JPS6251186A - Self-temperature controlling type heat generating body - Google Patents

Self-temperature controlling type heat generating body

Info

Publication number
JPS6251186A
JPS6251186A JP19013685A JP19013685A JPS6251186A JP S6251186 A JPS6251186 A JP S6251186A JP 19013685 A JP19013685 A JP 19013685A JP 19013685 A JP19013685 A JP 19013685A JP S6251186 A JPS6251186 A JP S6251186A
Authority
JP
Japan
Prior art keywords
temperature
self
melting point
heating element
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19013685A
Other languages
Japanese (ja)
Inventor
健造 高橋
虎彦 安藤
森脇 紀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19013685A priority Critical patent/JPS6251186A/en
Publication of JPS6251186A publication Critical patent/JPS6251186A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ゛ 〔産業上の利用分野〕 この発明は特定の温度領域に達すると発熱体の抵抗温度
係数が急激に正の方向に増大する性質(以下PTC特性
と称する)を示す自己温度制御発熱体に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention exhibits a property (hereinafter referred to as PTC property) in which the temperature coefficient of resistance of a heating element rapidly increases in the positive direction when a specific temperature range is reached. This invention relates to a self-temperature-controlled heating element.

〔従来の技術〕[Conventional technology]

従来より結晶性高分子をマトリックスとし、カーボンブ
ラックやグラファイト等の導電性フィラ゛−を混練して
所望の形態に成形した発熱体がそのマトリックスの融点
付近の温度でPTC特性を有することは良(知られてい
る。共形的なPTC特性曲線を第2図の曲線(alに示
す。なお、第2図において、縦軸はオームで表わす抵抗
値(KΩ)。
It has been well known that heating elements made of crystalline polymer as a matrix and kneaded with conductive filaments such as carbon black or graphite to form a desired shape have PTC characteristics at temperatures near the melting point of the matrix. A conformal PTC characteristic curve is shown in curve (al) in FIG. 2. In FIG. 2, the vertical axis is the resistance value (KΩ) expressed in ohms.

横軸は度で表わす温度(’C)である。発熱体の抵抗値
はマトリックスの融点以下では徐々に増加する程度であ
るが、マトリックスの融点に近ずくと急激に増大する。
The horizontal axis is temperature ('C) expressed in degrees. The resistance value of the heating element increases gradually below the melting point of the matrix, but increases rapidly as it approaches the melting point of the matrix.

従ってこの性質を利用するとマトリックスの融点を越え
ない温度範囲で発熱する自己温度制御形見熱体を形成す
ることができる。
Therefore, by utilizing this property, it is possible to form a self-temperature-controlled token heating element that generates heat within a temperature range that does not exceed the melting point of the matrix.

しかし2発熱体の抵抗値はほぼ融点でピークに達し、そ
れ以上の温度では徐々に減少する。従って。
However, the resistance value of the two heating elements reaches a peak approximately at the melting point and gradually decreases at temperatures above that point. Therefore.

何らかの原因で発熱体の温度がこのピーク温度を越える
と自己温度制御機能を失ない、電流が増大して焼損に至
る危険性がある。
If the temperature of the heating element exceeds this peak temperature for some reason, the self-temperature control function is lost, and there is a risk that the current will increase and cause burnout.

特開昭58−71584号公報ではマトリックスに繊維
素樹脂を配合した結晶性の熱可塑性高分子を用いること
により、第2図の曲線(blのように抵抗値のピーク値
を増巾し、実使用上このピーク温度を越えられないよう
に改善した。
In JP-A-58-71584, by using a crystalline thermoplastic polymer containing a cellulose resin as a matrix, the peak value of the resistance value is increased as shown in the curve (bl) in Figure 2, and Improvements have been made so that this peak temperature cannot be exceeded during use.

また、特開昭55−6745号公報ではマトリックスに
2種以上の結晶性高分子の組成物を用いることにより、
第2図の曲線(C)のように抵抗値のピークを複数とし
、何らかの原因で発熱体の温度が第1のピーク温度を越
えても第2のピークで温度制御することにより安全性を
確保した。
Furthermore, in JP-A-55-6745, by using a composition of two or more types of crystalline polymers in the matrix,
As shown in curve (C) in Figure 2, the resistance value has multiple peaks, and even if the temperature of the heating element exceeds the first peak temperature for some reason, safety is ensured by controlling the temperature at the second peak. did.

上記のように結晶性高分子をマトリックスとし。As mentioned above, a crystalline polymer is used as a matrix.

カーボンブラックやグラファイト等の導電性フィラーを
混練して所望の形態に成形した発熱体が示すPTC特性
は、結晶性高分子の融解に伴なって体積膨張が起こり、
その中に分散している導電性フィラーの間隔が揮し拡げ
られ、接触抵抗が急激に増大することによるものである
The PTC characteristic exhibited by a heating element made by kneading conductive filler such as carbon black or graphite and molding it into a desired shape is due to the volume expansion that occurs as the crystalline polymer melts.
This is because the distance between the conductive fillers dispersed therein is expanded and the contact resistance increases rapidly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の自己温度制御形見熱体では。 In conventional self-temperature control keepsake heating elements like the one above.

融点を越えると抵抗値は逆に減少するが、これはマトリ
ックスが流動性を示すことに起因し、マトリックス樹脂
を電子線照射等により三次元架橋して流動性を押えると
抵抗値の減少は見られなくなるが、一方でPTC特性が
低下するという問題点があった。
When the melting point is exceeded, the resistance value decreases, but this is due to the fluidity of the matrix.If the matrix resin is three-dimensionally crosslinked by electron beam irradiation to suppress the fluidity, the resistance value does not decrease. However, on the other hand, there was a problem in that the PTC characteristics deteriorated.

この発明は、かかる問題点を解決するためになされたも
ので、特定の温度領域で急激に抵抗値が上昇し、その温
度を越えても実用上抵抗値が低下しなく、長期間の使用
においても、I&れた特性の変化が少ない信頼性の高い
自己温度制御形見熱体を得ることを目的とする。
This invention was made to solve this problem, and the resistance value increases rapidly in a specific temperature range, and even if the temperature exceeds that temperature, the resistance value does not actually decrease, so that it cannot be used for a long period of time. Another object of the present invention is to obtain a highly reliable self-temperature-controlled keepsake heating element with little change in characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の自己温度制御形見熱体は軟化温度が200℃
以上の熱可塑性高分子をマトリックスとし、これに融点
が50℃〜150℃の石油樹脂。
The self-temperature-controlled keepsake heating element of this invention has a softening temperature of 200°C.
The above thermoplastic polymer is used as a matrix, and a petroleum resin having a melting point of 50°C to 150°C.

導電性フィラーおよび酸化防止剤を含有させたものであ
る。
It contains a conductive filler and an antioxidant.

〔作用〕[Effect]

融点が50゛C〜150℃の石油樹脂が結晶性高分子と
比較してシャープな融点を持つため、成形された発熱体
の抵抗値は低融点の石油樹脂の融点付近で急激に上昇す
る。また融点を越えても軟化温度の高いマ)IJラック
ス用いているのでマトリックスは実用上軟化しないため
に流動性を示さず。
Since petroleum resins with a melting point of 50°C to 150°C have a sharper melting point than crystalline polymers, the resistance value of the molded heating element increases rapidly near the melting point of the petroleum resin, which has a low melting point. Furthermore, since Ma) IJ Lux, which has a high softening temperature even above its melting point, is used, the matrix does not soften in practice and does not exhibit fluidity.

従って実用上抵抗値の低下も起こらない。また。Therefore, practically no decrease in resistance value occurs. Also.

酸化防止剤の添加によりマトリックスの分子量の低下が
抑制され長期間の使用においても特性の変化がほとんど
起こらず、信頼性の高い自己温度制御形見熱体が得られ
る。
Addition of an antioxidant suppresses a decrease in the molecular weight of the matrix, and almost no change in properties occurs even during long-term use, resulting in a highly reliable self-temperature-controlling keepsake heating element.

軟化温度が200℃以上の熱可塑性高分子としては例え
ばポリエステル、ポリカーボネート、ポリアミド、セル
ロース繊維樹脂およびフッ素系樹脂等の内の少なくとも
一種が用いられる。なお。
As the thermoplastic polymer having a softening temperature of 200°C or higher, at least one of polyester, polycarbonate, polyamide, cellulose fiber resin, fluororesin, etc. is used. In addition.

軟化温度が200℃以上であれば、有機材料を用いたこ
とを考慮した使用温度範囲で実用上軟化しないと考えら
れる。
If the softening temperature is 200° C. or higher, it is considered that it will not soften in practice within the operating temperature range considering the use of organic materials.

融点がso’c〜150℃の石油樹脂としては。As a petroleum resin with a melting point of so'c to 150°C.

融点が70℃〜120℃の温度範囲のものが市販されて
いるが1例えば融点が70℃のフィントン13−170
(商品名9日本ゼオン製)、融点が100℃のハイレツ
ツT−100X(商品名、三井石油化学製)および融点
が120℃のトーホーペトロジン#120(商品名、東
邦石油樹脂製)等の内の少なくとも一種が用いられる。
Products with a melting point in the temperature range of 70°C to 120°C are commercially available.1 For example, Finton 13-170 with a melting point of 70°C
(Product name 9 manufactured by Nippon Zeon), Hiretsu T-100X (Product name, Mitsui Petrochemical Co., Ltd.) with a melting point of 100°C, and Toho Petrosin #120 (Product name, Toho Petroleum Resin Co., Ltd.) with a melting point of 120°C. At least one of these is used.

他に輸入品もあるが融点は同じ温度範囲にある。There are other imported products, but their melting points are in the same temperature range.

導電性フィラーとしては例えばカーボンブラック、グラ
ファイトおよびカーボン繊維等の内の少なくとも一種が
用いられ、配合量は融点が50℃〜150℃の石油樹脂
を含む熱可塑性高分子の重量の10〜40重量%の範囲
から選ばれるのが望ましい。
As the conductive filler, for example, at least one of carbon black, graphite, carbon fiber, etc. is used, and the blending amount is 10 to 40% by weight of the thermoplastic polymer containing petroleum resin with a melting point of 50°C to 150°C. It is preferable to choose from the range of .

酸化防止剤としては例えばペンゾイミダゾール類、ヒン
ダードフェノール類、トリアジン誘導体類およびフェノ
ールスルフィド類等の内の少なくとも一種が用いられ、
特に2−メルカプトベンゾイミダゾールが好適に用いら
れる。なお、酸化防止剤の添加がマ)IJラックス酸化
による低分子量化を抑制するため、軟化温度の低下も抑
制し、信頼性の向上に寄与する。
As the antioxidant, at least one of penzimidazoles, hindered phenols, triazine derivatives, phenol sulfides, etc. is used,
In particular, 2-mercaptobenzimidazole is preferably used. Note that the addition of an antioxidant suppresses lowering of the molecular weight due to oxidation of IJ lux, and therefore also suppresses a decrease in the softening temperature, contributing to improved reliability.

以下実施例によりこの発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 軟化温度が220℃のポリカーボネート(三菱瓦斯化学
製、商品名ニーピロンE2000 ) 50重量部、融
点が70℃のクレイトンB−170100重量部、ファ
ーネス系カーボンブラック45重量部および2−メルカ
プトベンゾイミダゾール4重量部をパンバリミキサーに
投入して混練し。
Example 1 50 parts by weight of polycarbonate with a softening temperature of 220°C (manufactured by Mitsubishi Gas Chemical, trade name Niepiron E2000), 100 parts by weight of Kraton B-170 with a melting point of 70°C, 45 parts by weight of furnace carbon black, and 2-mercaptobenzimidazole. 4 parts by weight was put into a Pan Bali mixer and kneaded.

加熱三本ロールを用いて厚さ1 xx 、幅10副、長
さ1G+1)7F+のシート状に成形した。次に両端に
幅1譚の電極を設け、ポリエチレンテレフタレートフィ
ルムで両面を絶縁保護することによりこの発明の一実施
例の自己温度制御形光熱体を作製した。
It was formed into a sheet with a thickness of 1 xx, a width of 10 mm, and a length of 1 G+1)7F+ using a heated triple roll. Next, a self-temperature-controlled photothermal body according to an embodiment of the present invention was fabricated by providing electrodes with a width of 1 mm at both ends and insulating and protecting both sides with a polyethylene terephthalate film.

実施例2 クレイトンB−170の代りに融点100℃のハイレツ
ッT−100Xを用い、実施例1と同様にしてこの発明
の他の実施例の自己温度制御形発熱を作製した。
Example 2 A self-temperature-controlled heating device according to another example of the present invention was produced in the same manner as in Example 1, using Hiretsu T-100X having a melting point of 100° C. instead of Kraton B-170.

実施例3 クレイトンB−170の代りに融点120℃のトーホー
ペトロジン#120を用い、実施例1と同様にしてこの
発明のさらに他の実施例の自己温度制御形光熱体を作製
した。
Example 3 A self-temperature-controlled photothermal body according to another example of the present invention was produced in the same manner as in Example 1, using Toho Petrosine #120 having a melting point of 120° C. instead of Kraton B-170.

第1図は、上記実施例で得られた自己温度制御形光熱体
を各温度の電気オーブンに入れた後測定した温度による
自己温度制御形光熱体の抵抗値変化を示す抵抗温度特性
図であり、縦軸はオームで表わす抵抗値(KΩ)を、横
軸は度で表わす温度(℃)である。図において、(d)
・(elおよび(flは各々実施例1.2および3の特
性を示す。
FIG. 1 is a resistance-temperature characteristic diagram showing the change in resistance of the self-temperature-controlled photothermal element according to the temperature measured after the self-temperature-controlled photothermal element obtained in the above example was placed in an electric oven at each temperature. , the vertical axis is the resistance value (KΩ) expressed in ohms, and the horizontal axis is the temperature (° C.) expressed in degrees. In the figure, (d)
- (el and (fl indicate the characteristics of Examples 1.2 and 3, respectively).

第1図より明らかなようにこの発明の自己温度制御形光
熱体は融点が50℃〜150°Cの石油樹脂の融点付近
で急激番こ抵抗値が増大し、融点を越えても抵抗の温度
係数は正の値を維持した。
As is clear from Figure 1, in the self-temperature-controlled photothermal element of the present invention, the resistance value increases rapidly near the melting point of petroleum resin, which has a melting point of 50°C to 150°C, and even when the melting point is exceeded, the resistance value increases rapidly. The coefficient remained positive.

なお、この発明の実施例は9例えばフィルム状に押出成
形、および特定の形状に射出成形することにより実用に
供せられる。
The embodiments of the present invention can be put to practical use by, for example, extrusion molding into a film or injection molding into a specific shape.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、軟化温度が200℃以
上の熱可塑性高分子をマトリックスとし、これに融点が
50℃〜150℃の石油樹脂導電性フィラーおよび酸化
防止剤を含有させたものを用いることにより、特定の温
度領域で急激に抵抗値が上昇し、その温度を越えても実
用上抵抗値が低下しなく、長期間の使用においても優れ
た特性の変化が少ない信頼性の高い自己温度制御形光熱
体を得ることができる。又2例えば面状等の任意の形状
に成形することにより広い用途に適用することができる
As explained above, this invention uses a matrix made of a thermoplastic polymer with a softening temperature of 200°C or higher, which contains a petroleum resin conductive filler with a melting point of 50°C to 150°C and an antioxidant. As a result, the resistance value increases rapidly in a specific temperature range, and the resistance value does not actually decrease even after that temperature is exceeded. Highly reliable self-temperature control with excellent characteristics that do not change much even after long-term use. A shaped photothermal body can be obtained. Furthermore, it can be applied to a wide range of applications by molding it into any desired shape, such as a planar shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の抵抗温度特性図。 第2図は従来の自己温度制御形光熱体の抵抗温度特性図
である。 図において、(a)はマトリックスに結晶性高分子を用
いた一般的な自己温度制御形光熱体の特性。 tblはマトリックスに繊維素樹脂を含む熱可塑性樹脂
の組成物を用いたものの特性、(C)はマトリックスと
して複数の結晶性高分子の組成物を用いたものの特性、
(di 、 (elおよび[flはこの発明の実施例の
特性である。
FIG. 1 is a resistance temperature characteristic diagram of an embodiment of the present invention. FIG. 2 is a resistance temperature characteristic diagram of a conventional self-temperature-controlled photothermal element. In the figure, (a) shows the characteristics of a general self-temperature-controlled photothermal body using a crystalline polymer as a matrix. tbl is the characteristic of a matrix using a thermoplastic resin composition containing a cellulose resin, (C) is the characteristic of a matrix using a composition of multiple crystalline polymers,
(di, (el and [fl) are characteristics of embodiments of this invention.

Claims (4)

【特許請求の範囲】[Claims] (1)軟化温度が200℃以上の熱可塑性高分子をマト
リックスとし、これに融点が50℃〜150℃の石油樹
脂導電性フィラーおよび酸化防止剤を含有させた自己温
度制御発熱体。
(1) A self-temperature-controlling heating element having a thermoplastic polymer matrix having a softening temperature of 200°C or higher and containing a petroleum resin conductive filler and an antioxidant having a melting point of 50°C to 150°C.
(2)酸化防止剤が、2−メルカプトベンゾイミダゾー
ル、高分子量ヒンダードフェノール、トリアジン誘導体
およびジアルキルフェノールスルフィドの内の少なくと
も一種である特許請求の範囲第1項記載の自己温度制御
形発熱体。
(2) The self-temperature-controlled heating element according to claim 1, wherein the antioxidant is at least one of 2-mercaptobenzimidazole, a high molecular weight hindered phenol, a triazine derivative, and a dialkylphenol sulfide.
(3)導電性フィラーが、カーボンブラック、グラファ
イトおよびカーボン繊維の内の少なくとも一種である特
許請求の範囲第1項又は第2項記載の自己温度制御形発
熱体。
(3) The self-temperature-controlled heating element according to claim 1 or 2, wherein the conductive filler is at least one of carbon black, graphite, and carbon fiber.
(4)熱可塑性高分子が、ポリエステル、ポリカーボネ
ート、ポリアミド、セルロース系樹脂およびフッ素系樹
脂の内の少なくとも一種である特許請求の範囲第1項な
いし第3項の何れかに記載の自己温度制御形発熱体。
(4) The self-temperature control type according to any one of claims 1 to 3, wherein the thermoplastic polymer is at least one of polyester, polycarbonate, polyamide, cellulose resin, and fluororesin. heating element.
JP19013685A 1985-08-29 1985-08-29 Self-temperature controlling type heat generating body Pending JPS6251186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19013685A JPS6251186A (en) 1985-08-29 1985-08-29 Self-temperature controlling type heat generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19013685A JPS6251186A (en) 1985-08-29 1985-08-29 Self-temperature controlling type heat generating body

Publications (1)

Publication Number Publication Date
JPS6251186A true JPS6251186A (en) 1987-03-05

Family

ID=16252991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19013685A Pending JPS6251186A (en) 1985-08-29 1985-08-29 Self-temperature controlling type heat generating body

Country Status (1)

Country Link
JP (1) JPS6251186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143206A (en) * 1998-06-24 2000-11-07 Tdk Corporation Organic positive temperature coefficient thermistor and manufacturing method therefor
US7019613B2 (en) 2002-06-24 2006-03-28 Tdk Corporation PTC thermistor body, PTC thermistor, method of making PTC thermistor body, and method of making PTC thermistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143206A (en) * 1998-06-24 2000-11-07 Tdk Corporation Organic positive temperature coefficient thermistor and manufacturing method therefor
US7019613B2 (en) 2002-06-24 2006-03-28 Tdk Corporation PTC thermistor body, PTC thermistor, method of making PTC thermistor body, and method of making PTC thermistor
EP1752993A2 (en) 2002-06-24 2007-02-14 TDK Corporation PTC thermistor body and PTC thermistor

Similar Documents

Publication Publication Date Title
CN100477022C (en) PTC composite, manufacturing method thereof and obtained thermosensitive electronic material therefrom
US4907340A (en) Electrical device comprising conductive polymers
US4774024A (en) Conductive polymer compositions
US4560498A (en) Positive temperature coefficient of resistance compositions
US4628187A (en) Planar resistance heating element
US4884163A (en) Conductive polymer devices
US5691689A (en) Electrical circuit protection devices comprising PTC conductive liquid crystal polymer compositions
US4857880A (en) Electrical devices comprising cross-linked conductive polymers
US4724417A (en) Electrical devices comprising cross-linked conductive polymers
CA1262467A (en) Devices comprising ptc conductive polymers
US5250226A (en) Electrical devices comprising conductive polymers
US5554679A (en) PTC conductive polymer compositions containing high molecular weight polymer materials
JPH0819174A (en) Protective circuit with ptc device
US4318881A (en) Method for annealing PTC compositions
JPS6251186A (en) Self-temperature controlling type heat generating body
JPS6251185A (en) Self-temperature controlling type heat generating body
JPS6251187A (en) Self-temperature controlling type heat generating body
JPS6251184A (en) Self-temperature controlling type heat generating body
JPS6028195A (en) Heater
JPH01151191A (en) Temperature self-control type face heater
KR960022851A (en) Composition of Polymer PTC (Constant Temperature Coefficient)
JPS63219102A (en) Ptc resistance material
JPH05234707A (en) Resistance material with positive temperature coefficient
JPH01231284A (en) Heating unit
CA1333410C (en) Electrical device comprising conductive polymers