JP2011049414A - Metallized film capacitor - Google Patents

Metallized film capacitor Download PDF

Info

Publication number
JP2011049414A
JP2011049414A JP2009197675A JP2009197675A JP2011049414A JP 2011049414 A JP2011049414 A JP 2011049414A JP 2009197675 A JP2009197675 A JP 2009197675A JP 2009197675 A JP2009197675 A JP 2009197675A JP 2011049414 A JP2011049414 A JP 2011049414A
Authority
JP
Japan
Prior art keywords
divided
divided electrode
electrode
small
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197675A
Other languages
Japanese (ja)
Other versions
JP5647402B2 (en
Inventor
Kouji Takagaki
甲児 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009197675A priority Critical patent/JP5647402B2/en
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to KR1020117018649A priority patent/KR101629851B1/en
Priority to EP10738576.7A priority patent/EP2395523A4/en
Priority to CN201210398622.5A priority patent/CN102915841B/en
Priority to CN2010800065152A priority patent/CN102308350B/en
Priority to CA2751544A priority patent/CA2751544C/en
Priority to PCT/JP2010/051572 priority patent/WO2010090245A1/en
Priority to CN201210398069.5A priority patent/CN102915839B/en
Priority to CN201210398619.3A priority patent/CN102915840B/en
Priority to US13/138,313 priority patent/US8593781B2/en
Publication of JP2011049414A publication Critical patent/JP2011049414A/en
Application granted granted Critical
Publication of JP5647402B2 publication Critical patent/JP5647402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallized film capacitor having excellent safety preservation ability and an excellent withstand voltage at high temperatures. <P>SOLUTION: In a width direction of a metallized film, a first small segmented electrode part, a large segmented electrode part, a second small segmented electrode part, and an unsegmented electrode part 81 are arranged in order from the side of an insulating margin 72 to a Metallikon connection part 71. A plurality of small segmented electrodes 83 constituting the first small segmented electrode part are each connected to a large segmented electrode 84 by a fuse 93 formed between insulating slits 73 across the small segmented electrode 83 in a length direction. Further, a plurality of small segmented electrodes 85 constituting the second small segmented electrode part 85 are each connected to the large segmented electrode 84 and unsegmented electrode part 81 by fuses 94 and 95 formed between insulating slits 74 and 75 across the small segmented electrode 85 in a length direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、産業機器および自動車用等のインバータ回路の平滑用、フィルタ用に使用する金属化フィルムコンデンサに関するものである。   The present invention relates to a metallized film capacitor used for smoothing and filtering inverter circuits for industrial equipment and automobiles.

従来の金属化フィルムコンデンサは、図1に示すポリプロピレンフィルム1のメタリコン近傍蒸着電極2を厚く、非メタリコン近傍蒸着電極3を薄く蒸着し、メタリコンと対向する端部に絶縁マージン4を形成した金属化フィルムが使用されている。この金属化フィルムコンデンサではポリプロピレンフィルムの絶縁破壊時、その放電エネルギーにより絶縁破壊部周辺の蒸着電極が飛散し、これにより絶縁破壊部の絶縁を回復させる自己回復機能を有する。しかし、高温・高電圧では絶縁破壊数が増えるために自己回復機能が充分に得られず、コンデンサがショートモードに到ることがある。例えば、図13に示されるように、誘電体(プラスチックフィルム)の上に蒸着金属膜を有する金属化フィルムが積層・巻回されてなる金属化フィルムコンデンサにおいては、図面の×印の所で誘電体が破壊し、セルフヒーリング(蒸着金属の飛散)が不充分な場合、破壊した誘電体部分を介して当該金属化フィルムの下側に配置された金属化フィルム上の蒸着金属と導通することになる。   The conventional metallized film capacitor has a metallized near-metallized vapor deposition electrode 2 on the polypropylene film 1 shown in FIG. Film is being used. This metallized film capacitor has a self-healing function for recovering the insulation of the dielectric breakdown part due to scattering of the vapor deposition electrode around the dielectric breakdown part by the discharge energy at the time of dielectric breakdown of the polypropylene film. However, at high temperatures and high voltages, the number of dielectric breakdowns increases, so that the self-recovery function cannot be obtained sufficiently, and the capacitor may reach the short mode. For example, as shown in FIG. 13, in a metallized film capacitor in which a metallized film having a vapor-deposited metal film is laminated and wound on a dielectric (plastic film), the dielectric is shown at the x mark in the drawing. When the body breaks down and self-healing (spattering of the deposited metal) is insufficient, it is conducted with the deposited metal on the metallized film disposed under the metallized film via the broken dielectric part. Become.

インバータ回路の平滑用コンデンサは高温・高電圧で使用されると共に、安全性の要求が強く、蒸着電極を複数に分割した金属化フィルムが採用されている(例えば、特許文献1〜3参照)。このような分割電極が形成された金属化フィルムの例を[図2−A]〜[図2−C]に示す。   The smoothing capacitor of the inverter circuit is used at a high temperature and a high voltage, and has a strong demand for safety, and a metallized film in which the vapor deposition electrode is divided into a plurality of parts is employed (see, for example, Patent Documents 1 to 3). Examples of metallized films on which such divided electrodes are formed are shown in [FIG. 2-A] to [FIG. 2-C].

[図2−A]では、金属化フィルムのメタリコン接続部10と幅方向において対向する端部には絶縁マージン12が形成され、幅方向絶縁スリット5と、長手方向絶縁スリット6とにより分割電極7が形成されている。これら分割電極7同士はヒューズ8で並列に接続されている。さらに、メタリコン近傍蒸着電極は長手方向の絶縁スリット9によりメタリコン接続部10と分割電極7とを分離した構成とし、メタリコン接続部10と分割電極7とはヒューズ11で接続されている。   In FIG. 2A, an insulating margin 12 is formed at the end of the metallized film facing the metallicon connection portion 10 in the width direction, and the divided electrode 7 is formed by the width direction insulating slit 5 and the longitudinal direction insulating slit 6. Is formed. These divided electrodes 7 are connected in parallel by a fuse 8. Further, the vapor deposition electrode in the vicinity of the metallicon has a configuration in which the metallicon connection portion 10 and the divided electrode 7 are separated by a longitudinal insulating slit 9, and the metallicon connection portion 10 and the divided electrode 7 are connected by a fuse 11.

[図2−B]では、金属化フィルムのメタリコン接続部10aと幅方向において対向する端部には絶縁マージン12aが形成され、Y字形絶縁スリット13aによりハニカム状の分割電極7aが形成されている。これら分割電極7a同士はヒューズ8aで並列に接続されている。   In FIG. 2B, an insulating margin 12a is formed at the end of the metallized film that faces the metallicon connecting portion 10a in the width direction, and a honeycomb-shaped divided electrode 7a is formed by the Y-shaped insulating slit 13a. . These divided electrodes 7a are connected in parallel by a fuse 8a.

[図2−C]では、金属化フィルムのメタリコン接続部10bと幅方向において対向する端部には絶縁マージン12bが形成され、ミュラー・リヤー形絶縁スリット14aによりハニカム状の分割電極7bが形成されている。これら分割電極7b同士はヒューズ8bで並列に接続されている。   In FIG. 2C, an insulating margin 12b is formed at the end of the metallized film facing the metallicon connecting portion 10b in the width direction, and a honeycomb-shaped divided electrode 7b is formed by the Mueller-rear insulating slit 14a. ing. These divided electrodes 7b are connected in parallel by a fuse 8b.

このような分割電極を有する金属化フィルムを用いた金属化フィルムコンデンサに誘電体の絶縁破壊が生じた場合、上記した自己回復機能を有する。同時に、金属化フィルムコンデンサの自己回復機能を超えた絶縁破壊が生じた場合でも、周囲の分割電極から絶縁破壊の生じた分割電極に電流が流れ込み、ヒューズ部の蒸着電極を飛散させ、絶縁破壊が生じた分割電極が、他の分割電極と切り離されて絶縁を回復させる機能を有し、高い安全性が確保されている。   When a dielectric breakdown occurs in a metallized film capacitor using a metallized film having such divided electrodes, it has the above-described self-healing function. At the same time, even when a breakdown that exceeds the self-healing function of the metallized film capacitor occurs, current flows from the surrounding split electrode to the split electrode where the breakdown occurs, causing the vapor deposition electrode of the fuse part to scatter, causing breakdown. The generated divided electrode is separated from other divided electrodes to have a function of restoring insulation, and high safety is ensured.

さらに、分割電極面積を小さくするとヒューズ動作による容量減少を抑制することができ、コンデンサの長寿命化が可能になる。しかしながら、細分化し過ぎると、分割電極のエネルギーが小さくなり、絶縁破壊が生じた場合、ヒューズ動作がしにくくなって、コンデンサの安全性が低下する。この現象は温度が高くなるほど顕著になる。   Furthermore, if the area of the divided electrode is reduced, the capacity reduction due to the fuse operation can be suppressed, and the life of the capacitor can be extended. However, if the material is too finely divided, the energy of the divided electrodes becomes small, and when a dielectric breakdown occurs, the fuse operation becomes difficult and the safety of the capacitor decreases. This phenomenon becomes more prominent as the temperature increases.

また、分割電極面積を小さくすると、ヒューズの数が増加することになるが、ヒューズは分割電極と比較して高抵抗であるため、コンデンサの発熱が増加することが報告されている(例えば、特許文献4参照)。このような自己発熱の増加は、耐電圧性能や保安性能が低下する原因となる。特にコンデンサ素子の中心は自己発熱により最も温度が上昇し、他の部分よりも耐電圧性能や保安性能が劣化する。   Further, when the divided electrode area is reduced, the number of fuses is increased. However, since the fuse has a higher resistance than the divided electrode, it is reported that the heat generation of the capacitor increases (for example, patents). Reference 4). Such an increase in self-heating causes a decrease in withstand voltage performance and safety performance. Particularly in the center of the capacitor element, the temperature rises most due to self-heating, and the withstand voltage performance and the safety performance are deteriorated more than other portions.

そこで、上記した不具合を改善するために、分割電極部と、分割されていない面積の大きな電極(非分割電極部)を集約配置する手段が考案されている(例えば、特許文献5参照)。この特許文献5記載の金属化フィルムコンデンサでは、絶縁マージン側にスリットによって区画された複数の分割電極が設けられ、端子接続部側(メタリコン接続部側)に非分割電極部が設けられている。そして、複数の分割電極は、絶縁マージンに近づくにつれて、蒸着電極の面積が小さくなるように構成されている。   Therefore, in order to improve the above-described problems, a means has been devised in which divided electrode portions and electrodes that are not divided and have a large area (non-divided electrode portions) are collectively arranged (see, for example, Patent Document 5). In the metallized film capacitor described in Patent Document 5, a plurality of divided electrodes divided by slits are provided on the insulating margin side, and a non-divided electrode portion is provided on the terminal connection side (metallicon connection side). And the some division | segmentation electrode is comprised so that the area of a vapor deposition electrode may become small as it approaches an insulation margin.

特開平08−250367号公報Japanese Patent Laid-Open No. 08-250367 特開平11−26281号公報Japanese Patent Laid-Open No. 11-26281 特開平11−26280号公報JP-A-11-26280 特開2003−338422号公報JP 2003-338422 A 特開2005−12082号公報JP 2005-12082 A

ところで、自動車用としてインバータ回路の平滑用などに使用されるコンデンサは高温、高周波、高電圧で使用され、小形化と高度な安全性が要求されている。このため、誘電体フィルムの厚さを薄くしてコンデンサを小形化し、かつ高温領域での耐電圧性能の向上および安全性を実現しなければならない。   By the way, capacitors used for smoothing an inverter circuit for automobiles are used at high temperatures, high frequencies, and high voltages, and miniaturization and high safety are required. For this reason, it is necessary to reduce the thickness of the dielectric film to reduce the size of the capacitor and to improve the withstand voltage performance and safety in the high temperature region.

しかしながら、上記特許文献5記載の金属化フィルムコンデンサでは、絶縁マージン側に比較的電極面積が小さな分割電極を長手方向に配列した分割電極部(小分割電極部)を集約する一方、端子接続部側に比較的電極面積が大きな分割電極を長手方向に配列した分割電極部(大分割電極部)および非分割電極部を配置しているので、高温時での保安性が必ずしも十分に確保されている状況にはなっていなかった。具体的には、小分割電極部で絶縁破壊が生じた場合、絶縁破壊が生じた小分割電極部を構成する分割電極に隣接する分割電極からヒューズを動作させるだけの十分な電流が流れ込まず、特に高温時においてヒューズを動作させることができないおそれがあった。   However, in the metallized film capacitor described in Patent Document 5, the divided electrode portions (small divided electrode portions) in which the divided electrodes having a relatively small electrode area are arranged in the longitudinal direction are gathered on the insulation margin side, while the terminal connection side Since the divided electrode portion (large divided electrode portion) and the non-divided electrode portion in which divided electrodes having a relatively large electrode area are arranged in the longitudinal direction are arranged, safety at high temperatures is always sufficiently ensured. The situation was not up. Specifically, when a dielectric breakdown occurs in the small divided electrode part, sufficient current does not flow from the divided electrode adjacent to the divided electrode constituting the small divided electrode part where the dielectric breakdown occurs, In particular, there is a possibility that the fuse cannot be operated at a high temperature.

この発明は上記課題に鑑みてなされたものであり、高温での良好な保安性および耐電圧性を有する金属化フィルムコンデンサを提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the metallized film capacitor which has the favorable safety | security at high temperature and withstand voltage property.

この発明は、誘電体フィルムの少なくとも片面に蒸着電極を設けた金属化フィルムを巻回、または積層してコンデンサ素子を形成し、該コンデンサ素子の両端面に電極引き出し用のメタリコンを接続した金属化フィルムコンデンサであって、金属化フィルムの長手方向に間隔をあけて配列した絶縁スリットにより蒸着電極が分割された、複数の小分割電極を長手方向に沿って形成する小分割電極部と、金属化フィルムの長手方向に間隔をあけて配列した絶縁スリットにより蒸着電極が分割された、小分割電極よりも電極面積が大きな複数の大分割電極を長手方向に沿って形成する大分割電極部と、蒸着電極が長手方向に連続した非分割電極部とを備え、金属化フィルムの幅方向において小分割電極部が大分割電極部および非分割電極部のいずれかに隣接して配置され、複数の小分割電極の各々は、該小分割電極を長手方向に挟む絶縁スリット間に形成されたヒューズにて大分割電極または非分割電極部と接続されていることを特徴としている。   The present invention relates to a metallization in which a capacitor element is formed by winding or laminating a metallized film provided with a vapor deposition electrode on at least one surface of a dielectric film, and a metallicon for electrode drawing is connected to both end surfaces of the capacitor element. A film capacitor, in which a vapor deposition electrode is divided by insulating slits arranged at intervals in the longitudinal direction of the metallized film, a plurality of small divided electrodes formed along the longitudinal direction, and metallization A large-divided electrode part that forms a plurality of large-divided electrodes having a larger electrode area than the small-divided electrodes, which are divided by insulating slits arranged at intervals in the longitudinal direction of the film, along the longitudinal direction, and vapor deposition The electrode has a non-divided electrode portion that is continuous in the longitudinal direction, and the small divided electrode portion is neither the large divided electrode portion nor the non-divided electrode portion in the width direction of the metallized film. Each of the plurality of small divided electrodes is connected to the large divided electrode or the non-divided electrode portion by a fuse formed between insulating slits sandwiching the small divided electrode in the longitudinal direction. It is characterized by.

このように構成された発明によれば、金属化フィルムの幅方向において、比較的電極面積が小さな複数の小分割電極から構成された小分割電極部が比較的電極面積が大きな複数の大分割電極から構成された大分割電極部および非分割電極部のいずれかに隣接して配置される。そして、複数の小分割電極の各々がヒューズによって、大分割電極または非分割電極部に接続される。このため、小分割電極の端部は、小分割電極よりも電極面積が大きな大分割電極および非分割電極部のいずれかにヒューズを介して接続されるので、小分割電極で絶縁破壊が生じた場合でも、該小分割電極に隣接する大分割電極または非分割電極部からヒューズを動作させるだけの十分な電流が流れ込み、ヒューズを確実に動作(ヒューズ部の蒸着電極を飛散)させ、絶縁破壊を起こした分割電極を分離することができる。なお、上記した効果を発揮させるために、大分割電極部を構成する第2の分割電極の面積は、小分割電極部を構成する第1の分割電極部の面積の2倍以上にすることが好ましい。   According to the invention configured as described above, in the width direction of the metallized film, a plurality of large divided electrodes having a relatively large electrode area are formed by a plurality of small divided electrodes having a relatively small electrode area. Is disposed adjacent to either the large divided electrode portion or the non-divided electrode portion. Each of the plurality of small divided electrodes is connected to the large divided electrode or the non-divided electrode portion by a fuse. For this reason, the end portion of the small divided electrode is connected to either the large divided electrode or the non-divided electrode portion having an electrode area larger than that of the small divided electrode through the fuse, so that dielectric breakdown occurred in the small divided electrode. Even in such a case, sufficient current flows to operate the fuse from the large divided electrode or the non-divided electrode adjacent to the small divided electrode, and the fuse operates reliably (spraying the vapor deposition electrode of the fuse), thereby causing dielectric breakdown. The raised divided electrodes can be separated. In order to exert the above-described effects, the area of the second divided electrode that constitutes the large divided electrode portion should be twice or more than the area of the first divided electrode portion that constitutes the small divided electrode portion. preferable.

ここで、小分割電極部として第1小分割電極部と第2小分割電極部の2つの分割電極部を設け、金属化フィルムの幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部を隣接して配置することが好ましい。この構成によれば、第1小分割電極部または第2小分割電極部で熱・電圧等による誘電体の劣化により、小分割電極が複数個に亘ってヒューズ動作した場合でも、電流経路が極端に乱れるのを防止することができる。すなわち、金属化フィルムの幅方向において第1小分割電極部と第2小分割電極部との間に非分割電極部を隣接して配置した場合には、非分割電極部に蒸着電極を分割する絶縁スリットが存在しないため、小分割電極が複数個に亘ってヒューズ動作した場合に、電流経路が極端に乱れるおそれがある。その結果、コンデンサの誘電損失および等価直列抵抗が極端に上昇する可能性があった。これに対し、金属化フィルムの幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部を隣接して配置することにより、大分割電極部に形成された絶縁スリットが電流経路を規制し、電流経路が極端に乱れるのを防止することができる。   Here, as the small divided electrode portion, two divided electrode portions of the first small divided electrode portion and the second small divided electrode portion are provided, and the first small divided electrode portion and the second small divided electrode portion in the width direction of the metallized film. It is preferable to arrange the large divided electrode portion adjacent to each other. According to this configuration, even when the plurality of small divided electrodes perform a fuse operation due to deterioration of the dielectric due to heat, voltage or the like in the first small divided electrode portion or the second small divided electrode portion, the current path is extremely large. Can be prevented from being disturbed. That is, when the non-divided electrode portion is disposed adjacently between the first small divided electrode portion and the second small divided electrode portion in the width direction of the metallized film, the vapor deposition electrode is divided into the non-divided electrode portion. Since there is no insulating slit, the current path may be extremely disturbed when a plurality of subdivided electrodes perform a fuse operation. As a result, the dielectric loss and equivalent series resistance of the capacitor may be extremely increased. On the other hand, the insulation formed in the large divided electrode portion by arranging the large divided electrode portion adjacently between the first small divided electrode portion and the second small divided electrode portion in the width direction of the metallized film. The slit restricts the current path and can prevent the current path from being extremely disturbed.

また、コンデンサ素子が金属化フィルムを2枚重ね合わせてなる一対の金属化フィルムにより形成される金属化フィルムコンデンサにおいては、一対の金属化フィルムの一方に形成された大分割電極部および非分割電極部のすべての電極面が一対の金属化フィルムの他方に形成された小分割電極部に対向するように構成することが好ましい。この構成によれば、一対の金属化フィルムの一方に形成された大分割電極または非分割電極部において金属化フィルムの自己回復機能(セルフヒーリング機能)を超えた絶縁破壊が生じた場合でも、対向する一対の金属化フィルムの他方に形成された小分割電極に隣接する該小分割電極よりも電極面積が大きな大分割電極または非分割電極部から十分な電流が小分割電極に流れ込む。このため、一対の金属化フィルムの他方に形成された小分割電極の端部に形成されたヒューズを確実に動作(ヒューズ部分の蒸着電極を飛散)させ、絶縁破壊が生じた大分割電極または非分割電極部を他の分割電極から切り離すことができる。これにより、一対の金属化フィルムの一方に形成された大分割電極または非分割電極部において絶縁破壊が生じた場合でも、当該大分割電極または非分割電極部の絶縁を回復させることができ、コンデンサとしての機能を維持することができる。   Moreover, in the metallized film capacitor in which the capacitor element is formed by a pair of metallized films formed by superposing two metallized films, a large divided electrode portion and a non-divided electrode formed on one of the pair of metallized films It is preferable that all electrode surfaces of the part are configured to face the small divided electrode part formed on the other of the pair of metallized films. According to this configuration, even when a dielectric breakdown exceeding the self-healing function (self-healing function) of the metallized film occurs in the large divided electrode or the non-divided electrode part formed on one of the pair of metallized films, Sufficient current flows from the large divided electrode or the non-divided electrode portion having a larger electrode area than the small divided electrode adjacent to the small divided electrode formed on the other of the pair of metallized films. For this reason, the fuse formed at the end of the small divided electrode formed on the other of the pair of metallized films operates reliably (spraying the vapor deposition electrode of the fuse portion), and the large divided electrode or non-breaking dielectric breakdown occurs. The divided electrode portion can be separated from other divided electrodes. Thereby, even when a dielectric breakdown occurs in the large divided electrode or the non-divided electrode portion formed on one of the pair of metallized films, the insulation of the large divided electrode or the non-divided electrode portion can be recovered, and the capacitor The function as can be maintained.

さらに、金属化フィルムのメタリコン接続部側に非分割電極部を配置することが好ましい。というのも、メタリコン接続部側に分割電極部を配置すると、当該分割電極部で絶縁破壊が生じた場合、当該分割電極部と非分割電極部とを接続するヒューズが動作すると、分割電極部からの電流通路が完全に遮断され、コンデンサとして機能しなくなる場合がある。これに対し、メタリコン接続部側に非分割電極部を配置することで、非分割電極(一対の金属化フィルムの一方に形成された非分割電極)において絶縁破壊が生じた場合でも、対向する金属化フィルム(一対の金属化フィルムのうちの他方の金属化フィルム)に形成された小分割電極と該小分割電極に隣接する非分割電極または大分割電極とを接続するヒューズが動作することにより、コンデンサとして機能する電極領域を残す(非分割電極からの電流通路を確保する)ことができる。   Further, it is preferable to dispose the non-divided electrode portion on the metallicon connection portion side of the metallized film. This is because, when a divided electrode part is arranged on the metallicon connection part side, when dielectric breakdown occurs in the divided electrode part, if a fuse connecting the divided electrode part and the non-divided electrode part operates, the divided electrode part Current path is completely cut off and may not function as a capacitor. On the other hand, by disposing the non-divided electrode part on the metallicon connection part side, even when dielectric breakdown occurs in the non-divided electrode (non-divided electrode formed on one of the pair of metallized films), the opposing metal By operating the fuse that connects the small divided electrode formed on the metalized film (the other metallized film of the pair of metalized films) and the non-divided electrode or the large divided electrode adjacent to the small divided electrode, An electrode region that functions as a capacitor can be left (a current path from the non-divided electrode can be secured).

本発明によれば、高温での良好な保安性および耐電圧性を有する金属化フィルムコンデンサを提供することができる。   According to the present invention, it is possible to provide a metallized film capacitor having good safety and voltage resistance at high temperatures.

従来の金属化フィルムコンデンサに使用されている金属化フィルムの層構成を示す図である。It is a figure which shows the laminated constitution of the metallized film currently used for the conventional metallized film capacitor. 分割電極が設けられた従来の金属化フィルムを示す平面図であり、[図2−A]は矩形状の分割電極、[図2−B]はY字形絶縁スリットにより形成されたハニカム状の分割電極、[図2−C]はミュラー・リヤー形絶縁スリットにより形成されたハニカム状の分割電極が設けられた金属化フィルムを示す図である。It is a top view which shows the conventional metallized film provided with the division | segmentation electrode, [FIG. 2-A] is a rectangular division | segmentation electrode, [FIG. 2-B] is a honeycomb-shaped division | segmentation formed by the Y-shaped insulation slit. Electrode, [FIG. 2-C] is a view showing a metallized film provided with a honeycomb-shaped divided electrode formed by Mueller-Rear type insulating slits. 本発明の金属化フィルムコンデンサを構成する金属化フィルムの一実施形態を示す図である。It is a figure which shows one Embodiment of the metallized film which comprises the metallized film capacitor of this invention. 本発明の金属化フィルムコンデンサの内部構造を示す図である。It is a figure which shows the internal structure of the metallized film capacitor of this invention. 蒸着電極を流れる電流経路の概念図である。It is a conceptual diagram of the electric current path which flows through a vapor deposition electrode. 本発明の金属化フィルムコンデンサを構成する金属化フィルムの非分割電極位置での絶縁破壊時の電流経路を示す図である。It is a figure which shows the electric current path at the time of the dielectric breakdown in the non-dividing electrode position of the metallized film which comprises the metallized film capacitor of this invention. 比較例による金属化フィルムコンデンサを構成する金属化フィルムの非分割電極位置での絶縁破壊時の電流経路を示す図である。It is a figure which shows the electric current path at the time of the dielectric breakdown in the non-dividing electrode position of the metallized film which comprises the metallized film capacitor by a comparative example. 本発明の金属化フィルムコンデンサを構成する金属化フィルムを示す図である。It is a figure which shows the metallized film which comprises the metallized film capacitor of this invention. 比較例1にかかる金属化フィルムを示す図である。It is a figure which shows the metallized film concerning the comparative example 1. 本発明の金属化フィルムコンデンサを構成する金属化フィルムの変形形態を示す図である。It is a figure which shows the deformation | transformation form of the metallized film which comprises the metallized film capacitor of this invention. 本発明の金属化フィルムコンデンサを構成する金属化フィルムの変形形態を示す図である。It is a figure which shows the deformation | transformation form of the metallized film which comprises the metallized film capacitor of this invention. 本発明の金属化フィルムコンデンサを構成する金属化フィルムの変形形態を示す図である。It is a figure which shows the deformation | transformation form of the metallized film which comprises the metallized film capacitor of this invention. 従来の金属化フィルムコンデンサの層構成の一例を示す図である。It is a figure which shows an example of the laminated constitution of the conventional metallized film capacitor.

図3は、本発明の金属化フィルムコンデンサを構成する金属化フィルムの一実施形態を示す図である。金属化フィルムには、金属化フィルムの幅方向(以下、単に「幅方向」という)の一端部(電極形成領域)が電極引き出し用のメタリコンが接続されるメタリコン接続部71を構成し、他方端部に絶縁マージン(金属化フィルムの幅方向の一方端部で蒸着電極が形成されていない領域)72が形成されている。絶縁マージン72以外のフィルム表面領域には、絶縁スリットを除き蒸着電極が形成されている。   FIG. 3 is a diagram showing an embodiment of a metallized film constituting the metallized film capacitor of the present invention. In the metallized film, one end part (electrode formation region) in the width direction of the metallized film (hereinafter simply referred to as “width direction”) constitutes a metallicon connection part 71 to which a metallicon for electrode extraction is connected, and the other end An insulating margin (a region where no vapor deposition electrode is formed at one end in the width direction of the metallized film) 72 is formed in the portion. Vapor deposition electrodes are formed on the film surface area other than the insulation margin 72 except for the insulation slits.

金属化フィルムの絶縁マージン72側には、複数のT字状の絶縁スリット73が金属化フィルムの長手方向(以下、単に「長手方向」という)に一定間隔を隔てて配列している。また、長手方向に配列した絶縁スリット73群のメタリコン接続部側には、絶縁スリット73同士の間隔よりも広い(この実施形態では4倍)一定の間隔を隔てて複数のT字状の絶縁スリット74が長手方向に配列している。さらに、長手方向に配列した絶縁スリット74群のメタリコン接続部側には、絶縁スリット74同士の間隔よりも狭い(この実施形態では約3分の1倍)一定の間隔を隔てて複数のT字状の絶縁スリット75が長手方向に配列している。そして、長手方向に配列した絶縁スリット75群とメタリコン接続部71との間には、蒸着電極が長手方向に連続した非分割電極部81が形成されている。絶縁スリット73、74、75のスリット幅は、例えば0.2mmで形成される。   On the insulating margin 72 side of the metallized film, a plurality of T-shaped insulating slits 73 are arranged at regular intervals in the longitudinal direction of the metallized film (hereinafter simply referred to as “longitudinal direction”). In addition, a plurality of T-shaped insulating slits are spaced apart from each other by a fixed interval that is wider than the interval between the insulating slits 73 (four times in this embodiment) on the metallicon connection side of the insulating slit 73 group arranged in the longitudinal direction. 74 are arranged in the longitudinal direction. Further, a plurality of T-characters are arranged on the metallicon connection portion side of the insulating slits 74 arranged in the longitudinal direction at a constant interval that is narrower than the interval between the insulating slits 74 (about one third in this embodiment). Insulating slits 75 are arranged in the longitudinal direction. A non-divided electrode portion 81 in which vapor deposition electrodes are continuous in the longitudinal direction is formed between the insulating slit 75 group arranged in the longitudinal direction and the metallicon connection portion 71. The slit widths of the insulating slits 73, 74, 75 are, for example, 0.2 mm.

絶縁スリット73により蒸着電極が分割された複数の小分割電極83が形成され、これら複数の小分割電極83により第1小分割電極部が構成されている。また、絶縁スリット74により蒸着電極が分割された複数の大分割電極84が形成され、これら複数の大分割電極84により大分割電極部が構成されている。さらに、絶縁スリット75により蒸着電極が分割された複数の小分割電極85が形成され、これら複数の小分割電極85により第2小分割電極部が構成されている。複数の大分割電極84の各々の電極面積は、複数の小分割電極83の各々の電極面積および複数の小分割電極85の各々の電極面積よりも大きい。この実施形態では、大分割電極84の電極面積は、小分割電極83および85の電極面積の少なくとも2倍以上を有している。幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部が隣接して配置されている。   A plurality of small divided electrodes 83 in which the vapor deposition electrode is divided by the insulating slit 73 are formed, and the plurality of small divided electrodes 83 constitute a first small divided electrode portion. In addition, a plurality of large divided electrodes 84 in which the vapor deposition electrodes are divided by the insulating slits 74 are formed, and the plurality of large divided electrodes 84 constitute a large divided electrode portion. Furthermore, a plurality of small divided electrodes 85 in which the vapor deposition electrode is divided by the insulating slit 75 are formed, and the plurality of small divided electrodes 85 constitute a second small divided electrode portion. The electrode area of each of the plurality of large divided electrodes 84 is larger than the electrode area of each of the plurality of small divided electrodes 83 and the electrode area of each of the plurality of small divided electrodes 85. In this embodiment, the electrode area of the large divided electrode 84 is at least twice the electrode area of the small divided electrodes 83 and 85. A large divided electrode portion is disposed adjacent to the first small divided electrode portion and the second small divided electrode portion in the width direction.

この実施形態では、上記のように、フィルム幅方向において絶縁マージン72側からメタリコン接続部71にかけて第1小分割電極部、大分割電極部、第2小分割電極部および非分割電極部81の順に配置されている。すなわち、小分割電極部(第1および第2小分割電極部)は大分割電極部および非分割電極部のいずれかに隣接して配置されている。なお、複数の小分割電極83の各々は、当該小分割電極83を長手方向に挟む絶縁スリット73間に形成されたヒューズ93にて大分割電極84と接続されている。また、複数の小分割電極85の各々は、当該小分割電極85を長手方向に挟む絶縁スリット74、75間に形成されたヒューズ94、95にてそれぞれ大分割電極84、非分割電極部81と接続されている。   In this embodiment, as described above, the first small divided electrode portion, the large divided electrode portion, the second small divided electrode portion, and the non-divided electrode portion 81 are arranged in this order from the insulating margin 72 side to the metallicon connection portion 71 in the film width direction. Has been placed. That is, the small divided electrode portion (first and second small divided electrode portions) is disposed adjacent to either the large divided electrode portion or the non-divided electrode portion. Each of the plurality of small divided electrodes 83 is connected to the large divided electrode 84 by a fuse 93 formed between insulating slits 73 sandwiching the small divided electrode 83 in the longitudinal direction. Each of the plurality of small divided electrodes 85 is divided into a large divided electrode 84 and a non-divided electrode portion 81 by fuses 94 and 95 formed between insulating slits 74 and 75 sandwiching the small divided electrode 85 in the longitudinal direction, respectively. It is connected.

図4は本発明の金属化フィルムコンデンサの内部構造を示す図である。上記のように形成された金属化フィルムをメタリコン接続部と絶縁マージンが対向するように2枚重ねて巻回する。2枚の金属化フィルムは蒸着電極が形成された電極形成面を同一方向に向けて重ね合わされる。すなわち、蒸着電極間に誘電体フィルムが挟み込まれるように蒸着電極と誘電体フィルムが積層方向に交互に配置される。そして、巻回された金属化フィルムを小判形に成形した後、両端部(重ね合わされた金属化フィルムの一方端部と他方端部)に電極引き出し用のメタリコンを形成してコンデンサ素子25とする。その後、複数個のコンデンサ素子25を電極板26で結線して引き出し端子27を接続する。結線されたコンデンサ素子25をケース28に収納し、ケース28内に樹脂29を充填することで金属化フィルムコンデンサが得られる。   FIG. 4 is a diagram showing the internal structure of the metallized film capacitor of the present invention. Two metallized films formed as described above are overlapped and wound so that the metallicon connection part and the insulation margin face each other. The two metallized films are overlaid with the electrode forming surface on which the vapor deposition electrode is formed facing in the same direction. That is, the vapor deposition electrodes and the dielectric films are alternately arranged in the stacking direction so that the dielectric film is sandwiched between the vapor deposition electrodes. Then, after forming the wound metallized film into an oval shape, a metallicon for electrode drawing is formed at both ends (one end and the other end of the overlapped metallized film) to form a capacitor element 25. . Thereafter, a plurality of capacitor elements 25 are connected by the electrode plate 26 and the lead terminals 27 are connected. The connected capacitor element 25 is accommodated in a case 28, and a resin 29 is filled in the case 28 to obtain a metallized film capacitor.

以上のように、この実施形態によれば、フィルム幅方向において、比較的電極面積が小さな複数の小分割電極83、85から構成された小分割電極部が比較的電極面積が大きな複数の大分割電極84から構成された大分割電極部および非分割電極部81のいずれかに隣接して配置される。そして、複数の小分割電極83の各々がヒューズ93によって、大分割電極84に接続され、複数の小分割電極85の各々がヒューズ94、95によってそれぞれ、大分割電極84、非分割電極部81に接続される。このため、小分割電極83、85の端部は、小分割電極83、85よりも電極面積が大きな大分割電極84および非分割電極部81のいずれかにヒューズを介して接続されるので、小分割電極83、85で絶縁破壊が生じた場合でも、該小分割電極83、85に隣接する大分割電極84または非分割電極部81からヒューズを動作させるだけの十分な電流が流れ込み、ヒューズを確実に動作(ヒューズ部の蒸着電極を飛散)させ、絶縁破壊を起こした分割電極を分離することができる。   As described above, according to this embodiment, in the film width direction, the small divided electrode portion composed of a plurality of small divided electrodes 83 and 85 having a relatively small electrode area has a plurality of large divided portions having a relatively large electrode area. It is arranged adjacent to either the large-divided electrode portion or the non-divided electrode portion 81 composed of the electrode 84. Each of the plurality of small divided electrodes 83 is connected to the large divided electrode 84 by the fuse 93, and each of the plurality of small divided electrodes 85 is respectively connected to the large divided electrode 84 and the non-divided electrode portion 81 by the fuses 94 and 95. Connected. For this reason, the end portions of the small divided electrodes 83 and 85 are connected to either the large divided electrode 84 or the non-divided electrode portion 81 having an electrode area larger than that of the small divided electrodes 83 and 85 through a fuse. Even when dielectric breakdown occurs in the divided electrodes 83 and 85, a current sufficient to operate the fuse flows from the large divided electrode 84 or the non-divided electrode portion 81 adjacent to the small divided electrodes 83 and 85, and the fuse is surely secured. The divided electrodes that have caused the dielectric breakdown can be separated by operating (evaporating the vapor deposition electrode of the fuse portion).

また、この実施形態によれば、フィルム幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部を隣接して配置しているので、第1小分割電極部または第2小分割電極部で熱・電圧等による誘電体の劣化により、例えば小分割電極85が複数個に亘ってヒューズ動作した場合でも、電流経路が極端に乱れるのを防止することができる。   In addition, according to this embodiment, since the large divided electrode portion is disposed adjacently between the first small divided electrode portion and the second small divided electrode portion in the film width direction, the first small divided electrode portion Alternatively, it is possible to prevent the current path from being extremely disturbed even when, for example, a plurality of small divided electrodes 85 are subjected to a fuse operation due to deterioration of the dielectric due to heat or voltage in the second small divided electrode portion.

図5は蒸着電極を流れる電流経路の概念図である。同図(a)はフィルム幅方向において第1小分割電極部と第2小分割電極部との間に非分割電極部を隣接して配置した場合を示し、同図(b)はフィルム幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部を隣接して配置した場合を示す。同図(a)の場合には、非分割電極部に蒸着電極を分割する絶縁スリットが存在しないため、小分割電極が複数個に亘ってヒューズ動作した場合に、電流経路が極端に乱れるおそれがある。その結果、コンデンサの誘電損失および等価直列抵抗が極端に上昇する可能性があった。これに対し、同図(b)に示すように、金属化フィルムの幅方向において第1小分割電極部と第2小分割電極部との間に大分割電極部を隣接して配置することにより、大分割電極部に形成された絶縁スリットが電流経路を規制し、電流経路が極端に乱れるのを防止することができる。   FIG. 5 is a conceptual diagram of a current path flowing through the vapor deposition electrode. FIG. 4A shows a case where an undivided electrode portion is disposed adjacently between the first subdivided electrode portion and the second subdivided electrode portion in the film width direction, and FIG. Fig. 2 shows a case where a large divided electrode portion is disposed adjacently between the first small divided electrode portion and the second small divided electrode portion. In the case of FIG. 5A, since there is no insulating slit for dividing the vapor deposition electrode in the non-divided electrode portion, there is a possibility that the current path may be extremely disturbed when a fuse operation is performed over a plurality of small divided electrodes. is there. As a result, the dielectric loss and equivalent series resistance of the capacitor may be extremely increased. On the other hand, as shown in the same figure (b), by arrange | positioning a large divided electrode part adjacently between the 1st small divided electrode part and the 2nd small divided electrode part in the width direction of a metallized film. Insulating slits formed in the large-divided electrode portion can regulate the current path and prevent the current path from being extremely disturbed.

また、金属化フィルムを2枚重ね合わせてなる一対の金属化フィルムにより金属化フィルムコンデンサを形成する際に、一対の金属化フィルムの一方に形成された大分割電極部および非分割電極部のすべての電極面が一対の金属化フィルムの他方に形成された小分割電極部に対向するように構成することが好ましい。この構成によれば、例えば図6に示すように、一対の金属化フィルム(図中、上層側に位置する金属化フィルム)の一方に形成された非分割電極部において金属化フィルムの自己回復機能(セルフヒーリング機能)を超えた絶縁破壊(×印の位置で誘電体が破壊)が生じた場合(破壊した誘電体部分を介して一対の金属化フィルム間で蒸着電極同士が導通した場合)でも、対向する一対の金属化フィルムの他方(図中、下層側に位置する金属化フィルム)に形成された小分割電極に隣接する該小分割電極よりも電極面積が大きな大分割電極または非分割電極部から電流が分割電極に流れ込む。このため、一対の金属化フィルムの他方に形成された小分割電極の端部に形成されたヒューズを確実に動作(ヒューズ部分の蒸着電極を飛散)させ、絶縁破壊が生じた非分割電極部を他の分割電極から切り離すことができる。これにより、一対の金属化フィルムの一方に形成された非分割電極部において絶縁破壊が生じた場合でも、当該非分割電極部の絶縁を回復させることができ、コンデンサとしての機能を維持することができる。   Moreover, when forming a metallized film capacitor with a pair of metallized films formed by overlapping two metallized films, all of the large divided electrode part and the non-divided electrode part formed on one of the pair of metallized films The electrode surface is preferably configured to face the small divided electrode portion formed on the other of the pair of metallized films. According to this configuration, for example, as shown in FIG. 6, the self-healing function of the metallized film in the non-divided electrode portion formed on one of the pair of metallized films (the metallized film located on the upper layer side in the figure) Even when dielectric breakdown exceeding the (self-healing function) (dielectric breaks at the position of the x mark) occurs (when vapor deposition electrodes conduct between a pair of metallized films through the broken dielectric portion) A large divided electrode or a non-divided electrode having an electrode area larger than that of the small divided electrode adjacent to the small divided electrode formed on the other of the opposing metallized films (the metallized film located on the lower layer side in the figure) Current flows into the split electrode from the part. For this reason, the fuse formed at the end of the small divided electrode formed on the other of the pair of metallized films is operated reliably (the evaporated electrode of the fuse portion is scattered), and the non-divided electrode portion where the dielectric breakdown has occurred It can be separated from other divided electrodes. Thereby, even when a dielectric breakdown occurs in the non-divided electrode portion formed on one of the pair of metallized films, the insulation of the non-divided electrode portion can be recovered and the function as a capacitor can be maintained. it can.

さらに、上記のように2枚の金属化フィルムを重ね合わせる場合において、金属化フィルムのメタリコン接続部側に非分割電極部を配置することが好ましい。というのも、メタリコン接続部側(電極引き出し側)に分割電極部を配置すると、当該分割電極部で絶縁破壊(分割電極中の×印の位置で誘電体が破壊)が生じた場合、当該分割電極部と非分割電極とを接続するヒューズが動作すると、分割電極部からの電流通路が完全に遮断され、コンデンサとして機能しなくなる場合がある(図7)。これに対し、メタリコン接続部側に非分割電極部を配置することで、非分割電極部(一対の金属化フィルムの一方に形成された非分割電極部)において絶縁破壊が生じた場合でも、対向する金属化フィルム(一対の金属化フィルムのうちの他方の金属化フィルム、図6では下層側に配置された金属化フィルム)に形成された小分割電極と当該小分割電極に隣接する非分割電極部または大分割電極とを接続するヒューズが動作することにより、コンデンサとして機能する電極領域を残すことができる。   Furthermore, in the case where two metallized films are overlaid as described above, it is preferable to dispose the non-divided electrode part on the metallicon connection part side of the metallized film. This is because when a split electrode part is arranged on the metallicon connection part side (electrode lead side), if the dielectric breakdown occurs in the split electrode part (the dielectric breaks at the position of the x mark in the split electrode), the split When the fuse that connects the electrode part and the non-divided electrode is operated, the current path from the divided electrode part is completely cut off, and it may not function as a capacitor (FIG. 7). On the other hand, even if a dielectric breakdown occurs in the non-divided electrode part (non-divided electrode part formed on one of the pair of metallized films) by disposing the non-divided electrode part on the metallicon connection part side, A small divided electrode formed on the metallized film (the other metallized film of the pair of metallized films, the metallized film disposed on the lower layer side in FIG. 6) and the non-divided electrode adjacent to the small divided electrode By operating the fuse connecting the part or the large divided electrode, an electrode region functioning as a capacitor can be left.

<実施例>
以下に金属化フィルムコンデンサの実施例について図8を用いて説明する。図8において、第1小分割電極部を構成する小分割電極83の長手方向寸法83aを4.0mm、第2小分割電極部を構成する小分割電極85の長手方向寸法85aを5.0mm、大分割電極部を構成する大分割電極の長手方向寸法84aを16.0mmとした。一方、第1小分割電極部のフィルム幅方向寸法83b(絶縁マージン72との境界から絶縁スリット73と大分割電極84との境界まで)を12.5mm、大分割電極84のフィルム幅方向寸法84b(絶縁スリットを含まない電極寸法)を9.0mm、第2小分割電極部のフィルム幅方向寸法85b(大分割電極84と絶縁スリット74との境界から絶縁スリット75と非分割電極部81との境界まで)を12.5mm、非分割電極部81のフィルム幅方向寸法81bを14.0mmとした。また、ヒューズ93、94、95の寸法を0.2mmとした。なお、誘電体は2.5μmのポリプロピレンフィルムを用い、非メタリコン近傍蒸着電極膜抵抗値を10Ω/□、メタリコン接続部蒸着電極膜抵抗値を4Ω/□とした。
<Example>
An example of the metallized film capacitor will be described below with reference to FIG. In FIG. 8, the longitudinal dimension 83a of the small divided electrode 83 constituting the first small divided electrode part is 4.0 mm, the longitudinal dimension 85a of the small divided electrode 85 constituting the second small divided electrode part is 5.0 mm, The longitudinal dimension 84a of the large divided electrode constituting the large divided electrode portion was set to 16.0 mm. On the other hand, the film width direction dimension 83b (from the boundary with the insulation margin 72 to the boundary between the insulation slit 73 and the large division electrode 84) of the first small division electrode portion is 12.5 mm, and the film width direction dimension 84b of the large division electrode 84 is. (Electrode dimension not including the insulating slit) is 9.0 mm, and the film width direction dimension 85b of the second small divided electrode part (the insulating slit 75 and the non-divided electrode part 81 are separated from the boundary between the large divided electrode 84 and the insulating slit 74). 12.5 mm) and the film width direction dimension 81b of the non-divided electrode portion 81 was 14.0 mm. The dimensions of the fuses 93, 94, and 95 were set to 0.2 mm. The dielectric used was a 2.5 μm polypropylene film, the non-metallicon vicinity vapor deposition electrode film resistance value was 10Ω / □, and the metallicon connection vapor deposition electrode film resistance value was 4Ω / □.

上記のように形成された金属化フィルムをメタリコン接続部と絶縁マージンが対向するように2枚重ねて巻回し、小判形に成形した後、両端部に電極引き出しとしてメタリコンを形成してコンデンサ素子とした。さらに、図4に示すように5個のコンデンサ素子25を電極板26で結線して引き出し端子27を接続し、ケース28に収納してエポキシ樹脂29を充填、硬化して800μFの金属化フィルムコンデンサを作製した。   Two metallized films formed as described above are wound so that the metallicon connection portion and the insulation margin face each other, and after forming into an oval shape, a metallicon is formed as an electrode lead at both ends to form a capacitor element. did. Further, as shown in FIG. 4, five capacitor elements 25 are connected by an electrode plate 26, lead terminals 27 are connected, housed in a case 28, filled with epoxy resin 29, cured, and 800 μF metallized film capacitor. Was made.

<比較例>
次に本発明にかかる金属化フィルムコンデンサの実施例を比較例と対比しながら説明する。本発明にかかる金属化フィルムコンデンサの分割電極寸法、ヒューズの幅、蒸着電極膜抵抗値については上述したとおりである。
<Comparative example>
Next, examples of the metallized film capacitor according to the present invention will be described in comparison with comparative examples. The divided electrode dimensions, fuse width, and vapor deposition electrode film resistance value of the metalized film capacitor according to the present invention are as described above.

次に金属化フィルムコンデンサの比較例について説明する。図9に比較例1にかかる金属化フィルムを示す。比較例1が実施例と異なる点は、第1小分割電極部と第2小分割電極部との間に大分割電極に替えて非分割電極部を配置している点である。その他の構成、寸法は実施例と同様である。   Next, a comparative example of the metallized film capacitor will be described. FIG. 9 shows a metallized film according to Comparative Example 1. The comparative example 1 is different from the embodiment in that an undivided electrode portion is arranged in place of the large divided electrode between the first small divided electrode portion and the second small divided electrode portion. Other configurations and dimensions are the same as in the embodiment.

また、図2−Aに示す金属化フィルムコンデンサを比較例2とした。図2−Aに示す金属化フィルムの分割電極7をフィルム長手方向に分割する絶縁スリット5のピッチを10.0mmとし、フィルム幅方向に分割する絶縁スリット6のピッチを18mmとし、分割電極7を接続しているヒューズ8、11の幅を0.2mmとした。誘電体は2.5μmのポリプロピレンフィルム、非メタリコン近傍蒸着電極膜抵抗値を10Ω/□、メタリコン接続部膜抵抗値を4Ω/□とした。   The metallized film capacitor shown in FIG. The pitch of the insulating slit 5 that divides the metallized film dividing electrode 7 shown in FIG. 2-A in the film longitudinal direction is 10.0 mm, the pitch of the insulating slit 6 that divides in the film width direction is 18 mm, and the dividing electrode 7 is The width of the connected fuses 8 and 11 was 0.2 mm. The dielectric was a 2.5 μm polypropylene film, the non-metallicon vicinity deposited electrode film resistance was 10Ω / □, and the metallicon connection film resistance was 4Ω / □.

上記比較例1、2に示す金属化フィルムをメタリコン接続部と絶縁マージンが対向するように2枚重ねて巻回し、小判型に成形した後、両端部に電極引き出しとしてメタリコンを形成してコンデンサ素子とした。さらに、図4に示すように5個の該コンデンサ素子25を電極板26で結線して引き出し端子27を接続し、ケース28に収納してエポキシ樹脂29を充填、硬化して800μFの金属化フィルムコンデンサを製作した。   Two metallized films shown in the above comparative examples 1 and 2 are wound so that the metallicon connection portion and the insulation margin face each other, and formed into an oval mold, and then metallicons are formed as electrode leads at both ends to form a capacitor element. It was. Further, as shown in FIG. 4, five capacitor elements 25 are connected by an electrode plate 26 and connected to a lead terminal 27, housed in a case 28, filled and cured with an epoxy resin 29, and an 800 μF metallized film. A capacitor was made.

実施例および比較例1、2について試料を用意して、耐用性試験(温度110℃、750VDC、1000時間印加)を実施した。試験終了後、試料の静電容量変化率を測定した。その試験結果を表1に示す。   Samples were prepared for Examples and Comparative Examples 1 and 2, and a durability test (temperature 110 ° C., 750 VDC, applied for 1000 hours) was performed. After the test, the capacitance change rate of the sample was measured. The test results are shown in Table 1.

Figure 2011049414
Figure 2011049414

表1の試験結果より、実施例、比較例1は試験終了時にショートが発生していないのに対して、比較例2では試験途中にショートが発生している。これは、実施例、比較例1にかかる金属化フィルムは誘電体のポリプロピレンフィルムに絶縁破壊が発生した場合、ヒューズを飛散分離させるだけの電流が大分割電極または非分割電極部から小分割電極に流れ込む。その結果、絶縁破壊を起こした分割電極を分離することができ、ショート発生を回避することができる。これに対して、比較例2にかかる金属化フィルムは絶縁破壊が発生した場合、分割電極と接続しているヒューズには該ヒューズを飛散分離させるだけの電流が流れず、ショートモードに至ると考えられる。   From the test results in Table 1, in Example and Comparative Example 1, no short circuit occurred at the end of the test, whereas in Comparative Example 2, a short circuit occurred during the test. This is because when the dielectric breakdown occurs in the dielectric polypropylene film in the metallized film according to the example and the comparative example 1, the current sufficient to scatter and separate the fuse is transferred from the large divided electrode or the non-divided electrode portion to the small divided electrode. Flows in. As a result, it is possible to separate the divided electrodes that have caused dielectric breakdown, and avoid the occurrence of a short circuit. On the other hand, when the dielectric breakdown occurs in the metallized film according to Comparative Example 2, it is considered that the current connected to the divided electrodes does not flow enough to scatter and separate the fuses and the short mode is reached. It is done.

続いて、良好な保安性能が得られた実施例および比較例1について、静電容量を初期値に対して−70〜−80%程度変化させたときの誘電正接を測定し、初期値に対する変化率を評価した。その結果を表2に示す。なお、静電容量を変化させるために、120℃の雰囲気温度中で試料に1500VDCを5分間印加した。   Subsequently, for Examples and Comparative Example 1 in which good safety performance was obtained, the dielectric loss tangent was measured when the capacitance was changed by about −70 to −80% with respect to the initial value, and the change with respect to the initial value was measured. Rate was evaluated. The results are shown in Table 2. In order to change the capacitance, 1500 VDC was applied to the sample for 5 minutes at an ambient temperature of 120 ° C.

Figure 2011049414
Figure 2011049414

表2の試験結果より明らかなように、誘電正接の変化率について、実施例が負の値であるのに対し、比較例1は正の値であり、かつ大きく上昇している。これは比較例1が誘電体の絶縁破壊により小分割電極が複数個に亘ってヒューズ動作し、電流経路が乱れた結果である。これに対し、実施例は比較例1に対して次のような有利な効果を奏する。すなわち、コンデンサの寿命末期及び過度な使用条件では、誘電正接が初期値に対して大きく上昇(コンデンサの抵抗成分が増加)することがある。この場合、コンデンサの自己発熱が大きくなり、耐電圧性能および保安性能の劣化を引き起こすおそれがある。したがって、誘電正接の変化率が著しく上昇しない実施例では、耐電圧性能および保安性能の劣化を引き起こす可能性を低減することができる。   As is clear from the test results in Table 2, with respect to the rate of change of the dielectric loss tangent, the example is a negative value, while the comparative example 1 is a positive value and is greatly increased. This is a result of Comparative Example 1 in which a plurality of small divided electrodes perform a fuse operation due to dielectric breakdown and the current path is disturbed. On the other hand, the Example has the following advantageous effects over Comparative Example 1. That is, at the end of the life of the capacitor and excessive use conditions, the dielectric loss tangent may increase significantly with respect to the initial value (the resistance component of the capacitor increases). In this case, the self-heating of the capacitor increases, which may cause deterioration of the withstand voltage performance and the safety performance. Therefore, in the embodiment in which the rate of change of the dielectric loss tangent does not remarkably increase, the possibility of causing deterioration of the withstand voltage performance and the safety performance can be reduced.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、フィルム幅方向に非分割電極部、第1小分割電極部、大分割電極部、第2小分割電極部を配置した4段構成としているが、これに限定されず、フィルム幅方向に非分割電極部、小分割電極部、大分割電極部を配置した3段構成としてもよい。また、少なくとも、非分割電極部、小分割電極部および大分割電極部を備え、フィルム幅方向において、小分割電極部が大分割電極部および非分割電極部のいずれかに隣接して配置される限り、5段以上に電極部を配置してもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the four-stage configuration in which the non-divided electrode portion, the first small divided electrode portion, the large divided electrode portion, and the second small divided electrode portion are arranged in the film width direction is not limited thereto. It is good also as a 3 step | paragraph structure which has arrange | positioned the non-dividing electrode part, the small dividing electrode part, and the large dividing electrode part in the film width direction. Further, at least a non-divided electrode portion, a small divided electrode portion, and a large divided electrode portion are provided, and the small divided electrode portion is disposed adjacent to either the large divided electrode portion or the non-divided electrode portion in the film width direction. As long as the electrode portions are arranged in five or more stages.

図10〜12は、本発明の金属化フィルムコンデンサを構成する金属化フィルムの変形形態を示す図である。図10に示す金属化フィルムでは、フィルム幅方向において絶縁マージン側からメタリコン接続部にかけて、第1小分割電極部、第1非分割電極部、第2非分割電極部、第2小分割電極部、大分割電極部の順に配置されている。図11に示す金属化フィルムでは、フィルム幅方向において絶縁マージン側からメタリコン接続部にかけて、第1小分割電極部、第1大分割電極部、第2大分割電極部、第2小分割電極部、非分割電極部の順に配置されている。図12に示す金属化フィルムでは、フィルム幅方向において絶縁マージン側からメタリコン接続部にかけて、第1小分割電極部、大分割電極部、第1非分割電極部、第2小分割電極部、第2非分割電極部の順に配置されている。この構成によれば、小分割電極で絶縁破壊が生じた場合でも、該小分割電極に隣接する大分割電極または非分割電極部からヒューズを動作させるだけの十分な電流が流れ込み、ヒューズを確実に動作(ヒューズ部の蒸着電極を飛散)させ、絶縁破壊を起こした分割電極を分離することができる。   10-12 is a figure which shows the deformation | transformation form of the metallized film which comprises the metallized film capacitor of this invention. In the metallized film shown in FIG. 10, the first subdivided electrode portion, the first non-divided electrode portion, the second non-divided electrode portion, the second subdivided electrode portion, from the insulation margin side to the metallicon connection portion in the film width direction, They are arranged in the order of the large divided electrode portions. In the metallized film shown in FIG. 11, in the film width direction from the insulation margin side to the metallicon connection portion, the first small divided electrode portion, the first large divided electrode portion, the second large divided electrode portion, the second small divided electrode portion, The non-divided electrode portions are arranged in this order. In the metallized film shown in FIG. 12, the first small divided electrode portion, the large divided electrode portion, the first non-divided electrode portion, the second small divided electrode portion, the second small electrode portion, the large divided electrode portion, from the insulation margin side to the metallicon connection portion in the film width direction. The non-divided electrode portions are arranged in this order. According to this configuration, even when dielectric breakdown occurs in the small divided electrode, sufficient current flows to operate the fuse from the large divided electrode or the non-divided electrode adjacent to the small divided electrode, so that the fuse is reliably It is possible to separate the divided electrodes that have caused the dielectric breakdown by operating (spraying the vapor deposition electrodes of the fuse portion).

また、上記実施形態では、フィルム長手方向に配列した複数の小分割電極の各々の電極面積を同一としているが、相違させてもよい。同様に、フィルム長手方向に配列した大分割電極の各々の電極面積を同一としているが、相違させてもよい。要は、小分割電極に隣接する大分割電極の電極面積が該小分割電極の電極面積よりも大きければよい。この場合でも、大分割電極の電極面積は隣接する小分割電極の電極面積の2倍以上であることが好ましい。   Moreover, in the said embodiment, although the electrode area of each of several subdivided electrodes arranged in the film longitudinal direction is made the same, you may make it different. Similarly, although the electrode areas of the large divided electrodes arranged in the film longitudinal direction are the same, they may be different. In short, the electrode area of the large divided electrode adjacent to the small divided electrode should be larger than the electrode area of the small divided electrode. Even in this case, the electrode area of the large divided electrode is preferably at least twice the electrode area of the adjacent small divided electrode.

また、金属化フィルムを2枚重ね合わせる際には、同一の電極パターンを有する金属化フィルム同士を重ね合わせるほか、互いに異なる電極パターンを有する金属化フィルム同士を重ね合わせてもよい。この場合でも、一対の金属化フィルムの一方に形成された大分割電極部および非分割電極部のすべてが一対の金属化フィルムの他方に形成された小分割電極部に対向するように金属化フィルムを重ね合わせることが好ましい。これにより、一対の金属化フィルムの一方に形成された大分割電極および非分割電極部において絶縁破壊が生じた場合でも、当該大分割電極または非分割電極部の絶縁を回復することができ、コンデンサとしての機能を維持することができる。   In addition, when two metallized films are overlapped, the metallized films having the same electrode pattern may be overlapped, or the metallized films having different electrode patterns may be overlapped. Even in this case, the metallized film so that all of the large divided electrode part and the non-divided electrode part formed on one of the pair of metallized films are opposed to the small divided electrode part formed on the other of the pair of metallized films. Are preferably overlapped. Thereby, even when a dielectric breakdown occurs in the large divided electrode and the non-divided electrode portion formed on one of the pair of metallized films, the insulation of the large divided electrode or the non-divided electrode portion can be recovered, and the capacitor The function as can be maintained.

1…ポリプロピレンフィルム
2…メタリコン近傍蒸着電極
3…非メタリコン近傍蒸着電極
4…絶縁マージン
5…幅方向絶縁スリット
6…長手方向絶縁スリット
7、7a、7b…分割電極
8、8a、8b…ヒューズ
9…メタリコン近傍長手方向絶縁スリット
10…メタリコン接続部
11…メタリコン近傍ヒューズ
12、12a、12b…絶縁マージン
13、13a…Y字形絶縁スリット
14、14a…ミュラー・リヤー形絶縁スリット
25…コンデンサ素子
26…電極板
27…引き出し端子
28…ケース
29…エポキシ樹脂
73、74、75…絶縁スリット
81…非分割電極
83、85…小分割電極
84…大分割電極
93、94、95…ヒューズ
83a…小分割電極83のフィルム長手方向寸法
84a…大分割電極84のフィルム長手方向寸法
85a…小分割電極85のフィルム長手方向寸法
81b…非分割電極部81のフィルム幅方向寸法
83b…小分割電極部83のフィルム幅方向寸法
84b…大分割電極部84のフィルム幅方向寸法
85b…小分割電極85のフィルム幅方向寸法
DESCRIPTION OF SYMBOLS 1 ... Polypropylene film 2 ... Metallicon vicinity vapor deposition electrode 3 ... Non-metallicon vicinity vapor deposition electrode 4 ... Insulation margin 5 ... Width direction insulation slit 6 ... Longitudinal direction insulation slit 7, 7a, 7b ... Divided electrode 8, 8a, 8b ... Fuse 9 ... Longitudinal insulating slit 10 near the metallicon ... Metallicon connection 11 ... Fuses 12, 12a, 12b near the metallicon ... Insulation margins 13, 13a ... Y-shaped insulating slits 14, 14a ... Mueller-Rear insulating slit 25 ... Capacitor element 26 ... Electrode plate 27 ... Lead terminal 28 ... Case 29 ... Epoxy resin 73, 74, 75 ... Insulating slit 81 ... Non-divided electrode 83, 85 ... Small divided electrode 84 ... Large divided electrode 93, 94, 95 ... Fuse 83a ... Small divided electrode 83 Film longitudinal dimension 84a ... Film longitudinal dimension of the large divided electrode 84 5a ... Film longitudinal direction dimension 81b of the small divided electrode 85 ... Film width direction dimension 83b of the non-divided electrode part 81 ... Film width direction dimension 84b of the small divided electrode part 83 ... Film width direction dimension 85b of the large divided electrode part 84 ... Small Dimension of the divided electrode 85 in the film width direction

Claims (4)

誘電体フィルムの少なくとも片面に蒸着電極を設けた金属化フィルムを巻回、または積層してコンデンサ素子を形成し、該コンデンサ素子の両端面に電極引き出し用のメタリコンを接続した金属化フィルムコンデンサにおいて、
前記金属化フィルムの長手方向に間隔をあけて配列した絶縁スリットにより前記蒸着電極が分割された、複数の小分割電極を長手方向に沿って形成する小分割電極部と、
前記金属化フィルムの長手方向に間隔をあけて配列した絶縁スリットにより前記蒸着電極が分割された、前記小分割電極よりも電極面積が大きな複数の大分割電極を長手方向に沿って形成する大分割電極部と、
前記蒸着電極が長手方向に連続した非分割電極部と
を備え、
前記金属化フィルムの幅方向において前記小分割電極部が前記大分割電極部および前記非分割電極部のいずれかに隣接して配置され、
前記複数の小分割電極の各々は、該小分割電極を長手方向に挟む絶縁スリット間に形成されたヒューズにて前記大分割電極または前記非分割電極部と接続されていることを特徴とする金属化フィルムコンデンサ。
In a metallized film capacitor in which a metallized film provided with an evaporation electrode on at least one surface of a dielectric film is wound or laminated to form a capacitor element, and metallicons for electrode drawing are connected to both end surfaces of the capacitor element.
A subdivided electrode part that forms a plurality of subdivided electrodes along the longitudinal direction in which the vapor deposition electrode is divided by insulating slits arranged at intervals in the longitudinal direction of the metallized film;
Large division that forms a plurality of large divided electrodes along the longitudinal direction in which the vapor deposition electrode is divided by insulating slits arranged at intervals in the longitudinal direction of the metallized film and has a larger electrode area than the small divided electrodes An electrode part;
The vapor deposition electrode comprises a non-divided electrode portion continuous in the longitudinal direction,
In the width direction of the metallized film, the small divided electrode portion is disposed adjacent to either the large divided electrode portion or the non-divided electrode portion,
Each of the plurality of small divided electrodes is connected to the large divided electrode or the non-divided electrode portion by a fuse formed between insulating slits sandwiching the small divided electrode in the longitudinal direction. Film capacitor.
前記小分割電極部として第1小分割電極部と第2小分割電極部の2つの分割電極部を有し、
前記金属化フィルムの幅方向において前記第1小分割電極部と前記第2小分割電極部との間に前記大分割電極部が隣接して配置されている請求項1記載の金属化フィルムコンデンサ。
As the small divided electrode portion, there are two divided electrode portions, a first small divided electrode portion and a second small divided electrode portion,
2. The metallized film capacitor according to claim 1, wherein the large divided electrode portion is disposed adjacently between the first small divided electrode portion and the second small divided electrode portion in the width direction of the metallized film.
前記コンデンサ素子が前記金属化フィルムを2枚重ね合わせてなる一対の金属化フィルムにより形成される請求項1または2記載の金属化フィルムコンデンサであって、
前記一対の金属化フィルムの一方に形成された前記大分割電極部および前記非分割電極部のすべての電極面が前記一対の金属化フィルムの他方に形成された前記小分割電極部に対向する金属化フィルムコンデンサ。
The metallized film capacitor according to claim 1 or 2, wherein the capacitor element is formed by a pair of metallized films formed by superposing the two metallized films.
A metal in which all electrode surfaces of the large divided electrode portion and the non-divided electrode portion formed on one of the pair of metallized films are opposed to the small divided electrode portion formed on the other of the pair of metallized films. Film capacitor.
前記金属化フィルムのメタリコン接続部側に前記非分割電極部が配置されている請求項3記載の金属化フィルムコンデンサ。
The metallized film capacitor according to claim 3, wherein the non-divided electrode part is disposed on the metallized connection part side of the metallized film.
JP2009197675A 2009-02-05 2009-08-28 Metallized film capacitors Active JP5647402B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009197675A JP5647402B2 (en) 2009-08-28 2009-08-28 Metallized film capacitors
CN201210398619.3A CN102915840B (en) 2009-02-05 2010-02-04 Metallization film capacitor
CN201210398622.5A CN102915841B (en) 2009-02-05 2010-02-04 Metallization film capacitor
CN2010800065152A CN102308350B (en) 2009-02-05 2010-02-04 Metalized film capacitor
CA2751544A CA2751544C (en) 2009-02-05 2010-02-04 Metalized film capacitor
PCT/JP2010/051572 WO2010090245A1 (en) 2009-02-05 2010-02-04 Metalized film capacitor
KR1020117018649A KR101629851B1 (en) 2009-02-05 2010-02-04 Metalized film capacitor
EP10738576.7A EP2395523A4 (en) 2009-02-05 2010-02-04 Metalized film capacitor
US13/138,313 US8593781B2 (en) 2009-02-05 2010-02-04 Metalized film capacitor
CN201210398069.5A CN102915839B (en) 2009-02-05 2010-02-04 Metallization film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197675A JP5647402B2 (en) 2009-08-28 2009-08-28 Metallized film capacitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013156283A Division JP2013219400A (en) 2013-07-29 2013-07-29 Metallized film capacitor

Publications (2)

Publication Number Publication Date
JP2011049414A true JP2011049414A (en) 2011-03-10
JP5647402B2 JP5647402B2 (en) 2014-12-24

Family

ID=43835451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197675A Active JP5647402B2 (en) 2009-02-05 2009-08-28 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP5647402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004714A (en) * 2011-06-16 2013-01-07 Nichicon Corp Metalized film capacitor
JP2015156445A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 Lamination type film capacitor, and method for manufacturing lamination type film capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225508A (en) * 1990-04-03 1992-08-14 Steiner Gmbh & Co Kg Vacuum deposited and divided metal coated foil
JPH09232178A (en) * 1996-02-21 1997-09-05 Nitsuko Corp Metalized film capacitor and its manufacture
JPH1070038A (en) * 1996-08-26 1998-03-10 Oji Paper Co Ltd Metallic deposition film for capacitor
JPH10144563A (en) * 1996-11-08 1998-05-29 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2004087648A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Depositing film and film capacitor using same film and inverter device using same capacitor
JP2005012082A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2010272779A (en) * 2009-05-25 2010-12-02 Shizuki Electric Co Inc Metallized film capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225508A (en) * 1990-04-03 1992-08-14 Steiner Gmbh & Co Kg Vacuum deposited and divided metal coated foil
JPH09232178A (en) * 1996-02-21 1997-09-05 Nitsuko Corp Metalized film capacitor and its manufacture
JPH1070038A (en) * 1996-08-26 1998-03-10 Oji Paper Co Ltd Metallic deposition film for capacitor
JPH10144563A (en) * 1996-11-08 1998-05-29 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2004087648A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Depositing film and film capacitor using same film and inverter device using same capacitor
JP2005012082A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2010272779A (en) * 2009-05-25 2010-12-02 Shizuki Electric Co Inc Metallized film capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004714A (en) * 2011-06-16 2013-01-07 Nichicon Corp Metalized film capacitor
JP2015156445A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 Lamination type film capacitor, and method for manufacturing lamination type film capacitor

Also Published As

Publication number Publication date
JP5647402B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2010090245A1 (en) Metalized film capacitor
WO2008026526A1 (en) Metallization film capacitor
JP4906111B2 (en) Metallized film capacitors
WO2004034412A1 (en) Metallized film capacitor
JP3870932B2 (en) Metallized film capacitors
JP5647400B2 (en) Metallized film capacitors
JP2004087648A (en) Depositing film and film capacitor using same film and inverter device using same capacitor
JP2006286988A (en) Metallization film capacitor
JP2007103534A (en) Metallization film capacitor
JP5647402B2 (en) Metallized film capacitors
JP2016207823A (en) Film capacitor element
JP5397936B2 (en) Metallized film capacitors
JP5395302B2 (en) Metallized film capacitors
JP2013219400A (en) Metallized film capacitor
JP5294321B2 (en) Metallized film capacitors
JP2004095604A (en) Metallized film capacitor
JP5397968B2 (en) Metallized film capacitors
JP5256142B2 (en) Film capacitor
JP3935561B2 (en) Metallized film capacitors
WO2020031940A1 (en) Metalized film and film capacitor
JP2012191045A (en) High voltage power capacitor element and high voltage power capacitor using the element
JP5912795B2 (en) Metallized film capacitors
JP6040592B2 (en) Metallized film capacitors
JP2004095605A (en) Metallized film capacitor and its manufacturing method, and inverter apparatus using the same
JP4296532B2 (en) Deposition film for capacitor and capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5647402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250