒子径は6.7μmであった。次いで、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルムに成型し、先に得たメッシュ状の繊維基布の両面に熱圧着により積層して、透視性のあるシートを得た。次いで、積層したカレンダーフィルム上に配合8の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/mの樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合8の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、前記樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、配合9の接着・保護層形成用塗布液を添加剤移行防止層上にグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を両面に形成し、さらに、その接着・保護層上に配合10の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの光触媒性物質含有防汚層が両面に形成された採光膜材を得た。この採光膜材については、表裏の構造上の差が無いため、採光膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表5に示す。
[Example 16]
60% by mass of the black colored vinyl ester resin stirred mixture of Formulation 14 is added to the stirred mixture of the soft vinyl chloride resin paste of Formulation 1 with respect to the mass of the vinyl chloride resin alone, and the black colored vinyl ester resin is uniformly dispersed. Incompatible resin mixture liquid 16 was obtained. The base fabric 4 is immersed in the liquid bath of the obtained incompatible resin mixture liquid 16 and pulled up, and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. went. As a result, an incompatible resin mixture solution 16 was impregnated with 70 g / m 2 to obtain a mesh-like fiber base fabric on which a flexible resin coating layer was formed. When this flexible resin coating layer was observed with a microscope, the vinyl ester resin constituted a black island component and the soft vinyl chloride resin constituted a colorless sea component. The average particle size of the island components was 6.7 μm. Subsequently, the hot-melt kneaded product of the soft vinyl chloride resin of Formulation 18 was passed through four calender rolls set at 180 ° C. to form a transparent film having a thickness of 0.25 mm, and the mesh-like fiber base fabric obtained previously A sheet with transparency was obtained by laminating both surfaces of the sheet by thermocompression bonding. Next, the composition solution of Formulation 8 was applied on the laminated calendar film with a gravure coater, dried at 120 ° C. for 1 minute, and then cooled to form a 5 g / m 2 resin intermediate layer on both sides. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 8 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, As a result, a total of 10 g / m 2 of additive migration preventing layers composed of the resin intermediate layer and the additional resin layer were formed on both sides. Next, the adhesive / protective layer-forming coating solution of Formulation 9 was applied onto the additive migration-preventing layer with a gravure coater, dried at 100 ° C. for 1 minute, and then cooled to a 1.5 g / m 2 adhesive / protective layer. Is coated on the adhesive / protective layer with a gravure coater, dried at 120 ° C. for 2 minutes, and then cooled to a 1.5 g / m 2 photocatalyst. A daylighting film material in which an antifouling layer containing an active substance was formed on both surfaces was obtained. Since there was no structural difference between the front and back surfaces of this daylighting film material, various evaluations were performed with a mark on one surface after the daylighting film material was formed and the side with the mark as the surface. The results are shown in Table 5.

[比較例6]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより配合1の軟質塩化ビニル樹脂が70g/m含浸付着したメッシュ状の繊維基布が形成された。次いで、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルムに成型し、先に形成したメッシュ状の繊維基布の両面に積層して透視性のあるシートを得た。次いで実施例13と同様に、シートの両面に添加剤移行防止層、接着・保護層、さらに光触媒性物質含有防汚層を形成して膜材を得た。この膜材については、表裏の構造上の差が無いため、膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表6に示す。
[Comparative Example 6]
Substrate 4 is dipped in a liquid bath of a stirred mixture of the soft vinyl chloride resin paste of Formulation 1. The fabric is pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. Went. As a result, a mesh-like fiber base fabric in which the soft vinyl chloride resin of Formulation 1 was impregnated with 70 g / m 2 was formed. Subsequently, the hot melt kneaded product of the soft vinyl chloride resin of Formulation 18 was passed through four calendar rolls set at 180 ° C. to form a transparent film having a thickness of 0.25 mm, and the mesh-like fiber base fabric formed earlier A sheet with transparency was obtained by laminating on both sides. Subsequently, in the same manner as in Example 13, an additive migration preventing layer, an adhesion / protective layer, and a photocatalytic substance-containing antifouling layer were formed on both surfaces of the sheet to obtain a film material. Since there was no structural difference between the front and back surfaces of this film material, various evaluations were performed with a mark on one surface after the film material was formed and the side with the mark as the surface. The results are shown in Table 6.

[比較例7]
配合1の軟質塩化ビニル樹脂ペーストの攪拌混合物の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行った。これにより配合1の軟質塩化ビニル樹脂が70g/m含浸付着したメッシュ状の繊維基布が形成された。次いで、下記配合21の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルムに成型し比7−1を形成した。また、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルム比7−2を成型した。次いで、得られたフィルム(比)7−1とフィルム(比)7−2の中間に、先に得たメッシュ状の繊維基布を挿入し、熱圧着により積層してシートを得た。次いで実施例13と同様に、シートの両面に添加剤移行防止層、接着・保護層、さらに光触媒性物質含有防汚層を形成して膜材を得た。この膜材についてフィルム(比)7−1を積層した側を表面として評価した。結果を表6に示す。
<配合21>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
熱制御性着色剤(酸化チタン粒子:平均粒子径1000nm) 2質量部
[Comparative Example 7]
Substrate 4 is dipped in a liquid bath of a stirred mixture of the soft vinyl chloride resin paste of Formulation 1. The fabric is pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. Went. As a result, a mesh-like fiber base fabric in which the soft vinyl chloride resin of Formulation 1 was impregnated with 70 g / m 2 was formed. Subsequently, the hot melt kneaded product of the soft vinyl chloride resin having the following composition 21 was passed through four calendar rolls set at 180 ° C. to form a film having a thickness of 0.25 mm to form a ratio 7-1. Moreover, the hot-melt kneaded material of the soft vinyl chloride resin of the blend 18 was passed through four calendar rolls set at 180 ° C. to form a transparent film ratio 7-2 having a thickness of 0.25 mm. Next, the obtained mesh-like fiber base fabric was inserted between the obtained film (ratio) 7-1 and film (ratio) 7-2, and laminated by thermocompression to obtain a sheet. Subsequently, in the same manner as in Example 13, an additive migration preventing layer, an adhesion / protective layer, and a photocatalytic substance-containing antifouling layer were formed on both surfaces of the sheet to obtain a film material. About this film | membrane material, the side which laminated | stacked film (ratio) 7-1 was evaluated as the surface. The results are shown in Table 6.
<Formulation 21>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Antimony trioxide (flame retardant) 10 parts by mass Zinc stearate ( Stabilizer) 2 parts by weight Barium stearate (stabilizer) 2 parts by weight UV absorber: benzotriazole-based 0.5 part by weight Thermally controllable colorant (titanium oxide particles: average particle size 1000 nm) 2 parts by weight

[比較例8]
配合4の白着色軟質塩化ビニル樹脂ペーストの攪拌混合物の液バス中に基布4を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行うことで、配合4の白着色軟質塩化ビニル樹脂を70g/m含浸付着したメッシュ状の繊維基布が形成された。次いで、配合18の軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの透明なフィルムに成型し、先に形成したメッシュ状の繊維基布の両面に熱圧着により積層して透視性のあるシートを得た。次いで実施例13と同様に、シートの両面に添加剤移行防止層、接着・保護層、さらに光触媒性物質含有防汚層を形成して膜材を得た。この膜材については、表裏の構造上の差が無いため、膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表6に示す。
[Comparative Example 8]
The base fabric 4 is immersed in a liquid bath of a stirring mixture of the white colored soft vinyl chloride resin paste of Formulation 4, which is pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, then 1 at 190 ° C. By performing the heat treatment for 5 minutes, a mesh-like fiber base fabric having 70 g / m 2 of impregnated white colored soft vinyl chloride resin of Formulation 4 adhered thereto was formed. Subsequently, the hot melt kneaded product of the soft vinyl chloride resin of Formulation 18 was passed through four calendar rolls set at 180 ° C. to form a transparent film having a thickness of 0.25 mm, and the mesh-like fiber base fabric formed earlier A sheet with transparency was obtained by laminating both surfaces of the sheet by thermocompression bonding. Subsequently, in the same manner as in Example 13, an additive migration preventing layer, an adhesion / protective layer, and a photocatalytic substance-containing antifouling layer were formed on both surfaces of the sheet to obtain a film material. Since there was no structural difference between the front and back surfaces of this film material, various evaluations were performed with a mark on one surface after the film material was formed and the side with the mark as the surface. The results are shown in Table 6.

[比較例9]
非相溶樹脂混合物液16の代わりに下記配合21の黒着色軟質塩化ビニル樹脂ペーストの攪拌混合物を用いた以外は、実施例16と同様にして膜材を得た。この膜材については、表裏の構造上の差が無いため、膜材形成後に一方の面にしるしをつけ、しるしのある側を表面として各種評価を行った。結果を表6に示す。
<配合22>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
リン酸トリクレジル(可塑剤) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 120質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
着色剤(カーボンブラック) 2質量部
[Comparative Example 9]
A film material was obtained in the same manner as in Example 16 except that instead of the incompatible resin mixture liquid 16, a stirred mixture of black colored soft vinyl chloride resin paste having the following formulation 21 was used. Since there was no structural difference between the front and back surfaces of this film material, various evaluations were performed with a mark on one surface after the film material was formed and the side with the mark as the surface. The results are shown in Table 6.
<Formulation 22>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by mass Tricresyl phosphate (plasticizer) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 120 parts by mass Zinc stearate (stabilizer) 2 parts by mass Stearic acid Barium (stabilizer) 2 parts by weight UV absorber: benzotriazole 0.5 part by weight Colorant (carbon black) 2 parts by weight

実施例13は基布に含浸付着した可撓性樹脂被覆層が海島構造を有し(島成分が金属酸化物粒子により白着色)、可撓性樹脂が含浸付着したメッシュ状の繊維基布の両面に透明なカレンダーフィルムが積層された構成であり、透視性を有する採光膜材である。メッシュ状の繊維基布の目を通して赤外線が透過するため、その他の実施例に比べて遮熱率はやや低いが、光線透過率は非常に高い採光膜材であった。また、比較例6(含浸付着した可撓性樹脂被覆層とカレンダーフィルムがいずれも海島構造を有さず着色もされていない)との比較において、遮熱率が大きく上回っていることから、実施例13の基布に含浸付着した海島状の可撓性樹脂被覆層が、遮熱性向上に大きく寄与していることが確認できた。更に、比較例9(白く着色した海島構造を有さない可撓性樹脂を基布に含浸付着し、両面に透明なカレンダーフィルムを積層)との比較においては、ともに透視性を有する膜材であり、外観上の差は無いものの、光線透過率、遮熱率ともに上回っており、基布に含浸付着した可撓性樹脂被覆層が海島構造を有し、島成分が金属酸化物粒子を含んで白着色されていることにより、光線透過率が向上し、かつ、遮熱性も向上することが確認された。実施例14は、透明な可撓性樹脂を含浸被覆した基布の一方の側に海島構造を有するカレンダーフィルムを、もう一方の側に透明なカレンダーフィルムをそれぞれ積層した構成である。一方のカレンダーフィルムが透明ではなく、海島構造を有し島成分が白着色されていることにより、実施例13に比べて光線透過率は低いが、メッシュ状の繊維基布の目を通して赤外線が透過するのを遮るため、遮熱率は向上している。更に、比較例7(基布に無着色の可撓性樹脂を含浸付着し、片面に海島構造を有さない白着色カレンダーフィルムを積層)との比較においては、光線透過率、遮熱率ともに上回っていた。実施例15は基布に含浸付着した可撓性樹脂被覆層とカレンダーフィルムの両方が海島構造を有し、島成分が白着色されている構成であるが、それぞれの島成分の体積比を実施例13および14よりも低くすることで、光線透過率を低下させずに遮熱率を向上することができた。実施例16は、基布に含浸付着した可撓性樹脂被覆層が海島構造を有し、島成分が赤外線吸収性物質により黒着色されており、樹脂が含浸付着したメッシュ状の繊維基布の両面に透明なカレンダーフィルムが積層された構成であり、透視性を有する採光膜材である。実施例13に比べて遮熱性はやや劣るものの、光線透過率は同等であった。また、メッシュ状の繊維基布が黒く着色され、繊維基布部分での可視光線の乱反射が抑えられるため、実施例13よりも透視性に優れ、膜材の向こう側が鮮明に視認できる採光膜材であった。一方、比較例9は、メッシュ状繊維基布に含浸付着した軟質塩ビ樹脂に含まれるカーボンブラックの効果で、繊維基布部分での可視光線の乱反射が抑えられ、実施例16同様透視性に優れた膜材であったものの、可撓性樹脂層が海島構造を有していないため、遮熱性に劣る膜材であった。   In Example 13, the flexible resin coating layer impregnated and adhered to the base fabric has a sea-island structure (island components are colored white by metal oxide particles), and the mesh-like fiber base fabric impregnated and adhered to the flexible resin is used. A transparent calender film is laminated on both sides and is a daylighting film material having transparency. Since infrared rays are transmitted through the mesh-shaped fiber base fabric, the heat shielding rate is somewhat lower than in the other examples, but the light transmittance is very high. Further, in comparison with Comparative Example 6 (both the impregnated flexible resin coating layer and the calender film do not have a sea-island structure and are not colored), the heat shielding rate is greatly exceeded. It was confirmed that the sea-island-shaped flexible resin coating layer impregnated and adhered to the base fabric of Example 13 greatly contributed to the improvement of the heat shielding property. Furthermore, in comparison with Comparative Example 9 (a white colored colored flexible resin not having a sea-island structure is impregnated and adhered to the base fabric and transparent calendar films are laminated on both sides), both are transparent film materials. Although there is no difference in appearance, both the light transmittance and the heat shielding rate exceed, the flexible resin coating layer impregnated and adhered to the base fabric has a sea-island structure, and the island component contains metal oxide particles. It was confirmed that the light transmittance was improved and the heat shielding property was improved by being colored white. In Example 14, a calender film having a sea-island structure was laminated on one side of a base fabric impregnated and coated with a transparent flexible resin, and a transparent calender film was laminated on the other side. One calendar film is not transparent, has a sea-island structure, and the island component is white-colored. Therefore, the light transmittance is lower than that in Example 13, but infrared rays are transmitted through the mesh-like fiber base fabric. The heat shielding rate has been improved in order to prevent this. Furthermore, in comparison with Comparative Example 7 (a white-colored calender film having a non-colored flexible resin impregnated and adhered to the base fabric and having no sea-island structure on one side), both the light transmittance and the heat shielding rate are compared. It was higher. In Example 15, both the flexible resin coating layer impregnated and adhered to the base fabric and the calendar film have a sea-island structure, and the island components are colored white. By making it lower than Examples 13 and 14, the heat shielding rate could be improved without reducing the light transmittance. In Example 16, the flexible resin coating layer impregnated and adhered to the base fabric has a sea-island structure, and the island component is black-colored with an infrared absorbing material. A transparent calender film is laminated on both sides and is a daylighting film material having transparency. Although the heat shielding properties were slightly inferior to those of Example 13, the light transmittance was the same. Moreover, since the mesh-like fiber base fabric is colored black and the irregular reflection of visible light at the fiber base fabric portion is suppressed, the daylighting membrane material that has better transparency than Example 13 and can clearly see the other side of the membrane material clearly. Met. On the other hand, Comparative Example 9 is an effect of carbon black contained in the soft PVC resin impregnated and adhered to the mesh-like fiber base fabric, so that irregular reflection of visible light at the fiber base fabric portion is suppressed, and excellent transparency as in Example 16 is achieved. However, since the flexible resin layer does not have a sea-island structure, the film material is inferior in heat shielding properties.

本発明によって得られる遮熱姓採光膜材は、光線透過性があり、透明、着色透明、着色半透明、着色不透明等、色相面の自由度が高く、優れた遮熱性を有するため、明るく、且つ涼しい、という従来両立が困難であった環境を提供することができ、しかもデザイン面においてもカラフルな色彩を選択することができるものである。そのため、特に日除けテント、日除けモニュメント、装飾テント、テント倉庫、イベント向けテント、トラック幌、ブラインド、間仕切り、シートシャッター、農園芸用シート等に使用した場合、カラフルな色彩はそのままに、夏場の作業環境を改善し、照明、冷房などに費やすエネルギーを削減する事が可能となる。   The heat-insulating surname light-collecting film material obtained by the present invention is light-transmissive, transparent, colored transparent, colored translucent, colored opaque, etc. In addition, it is possible to provide an environment that has been difficult to achieve in the past, such as being cool, and it is also possible to select colorful colors in terms of design. Therefore, especially when used for awning tents, awning monuments, decorative tents, tent warehouses, event tents, truck hoods, blinds, partitions, seat shutters, agricultural and horticultural seats, etc. It is possible to reduce energy consumed for lighting and cooling.

1:遮熱性採光膜材
2:繊維基布
3:可撓性樹脂被覆層(海島構造)
4:海成分
4−1:熱制御性着色剤を含む海成分
4−2:熱制御性着色剤を含まない海成分
5:島成分
5−1:熱制御性着色剤を含む島成分
5−2:熱制御性着色剤を含まない島成分
6:防汚層
1: Heat shielding daylighting film material 2: Fiber base fabric 3: Flexible resin coating layer (sea-island structure)
4: Sea component 4-1: Sea component containing a heat-controllable colorant 4-2: Sea component not containing a heat-controllable colorant 5: Island component 5-1: Island component containing a heat-controllable colorant 5- 2: Island component not containing heat-controllable colorant 6: Antifouling layer

Claims (15)

繊維基布及びその少なくとも1面上に形成された可撓性樹脂被覆層を含み、光線透過率(JIS Z8722.5.4(条件g)により測定)が3〜70%の可撓性膜材であって、前記可撓性樹脂被覆層の少なくとも1層が、合成樹脂ブレンドによる非相溶混合物からなる海島構造を有し、さらに前記海島構造において、海成分または島成分のいずれか一方が熱制御性着色剤を含むことを特徴とする、遮熱性採光膜材。   A flexible membrane material comprising a fiber base fabric and a flexible resin coating layer formed on at least one surface thereof and having a light transmittance (measured according to JIS Z8722.5.4 (condition g)) of 3 to 70%. And at least one of the flexible resin coating layers has a sea-island structure composed of an incompatible mixture of synthetic resin blends, and in the sea-island structure, either the sea component or the island component is thermally controllable. A heat shielding daylighting film material comprising a colorant. 前記海島構造において、海成分を構成する合成樹脂の屈折率と島成分を構成する合成樹脂の屈折率に差を有し、その屈折率差が0.05以上であり、かつ、前記海成分中に分散する前記島成分の平均粒子径が0.5〜20.0μmである、請求項1に記載の遮熱性採光膜材。   In the sea-island structure, there is a difference between the refractive index of the synthetic resin constituting the sea component and the refractive index of the synthetic resin constituting the island component, the refractive index difference is 0.05 or more, and in the sea component The heat shielding daylighting film material according to claim 1, wherein an average particle diameter of the island component dispersed in the water is 0.5 to 20.0 μm. 前記熱制御性着色剤が、金属酸化物微粒子、金属複合酸化物微粒子、及び近赤外線吸収性物質から選ばれた1種以上を含む、請求項1に記載の遮熱性採光膜材。   The heat-shielding light-collecting film material according to claim 1, wherein the heat-controllable colorant includes one or more selected from metal oxide fine particles, metal composite oxide fine particles, and a near-infrared absorbing material. 前記金属酸化物微粒子が、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズから選ばれた1種以上を含む、請求項3に記載の遮熱性採光膜材。   The metal oxide fine particles are titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, tin-doped indium oxide, indium-doped tin oxide, and antimony-doped tin oxide. The heat-shielding daylighting film material according to claim 3, comprising at least one selected. 前記金属複合酸化物微粒子が、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含んでなる金属複合酸化物から選ばれた1種以上を含む、請求項3に記載の遮熱性採光膜材。   From the metal composite oxide, wherein the metal composite oxide fine particles comprise two or more components of titanium, zinc, antimony, iron, nickel, cobalt, chromium, magnesium, copper, manganese, aluminum, niobium, and silicon. The heat-shielding daylighting film material according to claim 3, comprising at least one selected. 前記近赤外線吸収性物質が、フタロシアニン系化合物、ナフトールキノン系化合物、イモニウム系化合物、アントラキノン系化合物、アミニウム系化合物、及びニッケル−チオール系錯体化合物から選ばれた1種以上を含む、請求項3に記載の遮熱性採光膜材。   The said near-infrared absorptive substance contains 1 or more types chosen from the phthalocyanine type compound, the naphthol quinone type compound, the immonium type compound, the anthraquinone type compound, the aminium type compound, and the nickel-thiol type complex compound. The heat shielding daylighting film material described. 前記可撓性樹脂被覆層上に防汚層が設けられ、サンシャインウエザオメーター耐候促進試験(JIS K7350-4)による、1000時間後の光沢度(JIS K7105.5.2)保持率が、80〜100%である、請求項1〜6のいずれか1項に記載の遮熱性採光膜材。   An antifouling layer is provided on the flexible resin coating layer, and the glossiness (JIS K7105.5.2) retention after 1000 hours according to the sunshine weatherometer accelerated weathering test (JIS K7350-4) is 80-100. The heat-shielding daylighting film material according to claim 1, which is%. 前記可撓性樹脂被覆層上に防汚層が設けられ、屋外曝露前と1年後との色差ΔE(JIS K7105.5.4)が、0.1〜5.0である、請求項1〜6のいずれか1項に記載の遮熱性採光膜材。   An antifouling layer is provided on the flexible resin coating layer, and a color difference ΔE (JIS K7105.5.4) between before outdoor exposure and after one year is 0.1 to 5.0. The heat-shielding daylighting film material according to any one of the above. 前記防汚層が、光触媒性物質を含む、請求項7または8に記載の遮熱性採光膜材。   The heat-shielding daylighting film material according to claim 7 or 8, wherein the antifouling layer contains a photocatalytic substance. 繊維基布と、海成分または島成分のいずれか一方が熱制御性着色剤を含む海島構造を有する可撓性樹脂被覆層と、を含む遮熱性採光膜材において、前記海島構造を合成樹脂非相溶対により構成し、この合成樹脂非相溶対を成す一方を熱制御性着色剤含有合成樹脂として、この熱制御性着色剤含有合成樹脂と、前記合成樹脂非相溶対を成すもう一方の合成樹脂とを混合して、前記海成分中に分散する前記島成分の平均粒子径を0.5〜20.0μmとすることを特徴とする遮熱性採光膜材の製造方法。   A heat-shielding daylighting film material comprising: a fiber base fabric; and a flexible resin coating layer having a sea-island structure in which either a sea component or an island component contains a heat-controllable coloring agent. Constructed by a compatible pair, one of the synthetic resin immiscible pair as a heat-controllable colorant-containing synthetic resin, and the other of the heat-controllable colorant-containing synthetic resin and the synthetic resin non-compatible pair The synthetic resin is mixed, and the average particle size of the island component dispersed in the sea component is set to 0.5 to 20.0 μm. 前記海島構造において、海成分を構成する合成樹脂の屈折率と島成分を構成する合成樹脂の屈折率に差を有し、その屈折率差が0.05以上である、請求項10に記載の遮熱性採光膜材の製造方法。   The said sea island structure has a difference in the refractive index of the synthetic resin which comprises a sea component, and the refractive index of the synthetic resin which comprises an island component, The refractive index difference is 0.05 or more. Manufacturing method of heat-shielding daylighting film material. 前記熱制御性着色剤が、金属酸化物微粒子、金属複合酸化物微粒子、及び近赤外線吸収性物質から選ばれた1種以上を含む、請求項10に記載の遮熱性採光膜材の製造方法。   The method for producing a heat-shielding daylighting film material according to claim 10, wherein the heat-controllable colorant contains one or more selected from metal oxide fine particles, metal composite oxide fine particles, and a near-infrared absorbing material. 前記金属酸化物微粒子が、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化インジウム、三酸化アンチモン、酸化タングステン、酸化クロム、酸化鉄、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズから選ばれた1種以上を含む、請求項12に記載の遮熱性採光膜材の製造方法。   The metal oxide fine particles are titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, tungsten oxide, chromium oxide, iron oxide, tin-doped indium oxide, indium-doped tin oxide, and antimony-doped tin oxide. The manufacturing method of the heat-shielding daylighting film material according to claim 12, comprising at least one selected. 前記金属複合酸化物微粒子が、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含んでなる金属複合酸化物から選ばれた1種以上を含む、請求項12に記載の遮熱性採光膜材の製造方法。   From the metal composite oxide, wherein the metal composite oxide fine particles comprise two or more components of titanium, zinc, antimony, iron, nickel, cobalt, chromium, magnesium, copper, manganese, aluminum, niobium, and silicon. The manufacturing method of the heat-shielding daylighting film material according to claim 12, comprising at least one selected. 前記近赤外線吸収性物質が、フタロシアニン系化合物、ナフトールキノン系化合物、イモニウム系化合物、アントラキノン系化合物、アミニウム系化合物、及びニッケル−チオール系錯体化合物から選ばれた1種以上を含む、請求項12に記載の遮熱性採光膜材の製造方法。
The near-infrared absorbing substance includes at least one selected from a phthalocyanine compound, a naphtholquinone compound, an imonium compound, an anthraquinone compound, an aminium compound, and a nickel-thiol complex compound. The manufacturing method of the heat-shielding daylighting film material of description.
JP2009204496A 2009-09-04 2009-09-04 Heat shielding daylighting film material and manufacturing method thereof Active JP5360656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204496A JP5360656B2 (en) 2009-09-04 2009-09-04 Heat shielding daylighting film material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204496A JP5360656B2 (en) 2009-09-04 2009-09-04 Heat shielding daylighting film material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011052357A true JP2011052357A (en) 2011-03-17
JP5360656B2 JP5360656B2 (en) 2013-12-04

Family

ID=43941640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204496A Active JP5360656B2 (en) 2009-09-04 2009-09-04 Heat shielding daylighting film material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5360656B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093280A (en) * 2009-11-02 2011-05-12 Hiraoka & Co Ltd Near infrared ray shielding sheet and method of manufacturing the same
WO2014069025A1 (en) * 2013-05-10 2014-05-08 日東紡績株式会社 Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
JP2015083725A (en) * 2013-10-25 2015-04-30 平岡織染株式会社 Fabric-like heat-shielding film material
JP2015098543A (en) * 2013-11-19 2015-05-28 関西ペイント株式会社 Matting heat-shielding coating composition and coating film formation method using the composition
JP2015232629A (en) * 2014-06-10 2015-12-24 平岡織染株式会社 Transmission projection screen
JP2015232630A (en) * 2014-06-10 2015-12-24 平岡織染株式会社 Transmission projection screen
KR20160063802A (en) * 2014-11-27 2016-06-07 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
JP2016113825A (en) * 2014-12-16 2016-06-23 株式会社イノベックス Sheet for sheet shutter and sheet shutter
CN112406220A (en) * 2020-12-01 2021-02-26 湖南星鑫航天新材料股份有限公司 Flexible and light composite heat-proof sleeve and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399935A (en) * 1986-10-17 1988-05-02 平岡織染株式会社 Heat-shielding bright sheet
JPH08193136A (en) * 1995-01-17 1996-07-30 Toray Ind Inc Highly transparent flame-retardant film material, exterior wall material, roofing material and agricultural house
JP2001293806A (en) * 2000-04-13 2001-10-23 Hagihara Industries Inc Air permeable laminated sheet and use thereof
JP2003251728A (en) * 2002-02-28 2003-09-09 Hiraoka & Co Ltd Daylighting heat insulating film material
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399935A (en) * 1986-10-17 1988-05-02 平岡織染株式会社 Heat-shielding bright sheet
JPH08193136A (en) * 1995-01-17 1996-07-30 Toray Ind Inc Highly transparent flame-retardant film material, exterior wall material, roofing material and agricultural house
JP2001293806A (en) * 2000-04-13 2001-10-23 Hagihara Industries Inc Air permeable laminated sheet and use thereof
JP2003251728A (en) * 2002-02-28 2003-09-09 Hiraoka & Co Ltd Daylighting heat insulating film material
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093280A (en) * 2009-11-02 2011-05-12 Hiraoka & Co Ltd Near infrared ray shielding sheet and method of manufacturing the same
WO2014069025A1 (en) * 2013-05-10 2014-05-08 日東紡績株式会社 Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
EP2995717A4 (en) * 2013-05-10 2017-03-15 Nitto Boseki Co., Ltd Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
JP2015083725A (en) * 2013-10-25 2015-04-30 平岡織染株式会社 Fabric-like heat-shielding film material
JP2015098543A (en) * 2013-11-19 2015-05-28 関西ペイント株式会社 Matting heat-shielding coating composition and coating film formation method using the composition
JP2015232629A (en) * 2014-06-10 2015-12-24 平岡織染株式会社 Transmission projection screen
JP2015232630A (en) * 2014-06-10 2015-12-24 平岡織染株式会社 Transmission projection screen
KR20160063802A (en) * 2014-11-27 2016-06-07 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
KR102134173B1 (en) * 2014-11-27 2020-07-15 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
JP2016113825A (en) * 2014-12-16 2016-06-23 株式会社イノベックス Sheet for sheet shutter and sheet shutter
CN112406220A (en) * 2020-12-01 2021-02-26 湖南星鑫航天新材料股份有限公司 Flexible and light composite heat-proof sleeve and preparation method thereof
CN112406220B (en) * 2020-12-01 2024-04-12 湖南星鑫航天新材料股份有限公司 Flexible and light composite heat-proof sleeve and preparation method thereof

Also Published As

Publication number Publication date
JP5360656B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
JP5768253B2 (en) Variable heat shielding daylighting sheet
JP4517178B2 (en) Daylighting film material with excellent thermal insulation effect
JP5146962B2 (en) Thermal barrier film material
JP5126792B2 (en) High translucent film material
JP2014040035A (en) Heat control sheet
CN102582170B (en) A kind of coating sunshade composite material with high reflectance and preparation method thereof
JP4341752B2 (en) Thermal barrier antifouling film material
JP2011133586A (en) Near infrared ray shielding highly translucent sheet, and near infrared ray noise shielding material
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP3994189B2 (en) Daylighting thermal barrier film material
JP3994191B2 (en) Thermal barrier antifouling film material
CN104093781B (en) Fluororesin film
JP2012051113A (en) Heat controllable sheet
JP2012097183A (en) Heat insulation lighting sheet
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
JP5422836B2 (en) Exothermic translucent sheet and exothermic translucent membrane roof structure
JP5760219B2 (en) Solar heat control membrane material
JP2012140805A (en) Membrane material for solar radiation heat control
JP2012140754A (en) Variable lighting-sheet with heat-shielding and heat-releasing properties
JP2011195792A (en) Exothermic light-transmitting sheet and exothermic light-transmitting film roof structure
JP5392445B1 (en) Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber fabric using the same
EP2789732B1 (en) Resin-coated flame-retardant glass fiber bundle and resin-coated flame-retardant fiber woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5360656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250