JP2011049325A - Light-emitting component and method for manufacturing the same - Google Patents

Light-emitting component and method for manufacturing the same Download PDF

Info

Publication number
JP2011049325A
JP2011049325A JP2009195969A JP2009195969A JP2011049325A JP 2011049325 A JP2011049325 A JP 2011049325A JP 2009195969 A JP2009195969 A JP 2009195969A JP 2009195969 A JP2009195969 A JP 2009195969A JP 2011049325 A JP2011049325 A JP 2011049325A
Authority
JP
Japan
Prior art keywords
metal substrate
light source
light
emitting component
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009195969A
Other languages
Japanese (ja)
Inventor
Norihiko Nakamura
敬彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009195969A priority Critical patent/JP2011049325A/en
Publication of JP2011049325A publication Critical patent/JP2011049325A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting component which has satisfactory heat radiation property and ensures high reliability by using an LED of high luminance and high output as a light source. <P>SOLUTION: A light-emitting component is provided with: a light source; a metallic substrate A on which the light source is loaded; a wire bond connected to the light source; a metallic substrate B electrically connected to the light source by the wire bond, formed on the same plane as the metallic substrate A, and isolated from the metallic substrate A; a reflecting member installed at the metallic substrate A and the metallic substrate B and having an inclined face inside; and a mold part covering the light source. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高輝度及び高出力のLED素子を光源として使用する発光部品及びその製造方法に関するものであって、放熱効果を高めることにより、LED素子の使用寿命を伸ばし、高輝度及び高出力を維持することが出来るよう改善された発光部品及びその製造方法に関する。   The present invention relates to a light-emitting component that uses a high-luminance and high-power LED element as a light source and a method for manufacturing the same, and by increasing the heat dissipation effect, the service life of the LED element is extended, and the high-luminance and high-output are achieved. The present invention relates to a light emitting component improved so that it can be maintained and a method for manufacturing the same.

従来のLEDパッケージは、固定用電極パターンを有する回路基板に光源としてLED素子を実装し、上記基板の前面と、基板と外形のサイズが大体類似で内側に放射状の反射面を有する反射部材とをエポキシレジンなどで一体化して固定させた構造である。このような従来のLEDパッケージは、反射部材に傾斜貫通された反射面を有し、この反射面を通じてLED素子からの光を前面へ反射させる。   In the conventional LED package, an LED element is mounted as a light source on a circuit board having a fixing electrode pattern, and a front surface of the board and a reflecting member having a radial reflection surface on the inner side and the size of the board are almost similar. It is a structure that is fixed integrally with an epoxy resin. Such a conventional LED package has a reflecting surface inclined through the reflecting member, and reflects light from the LED element to the front surface through the reflecting surface.

ところが、上記のような従来のLEDパッケージは、基板材料として熱伝導性の高い、即ち放熱機能に優れた材料を使用していないため、LED素子の発光作動中に優れた放熱効果を得ることが出来ない。また従来のLEDパッケージは、上記基板に反射部材を別途の工程で固定させるため、製造工程の簡略化が困難で、それによる組み立て費用の上昇を招いた。   However, since the conventional LED package as described above does not use a material having high thermal conductivity as a substrate material, that is, an excellent heat dissipation function, an excellent heat dissipation effect can be obtained during the light emitting operation of the LED element. I can't. Further, in the conventional LED package, since the reflecting member is fixed to the substrate in a separate process, it is difficult to simplify the manufacturing process, resulting in an increase in assembly cost.

これらの欠点を解消するべく、LEDパッケージを製造する方法として、「多層反射面構造を有するLEDパッケージ及びその製造法」(特許文献1)などが提案されている。  In order to eliminate these drawbacks, as an LED package manufacturing method, “LED package having a multilayer reflective surface structure and manufacturing method thereof” (Patent Document 1) has been proposed.

図5を用いて特許文献1の内容を説明する。特許文献1に係る発明は、アルミニウム材料からなり側面に窪んだ多層反射面が形成された基板200と、上記反射面上に装着され電極パターンに電気的に連結された光源400と、上記電極パターンと基板との間に形成されたアノダイジング絶縁層210と、上記基板の光源上に覆われるモールディング部600と、を含み、上記光源のLED素子はその下部面にアルミニウム放熱部を形成して放熱性能に優れるよう構成された多層反射面構造を有するLEDパッケージとその製造方法を提供している。特許文献1に係る発明によると基板がアルミニウム材料からなり、アノダイジング処理して絶縁層を形成するものであるため、これを通じたLED素子の優れた放熱効果を得ることができ、それによってLEDパッケージの使用寿命と発光効率を大きく増大させることが出来るというものである。  The contents of Patent Document 1 will be described with reference to FIG. The invention according to Patent Document 1 includes a substrate 200 made of an aluminum material and having a multilayer reflective surface that is recessed on the side surface, a light source 400 mounted on the reflective surface and electrically connected to an electrode pattern, and the electrode pattern. And an anodizing insulating layer 210 formed between the substrate and a molding part 600 covered on the light source of the substrate, and the LED element of the light source forms an aluminum heat dissipation part on the lower surface thereof to dissipate heat. An LED package having a multilayer reflective surface structure configured to be superior to the above and a manufacturing method thereof are provided. According to the invention according to Patent Document 1, since the substrate is made of an aluminum material and an anodizing process is performed to form an insulating layer, an excellent heat dissipation effect of the LED element can be obtained through this, and thereby the LED package The service life and luminous efficiency can be greatly increased.

特開2007−294966号公報JP 2007-294966 A

しかしながら、上記LEDパッケージでは熱伝導率236W/m・Kのアルミニウムを用いているにも関わらず、アノダイジング処理した絶縁層は32W/m・Kになるため、熱伝導率を低下させているという課題がある。また、アノダイジング処理した絶縁層210はポーラス状の構造になり、モールディング部600はこの絶縁層210を覆っていることから、モールディング部形成時に絶縁層部分から気泡を発生しやすく、気泡を内在する不良を発生するという課題がある。更には、この絶縁層を通して、硫化物等の気体がパッケージ内部に到達するため、銀コーティングされた反射膜の劣化が早く進行するという課題がある。  However, although the LED package uses aluminum with a thermal conductivity of 236 W / m · K, the anodized insulating layer is 32 W / m · K, which reduces the thermal conductivity. There is. In addition, since the insulating layer 210 that has been anodized has a porous structure, and the molding part 600 covers the insulating layer 210, bubbles are likely to be generated from the insulating layer part at the time of forming the molding part. There is a problem of generating. Furthermore, since a gas such as sulfide reaches the inside of the package through this insulating layer, there is a problem that the silver-coated reflective film rapidly deteriorates.

上述した課題を解決するために、本発明は以下の手段を提供する。  In order to solve the above-described problems, the present invention provides the following means.

光源と、光源を搭載した金属基板Aと、光源に接続するワイヤボンドと、ワイヤボンドにより光源と電気的に接続され、金属基板Aと同一平面状に形成され、かつ、金属基板Aと絶縁されている金属基板Bと、金属基板A及び金属基板Bに設置され、かつ内側に傾斜面を有する反射部材と、光源を覆うモールド部と、を備える発光部品を提供する。  A light source, a metal substrate A on which the light source is mounted, a wire bond connected to the light source, and electrically connected to the light source by wire bond, formed in the same plane as the metal substrate A, and insulated from the metal substrate A Provided is a light emitting component comprising: a metal substrate B, a metal substrate A and a reflective member that is provided on the metal substrate A and has an inclined surface inside, and a mold part that covers the light source.

また、金属基板A及び金属基板Bは銅、銀、金、アルミニウムのいずれかで形成されることを特徴とする。 また、反射部材の傾斜面は、コールドミラー膜、銀膜、アルミニウム膜の少なくともいずれか1つで形成されることを特徴とする。また、モールド部は疎水性であることを特徴とする。  Further, the metal substrate A and the metal substrate B are formed of any one of copper, silver, gold, and aluminum. Further, the inclined surface of the reflecting member is formed of at least one of a cold mirror film, a silver film, and an aluminum film. The mold part is characterized by being hydrophobic.

また、本発明の発光部品の製造方法は、傾斜貫通孔が形成された反射部材を金属基板Cに設置する工程と、前記金属基板Cに光源を搭載する工程と、前記金属基板Cと前記光源とをワイヤボンドにより電気的に接続する工程と、モールド部を形成する工程と、前記金属基板Cを光源を搭載した部分である金属基板Aとワイヤボンドで接続した部分である金属基板Bに分割する工程と、を備えることを特徴とする。  The method for manufacturing a light-emitting component according to the present invention includes a step of installing a reflective member having an inclined through hole on a metal substrate C, a step of mounting a light source on the metal substrate C, the metal substrate C and the light source. Are divided into a metal substrate B, which is a portion connected to the metal substrate A, which is a portion on which the light source is mounted, and a metal substrate A, which is a portion on which the light source is mounted. And a step of performing.

また、反射部材を金属基板Cに設置する工程において、反射部材はガラスで形成され、金属基板A及び金属基板Bの反射部材と接合する面はアルミニウム薄膜又はシリコン薄膜で形成され、反射部材と、金属基板A及び金属基板Bとを陽極接合することを特徴とする。  Further, in the step of installing the reflection member on the metal substrate C, the reflection member is formed of glass, and the surfaces of the metal substrate A and the metal substrate B that are joined to the reflection member are formed of an aluminum thin film or a silicon thin film, The metal substrate A and the metal substrate B are anodically bonded.

また、反射部材を金属基板Cに設置する工程において、反射部材はガラスで形成され、金属基板A及び金属基板Bの反射部材と接合する面はアルミニウム薄膜又はシリコン薄膜で形成され、反射部材と、金属基板A及び金属基板Bとを陽極接合することを特徴とする。  Further, in the step of installing the reflection member on the metal substrate C, the reflection member is formed of glass, and the surfaces of the metal substrate A and the metal substrate B that are joined to the reflection member are formed of an aluminum thin film or a silicon thin film, The metal substrate A and the metal substrate B are anodically bonded.

また、金属基板Cに光源を設置する工程が、金属基板Cと光源とを金属ナノ粒子を焼成することにより接合することを特徴とする。  Further, the step of installing the light source on the metal substrate C is characterized in that the metal substrate C and the light source are joined by firing metal nanoparticles.

さらに、金属基板Cに一括形成された複数の発光部品を個片化する工程を備える。この際、反射部材と金属基板Cを接着又は接合する工程において、溝部を有する反射部材と金属基板Cとを接着又は接合することによって、個片化を容易に行うことができる。  Further, the method includes a step of separating a plurality of light emitting components formed on the metal substrate C at once. At this time, in the step of bonding or bonding the reflecting member and the metal substrate C, the reflecting member having the groove and the metal substrate C are bonded or bonded to each other, whereby the singulation can be easily performed.

このような手段をとることで、熱伝導率を下げる部分のない放熱経路が確保されるため、放熱性の高い発光部品を提供できる。また、反射部材にはポーラス状の構造がないため、モールド部形成時の不良がなく、信頼性も高い発光部品を提供できる。  By adopting such means, a heat radiation path without a portion that lowers the thermal conductivity is secured, and thus a light emitting component with high heat dissipation can be provided. In addition, since the reflecting member does not have a porous structure, it is possible to provide a light-emitting component that is free from defects during formation of the mold part and has high reliability.

本発明によると、分割された金属基板の一方に光源であるLED素子が接合され、優れた放熱効果を得ることができ、それによって、発光部品の使用寿命と発光効率を大きく増大させることが出来る効果を有する。  According to the present invention, an LED element as a light source is bonded to one of the divided metal substrates, and an excellent heat dissipation effect can be obtained, thereby greatly increasing the service life and light emission efficiency of the light emitting component. Has an effect.

また本発明は、金属基板と反射部材を多数個同時に一括形成し、最終工程で個片化するため、製作コストを低減する効果が得られる。   Further, according to the present invention, since a large number of metal substrates and reflection members are simultaneously formed and separated into pieces in the final process, an effect of reducing the manufacturing cost can be obtained.

本発明に係る発光部品の断面図である。It is sectional drawing of the light emitting component which concerns on this invention. 本発明に係る発光部品の製造工程を示す図である。It is a figure which shows the manufacturing process of the light emitting component which concerns on this invention. 本発明に係る発光部品の製造工程における上面図である。It is a top view in the manufacturing process of the light emitting component according to the present invention. 本発明に係る発光部品の製造工程を示す図である。It is a figure which shows the manufacturing process of the light emitting component which concerns on this invention. 従来例の断面図を示す図である。It is a figure which shows sectional drawing of a prior art example.

本発明の実施の形態を図に基づいて説明する。  Embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る発光部品の断面図である。発光部品1は光源40を搭載した金属基板A21を備えている。また、金属基板B22はワイヤボンド50により光源40と電気的に接続している。さらに、金属基板A21と金属基板B22とが絶縁されている。また、反射部材31は、金属基板A21及び金属基板B22に設置されている。また、モールド部60は光源40を覆っている。また、反射部材31は光源からの光を反射する傾斜面を有している。また、この傾斜面は、反射部材31の内側に形成された貫通孔の側面であり、この貫通孔内に光源が搭載されている構造となっている。また、反射部材により金属基板Aと金属基板Bとは接続している。  FIG. 1 is a cross-sectional view of a light emitting component according to the present invention. The light emitting component 1 includes a metal substrate A21 on which a light source 40 is mounted. Further, the metal substrate B <b> 22 is electrically connected to the light source 40 by a wire bond 50. Further, the metal substrate A21 and the metal substrate B22 are insulated. Further, the reflecting member 31 is installed on the metal substrate A21 and the metal substrate B22. In addition, the mold part 60 covers the light source 40. The reflecting member 31 has an inclined surface that reflects light from the light source. The inclined surface is a side surface of a through hole formed inside the reflecting member 31, and has a structure in which a light source is mounted in the through hole. Further, the metal substrate A and the metal substrate B are connected by a reflecting member.

金属基板A21、及び金属基板B22の材質は、例えば熱伝導率236W/m・Kであるアルミニウム、熱伝導率320W/m・Kである金、熱伝導率420W/m・Kである銀、熱伝導率398W/m・Kである銅である。また、金属基板A21及び金属基板B22の厚みは、放熱性、構造上の強度、製造しやすさ、等を考慮すると10μmから100μmが適当である。  The material of the metal substrate A21 and the metal substrate B22 is, for example, aluminum having a thermal conductivity of 236 W / m · K, gold having a thermal conductivity of 320 W / m · K, silver having a thermal conductivity of 420 W / m · K, heat Copper having a conductivity of 398 W / m · K. Further, the thickness of the metal substrate A21 and the metal substrate B22 is suitably 10 μm to 100 μm in consideration of heat dissipation, structural strength, ease of manufacture, and the like.

反射部材31の材質としては、例えばガラスやセラミックスを用いることができる。また、反射部材31の傾斜面には例えば銀膜、アルミニウム膜、コールドミラー膜を形成することで、反射効率を上げることができる。  As a material of the reflecting member 31, for example, glass or ceramics can be used. Further, by forming, for example, a silver film, an aluminum film, or a cold mirror film on the inclined surface of the reflecting member 31, the reflection efficiency can be increased.

反射部材31を金属基板A21及び金属基板B22に設置する方法として、エポキシ樹脂、アクリル樹脂等を用いて接着することが可能である。  As a method of installing the reflecting member 31 on the metal substrate A21 and the metal substrate B22, it is possible to bond them using an epoxy resin, an acrylic resin, or the like.

また、反射部材31の材質がガラスである場合には、金属基板A21及び金属基板B22の表面に、例えば1000Åから5000Åのシリコンの薄膜或いはアルミニウムの薄膜を形成し、陽極接合法により、接合することも可能である。ただし、金属基板A21及び金属基板B22がアルミニウムで形成されている場合は、上記薄膜を形成せずに陽極接合することができる。  Further, when the material of the reflecting member 31 is glass, a silicon thin film or aluminum thin film of 1000 to 5000 mm, for example, is formed on the surface of the metal substrate A21 and the metal substrate B22, and bonded by anodic bonding. Is also possible. However, when the metal substrate A21 and the metal substrate B22 are formed of aluminum, anodic bonding can be performed without forming the thin film.

また、反射部材31の材質がセラミックスである場合には、例えば銀ろうを用いて、ろう付けすることも可能である。  Further, when the material of the reflecting member 31 is ceramics, it can be brazed using, for example, silver brazing.

以上のような方法を採用することで、接着剤で接着するより、信頼性の高い部品を作製できる。  By adopting the method as described above, a highly reliable component can be produced rather than bonding with an adhesive.

モールド部60の材料は、透明であり、疎水性であるものがよい。例えば透明樹脂を用いることができ、エポキシ、アクリル、シリコーン、ポリシロキサン等の透明樹脂などを使用することが可能である。また、上記樹脂に蛍光体等を混入してもよい。  The material of the mold part 60 is preferably transparent and hydrophobic. For example, a transparent resin can be used, and a transparent resin such as epoxy, acrylic, silicone, polysiloxane, or the like can be used. Moreover, you may mix a fluorescent substance etc. in the said resin.

光源40と金属基板A21は、ダイボンド剤と称される銀ペースト等の導電性接着剤を用いて接合する。また、光源40と金属基板A21は、放熱性を考慮し、例えば銀、金錫合金、金、銅等の金属ナノ粒子を焼結させて、接合することで樹脂成分のない熱伝導性の高い接合となる。  The light source 40 and the metal substrate A21 are bonded using a conductive adhesive such as a silver paste called a die bond agent. In addition, the light source 40 and the metal substrate A21 have high thermal conductivity without a resin component by sintering and joining metal nanoparticles such as silver, gold-tin alloy, gold, and copper in consideration of heat dissipation. Joining.

次に、図2から図4を用いて、本発明に係わる製造方法を説明する。  Next, the manufacturing method according to the present invention will be described with reference to FIGS.

図2は、本発明に係る発光部品の製造工程を示す図であり、複数個の発光部品をウェハ単位で製造し、最終工程で個片化する手段を示している。  FIG. 2 is a diagram showing a manufacturing process of a light emitting component according to the present invention, and shows means for manufacturing a plurality of light emitting components in units of wafers and separating them in a final process.

図2(a)は金属基板A21及び金属基板B22を形成するための金属基板C20を示している。金属基板C20は、複数の傾斜貫通孔が一体形成されている反射部材30の材質、反射部材30との接合又は接着などの設置方法に応じて図示しない薄膜が形成されている。また、光源40及びワイヤボンド50の実装パターンが金膜等で形成されていてもよい。  FIG. 2A shows a metal substrate C20 for forming the metal substrate A21 and the metal substrate B22. A thin film (not shown) is formed on the metal substrate C20 according to the material of the reflecting member 30 in which a plurality of inclined through-holes are integrally formed and the installation method such as bonding or adhesion to the reflecting member 30. Further, the mounting pattern of the light source 40 and the wire bond 50 may be formed of a gold film or the like.

図2(b)は複数の傾斜貫通孔が一体形成されている反射部材30を金属基板C20に接着又は接合などにより設置する工程である。傾斜貫通孔は、反射部材30の素材に応じて、ブラスト加工、エッチング加工、ドリル加工、粉末焼成等により形成する。  FIG. 2B shows a step of installing the reflecting member 30 in which a plurality of inclined through holes are integrally formed on the metal substrate C20 by bonding or bonding. The inclined through hole is formed by blasting, etching, drilling, powder firing or the like according to the material of the reflecting member 30.

図2(c)は金属基板C20に光源40を搭載する工程を示している。この際、光源は金属基板C20の金属基板Aを形成する部分に搭載する。この工程において、金属基板C20と光源40とを銀、金錫合金、金、銅等の金属ナノ粒子を焼結させて、接合している。この工程により、金属基板C20と光源40との間に上記金属からなる接合層が形成する。また、金属基板C20と光源40との接合は他にもダイボンド剤と称される銀ペースト等の導電性接着剤を用いて接合することもできる。  FIG. 2C shows a process of mounting the light source 40 on the metal substrate C20. At this time, the light source is mounted on a portion of the metal substrate C20 where the metal substrate A is formed. In this step, the metal substrate C20 and the light source 40 are joined by sintering metal nanoparticles such as silver, gold-tin alloy, gold, and copper. By this step, a bonding layer made of the above metal is formed between the metal substrate C20 and the light source 40. In addition, the metal substrate C20 and the light source 40 can be joined using a conductive adhesive such as a silver paste called a die bond agent.

図2(d)はワイヤボンド50を形成し、光源40と金属基板Cの金属基板Bを形成する部分とを電気的に接続する工程である。  FIG. 2D shows a step of forming the wire bond 50 and electrically connecting the light source 40 and the portion of the metal substrate C where the metal substrate B is formed.

図2(e)は光源40及びワイヤボンド50をモールドするモールド部60を形成する工程である。このとき、モールド部60は透明であり、疎水性であるものがよい。また、モールド部60は、蛍光体等の混合物が混入されていてもよい。  FIG. 2E shows a process of forming a mold part 60 for molding the light source 40 and the wire bond 50. At this time, the mold part 60 is preferably transparent and hydrophobic. Moreover, the mold part 60 may be mixed with a mixture such as a phosphor.

図2(f)は光源40への電極を分割するために、金属基板C20に分割部23を形成する分割部形成工程である。分割部23を形成する方法としては、レーザー加工、機械加工等から適切な方法を選択できる。また、モールド部60を疎水性、撥水性にしておくことで、ウェットエッチングによる加工が可能となる。また、このときに金属基板C20の厚みをウェットエッチングにより薄くすることも可能であり、より放熱性をあげることができる。このときの上面図を図3に示す。  FIG. 2F shows a split part forming step in which the split part 23 is formed on the metal substrate C20 in order to split the electrode to the light source 40. As a method for forming the divided portion 23, an appropriate method can be selected from laser processing, machining, and the like. Further, by making the mold part 60 hydrophobic and water repellent, processing by wet etching becomes possible. Further, at this time, the thickness of the metal substrate C20 can be reduced by wet etching, and heat dissipation can be further improved. A top view at this time is shown in FIG.

図2(g)は金属基板C20に複数個同時に形成してきたものをダイシング等により個片化して、個々の発光部品を製造する発光部品形成工程を示している。この工程により、金属基板C20が金属基板Aと金属基板Bとに完全に分割される。  FIG. 2G shows a light emitting component forming process in which individual light emitting components are manufactured by dividing a plurality of metal substrates C20 formed at the same time into pieces by dicing or the like. By this step, the metal substrate C20 is completely divided into the metal substrate A and the metal substrate B.

以上の工程により、金属基板C20に複数の発光部品を一括形成した後、個々の発光部品に個片化することが可能となり、製作コストを低減する効果が得られる。  Through the above steps, after a plurality of light emitting components are collectively formed on the metal substrate C20, it is possible to divide into individual light emitting components, and an effect of reducing the manufacturing cost can be obtained.

なお、本実施例は発光部品を複数個同時に形成する場合に限定されるものではなく、発光部品を1個形成する場合にも適用できる。その場合は図2(g)の工程が必要なく、図2(f)の工程により金属基板C20が金属基板Aと金属基板Bとに分割される。  The present embodiment is not limited to the case where a plurality of light emitting components are simultaneously formed, and can be applied to the case where one light emitting component is formed. In that case, the process of FIG. 2G is not necessary, and the metal substrate C20 is divided into the metal substrate A and the metal substrate B by the process of FIG.

図4を用いて、更に容易に発光部品を製造する方法を説明する。  A method of manufacturing a light emitting component more easily will be described with reference to FIG.

図4(b1)に示すとおり、反射部材30を金属基板C20に設置する工程において、発光部品1を個片化する場所に溝部を有する反射部材32を用いて、金属基板C20と接合又は接着により金属基板C20に設置する。この後、図2(c)から図2(e)の工程を先に述べたとおり行う。  As shown in FIG. 4 (b1), in the step of installing the reflecting member 30 on the metal substrate C20, the reflecting member 32 having a groove portion at a place where the light emitting component 1 is separated is used to join or adhere to the metal substrate C20. Installed on metal substrate C20. Thereafter, the steps from FIG. 2C to FIG. 2E are performed as described above.

図4(f1)に示すとおり、分割部形成工程において、金属基板A21と金属基板B22を分割する分割部23を形成し、さらに分割部23を反射部材32の溝部にあたる部分にも形成する。この工程で、金属基板C20の材質が銅である場合には、腐食を抑えるために、金属基板A21、金属基板B22に、金めっきや、Snめっき等の防錆処理をする。なお、図4(b1)の工程、又は図4(f1)の工程のどちらか一方を行うだけでもよい。  As shown in FIG. 4 (f <b> 1), in the divided portion forming step, the divided portion 23 that divides the metal substrate A <b> 21 and the metal substrate B <b> 22 is formed, and the divided portion 23 is also formed in the portion corresponding to the groove portion of the reflecting member 32. In this step, when the material of the metal substrate C20 is copper, the metal substrate A21 and the metal substrate B22 are subjected to rust prevention treatment such as gold plating or Sn plating in order to suppress corrosion. Note that either the step of FIG. 4B1 or the step of FIG. 4F1 may be performed.

このようにしておくと、図4(g1)に示す発光部品形成工程では反射部材のみを切断すればよく、異なる材質を切断しなくて済むため、精度の向上、コスト低減ができ、切断方法の選択肢も多くなる。また、溝部が形成されているため、応力が集中する構造となるため、割るように切断することが可能となり、特別な装置が不要で、すばやく個片化できるようになる。  In this way, in the light emitting component forming process shown in FIG. 4 (g1), it is only necessary to cut the reflecting member, and it is not necessary to cut different materials, so that accuracy can be improved and cost can be reduced. There are many choices. Further, since the groove portion is formed, the stress is concentrated, so that it can be cut into pieces, and a special device is not required and can be separated into pieces quickly.

1 発光部品
20 金属基板C
21 金属基板A
22 金属基板B
23 分割部
30 複数の傾斜貫通孔が一体形成されている反射部材
31 反射部材
32 溝部を有する反射部材
40 光源
50 ワイヤボンド
60 モールド部
100 LEDパッケージ
200 アルミニウム基板
210 アノダイジング絶縁層
300 電極パターン
400 光源
500 ワイヤ
600 モールディング部
1 Light-Emitting Component 20 Metal Substrate C
21 Metal substrate A
22 Metal substrate B
23 Dividing part 30 Reflecting member 31 in which a plurality of inclined through holes are integrally formed Reflecting member 32 Reflecting member having groove part 40 Light source 50 Wire bond 60 Mold part 100 LED package 200 Aluminum substrate 210 Anodizing insulating layer 300 Electrode pattern 400 Light source 500 Wire 600 molding part

Claims (14)

光源と、前記光源を搭載した金属基板Aと、前記光源に接続するワイヤボンドと、前記ワイヤボンドにより前記光源と電気的に接続され、前記金属基板Aと同一平面状に形成され、かつ前記金属基板Aと絶縁されている金属基板Bと、前記金属基板A及び前記金属基板Bに設置され、内側に傾斜面を有する反射部材と、前記光源を覆うモールド部と、を備える発光部品。   A light source, a metal substrate A on which the light source is mounted, a wire bond connected to the light source, and electrically connected to the light source by the wire bond, formed in the same plane as the metal substrate A, and the metal A light emitting component comprising: a metal substrate B that is insulated from the substrate A; a reflective member that is installed on the metal substrate A and the metal substrate B and has an inclined surface inside; and a mold portion that covers the light source. 前記金属基板A及び前記金属基板Bは銅、銀、金、アルミニウムのいずれかにより形成されることを特徴とする請求項1に記載の発光部品。   The light emitting component according to claim 1, wherein the metal substrate A and the metal substrate B are formed of any one of copper, silver, gold, and aluminum. 前記反射部材はガラスで形成され、前記金属基板A及び前記金属基板Bの前記反射部材と接合する面はアルミニウム薄膜又はシリコン薄膜で形成され、前記反射部材と、前記金属基板A及び前記金属基板Bとが陽極接合されていることを特徴とする請求項2に記載の発光部品。   The reflective member is formed of glass, and the surfaces of the metal substrate A and the metal substrate B that are joined to the reflective member are formed of an aluminum thin film or a silicon thin film. The reflective member, the metal substrate A, and the metal substrate B The light-emitting component according to claim 2, wherein and are anodically bonded. 前記反射部材はセラミックスで形成され、前記反射部材と、前記金属基板A及び前記金属基板Bとはろう付けされることを特徴とする請求項2に記載の発光部品。   The light-emitting component according to claim 2, wherein the reflection member is made of ceramics, and the reflection member, the metal substrate A, and the metal substrate B are brazed. 前記金属基板Aと前記光源は、金属ナノ粒子を焼成することにより接合されることを特徴とする請求項1から4のいずれか一項に記載の発光部品。   The said metal substrate A and the said light source are joined by baking a metal nanoparticle, The light emitting component as described in any one of Claim 1 to 4 characterized by the above-mentioned. 前記金属ナノ粒子は、銀、金錫合金、金、銅のいずれかであることを特徴とする請求項5に記載の発光部品。   The light-emitting component according to claim 5, wherein the metal nanoparticles are any one of silver, gold-tin alloy, gold, and copper. 前記反射部材の前記傾斜面は、コールドミラー膜、銀膜、アルミニウム膜の少なくともいずれか1つで形成されることを特徴とする請求項6に記載の発光部品。   The light emitting component according to claim 6, wherein the inclined surface of the reflecting member is formed of at least one of a cold mirror film, a silver film, and an aluminum film. 前記モールド部は疎水性であることを特徴とする請求項7に記載の発光部品。   The light emitting component according to claim 7, wherein the mold part is hydrophobic. 傾斜貫通孔が形成された反射部材を金属基板Cに設置する工程と、前記金属基板Cに光源を搭載する工程と、前記金属基板Cと前記光源とをワイヤボンドにより電気的に接続する工程と、モールド部を形成する工程と、前記金属基板Cを前記光源を搭載した部分である金属基板Aと前記ワイヤボンドで前記光源と電気的に接続した部分である金属基板Bとに分割する工程と、を備えることを特徴とする発光部品の製造方法。   A step of installing a reflective member formed with an inclined through hole on the metal substrate C, a step of mounting a light source on the metal substrate C, and a step of electrically connecting the metal substrate C and the light source by wire bonding; A step of forming a mold part, and a step of dividing the metal substrate C into a metal substrate A which is a portion on which the light source is mounted and a metal substrate B which is a portion electrically connected to the light source through the wire bond. A method for manufacturing a light-emitting component, comprising: 前記反射部材を前記金属基板Cに設置する工程において、前記反射部材はガラスで形成され、前記金属基板Cの前記反射部材と接合する面はアルミニウム薄膜又はシリコン薄膜で形成され、前記反射部材と前記金属基板Cとを陽極接合することを特徴とする請求項9に記載の発光部品の製造方法。   In the step of installing the reflecting member on the metal substrate C, the reflecting member is formed of glass, and a surface of the metal substrate C to be joined to the reflecting member is formed of an aluminum thin film or a silicon thin film, and the reflecting member and the The method for manufacturing a light-emitting component according to claim 9, wherein the metal substrate C is anodically bonded. 前記反射部材を前記金属基板Cに設置する工程において、前記反射部材はセラミックスで形成され、前記反射材と前記金属基板Cとをろう付けすることを特徴とする請求項9に記載の発光部品の製造方法。   The light-emitting component according to claim 9, wherein in the step of installing the reflective member on the metal substrate C, the reflective member is formed of ceramics, and the reflective material and the metal substrate C are brazed. Production method. 前記金属基板Cに前記光源を搭載する工程において、前記金属基板Cと前記光源とを金属ナノ粒子を焼成することにより接合することを特徴とする請求項9から11のいずれか一項に記載の発光部品の製造方法。   The step of mounting the light source on the metal substrate C joins the metal substrate C and the light source by firing metal nanoparticles. Manufacturing method of light emitting component. 前記金属基板Cに複数の発光部品を一括形成した後、個々の発光部品に個片化することを特徴とする請求項9から12のいずれか一項に記載の発光部品の製造方法。   13. The method for manufacturing a light-emitting component according to claim 9, wherein a plurality of light-emitting components are collectively formed on the metal substrate C and then separated into individual light-emitting components. 前記反射部材を前記金属基板Cに設置する工程において、少なくとも1つ以上の溝部を有する前記反射部材を前記金属基板Cに設置することを特徴とする請求項13に記載の発光部品の製造方法。   The method of manufacturing a light emitting component according to claim 13, wherein in the step of installing the reflective member on the metal substrate C, the reflective member having at least one groove is disposed on the metal substrate C.
JP2009195969A 2009-08-26 2009-08-26 Light-emitting component and method for manufacturing the same Pending JP2011049325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195969A JP2011049325A (en) 2009-08-26 2009-08-26 Light-emitting component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195969A JP2011049325A (en) 2009-08-26 2009-08-26 Light-emitting component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011049325A true JP2011049325A (en) 2011-03-10

Family

ID=43835384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195969A Pending JP2011049325A (en) 2009-08-26 2009-08-26 Light-emitting component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011049325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168854B1 (en) 2011-10-10 2012-07-26 김영석 Manufacture method of light emmitting diode package
WO2013055013A1 (en) * 2011-10-10 2013-04-18 Ju Jae Cheol Led package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168854B1 (en) 2011-10-10 2012-07-26 김영석 Manufacture method of light emmitting diode package
WO2013055014A1 (en) * 2011-10-10 2013-04-18 Ju Jae Cheol Method for manufacturing led package
WO2013055013A1 (en) * 2011-10-10 2013-04-18 Ju Jae Cheol Led package

Similar Documents

Publication Publication Date Title
JP5359734B2 (en) Light emitting device and manufacturing method thereof
KR20080014808A (en) Substrate for led and led package
JP4865525B2 (en) SML type light emitting diode lamp element and manufacturing method thereof
JP5106094B2 (en) Surface mount type light emitting diode and method for manufacturing the same
JP2011205147A (en) Method of fabricating led package
WO2010115296A1 (en) Radiation substrate for power led and power led production and manufacturing method thereof
JP2011035264A (en) Package for light emitting element and method of manufacturing light emitting element
JP2008235867A (en) Surface mount light-emitting diode and method of manufacturing the same
JP2007266568A (en) Semiconductor device, and forming method thereof
JP2007042781A (en) Sub-mount and manufacturing method thereof
US20160190417A1 (en) Semiconductor device and manufacturing method for the same
JP6348660B2 (en) Optoelectronic semiconductor component and method for manufacturing optoelectronic semiconductor component
JP2005079167A (en) Light emitting element housing package and light emitting device
JP2011124449A (en) Light emission component, light emitter and method for manufacturing light emission component
JP2008098296A (en) Light-emitting apparatus and manufacturing method thereof
JP2007273592A (en) Light emitting element wiring board and light emitting device
JP2011049325A (en) Light-emitting component and method for manufacturing the same
JPWO2015033700A1 (en) Light emitting device substrate, light emitting device, and method for manufacturing light emitting device substrate
JP2011199066A (en) Light emitting component, light emitting device, and method for manufacturing the light emitting component
JP2008135526A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
JP2009004503A (en) Surface mounting light emitting diode and method of manufacturing the same
JP2008205395A (en) Surface-mounted light emitting diode and its manufacturing method
JP2006351611A (en) Substrate for mounting light-emitting device and optical semiconductor device using same
JP2011199067A (en) Light emitting component, light emitting device, and method for manufacturing the light emitting component
JP4720943B1 (en) Package for semiconductor device and light emitting device using the same