JP2011044661A - Wire bonding structure in semiconductor device and design method thereof - Google Patents

Wire bonding structure in semiconductor device and design method thereof Download PDF

Info

Publication number
JP2011044661A
JP2011044661A JP2009193381A JP2009193381A JP2011044661A JP 2011044661 A JP2011044661 A JP 2011044661A JP 2009193381 A JP2009193381 A JP 2009193381A JP 2009193381 A JP2009193381 A JP 2009193381A JP 2011044661 A JP2011044661 A JP 2011044661A
Authority
JP
Japan
Prior art keywords
wire
loop
semiconductor element
circuit component
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193381A
Other languages
Japanese (ja)
Other versions
JP5400533B2 (en
Inventor
Tomoko Yamada
友子 山田
Masami Ogura
正巳 小倉
Norito Takayanagi
教人 高柳
Tsukasa Aiba
司 合葉
Fumitomo Takano
文朋 高野
Jun Kato
潤 加藤
Tsugio Masuda
次男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009193381A priority Critical patent/JP5400533B2/en
Priority to PCT/JP2010/064308 priority patent/WO2011024819A1/en
Publication of JP2011044661A publication Critical patent/JP2011044661A/en
Application granted granted Critical
Publication of JP5400533B2 publication Critical patent/JP5400533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85951Forming additional members, e.g. for reinforcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wire bonding structure which is compact, lightweight and inexpensive, and can sufficiently ensuring durability and reliability even when a semiconductor device is made large in capacity. <P>SOLUTION: With respect to the wire bonding structure in a semiconductor device wherein a semiconductor element S and a circuit component C to be electrically connected to it are installed and fixed apart from each other on a base body B and an electrode part of the semiconductor element S and the circuit component C are connected by a conductive metal wire W extending between them, the wire W includes one end part Wa bonded to an electrode part surface of the semiconductor element S, the other end part Wa' bonded to a surface having a height difference ΔL from the electrode part surface, of the circuit component C, and a loop part Wm connecting the one end part Wa and the other end part Wa' into one body and has at least an intermediate part curved upward convexly. The height difference ΔL is set within a range of 1 to 5 mm, and a loop height h of the loop part Wm is set within a range of 2 to 7 mm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、パワーモジュール等の半導体装置において、半導体素子とこれに電気的に接続すべき回路部品との間を、その間に渡って延びる金属ワイヤで結線したワイヤボンディング構造に関する。   The present invention relates to a wire bonding structure in a semiconductor device such as a power module, in which a semiconductor element and a circuit component to be electrically connected to the semiconductor element are connected by a metal wire extending therebetween.

上記半導体装置におけるワイヤボンディング構造に用いられる金属ワイヤは、例えばAl、Cu等の導電性金属よりなり、半導体素子の電極部表面に接合される一端部と、回路部品の表面に接合される他端部と、その一端部及び他端部間を一体に接続し中間部が上方に凸に彎曲したループ部とを備えた構造となっている。   The metal wire used for the wire bonding structure in the semiconductor device is made of, for example, a conductive metal such as Al or Cu, and has one end joined to the electrode part surface of the semiconductor element and the other end joined to the surface of the circuit component. And a loop portion in which one end portion and the other end portion are integrally connected and an intermediate portion is bent upward and convex.

ところで従来では、半導体装置の上記のようなワイヤボンディング部の寿命は、要求される寿命に対し、素子の発熱に因る温度上昇が支配的であると考えられており、その素子発熱に起因する通電電流値や通電時間とその条件下で得られる素子温度に着目して、温度加速による加速試験を行い、その加速試験結果から得られる耐久線図から寿命を予測している。しかしながら斯かる寿命予測手法は、半導体装置の一部、例えばモジュール構成要素の一部やワイヤボンディングの配線位置、本数等の何れか1つが変更されただけの場合でも、その都度、加速試験を行い、耐久寿命を求めなければならないため、寿命線図を得るまでに非常に長時間を要するといった問題があった。   Conventionally, it has been considered that the life of the wire bonding portion as described above of the semiconductor device is dominated by the temperature rise caused by the heat generation of the element with respect to the required life, and is caused by the heat generation of the element. Focusing on the energization current value and energization time and the element temperature obtained under the conditions, an acceleration test by temperature acceleration is performed, and the lifetime is predicted from the endurance diagram obtained from the acceleration test result. However, such a life prediction method performs an acceleration test every time when only one of a part of a semiconductor device, for example, a part of a module component, a wiring position of wire bonding, or the number of wires is changed. Since the endurance life has to be obtained, there is a problem that it takes a very long time to obtain a life chart.

また、ボンディングワイヤのパワーサイクルに対する高い寿命耐量を確保して信頼性の向上を図るための手法として、ワイヤ接合部の形状に着目し、その接合部形状を規定した技術も既に提案されている(例えば、特許文献1を参照)。   In addition, as a technique for ensuring a high life tolerance against the power cycle of the bonding wire and improving the reliability, attention has been paid to the shape of the wire joint, and a technique for defining the joint shape has already been proposed ( For example, see Patent Document 1).

特開2004−140072号公報Japanese Patent Laid-Open No. 2004-140072

ところで半導体装置のワイヤボンディング部、特にパワーモジュールのワイヤボンディング部は、実使用環境における通電電流値によって素子が許容できる上昇温度とOFF時に下降する温度との間で温度変化が繰り返されても動作が保証できることを実験で求めてワイヤの耐久性が設定されている。そして、特許文献1の従来技術では、上記温度変化に起因してワイヤ接合部に生じる応力を勘案して、ワイヤ接合部の形状を規定するようにしている。   By the way, the wire bonding part of the semiconductor device, particularly the wire bonding part of the power module, operates even when the temperature change is repeated between the rising temperature that the element can tolerate due to the energization current value in the actual use environment and the temperature that falls when turned off. The durability of the wire has been set by seeking that it can be guaranteed by experiment. In the prior art of Patent Document 1, the shape of the wire joint is defined in consideration of the stress generated in the wire joint due to the temperature change.

ところがワイヤの耐久性は、ワイヤ接合部の形状のみならず、ワイヤの特にループ高さや、ワイヤ両端部が接合される半導体素子・回路部品の被接合面の高低差(所謂、打点高低差)に大きく依存することが本発明者の研究により突き止められた。   However, the durability of the wire is not only due to the shape of the wire bonding part, but also to the height of the loop, especially the height of the bonding surface of the semiconductor element / circuit component to which both ends of the wire are bonded (so-called hit point height difference). A large dependence has been determined by the inventors' research.

本発明は、その研究結果に基づき、小型軽量且つ安価で信頼性が十分確保可能な半導体装置におけるワイヤボンディング構造及びその設計方法を提供することを目的とする。   An object of the present invention is to provide a wire bonding structure in a semiconductor device and a design method thereof that are small, light, inexpensive, and sufficiently reliable, based on the research results.

上記目的を達成するために、本発明は、ベース体上に半導体素子とこれに電気的に接続すべき回路部品とが間隔をおいて設置、固定され、その半導体素子の電極部と回路部品との間が、その間に渡って延びる導電性の金属ワイヤで結線されてなる半導体装置におけるワイヤボンディング構造において、前記ワイヤが、前記半導体素子の電極部表面に接合される一端部と、前記回路部品の、前記電極部表面と高低差のある表面に接合される他端部と、その一端部及び他端部間を一体に接続し少なくとも中間部が上方に凸に彎曲したループ部とを備え、前記高低差が1〜5mmの設定範囲内に、また前記ループ部のループ高さが2〜7mmの設定範囲内にそれぞれ設定されることを第1の特徴とする。   In order to achieve the above object, according to the present invention, a semiconductor element and a circuit component to be electrically connected to the base body are installed and fixed at intervals on the base body. In a wire bonding structure in a semiconductor device in which a wire is connected by a conductive metal wire extending therebetween, the wire is joined to the surface of the electrode portion of the semiconductor element, and the circuit component The other end joined to the surface of the electrode portion and the surface having a height difference, and a loop portion integrally connected between the one end and the other end, and at least an intermediate portion bent upwardly, The first feature is that the height difference is set within a setting range of 1 to 5 mm, and the loop height of the loop portion is set within a setting range of 2 to 7 mm.

また本発明は、前記第1の特徴に加えて、前記ワイヤがアルミニウムからなることを第2の特徴とする。   In addition to the first feature, the present invention has a second feature that the wire is made of aluminum.

さらに本発明は、前記第1又は第2の特徴を有する半導体装置におけるワイヤボンディング構造の設計方法であって、前記ワイヤの一端部と前記半導体素子の電極部表面との間の接合部、並びに前記ワイヤの他端部と前記回路部品との接合部に発生する歪をそれぞれ推定し、その歪と信頼性の相関値に基づいて、前記高低差及び前記ループ高さを各々の前記設定範囲内で設定することを第3の特徴とする。   Furthermore, the present invention is a method for designing a wire bonding structure in the semiconductor device having the first or second feature, wherein the bonding portion between one end of the wire and the surface of the electrode portion of the semiconductor element, and the Estimate the distortion generated at the joint between the other end of the wire and the circuit component, and based on the correlation value between the distortion and the reliability, the height difference and the loop height are within the set range. Setting is a third feature.

本発明において、「ループ高さ」とは、ワイヤの一端部及び他端部のうちの高い方の端部が接合される半導体素子又は回路部品の被接合面から、ループ部の最高部までの高さをいう。   In the present invention, the “loop height” refers to the bonding surface of the semiconductor element or circuit component to which the higher end of the one end and the other end of the wire is bonded to the highest portion of the loop portion. Say height.

本発明の第1の特徴によれば、半導体装置におけるボンディング用ワイヤの構造形態、特にループ部のループ高さや、ワイヤ両端部が接合される半導体素子・回路部品の被接合面の高低差(打点高低差)を所定範囲内に規定することにより、ワイヤボンディング部の耐久性・信頼性を、ワイヤを特別に太くしたり或いは使用本数を特別に増やしたりすることなく効果的に高めることが可能となり、従って、半導体装置を大容量化しても、小型軽量且つ安価で耐久性・信頼性が十分確保可能なワイヤボンディング構造を得ることができ、半導体装置の小型軽量化やコストダウンに寄与することができる。   According to the first aspect of the present invention, the structure of the bonding wire in the semiconductor device, in particular, the loop height of the loop portion, and the height difference of the bonded surface of the semiconductor element / circuit component to which both ends of the wire are bonded (dots) By defining the height difference within a specified range, it becomes possible to effectively increase the durability and reliability of the wire bonding part without specially increasing the number of wires or the number of wires used. Therefore, even if the capacity of the semiconductor device is increased, a wire bonding structure capable of sufficiently ensuring durability and reliability can be obtained which is small and light, inexpensive, and contributes to reduction in size and weight of the semiconductor device and cost reduction. it can.

また本発明の第2の特徴によれば、ワイヤの材料としてアルミニウムを用いたことで、半導体装置の更なる軽量化とコスト節減に寄与することができる。   According to the second feature of the present invention, the use of aluminum as the wire material can contribute to further weight reduction and cost saving of the semiconductor device.

また本発明の第3の特徴によれば、ワイヤ接合部に発生する歪を推定して、その歪と信頼性の相関値に基づいて最適なボンディング用ワイヤの構造形態(特にループ高さやワイヤ両端部の前記打点高低差)を設定するようにしたので、標準サンプルのみの試験結果で、熱応力緩和のための製品仕様の寿命を容易に推定可能であり、また実際の製品構造のワイヤ接合部及びワイヤのループ形状から、ワイヤ接合部に発生する熱応力を容易に推定可能である。またワイヤを特別に太くしたり或いは使用本数を特別に増やしたりしなくてもワイヤボンディング部の耐久性・信頼性を十分高めることができるワイヤボンディングワイヤ形状を容易に設定可能である。   According to the third aspect of the present invention, the strain generated in the wire bonding portion is estimated, and the optimum structure of the bonding wire (especially the loop height and both ends of the wire is determined based on the correlation value between the strain and the reliability. The above-mentioned difference in the hit point height of the part) is set so that the life of the product specification for thermal stress relaxation can be easily estimated from the test results of only the standard sample, and the wire joint part of the actual product structure In addition, the thermal stress generated at the wire joint can be easily estimated from the loop shape of the wire. Further, it is possible to easily set a wire bonding wire shape that can sufficiently enhance the durability and reliability of the wire bonding portion without particularly increasing the thickness of the wire or increasing the number of wires used.

本発明の一実施例に係るパワーモジュールの要部断面図Sectional drawing of the principal part of the power module which concerns on one Example of this invention ワイヤ接合部の歪と信頼性相関値(耐久サイクル数)の関係を示すグラフGraph showing the relationship between strain at wire joints and reliability correlation value (number of durability cycles) ワイヤ接合部及びワイヤの簡略化したモデルを、ループ高さを変化させて示す模式図Schematic diagram showing a simplified model of wire joints and wires with varying loop heights ワイヤのループ高さとワイヤ接合部の発生応力との関係を示すグラフGraph showing the relationship between the wire loop height and the stress generated at the wire joint ワイヤ接合部及びワイヤの簡略化したモデルを、ループトップ位置を変化させて示す模式図Schematic diagram showing a simplified model of wire joints and wires with the loop top position changed ワイヤのループトップ位置とワイヤ接合部の発生応力との関係を示すグラフGraph showing the relationship between the loop top position of the wire and the stress generated at the wire joint ボンディングワイヤの熱変形に伴う変位、力の作用態様を簡略的に示す説明図Explanatory drawing which shows simply the mode of action of displacement and force accompanying thermal deformation of the bonding wire ワイヤ加熱時のワイヤ接合部の高低差(打点高低差)と発生歪の関係を示すグラフA graph showing the relationship between the difference in height of the wire joint during wire heating (the difference in the height of the hitting point) and the generated strain ワイヤ接合部の高低差(打点高低差)と耐久性増加率・歪減少率との関係を示すグラフA graph showing the relationship between the height difference of the wire joint (the difference in the hitting point height) and the durability increase rate / strain decrease rate

以下、本発明の実施の形態について、添付の図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

先ず、図1において、半導体装置としてのパワーモジュールPMは、ベース体としての放熱用金属製ベース板Bと、そのベース板B上に設置固定される絶縁回路基板Pと、その絶縁回路基板P上にハンダHを介して接合される複数(図面上は2個だけを図示)の半導体素子S,S′と、同じくベース板B上に設置固定されて半導体素子Sに電気的に接続される回路部品Cとを少なくとも備える。   First, in FIG. 1, a power module PM as a semiconductor device includes a heat-dissipating metal base plate B as a base body, an insulating circuit substrate P installed and fixed on the base plate B, and the insulating circuit substrate P. A plurality of semiconductor elements S and S ′ (only two are shown in the drawing) joined to each other via solder H, and a circuit that is also installed and fixed on the base plate B and electrically connected to the semiconductor element S And at least a part C.

半導体素子Sと前記回路部品Cとの間には所定の間隔があけられているが、その間は、少なくとも1本のボンディングワイヤと呼ばれる導電性金属よりなる細いワイヤWで結線されており、このワイヤWは、図示例ではアルミニウムで構成される。尚、上記ワイヤWの構成材料として、アルミニウムに代えて、銅や金等の導電性に優れた他の金属を用いてもよい。   A predetermined gap is provided between the semiconductor element S and the circuit component C, and at least one thin wire W made of a conductive metal called a bonding wire is connected between the semiconductor element S and the circuit component C. In the illustrated example, W is made of aluminum. In addition, as a constituent material of the wire W, another metal having excellent conductivity such as copper or gold may be used instead of aluminum.

また半導体素子S,S′としては、従来公知のパワー半導体素子、例えば、IGBT、MOS−FET、或いはFWDといった各種素子が用いられる。また前記絶縁回路基板Pとしては、例えば従来公知のDCB基板が用いられる。   As the semiconductor elements S and S ′, conventionally known power semiconductor elements, for example, various elements such as IGBT, MOS-FET, or FWD are used. As the insulating circuit board P, for example, a conventionally known DCB board is used.

前記ワイヤWは、半導体素子Sの平坦な電極部表面に接合される一端部Waと、その一端部Waに連なり且つ前記回路部品Cに向かって上側に斜めに立ち上がる一端側立ち上がり部Wbと、前記回路部品Cの平坦な表面に接合される他端部Wa′と、その他端部Wa′に連なり且つ半導体素子Sに向かって上側に斜めに立ち上がる他端側立ち上がり部Wb′と、その両立ち上がり部Wb,Wb′の上端間を滑らかに接続すべく上方に凸に彎曲したループ部Wmとより構成される。   The wire W has one end Wa joined to the flat electrode part surface of the semiconductor element S, one end rising part Wb that continues to the one end Wa and rises obliquely upward toward the circuit component C, The other end Wa ′ joined to the flat surface of the circuit component C, the other end rising portion Wb ′ connected to the other end Wa ′ and obliquely rising upward toward the semiconductor element S, and both rising portions The loop portion Wm is bent upward and convex so as to smoothly connect the upper ends of Wb and Wb ′.

ワイヤWの両端部Wa,Wa′が接合される半導体素子Sの被接合面(前記電極部表面)と回路部品C上面の被接合面との間には高低差ΔLが有り、この高低差ΔLは、後述する理由により1〜5mmの設定範囲内に設定される。また、その半導体素子Sと回路部品Cとの間には他の半導体素子S′が介在しているが、ワイヤWのループ部Wmは、該他の半導体素子S′を無理なく跨ぎ得るように、ルーフトップ部を半導体素子S側にオフセットさせたループ形状に形成されている。   There is a height difference ΔL between the bonded surface (surface of the electrode portion) of the semiconductor element S to which both ends Wa and Wa ′ of the wire W are bonded and the bonded surface of the upper surface of the circuit component C, and this height difference ΔL. Is set within a setting range of 1 to 5 mm for the reason described later. Further, another semiconductor element S ′ is interposed between the semiconductor element S and the circuit component C. However, the loop portion Wm of the wire W can easily straddle the other semiconductor element S ′. The roof top portion is formed in a loop shape that is offset to the semiconductor element S side.

また、前記ワイヤWの一端部Waと半導体素子Sの電極部表面との間の接合、並びに同ワイヤWの他端部Wa′と回路部品Cとの間の接合は、この種のワイヤを半導体素子の電極部等にボンディング結合する従来公知の手法、例えば超音波ボンディングにより行われる。   The bonding between one end Wa of the wire W and the surface of the electrode portion of the semiconductor element S and the bonding between the other end Wa ′ of the wire W and the circuit component C are performed by using this kind of wire as a semiconductor. This is performed by a conventionally known method of bonding and bonding to the electrode portion of the element, for example, ultrasonic bonding.

そして、前記ワイヤWは、その外径が従来普通のボンディングワイヤと同様のサイズ、例えば400μmに設定されている。しかもこのワイヤWは、後述する理由により、前記ループ部Wmのループ高さhが2mm以上、7mm以下の範囲内で設定される。   The outer diameter of the wire W is set to the same size as that of a conventional ordinary bonding wire, for example, 400 μm. Moreover, the wire W is set so that the loop height h of the loop portion Wm is in the range of 2 mm or more and 7 mm or less for the reason described later.

尚、ボンディングワイヤWの両端部Wa,Wa′間の水平距離は、標準サイズのパワーモジュールPMにおける半導体素子S,S′や回路部品Cのレイアウト上の制約、ワイヤW自体の剛性強度の確保等の観点から、所定値以下(望ましくは30mm以下)に設定されている。   The horizontal distance between both ends Wa and Wa ′ of the bonding wire W is limited in the layout of the semiconductor elements S and S ′ and the circuit component C in the standard size power module PM, and the rigidity of the wire W itself is ensured. From this point of view, it is set to a predetermined value or less (preferably 30 mm or less).

而してパワーモジュールPMのワイヤボンディング部、即ちワイヤ接合部b,b′は、実使用環境における通電電流値によって半導体素子S,S′が許容できる上昇温度とOFF時に下降する温度との間で温度変化が繰り返されると、その際にワイヤ接合部に発生する熱応力により亀裂が発生し、この亀裂が徐々に進展して遂には接合部の破断、剥離が生じて断線故障の原因となることが知られている。そして、本発明者は、そのワイヤ接合部の耐久性がワイヤ接合部b,b′の形状のみならず、ワイヤのループ形状、特にループ高さhや、ワイヤ接合部b,b′の高低差(即ちワイヤ両端部Wa,Wa′が接合される半導体素子S・回路部品Cの被接合面の高低差ΔL(打点高低差))に大きく依存するのを、ワイヤ接合部の熱解析及び断面構造解析を順次行うことにより究明したものであり、その解析の手法を以下に具体的に説明する。   Thus, the wire bonding portion of the power module PM, that is, the wire bonding portions b and b ′, is between the rising temperature that can be allowed by the semiconductor elements S and S ′ depending on the value of the energized current in the actual use environment and the temperature that decreases when the power is turned off. When temperature changes are repeated, cracks are generated due to the thermal stress generated at the wire joint, and this crack gradually develops and eventually breaks and peels off the joint, causing a disconnection failure. It has been known. The inventor of the present invention is not limited to the shape of the wire joints b and b ', but the durability of the wire joint is not limited to the loop shape of the wire, particularly the loop height h or the height difference between the wire joints b and b'. The thermal analysis and cross-sectional structure of the wire joint greatly depends on (that is, the height difference ΔL of the surface to be joined of the semiconductor element S and the circuit component C to which the wire both ends Wa and Wa ′ are joined). The analysis was conducted sequentially, and the analysis method will be specifically described below.

解析に際しては、半導体素子S、絶縁回路基板P、ワイヤW等の解析モデルを作成し、次いで、パワーモジュールPMの各スイッチング動作試験に対応した温度条件を設定し、それから熱応力解析を実施する事で、ワイヤ接合部に発生する応力の分布データを得るようにする。   In the analysis, an analysis model of the semiconductor element S, the insulating circuit board P, the wire W, etc. is created, and then a temperature condition corresponding to each switching operation test of the power module PM is set, and then a thermal stress analysis is performed. Thus, distribution data of stress generated in the wire joint is obtained.

このような解析手法によれば、ワイヤWの一端部Waと半導体素子Sの電極部表面との間の接合部b、並びにワイヤWの他端部Wa′と回路部品Cとの接合部b′の各断面形状やワイヤWの形状から、それらのワイヤ接合部b,b′に発生する歪を推定可能となり、その歪と信頼性の相関値に基づいて最適なボンディング用ワイヤの構造形態(即ちループ形状、特に前記ループ高さhや、両ワイヤ接合部b,b′の高低差ΔL)を後述するように設定可能となる。従って、ワイヤを特別に太くしたり或いは使用本数を特別に増やしたりしなくてもワイヤボンディング部の耐久性・信頼性を十分高めることができるワイヤボンディングワイヤ形状を容易に設定可能である。   According to such an analysis technique, the joint b between the one end Wa of the wire W and the electrode part surface of the semiconductor element S, and the joint b ′ between the other end Wa ′ of the wire W and the circuit component C are used. It is possible to estimate the strain generated in the wire joints b and b ′ from each cross-sectional shape and the shape of the wire W, and based on the correlation value between the strain and the reliability, that is, the optimum structure of the bonding wire (ie, The loop shape, in particular, the loop height h and the height difference ΔL between the wire joints b and b ′ can be set as described later. Therefore, it is possible to easily set a wire bonding wire shape that can sufficiently enhance the durability and reliability of the wire bonding portion without particularly increasing the thickness of the wire or increasing the number of wires used.

ところで本発明者が、半導体素子の電極部とワイヤとの接合部の歪と、信頼性との相関関係をIGBT素子、FWD素子についてそれぞれ調べたところ、図2の実験結果を得た。このグラフにおいて、横軸はワイヤ接合部の発生歪ε(%)であり、また縦軸は、ワイヤ接合部が破断に至るまでの温度サイクル試験のサイクル数LC (耐久サイクル数)であって、実験近似式としてLC =C・ε-nが得られた。尚、この式でCは定数である。 By the way, when the present inventors examined the correlation between the distortion of the junction between the electrode part of the semiconductor element and the wire and the reliability of the IGBT element and the FWD element, the experimental result of FIG. 2 was obtained. In this graph, the horizontal axis is the strain ε (%) generated at the wire joint, and the vertical axis is the cycle number L C (the number of endurance cycles) of the temperature cycle test until the wire joint breaks. L C = C · ε −n was obtained as an experimental approximate expression. In this equation, C is a constant.

このグラフ(近似式)によれば、サイクル数LC が大きいほど耐久性(信頼性)が高いと判断できるので、このサイクル数を耐久性・信頼性の相関値とすることができる。 According to this graph (approximate expression), it can be determined that the durability (reliability) is higher as the number of cycles L C is larger, so that the number of cycles can be used as a correlation value between durability and reliability.

而して、この図2からも、ワイヤ接合部b,b′の歪εが大きくなればなるほど、前記サイクル数LC 、即ちワイヤ接合部の耐久性・信頼性が下がることが明らかである。 Thus, also from FIG. 2, it is clear that the greater the strain ε of the wire joints b and b ′, the lower the cycle number L C , that is, the durability and reliability of the wire joint.

以上のような解析手法に基づいて、ワイヤのループ形状を種々変更してワイヤ接合部b,b′の歪(従って耐久性・信頼性)を調べた結果、パワーモジュールPMにおけるワイヤ接合部b,b′の耐久性・信頼性がワイヤ接合部自体の形状のみならず、ワイヤWのループ形状、特にループ部Wmの高さhや、ワイヤ接合部b,b′の高低差ΔL(打点高低差)に大きく依存することが判明した。   Based on the above analysis technique, the wire loop shape of the wire module b, b ′ (and hence the durability / reliability) is examined by variously changing the wire loop shape. The durability and reliability of b 'is not only the shape of the wire joint itself, but also the loop shape of the wire W, particularly the height h of the loop part Wm, and the height difference ΔL of the wire joints b and b' ).

即ち、ワイヤWは、その一端部Waが半導体素子Sの電極部に、またその他端部Wa′が回路部品Cにそれぞれ接合されて固定端となり、そのループ部Wmのループトップ部が自由端となることから、発熱に伴いワイヤ接合部b,b′には、ワイヤ接合部b,b′を挟む上下の材料の熱膨張差に因る応力と、ループ部Wmの熱変形(伸縮)が両端部Wa,Wa′に及ぼす変形荷重により生じる応力とが複合的に作用すると考えられるが、本発明は、そのうち特に後者の応力を軽減する手法を、次に具体的に説明するようにして究明したものである。   That is, one end Wa of the wire W is joined to the electrode portion of the semiconductor element S, and the other end Wa ′ is joined to the circuit component C to be a fixed end, and the loop top portion of the loop portion Wm is a free end. Therefore, due to heat generation, both ends of the wire joints b and b ′ are subjected to stress caused by a difference in thermal expansion between the upper and lower materials sandwiching the wire joints b and b ′ and thermal deformation (expansion / contraction) of the loop part Wm. It is considered that the stress generated by the deformation load exerted on the portions Wa and Wa ′ is considered to act in a composite manner. In the present invention, a method for reducing the latter stress in particular has been investigated as described in detail below. Is.

先ず、本発明者は、図3に示すようなワイヤ接合部及びワイヤの簡略化したモデルを想定し、両端を壁で固定されたワイヤWが、温度上昇に伴うループ部の熱変形により壁を垂直に押す力Fを評価した。尚、この横向きの力Fは、ワイヤ接合部b,b′を引き剥がす方向のモーメントを生じさせるので、この力F(従ってモーメント)が大きくなればなるほどワイヤ接合部b,b′に大きな応力が発生して、該接合部b,b′の耐久性・信頼性が低下する。   First, the present inventor assumes a simplified model of a wire joint and a wire as shown in FIG. 3, and the wire W having both ends fixed by walls is deformed by thermal deformation of the loop portion accompanying a temperature rise. The vertical pushing force F was evaluated. Since the lateral force F generates a moment in the direction of peeling the wire joints b and b ', the greater the force F (and hence the moment), the greater the stress on the wire joints b and b'. Occurring and the durability and reliability of the joints b and b 'are lowered.

図4には、ワイヤ径が300,400,500μm、ワイヤ接合部b,b′間の間隔(支持スパン)が8mm、上昇変化温度ΔTが100°Cである場合に得られたループ高さh(横軸)と力F(縦軸)の関係が示される。これによれば、ワイヤ径に関係なく、ループ高さhが高ければ高いほど力Fは小さくなっており、特にh=2mm以上で力Fが急激に減少している。そこで本発明では、ループ高さhの下限は2mmと定め、一方、その上限は、ワイヤWの剛性確保や半導体装置の小型軽量化の観点から7mmと定めた。尚、ループ高さhが高ければ高いほど力Fが小さくなる理由は、ループ高さhが高ければ高いほどループ中間部の剛性が弱まり、両壁間でワイヤを突っ張らせる力が低下するためであると考えられる。   FIG. 4 shows the loop height h obtained when the wire diameter is 300, 400, 500 μm, the distance (support span) between the wire joints b, b ′ is 8 mm, and the rising change temperature ΔT is 100 ° C. The relationship between (horizontal axis) and force F (vertical axis) is shown. According to this, regardless of the wire diameter, the higher the loop height h is, the smaller the force F is, and particularly, the force F rapidly decreases when h = 2 mm or more. Therefore, in the present invention, the lower limit of the loop height h is set to 2 mm, while the upper limit is set to 7 mm from the viewpoint of securing the rigidity of the wire W and reducing the size and weight of the semiconductor device. The reason why the force F becomes smaller as the loop height h is higher is that the higher the loop height h, the lower the rigidity of the middle portion of the loop, and the lower the force that pulls the wire between both walls. It is believed that there is.

また図6には、図4と同じ条件で、図5に示す如くワイヤWのループトップの位置tを変えた場合の、ループトップ位置t(一方のループ立ち上がり部からの距離)と力Fの関係が示されている。そして、この図6によれば、ループトップ位置tを変えても、力Fに殆ど影響がないことが明らかであり、従って、本発明においても、ループトップ位置の如何は特に限定されない。   6 shows the loop top position t (distance from one loop rising portion) and the force F when the position t of the loop top of the wire W is changed as shown in FIG. The relationship is shown. According to FIG. 6, it is clear that even if the loop top position t is changed, there is almost no influence on the force F. Therefore, in the present invention, the loop top position is not particularly limited.

次に本発明者は、ワイヤWのワイヤ接合部b,b′の高低差(即ちワイヤ両端部Wa,Wa′が接合される半導体素子S・回路部品Cの被接合面の高低差ΔL(打点高低差))がワイヤ接合部b,b′の耐久性に及ぼす影響について検討した。   Next, the present inventor makes a difference in height between the wire bonding portions b and b ′ of the wire W (that is, a difference in height ΔL between the bonded surfaces of the semiconductor element S and the circuit component C to which the wire both ends Wa and Wa ′ are bonded) The effect of the height difference)) on the durability of the wire joints b and b ′ was examined.

即ち、パワーモジュールPMの作動に伴いワイヤWが発熱すると、図7に簡略的に示すように、ループ部Wmが熱膨張により上方へ変位しようとし、それと同時にワイヤWの両端部Wa,Wa′が、固定端であるワイヤ接合部b,b′に対し突っ張るように作用して、ワイヤ立ち上がり部Wb,Wb′に対し曲げ応力を生じさせると共に、ワイヤ接合部b,b′に対し剪断応力(即ちワイヤ接合部b,b′を引き剥がそうとする力)を生じさせる。この場合、前記高低差ΔLが大きくなるほどワイヤWの前記突っ張り作用が低減され、これに伴い前記剪断応力も低減されるため、ワイヤ接合部b,b′に発生する歪も小さくなって、ワイヤ接合部b,b′の耐久信頼性が増えるものと考えられる。   That is, when the wire W generates heat due to the operation of the power module PM, the loop portion Wm tends to be displaced upward due to thermal expansion, and at the same time, both ends Wa and Wa ′ of the wire W are Acting on the wire joints b and b ′, which are fixed ends, to generate bending stress on the wire rising parts Wb and Wb ′ and shear stress on the wire joints b and b ′ (ie, Force to try to peel off the wire joints b and b '. In this case, as the height difference ΔL is increased, the tensioning action of the wire W is reduced, and accordingly, the shear stress is also reduced. Therefore, the strain generated in the wire joints b and b ′ is also reduced, so that the wire joint It is considered that the durability reliability of the parts b and b ′ is increased.

そこでワイヤWを所定温度に加熱した場合の、ワイヤ接合部b,b′の高低差ΔLと発生歪との関係を調べると、図8に示すように前記高低差ΔLが大きくなるほどワイヤ接合部b,b′の発生歪が小さくなることが裏付けられた。   Accordingly, when the relationship between the height difference ΔL of the wire joints b and b ′ and the generated strain when the wire W is heated to a predetermined temperature is examined, as the height difference ΔL increases, as shown in FIG. 8, the wire joint b , B 'is confirmed to be small.

そこで更にワイヤ接合部b,b′の高低差ΔLと、歪減少率η・耐久性増加率αとの各関係を調べると、図9の結果となった。ここで歪減少率ηとは、打点高低差ΔLが0の場合の歪ε0 に対する、ΔLがaの場合の歪εa の比率(即ちη=εa /ε0 )を意味しており、一方、耐久性増加率αとは、図2に示すグラフ(実験近似式LC =C・ε-n)を用いて表される温度サイクル試験の耐久サイクル数LC について、打点高低差ΔLが0の場合とaの場合の比率(α=LC a/LC o=C・εa -n/C・ε0 -n=(η)-n)を意味している。この場合、耐久性増加率αについては、20%増(即ちα=1.2)以上のサイクル増効果があれば、それは、製造公差、材料強度等によるばらつき要因ではない明確且つ客観的な効果と判断可能である。 Therefore, when the relationship between the height difference ΔL of the wire joints b and b ′ and the strain reduction rate η / durability increase rate α is further examined, the result shown in FIG. 9 is obtained. Here, the strain reduction rate η means the ratio of the strain ε a when ΔL is a to the strain ε 0 when the hit point height difference ΔL is 0 (that is, η = ε a / ε 0 ), On the other hand, the durability increase rate α is the difference in hit point height ΔL for the endurance cycle number L C of the temperature cycle test expressed using the graph shown in FIG. 2 (experimental approximate formula L C = C · ε −n ). It means the ratio between α and a (α = L C a / L C o = C · ε a −n / C · ε 0 −n = (η) −n ). In this case, if the durability increasing rate α has a cycle increasing effect of 20% or more (that is, α = 1.2) or more, it is a clear and objective effect that is not a factor of variation due to manufacturing tolerance, material strength, and the like. It can be judged.

そこで図9の実験結果について検討するに、ワイヤ接合部b,b′の高低差ΔLの増加につれて、歪減少率η・耐久性増加率αともに増加傾向が見られるが、その増加傾向は、ΔL=5mmを超えるとほぼ頭打ちとなることから、そのΔLの上限は、ワイヤWの剛性確保や半導体装置の小型軽量化の観点から5mmと定められる。   9 is examined. As the height difference ΔL of the wire joints b and b ′ increases, both the strain reduction rate η and the durability increase rate α tend to increase. When the value exceeds 5 mm, the upper limit of ΔL is determined to be 5 mm from the viewpoint of securing the rigidity of the wire W and reducing the size and weight of the semiconductor device.

また特に耐久性増加率αについては、前述のように20%増(即ち1.2)以上で明確且つ客観的なサイクル増(耐久性向上)効果があると判断できることから、ワイヤ接合部b,b′の高低差ΔLの下限については、耐久性増加率αが20%増となる1.0mmと定められる。   In particular, regarding the durability increase rate α, it can be determined that there is a clear and objective cycle increase (durability improvement) effect at 20% increase (that is, 1.2) or more as described above. The lower limit of the height difference ΔL of b ′ is set to 1.0 mm at which the durability increase rate α is increased by 20%.

以上のようにワイヤ接合部b,b′に発生する歪を、前記した解析手法で求め、その求めた歪と信頼性の相関値に基づいて最適なボンディング用ワイヤの構造形態(特にループ高さh、ワイヤ接合部b,b′の高低差ΔL)を設定する。その設定の際には、パワーモジュールPMに要求される種々の設計条件・要求を満たし且つ現実に製作可能な範囲において、ループ高さhを2〜7mmの設定範囲内で、またワイヤ接合部b,b′の高低差ΔLを1〜5mmの設定範囲内でそれぞれ適宜設定すれば、ワイヤボンディング部の耐久性・信頼性を、ワイヤWを特別に太くしたり或いは使用本数を特別に増やしたりすることなく十分に確保可能となるものである。   As described above, the strain generated in the wire joints b and b ′ is obtained by the analysis method described above, and the optimum structure of the bonding wire (especially the loop height) based on the correlation value between the obtained strain and reliability. h, the height difference ΔL) of the wire joints b and b ′ is set. At the time of setting, the loop height h is set within a setting range of 2 to 7 mm and the wire joint portion b is within a range that satisfies various design conditions and requirements required for the power module PM and can be actually manufactured. If the height difference ΔL of b and b ′ is appropriately set within a setting range of 1 to 5 mm, the durability / reliability of the wire bonding part is increased, or the number of wires W is increased specially. It can be sufficiently secured without any problems.

その結果、パワーモジュールPMを大容量化しても、小型軽量且つ安価で耐久性・信頼性が十分確保可能なワイヤボンディング構造が容易に得られ、延いてはパワーモジュールPMの小型軽量化やコストダウンが達成可能となる。その上、標準サンプルのみの試験結果で、熱応力緩和のための製品仕様の寿命を容易に推定することができ、また実際の製品構造のワイヤ接合部及びワイヤのループ形状から、ワイヤ接合部に発生する熱応力は歪を容易に推定可能となる。   As a result, even if the capacity of the power module PM is increased, it is possible to easily obtain a wire bonding structure that is small, lightweight, inexpensive, and sufficiently durable and reliable, and as a result, the power module PM can be reduced in size, weight, and cost. Can be achieved. In addition, the life of product specifications for thermal stress relaxation can be easily estimated from the test results of only the standard sample, and the wire joint and wire loop shape of the actual product structure can be used for the wire joint. The generated thermal stress can easily estimate the strain.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. Is possible.

例えば、前記実施例では、半導体素子SにワイヤWを介して電気的に接続すべき回路部品として、半導体素子Sやこれを接合した絶縁回路基板Pから離間配置された別の回路素子Cを示したが、本発明の回路部品の概念には、少なくとも半導体素子の電極部にワイヤを介して電気的に接続すべき回路部であれば、形態や機能を問わず種々のものが含まれ、例えば回路基板の表面に露出する金属回路層やリードフレーム等も含まれる。   For example, in the above-described embodiment, as the circuit component to be electrically connected to the semiconductor element S via the wire W, the semiconductor element S and another circuit element C that is spaced from the insulating circuit substrate P to which the semiconductor element S is bonded are shown. However, the concept of the circuit component of the present invention includes various components regardless of form and function as long as the circuit component is to be electrically connected to at least the electrode portion of the semiconductor element via a wire. Also included are metal circuit layers and lead frames exposed on the surface of the circuit board.

B・・・・ベース体としての放熱用ベース板
C・・・・回路部品
PM・・・半導体装置としてのパワーモジュール
S・・・・半導体素子
W・・・・ワイヤ
Wa・・・一端部
Wa′・・他端部
Wm・・・ループ部
b,b′・・接合部
h・・・・ループ高さ
ΔL・・・高低差
B ··· Base plate C for heat dissipation as base body ··· Circuit component PM · · Power module S as semiconductor device · · · Semiconductor element W · · · Wire Wa · One end Wa ′ ·· other end Wm ··· loop portion b, b '·· joining portion h ··· loop height ΔL · ·· height difference

Claims (3)

ベース体(B)上に半導体素子(S)とこれに電気的に接続すべき回路部品(C)とが間隔をおいて設置、固定され、その半導体素子(S)の電極部と回路部品(C)との間が、その間に渡って延びる導電性の金属ワイヤ(W)で結線されてなる半導体装置におけるワイヤボンディング構造において、
前記ワイヤ(W)が、前記半導体素子(S)の電極部表面に接合される一端部(Wa)と、前記回路部品(C)の、前記電極部表面と高低差(ΔL)のある表面に接合される他端部(Wa′)と、その一端部(Wa)及び他端部(Wa′)間を一体に接続し少なくとも中間部が上方に凸に彎曲したループ部(Wm)とを備え、
前記高低差(ΔL)が1〜5mmの設定範囲内に、また前記ループ部(Wm)のループ高さ(h)が2〜7mmの設定範囲内にそれぞれ設定されることを特徴とする、半導体装置におけるワイヤボンディング構造。
On the base body (B), the semiconductor element (S) and the circuit component (C) to be electrically connected to the semiconductor element (S) are installed and fixed at intervals, and the electrode part of the semiconductor element (S) and the circuit component ( C), a wire bonding structure in a semiconductor device in which a conductive metal wire (W) extending therebetween is connected,
The wire (W) is bonded to the surface of the electrode part of the semiconductor element (S) and the surface of the circuit component (C) having a height difference (ΔL) from the surface of the electrode part. The other end portion (Wa ') to be joined, and a loop portion (Wm) in which one end portion (Wa) and the other end portion (Wa') are integrally connected and at least an intermediate portion is bent upwardly are provided. ,
The semiconductor is characterized in that the height difference (ΔL) is set within a setting range of 1 to 5 mm, and the loop height (h) of the loop portion (Wm) is set within a setting range of 2 to 7 mm. Wire bonding structure in equipment.
前記ワイヤ(W)は、アルミニウムからなることを特徴とする、請求項1に記載の半導体装置におけるワイヤボンディング構造。   The wire bonding structure in the semiconductor device according to claim 1, wherein the wire (W) is made of aluminum. 前記請求項1又は2に記載の半導体装置におけるワイヤボンディング構造の設計方法であって、
前記ワイヤ(W)の一端部(Wa)と前記半導体素子(S)の電極部表面との間の接合部(b)、並びに前記ワイヤ(W)の他端部(Wa′)と前記回路部品(C)との接合部(b′)に発生する歪をそれぞれ推定し、
その歪と信頼性の相関値に基づいて、前記高低差(ΔL)及び前記ループ高さ(h)を各々の前記設定範囲内で設定することを特徴とする、半導体装置におけるワイヤボンディング構造の設計方法。
A method for designing a wire bonding structure in a semiconductor device according to claim 1 or 2,
The joint (b) between one end (Wa) of the wire (W) and the electrode part surface of the semiconductor element (S), and the other end (Wa ') of the wire (W) and the circuit component (C) Estimate the strain generated at the joint (b ') with (C),
A design of a wire bonding structure in a semiconductor device, wherein the height difference (ΔL) and the loop height (h) are set within each setting range based on a correlation value between the distortion and reliability. Method.
JP2009193381A 2009-08-24 2009-08-24 Method for designing wire bonding structure in semiconductor device Expired - Fee Related JP5400533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009193381A JP5400533B2 (en) 2009-08-24 2009-08-24 Method for designing wire bonding structure in semiconductor device
PCT/JP2010/064308 WO2011024819A1 (en) 2009-08-24 2010-08-24 Semiconductor device and method for designing wire bonding structure for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193381A JP5400533B2 (en) 2009-08-24 2009-08-24 Method for designing wire bonding structure in semiconductor device

Publications (2)

Publication Number Publication Date
JP2011044661A true JP2011044661A (en) 2011-03-03
JP5400533B2 JP5400533B2 (en) 2014-01-29

Family

ID=43627920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193381A Expired - Fee Related JP5400533B2 (en) 2009-08-24 2009-08-24 Method for designing wire bonding structure in semiconductor device

Country Status (2)

Country Link
JP (1) JP5400533B2 (en)
WO (1) WO2011024819A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985789B2 (en) * 2010-01-13 2012-07-25 株式会社デンソー Mechanical quantity sensor
CN116053254B (en) * 2023-01-31 2024-04-19 海信家电集团股份有限公司 Power module and electronic equipment with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246702A (en) * 2001-02-16 2002-08-30 Denso Corp Hybrid integrated circuit device
JP2003303845A (en) * 2002-04-10 2003-10-24 Fuji Electric Co Ltd Semiconductor device and wire bonding method
JP2004103936A (en) * 2002-09-11 2004-04-02 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246702A (en) * 2001-02-16 2002-08-30 Denso Corp Hybrid integrated circuit device
JP2003303845A (en) * 2002-04-10 2003-10-24 Fuji Electric Co Ltd Semiconductor device and wire bonding method
JP2004103936A (en) * 2002-09-11 2004-04-02 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
WO2011024819A1 (en) 2011-03-03
JP5400533B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US7808100B2 (en) Power semiconductor module with pressure element and method for fabricating a power semiconductor module with a pressure element
US8164176B2 (en) Semiconductor module arrangement
JP5134582B2 (en) Connection structure and power module
JP6433590B2 (en) Power semiconductor device manufacturing method and power semiconductor device
JP2007311441A (en) Power semiconductor module
US20110186999A1 (en) Semiconductor device and method for manufacturing the same
JP6337957B2 (en) Semiconductor module unit and semiconductor module
KR101443980B1 (en) Contact pin and power module package having the same
JP6865358B2 (en) Semiconductor laser device and its manufacturing method
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
JP2006253183A (en) Semiconductor power module
JP2007324604A (en) Bonding junction and method of bonding two contact surfaces
Ling et al. Cu and Al-Cu composite-material interconnects for power devices
JP5400533B2 (en) Method for designing wire bonding structure in semiconductor device
JP2012164697A (en) Power module for electric power, and semiconductor device for electric power
JP4645276B2 (en) Semiconductor device
US9633918B2 (en) Semiconductor device
JPWO2017037837A1 (en) Semiconductor device and power electronics device
JP2010212620A (en) Power module
JP2011061105A (en) Connection structure, power module, and method of manufacturing the same
JP2010086977A (en) Power module
JP2007288044A (en) Semiconductor device
US9706643B2 (en) Electronic device and method for manufacturing the same
JP2007042827A (en) Power semiconductor device
JP4961398B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees