JPS6251187A - Self-temperature controlling type heat generating body - Google Patents
Self-temperature controlling type heat generating bodyInfo
- Publication number
- JPS6251187A JPS6251187A JP19013785A JP19013785A JPS6251187A JP S6251187 A JPS6251187 A JP S6251187A JP 19013785 A JP19013785 A JP 19013785A JP 19013785 A JP19013785 A JP 19013785A JP S6251187 A JPS6251187 A JP S6251187A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- self
- heating element
- controlled heating
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は特定の温度領域に達すると発熱体の抵抗温度
係数が急激に正の方向に増大する性質(以下PTC特性
と称する)を示す自己温度制御形発熱体に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a self-heating element that exhibits a property (hereinafter referred to as PTC property) in which the temperature coefficient of resistance of a heating element rapidly increases in the positive direction when a specific temperature range is reached. This invention relates to a temperature-controlled heating element.
従来より結晶性高分子をマトリックスとし、カーボンブ
ラックやグラファイト等の導電性フィラーを混練して所
望の形態に成形した発熱体がそのマトリックスの融点付
近の温度でPTC特性を有することは良く知られている
。典型的なPTCfi+性曲線を第2図の曲線(a)に
示す。なお、第2図において、縦軸はオームで表わす抵
抗値0Ω)、横軸は度で表わす温度(’C)である。発
熱体の抵抗値はマ) IJラックス融点以下では徐々に
増加する程度であるが、マトリックスの融点に近づくと
急激に増大する。従って、この性質を利用するとマトリ
ックスの融点を越えない温度範囲で発熱する自己温度制
御形発熱体を形成することができる。It is well known that heating elements made of crystalline polymer as a matrix and kneaded with conductive fillers such as carbon black or graphite to form a desired shape have PTC characteristics at temperatures near the melting point of the matrix. There is. A typical PTCfi+ curve is shown in curve (a) of FIG. In FIG. 2, the vertical axis is the resistance value (0Ω) expressed in ohms, and the horizontal axis is the temperature ('C) expressed in degrees. The resistance value of the heating element increases gradually below the melting point of the IJ lux, but increases rapidly as it approaches the melting point of the matrix. Therefore, by utilizing this property, it is possible to form a self-temperature-controlled heating element that generates heat within a temperature range that does not exceed the melting point of the matrix.
しかし2発熱体の抵抗値はほぼ融点でピークに達し、そ
れ以上の温度では徐々に減少する。従って。However, the resistance value of the two heating elements reaches a peak approximately at the melting point and gradually decreases at temperatures above that point. Therefore.
何らかの原因で発熱体の温度がこのピーク温度を越える
と自己温度制御機能を失ない、を流が増大して焼損に至
る危険性がある。If the temperature of the heating element exceeds this peak temperature for some reason, it will not lose its self-temperature control function, and there is a risk that the heat flow will increase, leading to burnout.
特開昭58−71584号公報ではマ11ツクスに繊維
素樹脂を配合した結晶性の熱可塑性高分子を用いること
により、第2図の曲線(b)のように抵抗値のピーク値
を増巾し、実使用上このピーク温度を越えられないよう
に改善した。In JP-A-58-71584, the peak value of the resistance value is increased as shown in curve (b) in Figure 2 by using a crystalline thermoplastic polymer containing cellulose resin in the matrix. However, improvements have been made so that this peak temperature cannot be exceeded in actual use.
また、特開昭55−6745号公報ではマ) IJソッ
クス2種以上の結晶性高分子の組成物を用いることによ
り、第2図の曲線(c)のように抵抗値のピークを複数
とし、何らかの原因で発熱体の温度が第1のピーク温度
を越えても第2のピークで温度制御することによυ安全
性を確保した。In addition, Japanese Patent Application Laid-Open No. 55-6745 discloses (Ma) IJ socks by using a composition of two or more types of crystalline polymers, so that the resistance value has multiple peaks as shown in curve (c) in FIG. Even if the temperature of the heating element exceeds the first peak temperature for some reason, υ safety is ensured by controlling the temperature at the second peak.
上記のように結晶性高分子をマトリックスとし。As mentioned above, a crystalline polymer is used as a matrix.
カーボンブラックやグラファイト等の導電性フィラーを
混練して所望の形態に成形した発熱体が示すPTC特性
は、結晶性高分子の融解に伴って体積膨張が起こり、そ
の中に分散している導電性フィラーの間隔が押し拡げら
れ、接触抵抗が急激に増大することによるものである。The PTC characteristic exhibited by a heating element made by kneading conductive fillers such as carbon black or graphite and molding it into a desired shape is due to the volume expansion that occurs as the crystalline polymer melts, and the conductivity dispersed within it. This is due to the fact that the gap between the fillers is expanded and the contact resistance increases rapidly.
上記のような従来の自己温度制御形発熱体では。 In conventional self-temperature-controlled heating elements such as those mentioned above.
融点を越えると抵抗値は逆に減少するが、これはマトリ
ックスが流動性を示すことに起因し、マトリックス樹脂
を電子線照射等によシ三次元架橋して流動性を押えると
抵抗値の減少は見られなくなるが、一方でPTC特性が
低下するという問題点があった。When the melting point is exceeded, the resistance value decreases, but this is due to the fact that the matrix exhibits fluidity.If the matrix resin is three-dimensionally crosslinked by electron beam irradiation, etc. to suppress the fluidity, the resistance value decreases. However, on the other hand, there was a problem in that the PTC characteristics deteriorated.
この発明は、かかる問題点を解決するためになされたも
ので、特定の温度領域で急激に抵抗値が上昇し、その温
度を越えても実用上抵抗値が低下しなく、長期間の使用
においても、優れた特性の変化が少ない信頼性の高い自
己温度制御形発熱体を得ることを目的とする。“
〔問題点を解決するための手段〕
この発明の自己温度制御形発熱体は、軟化温度が200
℃以上の熱可塑性高分子をマ) IJソックスし、これ
にマイクロクリスタリンワックス、導電性フィラーおよ
び酸化防止剤を含有させたものである。This invention was made to solve this problem, and the resistance value increases rapidly in a specific temperature range, and even if the temperature exceeds that temperature, the resistance value does not actually decrease, so that it cannot be used for a long period of time. Another object of the present invention is to obtain a highly reliable self-temperature-controlled heating element with excellent characteristics that undergo little change. “ [Means for solving the problem] The self-temperature-controlled heating element of the present invention has a softening temperature of 200
℃ or higher thermoplastic polymer is made into an IJ sock, which contains microcrystalline wax, a conductive filler, and an antioxidant.
マイクロクリスタリンワックスが結晶性高分子と比較し
てシャープな融点を持つため、成形された発熱体の抵抗
値はマイクロクリスタリンワックスの融点付近で急激に
上昇する。また融点を越えても軟化温度の高いマトリッ
クスを用いているので、マトリックスは実用上軟化しな
いために流動性を示さず、従って、実用上抵抗値の低下
も起こらない。また、酸化防止剤の添加によシマトリッ
クスの分子量の低下が抑制され、長期間の使用において
も特性の変化がほとんど起こらず、信頼性の高い自己温
度制御形発熱体が得られる。Since microcrystalline wax has a sharper melting point than crystalline polymers, the resistance value of the molded heating element increases rapidly near the melting point of microcrystalline wax. Further, since a matrix having a high softening temperature even above the melting point is used, the matrix does not soften in practice and does not exhibit fluidity, and therefore, in practice, no decrease in resistance value occurs. In addition, the addition of an antioxidant suppresses a decrease in the molecular weight of the matrix, resulting in almost no change in properties even after long-term use, resulting in a highly reliable self-temperature-controlled heating element.
軟化温度が200℃以上の熱可塑性高分子としては例え
ばポリエステル、ポリカーボネート、ポリアミド、セル
ロース繊維樹脂およびフッ素系樹脂等の内の少なくとも
一種が用いられる。なお、軟化温度が200℃以上であ
れば、有機材料を用いたことを考慮した使用温度範囲で
実用上軟化しないと考えられる。As the thermoplastic polymer having a softening temperature of 200°C or higher, at least one of polyester, polycarbonate, polyamide, cellulose fiber resin, fluororesin, etc. is used. Note that if the softening temperature is 200° C. or higher, it is considered that it will not soften in practice within the operating temperature range considering the use of an organic material.
マイクロクリスタリンワックスとしては、融点が70〜
100℃の範囲のものが市販されているが。Microcrystalline wax has a melting point of 70~
Products with a temperature range of 100°C are commercially available.
例えば融点が76℃のセラツタ104(商品名2日本石
油精製社製)、融点が84℃のHl−Mic4080(
商品名9日本′N#4社製)および融点が96℃のHl
−Mic2095(商品名2日本精魂社製)等の内の少
なくとも一種が用いられる。他に輸入品もあるが、融点
はほぼ同じ温度範囲にある。For example, Seratsuta 104 (product name 2 manufactured by Nippon Oil Refining Co., Ltd.) has a melting point of 76°C, Hl-Mic4080 (product name 2, manufactured by Nippon Oil Refining Co., Ltd.) has a melting point of 84°C,
Product name: 9 Nippon'N#4) and Hl with a melting point of 96°C
- At least one type of Mic2095 (trade name 2 manufactured by Nippon Seikon Co., Ltd.) is used. There are other imported products, but their melting points are in the same temperature range.
導電性フィラーとしては例えばカーボンブラック、グラ
ファイトおよびカーボン繊維等の内の少なくとも一種が
用いられ、配合量はマイクロクリスタリンワックスを含
む熱可塑性高分子の重量の10〜40重量−の範囲から
選ばれるのが望ましい。As the conductive filler, for example, at least one of carbon black, graphite, carbon fiber, etc. is used, and the blending amount is selected from the range of 10 to 40% by weight of the thermoplastic polymer containing microcrystalline wax. desirable.
酸化防止剤としては例えばペンゾイミダゾール類、ヒン
ダードフェノール類、トリアジン誘導体類およびフェノ
ールスルフィド類等の少なくとも一種が用いられ、特に
2−メルカプトベンゾイミダゾールが好適に用いられる
。なお、酸化防止剤の添加が、マトリックスの酸化によ
る低分子量化を抑制するため、軟化温度の低下も抑制し
、信頼性の向上に寄与する。As the antioxidant, at least one of penzimidazoles, hindered phenols, triazine derivatives, and phenol sulfides is used, and 2-mercaptobenzimidazole is particularly preferably used. Note that since the addition of an antioxidant suppresses lowering of the molecular weight due to oxidation of the matrix, it also suppresses a decrease in the softening temperature, contributing to improved reliability.
以下、実施例によりこの発明を具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples.
実施例1
軟化温度が220℃のポリカーボネート(三菱瓦斯化学
展、商品名ニーピロンB2000 ) 50重量部。Example 1 50 parts by weight of polycarbonate having a softening temperature of 220° C. (Mitsubishi Gas Chemical Exhibition, trade name: Nipiron B2000).
融点が76℃のセラツタ104100重量部、ファーネ
ス系カーボンブラック45重量部および2−メルカプト
ベンゾイミダゾール4重量部をパンバリミキサーに投入
して混練し、加熱三本ロールを用いて厚さ111.幅1
0clIL、長さ10儂のシート状に成形した。次に両
端に幅1cIrLの電極を設け、ポリエチレンテレフタ
レートフィルムで両面を絶縁保護することにより、この
発明の一実施例の自己温度制御形発熱体を作製した。100 parts by weight of Seratsuta 104 having a melting point of 76°C, 45 parts by weight of furnace carbon black, and 4 parts by weight of 2-mercaptobenzimidazole were put into a Pan Bali mixer, kneaded, and kneaded using three heated rolls to a thickness of 111°C. Width 1
It was formed into a sheet of 0 clIL and 10 degrees long. Next, electrodes having a width of 1 cIrL were provided at both ends, and both sides were insulated and protected with a polyethylene terephthalate film, thereby producing a self-temperature-controlled heating element according to an embodiment of the present invention.
実施例2
セラツタ104の代シに融点84℃のHl−Mic10
80を用い、実施例1と同様にして、この発明の他の実
施例の自己温度制御形発熱体を作製した。Example 2 Hl-Mic10 with a melting point of 84°C was used as a substitute for Seratuta 104.
A self-temperature-controlled heating element according to another example of the present invention was manufactured in the same manner as in Example 1 using No. 80.
実施例3
° セラツタ104の代シに融点96℃のHi −Mi
c 2095を用い、実施例1と同様にして、この発明
のさらに他の実施例の自己温度制御形発熱体を作製した
。Example 3 Hi-Mi with a melting point of 96° C. was used as a substitute for the Seratuta 104.
In the same manner as in Example 1, a self-temperature-controlled heating element according to another example of the present invention was manufactured using C.c.2095.
第1図は、上記実施例で得られた自己温度制御形発熱体
を各温度の電気オープンに入れた後、測定した温度によ
る自己温度制御形発熱体の抵抗値変化を示す抵抗温度特
性図であり、縦軸はオームで表わす抵抗値(KΩ)を、
横軸は度で表わす温度(’C)である。図において、
(d)、 (8)および(f)は各々実施例1,2およ
び3の特性を示す。Figure 1 is a resistance-temperature characteristic diagram showing the resistance value change of the self-temperature-controlled heating element obtained in the above example according to the measured temperature after the self-temperature-controlled heating element was placed in an electrical open circuit at each temperature. Yes, the vertical axis is the resistance value (KΩ) expressed in ohms,
The horizontal axis is temperature ('C) expressed in degrees. In the figure,
(d), (8) and (f) show the characteristics of Examples 1, 2 and 3, respectively.
第1図よシ明らかなように、この発明の自己温度制御形
発熱体はマイクロクリスタリンワックスの融点付近で急
激に抵抗値が増大し、融点を越えても抵抗の温度係数は
正の値を維持した。As is clear from Figure 1, the resistance value of the self-temperature-controlled heating element of the present invention increases rapidly near the melting point of the microcrystalline wax, and the temperature coefficient of resistance maintains a positive value even beyond the melting point. did.
なお、この発明の実施例は2例えばフィルム状に押出成
形、および特定の形状に射出成形することにより実用に
供せられる。The embodiments of the present invention can be put to practical use by, for example, extrusion molding into a film and injection molding into a specific shape.
〔発明の効果〕
この発明は1以上説明したとおシ、軟化温度が200℃
以上の熱可塑性高分子をマトリックスとし。[Effects of the Invention] As described above, the present invention has a softening temperature of 200°C.
The above thermoplastic polymer is used as a matrix.
これにマイクロクリスタリンワックス、導電性フィラー
および酸化防止剤を含有させたものを用いることにより
、特定の温度領域で急激に抵抗値が上昇し、その温度を
越えても実用上抵抗値が低下しなく、長期間の使用にお
いても優れた特性の変化が少ない信頼性の高い自己温度
制御形発熱体を得ることができる。また1例えば面状等
の任意の形状に成形することにより広い用途に適用する
ことができる。By using this material containing microcrystalline wax, conductive filler, and antioxidant, the resistance value increases rapidly in a specific temperature range, and the resistance value does not actually decrease even after that temperature. Therefore, it is possible to obtain a highly reliable self-temperature-controlled heating element that exhibits excellent characteristics with little change even after long-term use. Moreover, it can be applied to a wide range of applications by molding it into an arbitrary shape, such as a planar shape.
第1図はこの発明の実施例の抵抗温度特性図。
第2図は従来の自己温度制御形発熱体の抵抗温度特性図
である。
図において、(a)はマトリックスに結晶性高分子を用
いた一般的な自己温度制御形発熱体の特性。
(b)はマトリックスに繊維素樹脂を含む熱可塑性樹脂
の組成物を用いたものの特性、(C)はマトリックスと
して複数の結晶性高分子の組成物を用いたものの特性、
(d)、 (e)および(f)はこの発明の実施例の
特性である。FIG. 1 is a resistance temperature characteristic diagram of an embodiment of the present invention. FIG. 2 is a resistance temperature characteristic diagram of a conventional self-temperature-controlled heating element. In the figure, (a) shows the characteristics of a general self-temperature-controlled heating element using a crystalline polymer as a matrix. (b) is the characteristic of a matrix using a thermoplastic resin composition containing a cellulose resin; (C) is the characteristic of a matrix using a composition of multiple crystalline polymers;
(d), (e) and (f) are characteristics of embodiments of the invention.
Claims (4)
リックスとし、これにマイクロクリスタリンワックス、
導電性フィラーおよび酸化防止剤を含有させた自己温度
制御形発熱体。(1) A thermoplastic polymer with a softening temperature of 200°C or higher is used as a matrix, and microcrystalline wax,
Self-temperature-controlled heating element containing conductive filler and antioxidant.
ル、高分子量ヒンダードフェノール、トリアジン誘導体
およびジアルキルフェノールスルフィドの内の少なくと
も一種である特許請求の範囲第1項記載の自己温度制御
形発熱体。(2) The self-temperature-controlled heating element according to claim 1, wherein the antioxidant is at least one of 2-mercaptobenzimidazole, a high molecular weight hindered phenol, a triazine derivative, and a dialkylphenol sulfide.
イトおよびカーボン繊維の内の少なくとも一種である特
許請求の範囲第1項又は第2項記載の自己温度制御形発
熱体。(3) The self-temperature-controlled heating element according to claim 1 or 2, wherein the conductive filler is at least one of carbon black, graphite, and carbon fiber.
ート、ポリアミド、セルロース系樹脂およびフッ素系樹
脂の内の少なくとも一種である特許請求の範囲第1項な
いし第3項の何れかに記載の自己温度制御形発熱体。(4) The self-temperature control type according to any one of claims 1 to 3, wherein the thermoplastic polymer is at least one of polyester, polycarbonate, polyamide, cellulose resin, and fluororesin. heating element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19013785A JPS6251187A (en) | 1985-08-29 | 1985-08-29 | Self-temperature controlling type heat generating body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19013785A JPS6251187A (en) | 1985-08-29 | 1985-08-29 | Self-temperature controlling type heat generating body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6251187A true JPS6251187A (en) | 1987-03-05 |
Family
ID=16253010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19013785A Pending JPS6251187A (en) | 1985-08-29 | 1985-08-29 | Self-temperature controlling type heat generating body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6251187A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363341A (en) * | 1986-08-29 | 1988-03-19 | ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ | Water in oil type emulsion |
US6143206A (en) * | 1998-06-24 | 2000-11-07 | Tdk Corporation | Organic positive temperature coefficient thermistor and manufacturing method therefor |
US7019613B2 (en) | 2002-06-24 | 2006-03-28 | Tdk Corporation | PTC thermistor body, PTC thermistor, method of making PTC thermistor body, and method of making PTC thermistor |
JP2011049162A (en) * | 2009-07-31 | 2011-03-10 | Iwasaki Dannetsu Kk | Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element |
-
1985
- 1985-08-29 JP JP19013785A patent/JPS6251187A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363341A (en) * | 1986-08-29 | 1988-03-19 | ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ | Water in oil type emulsion |
US6143206A (en) * | 1998-06-24 | 2000-11-07 | Tdk Corporation | Organic positive temperature coefficient thermistor and manufacturing method therefor |
US7019613B2 (en) | 2002-06-24 | 2006-03-28 | Tdk Corporation | PTC thermistor body, PTC thermistor, method of making PTC thermistor body, and method of making PTC thermistor |
EP1752993A2 (en) | 2002-06-24 | 2007-02-14 | TDK Corporation | PTC thermistor body and PTC thermistor |
JP2011049162A (en) * | 2009-07-31 | 2011-03-10 | Iwasaki Dannetsu Kk | Composition for molding ptc sheet heating element, method for manufacturing ptc sheet heating element, and ptc sheet heating element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100477022C (en) | PTC composite, manufacturing method thereof and obtained thermosensitive electronic material therefrom | |
US4560498A (en) | Positive temperature coefficient of resistance compositions | |
US4774024A (en) | Conductive polymer compositions | |
EP0417097B1 (en) | Heating element and method for making such a heating element | |
US4658121A (en) | Self regulating heating device employing positive temperature coefficient of resistance compositions | |
US5902518A (en) | Self-regulating polymer composite heater | |
US5691689A (en) | Electrical circuit protection devices comprising PTC conductive liquid crystal polymer compositions | |
US5250226A (en) | Electrical devices comprising conductive polymers | |
US4884163A (en) | Conductive polymer devices | |
US5554679A (en) | PTC conductive polymer compositions containing high molecular weight polymer materials | |
GB2036754A (en) | Low resistivity ptc compositions | |
KR20170083630A (en) | Positive temperature coefficient composition | |
US4318881A (en) | Method for annealing PTC compositions | |
DE3689830T2 (en) | Temperature sensitive device. | |
US11037708B2 (en) | PPTC device having resistive component | |
JPS6251187A (en) | Self-temperature controlling type heat generating body | |
CA1337012C (en) | Temperature self-controlling heating composition | |
JPS6251185A (en) | Self-temperature controlling type heat generating body | |
JPS6251184A (en) | Self-temperature controlling type heat generating body | |
JPS6251186A (en) | Self-temperature controlling type heat generating body | |
JPS63302501A (en) | Ptc conductive polymer composition | |
KR960022851A (en) | Composition of Polymer PTC (Constant Temperature Coefficient) | |
CN115244631B (en) | PPTC heater and material with stable power and self-limiting characteristics | |
JPH01151191A (en) | Temperature self-control type face heater | |
JPS63219102A (en) | Ptc resistance material |