JP2011049162A - Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element - Google Patents

Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element Download PDF

Info

Publication number
JP2011049162A
JP2011049162A JP2010171442A JP2010171442A JP2011049162A JP 2011049162 A JP2011049162 A JP 2011049162A JP 2010171442 A JP2010171442 A JP 2010171442A JP 2010171442 A JP2010171442 A JP 2010171442A JP 2011049162 A JP2011049162 A JP 2011049162A
Authority
JP
Japan
Prior art keywords
heating element
composition
sheet heating
molding
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171442A
Other languages
Japanese (ja)
Inventor
Hitoshi Takeshita
整 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWASAKI DANNETSU KK
Original Assignee
IWASAKI DANNETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWASAKI DANNETSU KK filed Critical IWASAKI DANNETSU KK
Priority to JP2010171442A priority Critical patent/JP2011049162A/en
Publication of JP2011049162A publication Critical patent/JP2011049162A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for molding a PTC sheet heating element which can generate heat with low power energy and has heat resistance and sufficient strength; and to provide a PTC sheet heating element formed by molding the composition. <P>SOLUTION: The composition for molding the PTC sheet heating element includes graphite, glass wool and/or rock wool, and water as a main component, or a polyamide resin is further included in the composition. Furthermore, in a method for manufacturing the PTC sheet heating element, a portion of the composition for molding the PTC sheet heating element is poured into an outer frame container 4, and the balance of the composition for molding the PTC sheet heating element is poured into the outer frame container after an electrode wire 3 is wired on a part where a portion of the composition is poured, and then, the composition is dried. Furthermore, the PTC sheet heating element 1 is manufactured with the manufacturing method, and the PTC sheet heating element 1 has a terminal part 2 for current conduction to be connected to the electrode wire 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、発熱体が自己温度に反応して通電量を制御し、発熱量をコントロールする性質を備えたPTC面状発熱体成形用組成物、PTC面状発熱体の製造方法及びPTC面状発熱体に関するものである。   The present invention relates to a PTC planar heating element molding composition having a property that the heating element reacts to its own temperature to control the amount of electricity applied and to control the heating value, a method for producing a PTC planar heating element, and a PTC planar shape It relates to a heating element.

発熱体が自己温度に反応して通電量を制御し、発熱量をコントロールする性質を備えたPTC面状発熱体が知られている。PTC面状発熱体は、発熱体の温度上昇に伴い、電気抵抗が増し電気が流れにくくなる性質を有している。このPTC面状発熱体を例えば床暖房に利用した場合、床の日照部分による温度上昇箇所や人が座って熱がこもりやすい箇所の温度上昇に反応し、その箇所だけ電力を通さなく、低温やけどや省エネには有効である。このような優れた特性を備えたPTC面状発熱体成形用組成物及びその組成物を用いたPTC面状発熱体として、古紙細断パルプ材を原料に含むものが知られている(例えば特開2009−99329)。   There is known a PTC planar heating element having a property that the heating element reacts to the self-temperature to control the amount of energization to control the heating value. The PTC planar heating element has the property that the electrical resistance increases and the electricity hardly flows as the temperature of the heating element increases. When this PTC sheet heating element is used, for example, for floor heating, it reacts to the temperature rise due to the sunshine on the floor and the temperature rise in places where people are likely to sit and heat up. It is effective for energy saving. As a PTC sheet heating element molding composition having such excellent properties and a PTC sheet heating element using the composition, those containing raw paper shredded pulp material as a raw material are known (for example, special Open 2009-99329).

特開2009−99329JP 2009-99329 A

しかしながら、前記の特開2009−99329にあっては、古紙細断パルプ材を原料に含むため、通電によって発熱体の温度を高くすると、原料中の古紙細断パルプ材が発火するおそれがあり、余り高い温度に上げて使用することができない。また、原料中の古紙細断パルプ材は強度がないため、発熱体全体の強度をあげるための特殊な硬化剤を使用する必要がある。   However, in the above-mentioned JP-A-2009-99329, since the waste paper shredded pulp material is included in the raw material, if the temperature of the heating element is increased by energization, the waste paper shredded pulp material in the raw material may ignite, It cannot be used after raising the temperature too high. Moreover, since the waste paper shredded pulp material in the raw material has no strength, it is necessary to use a special curing agent for increasing the strength of the entire heating element.

この発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、低い電力エネルギーで発熱が可能で、しかも、耐熱性があり、さらに強度も有するPTC面状発熱体成形用組成物、PTC面状発熱体の製造方法及びPTC面状発熱体を提供することにある。   In view of the above-mentioned problems, the present invention was created to solve the problems, and the object of the present invention is to generate heat with low power energy, and to have heat resistance. An object of the present invention is to provide a PTC sheet heating element molding composition having strength, a method for producing a PTC sheet heating element, and a PTC sheet heating element.

以上の課題を達成するために、請求項1のPTC面状発熱体成形用組成物の発明は、黒鉛と、グラスウール又は/及びロックウールと、水とを主成分として含む手段よりなる。   In order to achieve the above object, the invention for forming a PTC planar heating element according to claim 1 comprises means containing graphite, glass wool or / and rock wool, and water as main components.

また、請求項2のPTC面状発熱体成形用組成物の発明は、黒鉛と、グラスウール又は/及びロックウールと、水とを主成分として含み、その配合組成が重量比で、黒鉛が1の割合に対して、グラスウール又は/及びロックウールが5%〜25%、水が50%〜100%、からなる手段よりなる。   Further, the invention of the composition for molding a PTC planar heating element according to claim 2 includes graphite, glass wool or / and rock wool, and water as main components, the blending composition is in a weight ratio, and graphite is 1. It consists of means consisting of 5% to 25% glass wool and / or rock wool and 50% to 100% water.

また、請求項3のPTC面状発熱体成形用組成物の発明は、黒鉛と、グラスウール又は/及びロックウールと、水と、ポリアミド系樹脂とを主成分として含む手段よりなる。   The invention of the composition for molding a PTC sheet heating element according to claim 3 comprises means containing graphite, glass wool or / and rock wool, water, and a polyamide-based resin as main components.

また、請求項4のPTC面状発熱体成形用組成物の発明は、黒鉛と、グラスウール又は/及びロックウールと、水と、ポリアミド系樹脂とを主成分として含み、その配合組成が重量比で、黒鉛が1の割合に対して、グラスウール又は/及びロックウールが5%〜25%、水が50%〜100%、ポリアミド系樹脂が5〜40%、からなる手段よりなる。   The invention of the composition for molding a PTC planar heating element according to claim 4 includes graphite, glass wool or / and rock wool, water, and a polyamide-based resin as main components, and the blending composition is in a weight ratio. The ratio of glass wool and / or rock wool is 5% to 25%, water is 50% to 100%, and polyamide-based resin is 5 to 40% with respect to a ratio of 1 graphite.

また、請求項1〜請求項4の好ましい態様として、請求項5の発明は、黒鉛は平均粒径が1μm〜30μmであり、請求項6の発明は、グラスウールは廃棄物が使用され、請求項7の発明は、ロックウールは廃棄物が使用される。   Further, as a preferred embodiment of claims 1 to 4, the invention of claim 5 is characterized in that the graphite has an average particle size of 1 to 30 μm, and the invention of claim 6 uses glass wool as waste. In the invention of No. 7, waste is used for rock wool.

また、請求項8のPTC面状発熱体の製造方法の発明は、請求項1〜請求項7の何れかに記載のPCT面状発熱体成形用組成物を側周面及び底面が囲まれ上面が開放された外枠容器内に一部流し込み、一部流し込んだ部分の上に電極線を配線した後に残りを流し込み、その後にこれを乾燥する手段よりなる。   An invention of a method for producing a PTC planar heating element according to claim 8 is the upper surface of the composition for molding a PCT planar heating element according to any one of claims 1 to 7 surrounded by a side circumferential surface and a bottom surface. Is partially poured into the open outer frame container, and after the electrode wire is wired on the partially poured portion, the remainder is poured, and then the unit is dried.

また、請求項9のPTC面状発熱体の発明は、請求項8の製造方法で製造され、電極線に接続する通電用端子部を備えている手段よりなる。   The invention of the PTC planar heating element according to claim 9 is manufactured by the manufacturing method according to claim 8 and comprises means having a current-carrying terminal portion connected to the electrode wire.

課題を解決するための手段よりなるこの発明によれば、次のような極めて新規的有益なる効果を奏するものである。
(1)100V〜200Vの電力を必要とせず、これよりも低い例えば5V〜12Vのような低電圧で発熱させることができる。
(2)古紙細断パルプ材の繊維に比べてグラスウールはガラス繊維であり耐熱性が高く、古紙細断パルプ材よりも耐熱性の高いグラスウールを原料として使用するので、発熱体の温度を高く設定することが可能となる。
(3)古紙細断パルプ材の繊維に比べてロックウールは人造鉱物繊維であり耐熱性が高く、古紙細断パルプ材よりも耐熱性の高いロックウールを原料として使用するので、発熱体の温度を高く設定することが可能となる。
(4)外枠容器を使用することにより、強度を高めるための特別な硬化剤の使用を省略でき、硬化剤を使用することなく発熱体の強度を高めることが可能となる。
(5)これまで処分が大変であったグラスウールやロックウールの廃棄物を原料として使用することができ、廃棄物の有効利用を図ることができると共に、原料コストを下げることもできる。
(6)また、ポリアミド系樹脂を含む場合には、PTC効果をより一層有効に発生させることができる。つまり、高い電圧を加えても一定の温度より上がらないようにする効果をさらに高めることができる。この場合において、ポリアミド系樹脂がポリアミド系樹脂保護材であるときには、発熱体の強度をさらに高めることができる。
According to the present invention comprising means for solving the problems, the following extremely beneficial effects can be obtained.
(1) Electric power of 100V to 200V is not required, and heat can be generated at a lower voltage, such as 5V to 12V.
(2) Glass wool is a glass fiber and has high heat resistance compared to the fibers of waste paper shredded pulp material, and uses glass wool, which has higher heat resistance than waste paper shredded pulp material, so the temperature of the heating element is set high. It becomes possible to do.
(3) Rock wool is an artificial mineral fiber that has higher heat resistance compared to the fibers of waste paper shredded pulp material, and uses heat-resistant rock wool as a raw material. Can be set high.
(4) By using the outer frame container, the use of a special curing agent for increasing the strength can be omitted, and the strength of the heating element can be increased without using the curing agent.
(5) Glass wool or rock wool waste, which has been difficult to dispose of up to now, can be used as a raw material, so that the waste can be used effectively and the raw material cost can be reduced.
(6) Moreover, when a polyamide-type resin is included, a PTC effect can be generated much more effectively. That is, the effect of preventing the temperature from rising above a certain temperature even when a high voltage is applied can be further enhanced. In this case, when the polyamide resin is a polyamide resin protective material, the strength of the heating element can be further increased.

この発明を実施するための形態を示す外枠容器がない状態の直方体に成形されたPTC面状発熱体の外観斜視図である。It is an external appearance perspective view of the PTC planar heating element shape | molded in the rectangular parallelepiped state in which there is no outer frame container which shows the form for implementing this invention. この発明を実施するための形態を示す外枠容器がない状態の円柱体に成形されたPTC面状発熱体の外観斜視図である。It is an external appearance perspective view of the PTC planar heating element shape | molded in the cylindrical body of a state without the outer frame container which shows the form for implementing this invention. この発明を実施するための形態を示す外枠容器がない状態のPTC面状発熱体の平断面図である。It is a plane sectional view of a PTC sheet heating element in the state where there is no outer frame container which shows a form for carrying out this invention. この発明を実施するための形態を示す外枠容器の斜視図である。It is a perspective view of the outer frame container which shows the form for implementing this invention.

以下、この発明をより具体的に説明する。
この発明のPTC面状発熱体成形用の組成物は、次のとおりである。
(イ)黒鉛。
(ロ)グラスウール又は/及びロックウール。
つまり、グラスウール単独を使用する場合、ロックウール単独を使用する場合、そしてグラスウールとロックウールを混合したものを使用する場合、の3通りの組合せがある。
(ハ)水。
(ニ)ポリアミド系樹脂。
これらの(イ)〜(ハ)を主成分として含有している。或いは、これらに加えて(ニ)を含む(イ)〜(ニ)を主成分として含有している。主成分とは、これを必須の成分として含んでおり、また、重量比で全体量の90%以上を含んでいることである。
Hereinafter, the present invention will be described more specifically.
The composition for molding a PTC planar heating element of the present invention is as follows.
(I) Graphite.
(B) Glass wool or / and rock wool.
That is, when using glass wool alone, when using rock wool alone, and when using a mixture of glass wool and rock wool, there are three combinations.
(C) Water.
(D) Polyamide resin.
These (A) to (C) are contained as main components. Alternatively, in addition to these, (a) to (d) containing (d) are contained as main components. The main component includes this as an essential component and includes 90% or more of the total amount by weight.

黒鉛については各種製法によるものでよいが、その平均粒径については1μm〜30μmの範囲であり、最も好ましいのは粒径が8μm〜9μmである。平均粒径が1μm未満、あるいは30μm超の場合には、黒鉛の分散の均一化と、導電性発熱が面状発熱体としては均一なものとなりにくい。また、ここで黒鉛には天然黒鉛の他に人造黒鉛も含まれる。人造黒鉛は天然黒鉛に比べて電気抵抗が小さく、叉強度も高い性質を有しているので、黒鉛として人造黒鉛を使用する場合には、PTC面状発熱体の電力エネルギーコストを安価でき、叉PTC面状発熱体の強度を高めることができる。   Graphite may be produced by various production methods, but the average particle size is in the range of 1 to 30 μm, and the most preferable particle size is 8 to 9 μm. When the average particle diameter is less than 1 μm or more than 30 μm, it is difficult to make the dispersion of the graphite uniform and the conductive heat generation uniform as a planar heating element. Here, the graphite includes artificial graphite in addition to natural graphite. Artificial graphite has properties of lower electrical resistance and higher strength than natural graphite. Therefore, when artificial graphite is used as graphite, the power energy cost of the PTC planar heating element can be reduced. The strength of the PTC planar heating element can be increased.

グラスウールは、短いガラス繊維でできた綿状の素材で、建築物の断熱材として用いられる他に、吸音材としても用いられ、耐火性にも優れているので、これを原料に含ませることで、PTC面状発熱体の耐熱性を高めることができ、PTC面状発熱体の設定温度を高めることができる。また、断熱性があるので、これを含むPTC面状発熱体も断熱性があり、省エネに優れている。   Glass wool is a cotton-like material made of short glass fibers. It is used as a heat insulating material in addition to being used as a heat insulating material for buildings, and has excellent fire resistance. The heat resistance of the PTC sheet heating element can be increased, and the set temperature of the PTC sheet heating element can be increased. Moreover, since it has heat insulation, the PTC planar heating element containing this also has heat insulation, and is excellent in energy saving.

ロックウールは、玄武岩、鉄炉スラグなどに石灰などを混合し、高温で溶解し生成される人造鉱物繊維で、グラスウールと同様に建築物の断熱材として用いられる他に、吸音材としても用いられ、耐火性にも優れているので、これを原料に含ませることで、PTC面状発熱体の耐熱性を高めることができ、PTC面状発熱体の設定温度を高めることができる。また、断熱性があるので、これを含むPTC面状発熱体も断熱性があり、省エネに優れている。   Rock wool is an artificial mineral fiber that is produced by mixing lime with basalt, iron furnace slag, etc. and melting at high temperatures. It is used as a heat insulating material for buildings as well as glass wool. Moreover, since it is excellent also in fire resistance, the heat resistance of the PTC planar heating element can be increased by including this in the raw material, and the set temperature of the PTC planar heating element can be increased. Moreover, since it has heat insulation, the PTC planar heating element containing this also has heat insulation, and is excellent in energy saving.

この発明におけるPTC面状発熱体が成形用組成物において、その配合組成が重量比で、黒鉛が1の割合に対して、次の(ロ)及び(ハ)の場合と、(ロ)〜(ニ)の場合がある。
(ロ)グラスウール又は/及びロックウールが5%〜25%、つまり、グラスウールが5%〜25%の場合、ロックウールが5%〜25%の場合、グラスウールとロックウールを混合したものが5%〜25%の場合、の3通りで、このうち、好ましい割合としては、グラスウール又は/及びロックウールが10%、つまり、グラスウールが10%の場合、ロックウールが10%の場合、グラスウールとロックウールを混合したものが10%の場合である。
(ハ)水が50%〜100%、このうち、好ましい割合としては水が90%である。
(ニ)ポリアミド系樹脂は、5〜40%である。発熱体の温度を低く保つ場合、例えば30℃に維持したい場合には使用量は例えば40%位となって多くなる。逆に発熱体の温度を高く保つ場合、例えば70℃に維持したい場合には使用量は例えば5%位となって少なくなる。ポリアミド系樹脂の使用量は発熱体の維持したい温度の高さに逆比例する。つまり、発熱体の維持したい温度が高くなると使用量が減り、温度が低くなると使用量が増える。
このポリアミド系樹脂としては、例えばポリエチレンビーズが使用され、或いは、特に発熱体の強度を高める必要がある場合にはポリアミド系樹脂保護材が使用される。
ポリアミド系樹脂保護材の成分割合は例えば次の通りである。
ポリアミド 15%
エタノール 41%
メタノール 15%
nプロパノール 20.5%
水 8%
その他 0.5%
上記のような配合割合とすることで、強度、耐熱性に優れ、より低い電力エネルギーでの発熱特性の優れたPTC面状発熱体を確実にしかも安定して得ることが可能になる。
In the molding composition, the PTC planar heating element in this invention has the following composition (b) and (c) with respect to the ratio of the weight ratio of the graphite and the ratio of 1, and (b) to (b) D) There may be cases.
(B) 5% to 25% glass wool or / and rock wool, that is, 5% to 25% glass wool, 5% to 25% rock wool, 5% mixed glass wool and rock wool In the case of ˜25%, there are three types, and a preferable ratio among them is glass wool and / or rock wool 10%, that is, glass wool 10%, rock wool 10%, glass wool and rock wool This is the case where 10% is mixed.
(C) Water is 50% to 100%, and among these, water is preferably 90%.
(D) The polyamide-based resin is 5 to 40%. When the temperature of the heating element is kept low, for example, when it is desired to keep it at 30 ° C., the amount used is increased to about 40%, for example. On the other hand, when the temperature of the heating element is kept high, for example, when it is desired to keep it at 70 ° C., the amount used is reduced to about 5%, for example. The amount of polyamide resin used is inversely proportional to the temperature at which the heating element is desired to be maintained. That is, the amount of use decreases when the temperature at which the heating element is to be maintained increases, and the amount of use increases when the temperature decreases.
For example, polyethylene beads are used as the polyamide-based resin, or a polyamide-based resin protective material is used particularly when it is necessary to increase the strength of the heating element.
The component ratio of the polyamide resin protective material is, for example, as follows.
Polyamide 15%
Ethanol 41%
Methanol 15%
npropanol 20.5%
8% water
Other 0.5%
By setting the blending ratio as described above, it is possible to reliably and stably obtain a PTC planar heating element having excellent strength and heat resistance and excellent heat generation characteristics with lower power energy.

この発明のPTC面状発熱体の成形のための組成物には、前記成分以外にも許容される範囲での着色剤、分散剤、粘結材、あるいは型枠からの離型を容易にする離型剤等が必要に応じて適宜配合される。PTC面状発熱体は黒鉛により、一般的に黒色になるが、着色剤を入れることにより、種々の色をしたPTC面状発熱体を得ることができる。   The composition for molding a PTC planar heating element according to the present invention facilitates release from a colorant, a dispersant, a binder, or a mold in an allowable range other than the above components. A release agent or the like is appropriately blended as necessary. The PTC sheet heating element is generally black due to graphite, but PTC sheet heating elements of various colors can be obtained by adding a colorant.

次に、上記発明のPTC面状発熱体の成形について以下説明する。
図1〜図4はこの発明を実施するための形態に係り、図1は直方体に成形されたPTC面状発熱体の外観斜視図、図2は円柱体に成形されたPTC面状発熱体の外観斜視図、図3はPTC面状発熱体の平断面図、図4は外枠容器の斜視図である。
Next, molding of the PTC planar heating element of the above invention will be described below.
1 to 4 relate to a mode for carrying out the present invention, FIG. 1 is an external perspective view of a PTC sheet heating element formed into a rectangular parallelepiped, and FIG. 2 is a diagram of a PTC sheet heating element formed into a cylinder. FIG. 3 is an external perspective view, FIG. 3 is a plan sectional view of a PTC sheet heating element, and FIG. 4 is a perspective view of an outer frame container.

グラスウール又は/及びロックウールと使用する水の一部とを攪拌機に入れて攪拌し、その後に黒鉛、残りの水を攪拌機内に加えて攪拌する(実施例−1の場合)。また、ポリアミド系樹脂を含有する場合には、グラスウール又は/及びロックウールと使用する水の一部と、ポリアミド系樹脂とを攪拌機に入れて攪拌し、その後に黒鉛、残りの水を攪拌機内に加えて攪拌する(実施例−2の場合)。必要に応じて、着色剤、分散剤、粘結材、離型剤等を適宜加える。攪拌を行うことにより、各材料は均一に混ざり合い、発熱効果の偏りと強度のむらを防止できる。攪拌後のPTC面状発熱体の成形用組成物は粘土状になる。   Glass wool and / or rock wool and a part of the water to be used are put into a stirrer and stirred, and then graphite and the remaining water are added into the stirrer and stirred (in the case of Example-1). In the case of containing a polyamide-based resin, a part of the water to be used with glass wool and / or rock wool and the polyamide-based resin are stirred in a stirrer, and then graphite and the remaining water are put into the stirrer. In addition, stirring is carried out (in the case of Example-2). If necessary, a colorant, a dispersant, a binder, a release agent, and the like are appropriately added. By performing the stirring, the materials are uniformly mixed, and uneven heating effects and uneven strength can be prevented. The molding composition for the PTC planar heating element after stirring becomes a clay.

粘土状となったPTC面状発熱体の成形用組成物を外枠容器4に流し込む。なお、使用される外枠容器4は側周面の例えば四側面と底面が金属製薄板で構成され上面が開放された例えば箱形の弁当型の形状をしている。外枠容器4の側面の一部には電極線3の挿通孔41が形成されている。流し込む場合、弁当型の外枠容器4に半分程流し込み、プラス極とマイナス極を構成する2本の電極線3を入れると共に外枠容器4の挿通孔41から外部に突出させて通電用端子部2とし、残りを流し込み、PTC面状発熱体1の成形用組成物と一体化させる。外枠容器4のサイズが大きい場合には、プラス極とマイナス極を構成する電極線3及び通電用端子部2は複数本使用される。   The molding composition for the PTC planar heating element that has become clay-like is poured into the outer frame container 4. The outer frame container 4 used has, for example, a box-shaped lunch box shape in which, for example, four side surfaces and a bottom surface of the side peripheral surface are made of a thin metal plate and an upper surface is opened. An insertion hole 41 for the electrode wire 3 is formed in a part of the side surface of the outer frame container 4. In the case of pouring, about half of it is poured into the lunch box type outer frame container 4 and the two electrode wires 3 constituting the positive electrode and the negative electrode are inserted and projecting from the insertion hole 41 of the outer frame container 4 to the outside. 2 and the rest is poured and integrated with the molding composition of the PTC planar heating element 1. When the size of the outer frame container 4 is large, a plurality of electrode wires 3 and energizing terminal portions 2 constituting the positive electrode and the negative electrode are used.

この後、一定時間、乾燥させることにより、PTC面状発熱体の成形用組成物は外枠容器4内で固まる。例えば電気炉などを使用する強制乾燥では12時間程度の乾燥時間となる。また、自然乾燥では10日〜14日間程度の乾燥時間となる。強制乾燥より自然乾燥の方が強度のあるPTC面状発熱体1が得られる。固まった後は、外枠容器4と一体となった強度、耐熱性に優れたPTC面状発熱体1が得られる。   Thereafter, the composition for molding the PTC planar heating element is hardened in the outer frame container 4 by drying for a certain time. For example, forced drying using an electric furnace or the like has a drying time of about 12 hours. In natural drying, the drying time is about 10 to 14 days. The PTC sheet heating element 1 is obtained in which the natural drying is stronger than the forced drying. After solidifying, the PTC planar heating element 1 excellent in strength and heat resistance integrated with the outer frame container 4 is obtained.

このようにして、造られるPTC面状発熱体1の使用例としては、建物の床暖房としては床下に配置され、結露防止としては壁に配置され、また、ビニールハウスの暖房に利用され、水槽内に入れて水槽の保温に利用され、さらに、浴槽内に入れて風呂湯の保温に利用される。
As an example of use of the PTC sheet heating element 1 thus produced, the floor heating of the building is arranged under the floor, the condensation prevention is arranged on the wall, and it is also used for heating of the greenhouse. It is put in and used for the heat insulation of the water tank, and further, it is put in the bathtub and used for the heat insulation of the bath water.

グラスウール:1kgと水:1リットルを攪拌機に入れて攪拌し、その後に平均粒径8.32μmの黒鉛:10kg、残りの水:9リットルを攪拌機内に加えて30分程度攪拌を行った。なお、黒鉛としては、次の表1に示すものを使用した。   Glass wool: 1 kg and water: 1 liter were placed in a stirrer and stirred, and then graphite: 10 kg of average particle size 8.32 μm and the remaining water: 9 liters were added to the stirrer and stirred for about 30 minutes. As graphite, those shown in Table 1 below were used.

Figure 2011049162
Figure 2011049162

攪拌後のPTC面状発熱体の成形用組成物をサイズが例えば250mm×300mm×12mmの型枠内に半分程流し込み、プラス極とマイナス極を構成する2本の電極線を入れると共に成形用組成物の端部から外部に突出させて通電用端子部とし、残りを流し込んだ。電極線には直径2.5mmの銅線を使用した。   After the stirring, the molding composition of the PTC planar heating element is poured into a mold having a size of, for example, 250 mm × 300 mm × 12 mm, and two electrode wires constituting a plus electrode and a minus electrode are inserted and the molding composition It was made to project outside from the end of the object to be a current-carrying terminal, and the rest was poured. A copper wire having a diameter of 2.5 mm was used as the electrode wire.

この後、これを電気炉に入れ70度程度の温度で12時間位、強制乾燥させて固まらせた。型枠から取り出したPTC面状発熱体の表面温度(温度計1〜温度計5)について通電テストを行った。通電テストの結果を表2に示す。   Thereafter, this was put in an electric furnace and forcedly dried at a temperature of about 70 degrees for about 12 hours to be hardened. An energization test was performed on the surface temperature (thermometer 1 to thermometer 5) of the PTC planar heating element taken out from the mold. Table 2 shows the results of the energization test.

Figure 2011049162
Figure 2011049162

上記の〔0026〕の方法で造られた組成物と2本の電極線を直径20mm×600mmの円筒形のステンレスパイプに充填しこのパイプを電気炉に入れ、70度程度の温度で20時間位強制乾燥して造られたPTC面状発熱体を内装したパイプ温度について通電テストを行った。電極線には直径2.5mmの銅線を使用した。通電テストの結果を表3に示す。   The composition prepared by the above method [0026] and two electrode wires are filled into a cylindrical stainless steel pipe having a diameter of 20 mm × 600 mm, and this pipe is put into an electric furnace, and the temperature is about 70 ° C. for about 20 hours. An energization test was performed on the temperature of a pipe in which a PTC sheet heating element manufactured by forced drying was installed. A copper wire having a diameter of 2.5 mm was used as the electrode wire. Table 3 shows the results of the energization test.

Figure 2011049162
Figure 2011049162

上記の〔0026〕の方法で造られた組成物と2本の電極線を直径20mm×600mmの円筒形のステンレスパイプに充填しこのパイプを電気炉に入れ、70度程度の温度で20時間位強制乾燥して造られたPTC面状発熱体を、内装したパイプを水2リットルが入った直径40mmの筒内に挿入して、パイプ温度及び水温度について通電テストを行った。電極線には直径2.5mmの銅線を使用した。通電テストの結果を表4に示す。   The composition prepared by the above method [0026] and two electrode wires are filled into a cylindrical stainless steel pipe having a diameter of 20 mm × 600 mm, and this pipe is put into an electric furnace, and the temperature is about 70 ° C. for about 20 hours. The PTC sheet heating element produced by forced drying was inserted into a 40 mm diameter cylinder containing 2 liters of water, and an energization test was conducted on the pipe temperature and water temperature. A copper wire having a diameter of 2.5 mm was used as the electrode wire. Table 4 shows the results of the energization test.

Figure 2011049162
Figure 2011049162

上記の〔0026〕の方法で造られた組成物で、電気炉で70度程度の温度で12時間位強制乾燥して造られた角柱型試料(10mm×12mm×100mm)を作製し、曲げ強さについて測定した。試験方法はJIS規格の7721に基づき、株式会社島津製作所(型式AG−2000D)の機械を用いて行った。その結果、以下の結果を得た。試験日:平成21年7月1日。試験場所:長崎県窯業技術センター(窯技第 平成21−66−2号)。   A prism-shaped sample (10 mm × 12 mm × 100 mm) produced by forced drying for about 12 hours in an electric furnace at a temperature of about 70 ° C. with the composition produced by the above-described method [0026] was prepared, and bending strength was Measured for thickness. The test method was based on JIS standard 7721, using a machine from Shimadzu Corporation (model AG-2000D). As a result, the following results were obtained. Test date: July 1, 2009. Test place: Nagasaki Prefectural Ceramic Technology Center (Ceramics Technology No. 21-66-2).

試料名−1=1.64MPa
試料名−2=1.35MPa
試料名−3=1.55MPa
試料名−4=1.29MPa
試料名−5=1.13MPa
(平均)=1.39MPa
Sample name-1 = 1.64 MPa
Sample name-2 = 1.35 MPa
Sample name-3 = 1.55 MPa
Sample name-4 = 1.29 MPa
Sample name-5 = 1.13 MPa
(Average) = 1.39 MPa

上記の〔0026〕の方法で造られた組成物で、電気炉で70度程度の温度で12時間位強制乾燥して造られた短円柱型試料(直径20mm×10mm)を作製し、遠赤外線放射率について測定した。試験方法は日本電子(株)製遠赤外線分光放射計(JIR−E500)を使用し、ヒーター温度60℃にて測定を行った。測定には申請者が持ち込んだ試料の片面のみを研磨し平滑化したものを使用した。また、未研磨面を測定面とした。積分放射率は、波長範囲3.33〜25.42μmにて算出した。その結果、以下の結果を得た。試験日:平成21年6月3日。試験場所:長崎県窯業技術センター(窯技第 平成21−66−3号)。   A short cylindrical sample (diameter 20 mm × 10 mm) produced by forced drying for about 12 hours in an electric furnace at a temperature of about 70 ° C. with the composition produced by the above method [0026] was prepared, and far infrared rays were produced. The emissivity was measured. The test method used the far infrared spectroscopy radiometer (JIR-E500) by JEOL Co., Ltd., and measured it at the heater temperature of 60 degreeC. For the measurement, only one side of the sample brought in by the applicant was polished and smoothed. The unpolished surface was used as the measurement surface. The integral emissivity was calculated in the wavelength range of 3.33 to 25.42 μm. As a result, the following results were obtained. Test date: June 3, 2009. Test place: Nagasaki Prefectural Ceramic Technology Center (Ceramic Technology No. 21-66-3).

表面温度=48.8℃ 積分放射率=88.4%
Surface temperature = 48.8 ° C Integrated emissivity = 88.4%

グラスウール:1kgと水:1リットル、及びポリアミド系樹脂保護材18kg(ポリアミドは2.7kg(=18kg×15%)含有)を攪拌機に入れて攪拌し、その後に平均粒径8.32μmの黒鉛:10kg、残りの水:9リットルを攪拌機内に加えて30分程度攪拌を行った。なお、黒鉛は前記の表1に示すものを使用した。また、ポリアミド系樹脂保護材は前記の(0019)に示す成分割合を有するものを使用した。   Glass wool: 1 kg, water: 1 liter, and polyamide-based resin protective material 18 kg (polyamide contains 2.7 kg (= 18 kg × 15%)) are stirred in a stirrer, and thereafter graphite having an average particle size of 8.32 μm: 10 kg of the remaining water: 9 liters was added to the stirrer and stirred for about 30 minutes. The graphite shown in Table 1 was used. Moreover, the polyamide-type resin protective material used what has the component ratio shown to said (0019).

攪拌後のPTC面状発熱体の成形用組成物をサイズが例えば250mm×300mm×12mmの型枠内に半分程流し込み、プラス極とマイナス極を構成する2本の電極線を入れると共に成形用組成物の端部から外部に突出させて通電用端子部とし、残りを流し込んだ。電極線には直径2.5mmの銅線を使用した。   After the stirring, the molding composition of the PTC planar heating element is poured into a mold having a size of, for example, 250 mm × 300 mm × 12 mm, and two electrode wires constituting a plus electrode and a minus electrode are inserted and the molding composition It was made to project outside from the end of the object to be a current-carrying terminal, and the rest was poured. A copper wire having a diameter of 2.5 mm was used as the electrode wire.

この後、これを電気炉に入れ70度程度の温度で12時間位、強制乾燥させて固まらせた。型枠から取り出したPTC面状発熱体の表面温度(温度計1:測定箇所は1箇所としたのは殆ど温度差がなかったため)について通電テストを行った。通電テストの結果を表5に示す。   Thereafter, this was put in an electric furnace and forcedly dried at a temperature of about 70 degrees for about 12 hours to be hardened. An energization test was performed on the surface temperature of the PTC planar heating element taken out from the mold (thermometer 1: the measurement location was set to one location because there was almost no temperature difference). Table 5 shows the results of the energization test.

Figure 2011049162
Figure 2011049162

上記の〔0039〕の方法で造られた組成物で、電気炉で70度程度の温度で12時間位強制乾燥して造られた角柱型試料(10mm×12mm×100mm)を作製し、曲げ強さについて測定した。試験方法はJIS規格の7721に基づき、株式会社島津製作所(型式AG−2000D)の機械を用いて行った。その結果、以下の結果を得た。試験日:平成22年4月8日。試験場所:長崎県窯業技術センター。   A prism-shaped sample (10 mm × 12 mm × 100 mm) made by forced drying for about 12 hours at a temperature of about 70 ° C. in the electric furnace with the composition prepared by the above method [0039] was prepared, and bending strength was Measured for thickness. The test method was based on JIS standard 7721, using a machine from Shimadzu Corporation (model AG-2000D). As a result, the following results were obtained. Test date: April 8, 2010. Testing place: Nagasaki Ceramic Technology Center.

試料名−1=1.9MPa
試料名−2=1.2MPa
試料名−3=1.8MPa
試料名−4=1.6MPa
試料名−5=1.4MPa
試料名−6=1.7MPa
試料名−7=1.6MPa
試料名−8=1.6MPa
試料名−9=1.6MPa
試料名−10=1.5MPa
(平均)=1.6MPa
Sample name-1 = 1.9 MPa
Sample name-2 = 1.2 MPa
Sample name-3 = 1.8 MPa
Sample name-4 = 1.6 MPa
Sample name-5 = 1.4 MPa
Sample name−6 = 1.7 MPa
Sample name-7 = 1.6 MPa
Sample name-8 = 1.6 MPa
Sample name−9 = 1.6 MPa
Sample name-10 = 1.5 MPa
(Average) = 1.6 MPa

上記の〔0039〕の方法で造られた組成物で、電気炉で70度程度の温度で12時間位強制乾燥して造られた短円柱型試料(直径20mm×10mm)を作製し、遠赤外線放射率について測定した。試験方法は日本電子(株)製遠赤外線分光放射計(JIR−E500)を使用し、ヒーター温度100℃にて測定を行った。測定には申請者が持ち込んだ試料の片面のみを研磨し平滑化したものを使用した。また、未研磨面を測定面とした。積分放射率は、波長範囲3.33〜25.42μmにて算出した。その結果、以下の結果を得た。試験日:平成22年4月8日。試験場所:長崎県窯業技術センター。   A short cylindrical sample (diameter 20 mm × 10 mm) produced by the forced drying in the electric furnace at a temperature of about 70 ° C. for about 12 hours with the composition produced by the above method [0039] was produced. The emissivity was measured. The test method used the far infrared spectroradiometer (JIR-E500) by JEOL Co., Ltd., and measured it at the heater temperature of 100 degreeC. For the measurement, only one side of the sample brought in by the applicant was polished and smoothed. The unpolished surface was used as the measurement surface. The integral emissivity was calculated in the wavelength range of 3.33 to 25.42 μm. As a result, the following results were obtained. Test date: April 8, 2010. Testing place: Nagasaki Ceramic Technology Center.

表面温度=87.9℃ 積分放射率=77.9%
Surface temperature = 87.9 ° C. Integrated emissivity = 77.9%

1 PTC面状発熱体
2 通電用端子部
3 電極線
4 外枠容器
41 挿通孔
DESCRIPTION OF SYMBOLS 1 PTC planar heating element 2 Terminal part for electricity supply 3 Electrode wire 4 Outer frame container 41 Insertion hole

Claims (9)

黒鉛と、グラスウール又は/及びロックウールと、水とを主成分として含むことを特徴とするPTC面状発熱体成形用組成物。 A PTC planar heating element molding composition comprising graphite, glass wool or / and rock wool, and water as main components. 黒鉛と、グラスウール又は/及びロックウールと、水とを主成分として含み、その配合組成が重量比で、黒鉛が1の割合に対して、グラスウール又は/及びロックウールが5%〜25%、水が50%〜100%、からなることを特徴とするPTC面状発熱体成形用組成物。 It contains graphite, glass wool or / and rock wool, and water as the main components, and the blending composition is in a weight ratio of 5% to 25% of glass wool or / and rock wool with respect to the ratio of graphite of 1. A composition for molding a PTC planar heating element, characterized by comprising 50% to 100%. 黒鉛と、グラスウール又は/及びロックウールと、水と、ポリアミド系樹脂とを主成分として含むことを特徴とするPTC面状発熱体成形用組成物。 A composition for molding a PTC sheet heating element, comprising graphite, glass wool or / and rock wool, water, and a polyamide-based resin as main components. 黒鉛と、グラスウール又は/及びロックウールと、水と、ポリアミド系樹脂とを主成分として含み、その配合組成が重量比で、黒鉛が1の割合に対して、グラスウール又は/及びロックウールが5%〜25%、水が50%〜100%、ポリアミド系樹脂が5〜40%、からなることを特徴とするPTC面状発熱体成形用組成物。 It contains graphite, glass wool or / and rock wool, water, and polyamide-based resin as the main components, and the blending composition is 5% by weight of glass wool and / or rock wool with respect to a ratio of 1 for graphite. A composition for molding a PTC planar heating element, comprising: 25%, 50% to 100% water, and 5 to 40% polyamide resin. 黒鉛は、平均粒径が1μm〜30μmである請求項1〜請求項4の何れかに記載のPTC面状発熱体成形用組成物。 5. The PTC sheet heating element molding composition according to claim 1, wherein the graphite has an average particle diameter of 1 μm to 30 μm. グラスウールは、廃棄物が使用される請求項1〜請求項4の何れかに記載のPTC面状発熱体成形用組成物。 The composition for molding a PTC sheet heating element according to any one of claims 1 to 4, wherein the glass wool is waste. ロックウールは、廃棄物が使用される請求項1〜請求項4の何れかに記載のPTC面状発熱体成形用組成物。 The composition for molding a PTC sheet heating element according to any one of claims 1 to 4, wherein waste is used for rock wool. 請求項1〜請求項7の何れかに記載のPCT面状発熱体成形用組成物を側周面及び底面が囲まれ上面が開放された外枠容器内に一部流し込み、一部流し込んだ部分の上に電極線を配線した後に残りを流し込み、その後にこれを乾燥することを特徴とするPTC面状発熱体の製造方法。 A part of the composition for molding a PCT sheet heating element according to any one of claims 1 to 7 in an outer frame container in which a side peripheral surface and a bottom surface are surrounded and an upper surface is opened. A method for producing a PTC planar heating element, characterized by pouring the electrode wire on the top and then pouring the remainder, and then drying it. 請求項8の製造方法で製造され、電極線に接続する通電用端子部を備えていることを特徴とするPTC面状発熱体。 A PTC sheet heating element manufactured by the manufacturing method according to claim 8 and comprising a current-carrying terminal portion connected to an electrode wire.
JP2010171442A 2009-07-31 2010-07-30 Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element Pending JP2011049162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171442A JP2011049162A (en) 2009-07-31 2010-07-30 Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179737 2009-07-31
JP2010171442A JP2011049162A (en) 2009-07-31 2010-07-30 Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element

Publications (1)

Publication Number Publication Date
JP2011049162A true JP2011049162A (en) 2011-03-10

Family

ID=43835272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171442A Pending JP2011049162A (en) 2009-07-31 2010-07-30 Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element

Country Status (1)

Country Link
JP (1) JP2011049162A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251187A (en) * 1985-08-29 1987-03-05 三菱電機株式会社 Self-temperature controlling type heat generating body
JPH0547457A (en) * 1991-08-09 1993-02-26 Mitsubishi Cable Ind Ltd Manufacture of organic panel heating element having positive temperature coefficient
JPH09237672A (en) * 1996-02-29 1997-09-09 Aisin Chem Co Ltd Self-temperature control heating element
JP2000036372A (en) * 1998-07-16 2000-02-02 Otsuka Chem Co Ltd Sheet heater, sheet heater length, and manufacture of heater
JP2003142233A (en) * 2001-10-30 2003-05-16 Canon Inc Heating body, manufacturing method of heat generation body, heating device and image forming device
JP2005093735A (en) * 2003-09-17 2005-04-07 Toyoaki Kimura Conductive particle composition of self-temperature adjustment heating element and method and device for evaluating its performance
JP2007321124A (en) * 2006-06-05 2007-12-13 Kanenori Fujita Composite resin composition, structure containing composite resin composition, production method and method for producing solid-liquid separating body
JP2009099329A (en) * 2007-10-15 2009-05-07 Azesu:Kk Ptc sheet heating element, and its molding composition and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251187A (en) * 1985-08-29 1987-03-05 三菱電機株式会社 Self-temperature controlling type heat generating body
JPH0547457A (en) * 1991-08-09 1993-02-26 Mitsubishi Cable Ind Ltd Manufacture of organic panel heating element having positive temperature coefficient
JPH09237672A (en) * 1996-02-29 1997-09-09 Aisin Chem Co Ltd Self-temperature control heating element
JP2000036372A (en) * 1998-07-16 2000-02-02 Otsuka Chem Co Ltd Sheet heater, sheet heater length, and manufacture of heater
JP2003142233A (en) * 2001-10-30 2003-05-16 Canon Inc Heating body, manufacturing method of heat generation body, heating device and image forming device
JP2005093735A (en) * 2003-09-17 2005-04-07 Toyoaki Kimura Conductive particle composition of self-temperature adjustment heating element and method and device for evaluating its performance
JP2007321124A (en) * 2006-06-05 2007-12-13 Kanenori Fujita Composite resin composition, structure containing composite resin composition, production method and method for producing solid-liquid separating body
JP2009099329A (en) * 2007-10-15 2009-05-07 Azesu:Kk Ptc sheet heating element, and its molding composition and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2011049162A (en) Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element
CN103304872A (en) High-density polyvinyl PTC high molecular exothermic material and preparation method thereof
CN111393063B (en) Electromagnetic controlled-release microcapsule/steel fiber self-repairing concrete and preparation method thereof
CN204718378U (en) A kind of coreless induction furnace
CN105174982B (en) Preparation method for the castable of blast furnace tuyere small sleeve and its with tuyere small sleeve
CN106699127A (en) Hot wind erosion-resistant refractory brick and preparation process thereof
CN104654805A (en) Quartz resistance tube heating element for vacuum furnace and preparation method thereof
CN202470747U (en) Inductive coupling heating and sintering device
CN105330248A (en) Fireproof material for high-voltage transformer substation
US11805937B2 (en) Heating cooker using ceramic heating element and manufacturing method therefor
JP2009099329A (en) Ptc sheet heating element, and its molding composition and its manufacturing method
KR101771677B1 (en) Refractory bricks for fireplaces emitting negative ions and far infrared rays
CN107602137A (en) A kind of moulding by casting converter taphole inner nozzle brick and preparation method thereof
CN103405167B (en) Domestic food apparatus for baking
CN208016028U (en) A kind of medium-wave infrared heat generating device
CN1816225B (en) Composite ceramic heating unit and making method thereof
RU152820U1 (en) ELECTRIC HEATER
CN105367104B (en) The preparation method of electric heating floor
CN101772225B (en) Novel heating element
KR20020079289A (en) Electric conductive heating mortar panel producing infrared rays
RU54708U1 (en) ELECTRIC HEATING INSERT
CN103759535B (en) Method for manufacturing heat-insulation layers of coil of medium-frequency vacuum smelting furnace
KR100535380B1 (en) Mortar Composition for Floor
CN212064385U (en) Ultra-low power consumption graphite alkene high temperature heating tube
CN106255237A (en) Electric heating water bag heater material prescription

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Effective date: 20121001

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115