JP2011043311A - Advanced humidity control system and method of operating the same - Google Patents

Advanced humidity control system and method of operating the same Download PDF

Info

Publication number
JP2011043311A
JP2011043311A JP2009193120A JP2009193120A JP2011043311A JP 2011043311 A JP2011043311 A JP 2011043311A JP 2009193120 A JP2009193120 A JP 2009193120A JP 2009193120 A JP2009193120 A JP 2009193120A JP 2011043311 A JP2011043311 A JP 2011043311A
Authority
JP
Japan
Prior art keywords
humidity control
duct
control system
advanced
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009193120A
Other languages
Japanese (ja)
Inventor
Takumasa Watanabe
琢昌 渡邊
Hideo Inaba
英男 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYAMA ECO ENERGY GIJUTSU KENKYUSHO KK
Original Assignee
OKAYAMA ECO ENERGY GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYAMA ECO ENERGY GIJUTSU KENKYUSHO KK filed Critical OKAYAMA ECO ENERGY GIJUTSU KENKYUSHO KK
Priority to JP2009193120A priority Critical patent/JP2011043311A/en
Publication of JP2011043311A publication Critical patent/JP2011043311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide an energy saving type advanced humidity control system preventing increase of humidity control (humidification, dehumidification) energy consumption following ventilation (outside air introduction) of an office space, a factory, or the like, and capable of maintaining an indoor humidity environment at a comfortable condition. <P>SOLUTION: A plurality of humidity control units 3 using a high polymer absorbent or the like is installed across an outside air introduction duct 1 and an indoor air discharge duct 2, a sliding valve 6 is installed in a contact point of each duct 1, 2, and a pair of ventilation fans is installed in the humidity control unit 3. By carrying out collective control of these by a controller 4, continuous switch operation is carried out of the plurality of humidity control units 3 by a batch method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は連続換気を行うオフィス、商業施設、体育館、イベント会場、ホテル、工場、などの空調空間を所定の湿度状態に保つ省エネルギー型換気空調システム技術に関する。   The present invention relates to an energy saving ventilation air conditioning system technology that maintains air conditioning spaces in offices, commercial facilities, gymnasiums, event venues, hotels, factories, and the like that perform continuous ventilation in a predetermined humidity state.

換気に伴う除湿や加湿がいかにエネルギーを消費するかに付いて紹介する。
例えば高温多湿時には、除湿のために空調機は外気を露点以下まで冷却し、空気中の水蒸気を水に凝縮(潜熱除去)させて空気中から分離する。この結果、室内への空気供給において低温化した空気を再度加熱するなどの運転を行っている。このため除湿のためには露点以下までの冷却に加えて、再加熱のエネルギーが消費されてしまう。
Introduces how dehumidification and humidification associated with ventilation consume energy.
For example, at high temperature and high humidity, the air conditioner cools the outside air to below the dew point for dehumidification, condenses water vapor in the air (removes latent heat), and separates it from the air. As a result, an operation such as reheating the air whose temperature has been lowered in the indoor air supply is performed. For this reason, in order to dehumidify, in addition to cooling to a dew point or less, the energy of reheating will be consumed.

一般に空調機の冷房時理論COP(成績係数)は作動媒体の蒸発温度(Teva)と凝縮温度(Tcon)による次式にて規定される。

冷房時理論COP =(Teva)/[(Tcon)−(Teva)] (温度は絶対温度)

従って冷却除湿を行う場合、(Tcon)は外気温度で決まるものの(Teva)は露点以下となるので、分子は小さくなり、分母となる[(Tcon)−(Teva)]が大きくなるので、冷房時理論COPは小さくなりエネルギー効率が低下する。
もし、空調機による除湿負荷が無ければ空調機は空気を露点以下まで冷却する必要が無いので(Teva)は上昇する。その結果、空調機の理論COPは改善される。一般に空調機の理論COPと実運用時のCOPはほぼリニアーな関係にあるので、実運用時のCOPを改善するためには理論COPの改善が不可欠である。
In general, the cooling theory COP (coefficient of performance) of an air conditioner is defined by the following equation based on the evaporation temperature (Teva) and the condensation temperature (Tcon) of the working medium.

Cooling theory COP = (Teva) / [(Tcon)-(Teva)] (Temperature is absolute temperature)

Therefore, when cooling and dehumidifying, (Tcon) is determined by the outside temperature, but (Teva) is below the dew point, so the numerator becomes smaller and the denominator [(Tcon)-(Teva)] becomes larger. The theoretical COP becomes smaller and energy efficiency decreases.
If there is no dehumidification load by the air conditioner, the air conditioner does not need to cool the air below the dew point, so (Teva) rises. As a result, the theoretical COP of the air conditioner is improved. In general, the theoretical COP of an air conditioner and the COP in actual operation are in a substantially linear relationship, so improvement of the theoretical COP is essential to improve the COP in actual operation.

例えば、夏季運転で、外気温度が33℃、相対湿度60%である場合、これを室内へ導き、室温26℃、相対湿度50%とするには(室内空気の露点は15℃程度ゆえ)、冷凍機の冷媒温度を、Teva=5℃、Tcon=43℃と仮定すれば、

(理論COP)=(5+273)/(43−5)=7.3
となる。
For example, if the outdoor temperature is 33 ° C and the relative humidity is 60% during summer operation, this can be led indoors to achieve a room temperature of 26 ° C and a relative humidity of 50% (because the dew point of room air is around 15 ° C) Assuming that the refrigerant temperature of the refrigerator is Teva = 5 ℃, Tcon = 43 ℃,

(Theoretical COP) = (5 + 273) / (43-5) = 7.3
It becomes.

これに対し、冷凍機の除湿負荷がなければ、冷凍機は単に26℃の低温空気を作るだけとなり、(Teva)は16℃程度と見込める。Tcon=43℃ 一定として、

(理論COP)=(16+273)/(43−16)=12.2

となる。
On the other hand, if there is no dehumidifying load of the refrigerator, the refrigerator simply creates cold air at 26 ° C., and (Teva) can be expected to be about 16 ° C. Tcon = 43 ℃

(Theoretical COP) = (16 + 273) / (43-16) = 12.2

It becomes.

結果、理論COPは7.3から12.2となり、改善率は67% となる。
実運用時のCOPは機種や設置条件などの影響を受けるが、改善率はほぼ同等となる傾向があるので、省エネルギー効果は大きいと言える。
As a result, the theoretical COP is 7.3 to 12.2 and the improvement rate is 67%.
Although the COP during actual operation is affected by the model and installation conditions, the improvement rate tends to be almost the same, so it can be said that the energy saving effect is great.

また、冬季や乾燥季には空調機の暖房負荷は変わらないものの、室内加湿には加湿水分量の100℃までの加温と蒸発潜熱相当のエネルギー投入が不可欠となる。   In addition, although the heating load of the air conditioner does not change during the winter and dry seasons, it is essential to heat the humidified water up to 100 ° C and input energy equivalent to the latent heat of evaporation for indoor humidification.

一方、最近の省エネルギー換気空調設備として、シリカゲルやゼオライトなどの除湿材を通風可能なロータ形状とし、これを一定速度で回転させつつ、その半円部分で空気中の水分を吸着し、残りの半円部分で除湿材を乾燥させるデシカント装置と冷凍機を組み合わせたハイブリッド型のデシカント調湿空調システムが提案・実用化されている。   On the other hand, as a recent energy-saving ventilation air-conditioning equipment, a rotor shape that allows ventilation of dehumidifying materials such as silica gel and zeolite is used, and while rotating this at a constant speed, moisture in the air is adsorbed in the semicircular portion, and the remaining half A hybrid desiccant humidity control air conditioning system that combines a desiccant device that dries the dehumidifying material in a circle and a refrigerator has been proposed and put into practical use.

これら装置では、一定速度で回転するロータ面に摺動シールをエアータイトに接触させ、ロータ摺動面で空気流路を分割している。そのため、ロータ摺動面の硬度を確保した上で、摺動面の平滑化仕上げが不可欠であり、摺動シールの磨耗対策等が必要であり、装置価格や保守コストが増大すると共に摺動シールを介しての空気漏洩の課題を有している。   In these apparatuses, a sliding seal is brought into contact with air tight on the rotor surface rotating at a constant speed, and the air flow path is divided on the rotor sliding surface. For this reason, the smoothness of the sliding surface is indispensable after ensuring the hardness of the rotor sliding surface, and it is necessary to take measures against the wear of the sliding seal. There is a problem of air leakage through.

また、別のデシカントシステムでは摺動に伴うコストアップを回避する目的で、除湿剤をロータ形状とせずに複数の容器内に充填し、この容器を導入する外気と排出される室内気の2つの空気ダクトに対してバッチにて移動させて吸着と再生を繰り返す構成であるが、移動のための装置が複雑化する問題を有していた。   In another desiccant system, a dehumidifying agent is filled in a plurality of containers without the shape of a rotor in order to avoid an increase in cost due to sliding, and two types of air, that is, outside air to be introduced into the container and discharged indoor air, are used. Although it is a structure which repeats adsorption | suction and reproduction | regeneration by making it move with a batch with respect to an air duct, it had the problem that the apparatus for a movement became complicated.

米国特許第6557365号公報US Pat. No. 6,557,365 米国特許第4719761号公報U.S. Pat. No. 4,719,761 特開平10−009633号公報JP 10-009633 A 特開2007−303772号公報JP 2007-303772 A 特開2007−327712号公報JP 2007-327712 A 特開平10−019412号公報Japanese Patent Laid-Open No. 10-019412

本発明はこのような従来の事情に鑑みてなされたものであり、工場や建築物の換気に伴う空調システムの負荷増大の主因である除湿や加湿の潜熱負荷を、新規の調湿システムにて低減し大幅な省エネルギーを達成させ、安全で快適な室内空調環境を提供することを目的としている。   The present invention has been made in view of such conventional circumstances, and a new humidity control system is used for dehumidification and humidification latent heat load, which is a major cause of an increase in load of an air conditioning system accompanying ventilation of a factory or a building. The goal is to provide a safe and comfortable indoor air-conditioning environment with reduced energy consumption.

本発明によれば、例えば水分の収着機能を有する高分子収着剤を紙、樹脂あるいは金属などからなる薄板平板に塗布することで担持し、この塗布された薄板平板と、当該薄板平板をコルゲート加工した波板を交互に接着積層した構造体をまず製作し、この構造体を所定寸法に切断した後に積み重ねて調湿コアを形成し、該調湿コアを、調湿モジュールとして組み立てた後に、これを単独あるいは複数個組み合わせて調湿ユニットを形成し、複数の調湿ユニットを外気導入ダクトならびに室内気排出ダクトに並列に接続する。調湿ユニットと各ダクトの接続点に、それぞれ開閉が制御される摺動弁を設置した高度調湿システムが提供される。   According to the present invention, for example, a polymer sorbent having a moisture sorption function is supported by being applied to a thin plate made of paper, resin, metal, or the like, and the coated thin plate and the thin plate are fixed. After manufacturing a structure in which corrugated corrugated corrugated sheets are alternately bonded and laminated, the structure is cut to a predetermined size and stacked to form a humidity control core, and the humidity control core is assembled as a humidity control module. The humidity control unit is formed by combining these alone or in combination, and the plurality of humidity control units are connected in parallel to the outside air introduction duct and the indoor air discharge duct. An advanced humidity control system is provided in which a sliding valve whose opening and closing is controlled is provided at the connection point between the humidity control unit and each duct.

また、各調湿ユニットはその内部の調湿モジュールの前後に通風方向が互いに逆である1組の通風ファンを設置している。この通風ファンと前記摺動弁の動作は制御装置にて一括調整されており、同一調湿ユニット内の通風ファンが同時に稼働する事は無い。また、通風ファンの回転数も制御されるため、外気導入運転時の調湿ユニットを通過する空気量と、室内気の排出運転時の調湿ユニットを通過する空気量を不等とする制御が可能であり、複数台設置されている調湿ユニットの内、外気導入運転を行う調湿ユニット数と室内気の排出運転を行う調湿ユニット数を可変とする事が可能となる。
また、いうまでもないが外気導入ダクトならびに室内気排出ダクトの上流側にそれぞれ防塵フィルターが配置されている。
In addition, each humidity control unit is provided with a pair of ventilation fans whose ventilation directions are opposite to each other before and after the humidity control module inside. The operations of the ventilation fan and the sliding valve are collectively adjusted by the control device, and the ventilation fan in the same humidity control unit does not operate at the same time. In addition, since the rotation speed of the ventilation fan is also controlled, control is performed so that the amount of air passing through the humidity control unit during the outside air introduction operation and the amount of air passing through the humidity control unit during the indoor air discharge operation are unequal. It is possible to change the number of humidity control units that perform the outside air introduction operation and the number of humidity control units that perform the indoor air discharge operation among a plurality of humidity control units installed.
Needless to say, a dustproof filter is disposed upstream of the outside air introduction duct and the indoor air discharge duct.

制御装置は、各調湿ユニットと外気導入ダクトならびに室内気排出ダクトとの接続点にある摺動弁と、各調湿ユニット内の通風ファンを一括制御する。これにより、複数台の調湿ユニットのバッチ運転のプログラム化が実施されるので、外気導入運転に供される調湿ユニット数と室内気排出運転に供される調湿ユニットの数が不等であっても、通過する空気量を等量とする事が可能と成り、かつ外気導入と室内気の排出を連続的に行う事が可能となる。   The control device collectively controls a sliding valve at a connection point between each humidity control unit, the outside air introduction duct and the indoor air discharge duct, and a ventilation fan in each humidity control unit. As a result, the batch operation programming of a plurality of humidity control units is implemented, so the number of humidity control units used for the outside air introduction operation and the number of humidity control units used for the indoor air discharge operation are unequal. Even if it exists, it will become possible to make equal the amount of air to pass, and it will become possible to perform external air introduction and discharge of room air continuously.

より詳しく記載するが、外気導入運転に供される調湿ユニット数と室内気排出運転に供される調湿ユニットの数が不等であっても、導入外気量と室内気の排出量を等しくできるのは、各調湿ユニットの通風ファンの運転(ファン回転数)を調整しているからである。すなわち、導入外気を処理する調湿ユニットと室内気の排出を担当する調湿ユニットの数に対して稼働するファンの回転数を調整することで通過する空気の総量を等しく制御している。   Although described in more detail, even if the number of humidity control units used for the outdoor air introduction operation and the number of humidity control units used for the indoor air discharge operation are unequal, the introduction outdoor air amount and the indoor air discharge amount are equal. This is because the operation (fan rotation speed) of the ventilation fan of each humidity control unit is adjusted. That is, the total amount of air that passes is adjusted equally by adjusting the number of rotations of the operating fan with respect to the number of humidity control units that process the introduced outside air and the number of humidity control units that are responsible for the discharge of room air.

また、各調湿ユニットの外気導入運転と室内気排出運転を順番に切り替えてゆく(プログラム制御をかける)事で、常に外気導入運転に供される調湿ユニット数と室内気排出運転に供される調湿ユニットの数を一定に保っている。これにより、単位時間内で空気中の水分を吸着(又は収着)する能力と、吸着剤(又は収着剤)に蓄えた水分を通過する空気中へ放出する能力に差があっても、個々の調湿ユニットの運転時間を調整できるので、システム全体では常に同量の水分の吸脱着量を維持する運転が可能となる。   In addition, by switching the outside air introduction operation and the room air discharge operation of each humidity control unit in turn (by applying program control), the number of humidity control units and the room air discharge operation always used for the outside air introduction operation are provided. The number of humidity control units is kept constant. Thereby, even if there is a difference between the ability to adsorb (or sorb) moisture in the air within a unit time and the ability to release moisture stored in the adsorbent (or sorbent) into the air, Since the operation time of each humidity control unit can be adjusted, the entire system can be operated to always maintain the same amount of moisture adsorption / desorption.

以上説明したように、本発明による高度調湿システムでは、調湿ユニット内の調湿モジュールの前後に、通風方向が互いに逆の通風ファンを1組設置し、各ファンの運転・停止タイミング、運転時のファン能力、各調湿ユニットと外気導入ダクトならびに室内気排出ダクトの接続点に設置した摺動弁の開閉を制御装置にて一括制御する構成としたので、従来の回転ロータ型デシカント調湿システムで不可欠であった摺動シールが不要となるほか、吸着(収着)剤が水分を吸着(収着)する速度と、吸着(収着)剤が水分を放出する能力に差があっても、その能力を通風量と運転時間を調整することで最適な運転状態を形成することが可能となる。   As described above, in the advanced humidity control system according to the present invention, one set of ventilation fans having opposite ventilation directions are installed before and after the humidity control module in the humidity control unit. Fan control at the time, the opening and closing of the sliding valve installed at the connection point between each humidity control unit, the outside air introduction duct and the indoor air discharge duct is controlled collectively by the control device, so the conventional rotary rotor type desiccant humidity control In addition to eliminating the need for sliding seals that were indispensable in the system, there was a difference in the speed at which the adsorbent (sorbent) adsorbs (sorbs) moisture and the ability of the adsorbent (sorbent) to release moisture. However, it is possible to form an optimum operation state by adjusting the ventilation rate and the operation time.

調湿ユニットに設置されている通風ファンの運転を、水分収着(吸着)運転時と水分放出運転時とでファンの回転数を調整することで、通過する空気からの水分収着(吸着)運転に供されている調湿ユニットの台数と、通過する空気への水分放出運転に供されている調湿ユニットの台数を任意に調整する事が可能となる。
このような運転方法を採用することで、水分収着(吸着)運転時の収着水分量と水分放出運転時の放出水分量は等しく、かつ最も性能が良い条件での運転が可能となる。
Moisture sorption (adsorption) from the passing air by adjusting the rotation speed of the fan in the moisture sorption (adsorption) operation and moisture release operation during the operation of the ventilation fan installed in the humidity control unit It is possible to arbitrarily adjust the number of humidity control units used for operation and the number of humidity control units used for moisture release operation to the passing air.
By adopting such an operation method, it is possible to perform the operation under the condition that the sorption moisture amount during the moisture sorption (adsorption) operation and the released moisture amount during the moisture release operation are equal and have the best performance.

第1発明に係る高度調湿システム10を形成する外気導入ダクト1,室内気排出ダクト2、調湿ユニット3、制御装置4、フィルター5、摺動弁6の関係概要図である。1 is a schematic diagram showing the relationship among an outside air introduction duct 1, an indoor air discharge duct 2, a humidity control unit 3, a control device 4, a filter 5, and a sliding valve 6 that form an advanced humidity control system 10 according to the first invention. 第1発明に係る調湿ユニット3を形成する調湿モジュール7、通風ファン8、熱交換器9などの主要構成部材の関係を示した構成図である。It is the block diagram which showed the relationship of main structural members, such as the humidity control module 7, the ventilation fan 8, and the heat exchanger 9, which form the humidity control unit 3 which concerns on 1st invention. 第1発明に係る調湿ユニット3と外気導入ダクト1,室内気排出ダクト2の接続点に設置される摺動弁6の設置例である。It is the example of installation of the sliding valve 6 installed in the connection point of the humidity control unit 3 which concerns on 1st invention, the external air introduction duct 1, and the indoor air discharge duct 2. FIG. 第1発明において水分の収着・放出に使用される高分子収着剤の収着等温線図である。FIG. 2 is a sorption isotherm of a polymer sorbent used for moisture sorption / release in the first invention. 第1発明に係る高度調湿システム10を形成する5セットの調湿ユニット(A,B,C,D,E)の運転パターンを示すプログラム運転制御例である。It is a program operation control example which shows the operation pattern of five sets of humidity control units (A, B, C, D, E) which form the high humidity control system 10 which concerns on 1st invention.

図1は、第1発明に係る高度調湿システム10を形成する外気導入ダクト1、室内気排出ダクト2、調湿ユニット3、制御装置4、フィルター5、摺動弁6の関係を示したものである。   FIG. 1 shows the relationship among an outside air introduction duct 1, an indoor air discharge duct 2, a humidity control unit 3, a control device 4, a filter 5, and a sliding valve 6 that form an advanced humidity control system 10 according to the first invention. It is.

外気導入ダクト1、室内気排出ダクト2は室外と室内を繋ぐため、図では4本のダクトとして描かれているが、各ダクトに跨る形で調湿ユニット3が接続されているので、その様に見えるだけである。また、各ダクトの上流側に除塵フィルター5が設置されており、外部や室内からのゴミ類の調湿ユニット3への流入を防止している。
また、調湿ユニット3の両端にある4本の接続ダクト3−1と、外気導入ダクト1、室内気排出ダクト2との結合点で、外気導入ダクト1、室内気排出ダクト2側には摺動弁6が設置されており、その開閉は電動にてなされ開閉指示は制御装置4にて実施されている。
Since the outside air introduction duct 1 and the room air discharge duct 2 connect the outside and the room, they are depicted as four ducts in the figure, but the humidity control unit 3 is connected so as to straddle each duct. It just looks like. In addition, a dust removal filter 5 is installed on the upstream side of each duct to prevent inflow of dust from the outside or the room into the humidity control unit 3.
Further, at the connection point between the four connection ducts 3-1 at both ends of the humidity control unit 3, the outside air introduction duct 1, and the room air discharge duct 2, the outside air introduction duct 1 and the room air discharge duct 2 side are slid. A valve 6 is installed, which is electrically opened and closed, and an opening / closing instruction is executed by the control device 4.

図2は、第1発明に係る調湿ユニット3を形成する調湿モジュール7、通風ファン8、熱交換器9などの主要構成部材の関係を示した構成図である。
調湿ユニット3は接続ダクト3−1を介して外気導入ダクト1、室内気排出ダクト2と接続されている。調湿ユニット3の内部には高分子収着剤を通風可能な状態で担持した調湿モジュール7が配置され、その両側に通過空気の加熱、冷却を行うための熱交換器9、さらにその外側には通風方向が互いに逆方向の通風ファン8が少なくとも一組設置されている。
FIG. 2 is a configuration diagram showing the relationship of main components such as the humidity control module 7, the ventilation fan 8, and the heat exchanger 9 forming the humidity control unit 3 according to the first invention.
The humidity control unit 3 is connected to the outside air introduction duct 1 and the room air discharge duct 2 via the connection duct 3-1. Inside the humidity control unit 3, a humidity control module 7 supported in a state in which the polymer sorbent can be ventilated is disposed, and a heat exchanger 9 for heating and cooling the passing air on both sides thereof, and an outer side thereof Are provided with at least one set of ventilation fans 8 whose ventilation directions are opposite to each other.

図3は、第1発明に係る調湿ユニット3と外気導入ダクト1,室内気排出ダクト2の接続点に設置される摺動弁6の設置例である。
摺動弁6は駆動用のチェーン6−1にて摺動ガイド6−2に沿って室内気排出ダクト2の壁面に平行に移動する。駆動用チェーン6−1はモータ駆動装置6−3により移動するが、摺動弁6は室内気排出ダクト2の壁面に対してエアータイトな状態で摺動する様に、室内気排出ダクト2の壁面には弾力性を持たせた樹脂シールが設置されている。
また、モータ駆動装置6−3は制御装置4からの指令により動作する。
FIG. 3 is an installation example of the sliding valve 6 installed at the connection point between the humidity control unit 3 according to the first invention and the outside air introduction duct 1 and the indoor air discharge duct 2.
The sliding valve 6 moves in parallel with the wall surface of the indoor air discharge duct 2 along the sliding guide 6-2 by the driving chain 6-1. The driving chain 6-1 is moved by the motor driving device 6-3, but the sliding valve 6 is connected to the wall of the room air discharge duct 2 so that it slides in an air tight state. A resin seal with elasticity is installed on the wall.
Further, the motor driving device 6-3 operates according to a command from the control device 4.

このように構成された調湿ユニット3を通過する外気あるいは室内気と調湿モジュール7との間で行われる水分授受の仕組みについて説明する。
図4は本発明において使用される高分子収着剤の収着等温線図を他の物質との比較にて示した図である。
高分子収着剤はシリカゲルやゼオライトなどの吸着剤と同様に、その周囲にある空気の相対湿度に従い、空気中の水蒸気を自身に取り込んだり、放出する能力を有している。
図の縦軸に示される吸湿率とは、乾燥状態にある収着剤重量に比しての取り込まれた水分の重量比を示す。従って、高分子収着剤は相対湿度100%領域において吸湿率が際立って高いことが特徴と言える。
The mechanism of moisture exchange performed between the outside air or room air passing through the humidity control unit 3 configured as described above and the humidity control module 7 will be described.
FIG. 4 is a graph showing the sorption isotherm of the polymer sorbent used in the present invention in comparison with other substances.
The polymer sorbent, like an adsorbent such as silica gel or zeolite, has the ability to take in or release water vapor in the air according to the relative humidity of the air around it.
The moisture absorption shown on the vertical axis of the figure indicates the weight ratio of the incorporated water relative to the weight of the sorbent in the dry state. Therefore, it can be said that the polymer sorbent has a remarkably high moisture absorption rate in the 100% relative humidity region.

図1に示す例では、5セットの調湿ユニットを用いているが、制御装置4の指令にて内3セットを収着運転(相対湿度の高い空気からの水分の取り込み)、2セットを再生運転(相対湿度の低い空気への水分の放出)とすることが可能である。当然の事であるが、収着運転時の調湿ユニット1セットあたりの通風量は、再生運転の調湿ユニット1セットあたりの通風量の2/3となるように、制御装置にて通風ファンの回転数が制御されている。
これは、一般的に収着速度に比して、再生速度が速いという高分子収着剤の特性を考慮しての運転方法を実現したものである。
In the example shown in FIG. 1, five sets of humidity control units are used, but three sets are sorption-operated (incorporation of moisture from air with high relative humidity) and two sets are regenerated by a command from the control device 4. Operation (release of moisture into air with low relative humidity) is possible. As a matter of course, a ventilation fan is used in the control device so that the ventilation rate per set of humidity control unit during sorption operation is 2/3 of the ventilation rate per set of humidity control unit during regeneration operation. The number of revolutions is controlled.
This realizes an operation method in consideration of the characteristics of the polymer sorbent, in which the regeneration speed is generally higher than the sorption speed.

図5は本発明による、5セットの調湿ユニット(A,B,C,D,E)の運転パターンをプログラム制御する際の例を示したものである。
図中のハッチング部分は収着運転、白抜きの部分は再生運転を行っている状態を示している。結果的にどの時間帯も収着運転を行う調湿ユニットが3セット、再生運転を行う調湿ユニットが2セットとなるように計画的な運転が可能となっている。当然のことながら、偶数セットの調湿ユニットを使用して通風量制御を行わず、収着運転と再生運転を等間隔で繰り返す運転モードも可能である。
FIG. 5 shows an example of program-controlling the operation patterns of five sets of humidity control units (A, B, C, D, E) according to the present invention.
The hatched portion in the figure indicates a state where sorption operation is performed, and the white portion indicates a state where regeneration operation is performed. As a result, planned operation is possible so that there are three sets of humidity control units that perform sorption operation and two sets of humidity control units that perform regeneration operation at any time zone. As a matter of course, an operation mode in which the sorption operation and the regeneration operation are repeated at equal intervals without performing the ventilation amount control using the even-numbered humidity control unit is also possible.

このような運転を実施する中で、熱交換器9に流通させる熱媒体温度を調整することで、収着能力や再生能力を向上させることが可能である。
通過空気の温度調整を行い、その相対湿度をコントロールすることでデシカント調湿装置の能力を向上する手法は従来(デシカントロータ)型の調湿システムにても応用されている。
本発明では、低温の排熱源を有する工場やビルなどで、60℃程度の温排水熱を利用して室内からの排気を加熱し、その相対湿度を低下させる事で収着剤を再生する手法を取り込んでいるが、加熱目的の熱交換器は電気式の加熱ヒータでも容易に形成できる。これにより収着剤からの水分放出が活発化するので、その結果として相対湿度の高い外気からの水分吸着能力が向上する効果を得ている。また、空気の冷却による相対湿度の増大作用は高分子収着剤の場合に大きな効果を有することは図4の特性からも有効である。
In carrying out such an operation, it is possible to improve the sorption capacity and the regeneration capacity by adjusting the temperature of the heat medium to be circulated through the heat exchanger 9.
The technique of improving the capacity of the desiccant humidity control device by adjusting the temperature of the passing air and controlling the relative humidity is also applied to a conventional (desiccant rotor) type humidity control system.
In the present invention, in a factory or building having a low-temperature exhaust heat source, a method for regenerating the sorbent by heating the exhaust from the room using hot waste water heat of about 60 ° C. and reducing the relative humidity. However, the heat exchanger for heating can be easily formed by an electric heater. As a result, moisture release from the sorbent is activated, and as a result, an effect of improving the ability to adsorb moisture from outside air having a high relative humidity is obtained. Further, it is effective from the characteristics of FIG. 4 that the effect of increasing the relative humidity by cooling the air has a great effect in the case of the polymer sorbent.

1 外気導入ダクト
2 室内気排出ダクト
3 調湿ユニット
3−1 接続ダクト
4 制御装置
5 除塵フィルター
6 摺動弁
6−1 摺動弁駆動用チェーン
6−2 摺動ガイド
6−3 モータ駆動装置
7 調湿モジュール
8 通風ファン
9 熱交換器
10 高度調湿システム
DESCRIPTION OF SYMBOLS 1 Outside air introduction duct 2 Indoor air discharge duct 3 Humidity control unit 3-1 Connection duct 4 Control apparatus 5 Dust removal filter 6 Sliding valve 6-1 Sliding valve drive chain 6-2 Sliding guide 6-3 Motor driving apparatus 7 Humidity control module 8 Ventilation fan 9 Heat exchanger 10 Advanced humidity control system

Claims (5)

水分の収着(吸着)機能を有する高分子収着剤やイモゴライト、シリカゲル、ゼオライトを担持した紙、樹脂あるいは金属などの薄板平板と、当該薄板平板をコルゲート加工した波板を交互に通風可能な状態で接着積層した調湿モジュールを内部に収納した調湿ユニットを外気導入ダクトならびに室内気排出ダクトに複数個並列に接続し、調湿ユニットと各ダクトの接続点に、開閉が制御装置にて制御される摺動弁を設置したことを特徴とする高度調湿システム。   High-capacity sorbent with moisture sorption (adsorption) function, imogolite, silica gel, zeolite-supported paper, resin or metal thin plate and corrugated corrugated plate can be alternately ventilated A plurality of humidity control units that house humidity control modules that are bonded and laminated in the state are connected in parallel to the outside air introduction duct and the indoor air discharge duct, and the controller is opened and closed at the connection point between the humidity control unit and each duct. Advanced humidity control system, characterized by a controlled sliding valve. 前記調湿ユニットの内部で、調湿モジュールの前後に通風方向が互いに逆である1組の通風ファンを設置し、この通風ファンと前記摺動弁の動作は制御装置にて一括調整されると共に、通風ファンの回転数も制御可能としたことを特徴とする請求項1記載の高度調湿システム。   Inside the humidity control unit, a pair of ventilation fans whose ventilation directions are opposite to each other are installed before and after the humidity control module, and the operations of the ventilation fan and the sliding valve are collectively adjusted by the control device. 2. The advanced humidity control system according to claim 1, wherein the rotational speed of the ventilation fan can also be controlled. 前記調湿ユニットの内部に、通風ファンと調湿モジュールの間に熱交換器を設置したことを特徴とする請求項1又は2記載の高度調湿システム。   The advanced humidity control system according to claim 1 or 2, wherein a heat exchanger is installed between the ventilation fan and the humidity control module inside the humidity control unit. 前記調湿ユニットを、外気導入ダクトならびに室内気排出ダクトに複数個並列に接続し、制御装置により通風ファンの発停と回転数、摺動弁の開閉、ならびに熱交換器への熱媒体の流入と停止を制御装置で一括調整すると共に、複数個の調湿ユニットの運転制御をプログラム化し、通過空気からの水分収着(吸着)運転を行う調湿ユニットと、通過空気への水分放出を行う調湿ユニットの数を常に不等としたことを特徴とする請求項1〜3いずれか記載の高度調湿システム。   A plurality of the humidity control units are connected in parallel to the outside air introduction duct and the indoor air discharge duct, and the control device starts / stops and rotates the ventilation fan, opens / closes the sliding valve, and flows the heat medium into the heat exchanger. In addition, the control device collectively adjusts the stop and stop, and also programs the operation control of a plurality of humidity control units, and performs the moisture sorption (adsorption) operation from the passing air and releases the moisture to the passing air. The advanced humidity control system according to claim 1, wherein the number of humidity control units is always unequal. 請求項1〜4いずれか記載の高度調湿システムを運転する高度調湿システムの運転方法。   The operating method of the advanced humidity control system which drives the advanced humidity control system in any one of Claims 1-4.
JP2009193120A 2009-08-24 2009-08-24 Advanced humidity control system and method of operating the same Pending JP2011043311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193120A JP2011043311A (en) 2009-08-24 2009-08-24 Advanced humidity control system and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193120A JP2011043311A (en) 2009-08-24 2009-08-24 Advanced humidity control system and method of operating the same

Publications (1)

Publication Number Publication Date
JP2011043311A true JP2011043311A (en) 2011-03-03

Family

ID=43830865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193120A Pending JP2011043311A (en) 2009-08-24 2009-08-24 Advanced humidity control system and method of operating the same

Country Status (1)

Country Link
JP (1) JP2011043311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027429A1 (en) * 2014-08-21 2016-02-25 株式会社デンソー Humidifier
WO2020250629A1 (en) * 2019-06-10 2020-12-17 ダイキン工業株式会社 Humidity control unit and humidity control system
CN113883618A (en) * 2021-09-02 2022-01-04 祝雯倩 Fan capable of adjusting indoor humidity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334481A (en) * 2005-05-31 2006-12-14 Seibu Giken Co Ltd Adsorption type dehumidifier
JP2007032912A (en) * 2005-07-26 2007-02-08 Shin Nippon Air Technol Co Ltd Desiccant type ventilator
JP2008247305A (en) * 2007-03-30 2008-10-16 Mitsubishi Chemicals Corp Vehicular dehumidification/humidification device
JP2009097837A (en) * 2007-10-19 2009-05-07 Shin Nippon Air Technol Co Ltd Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
JP2009103373A (en) * 2007-10-24 2009-05-14 Japan Organo Co Ltd Air conditioner
JP2009115327A (en) * 2007-11-01 2009-05-28 Tokyu Construction Co Ltd Humidity control system and humidity control building material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334481A (en) * 2005-05-31 2006-12-14 Seibu Giken Co Ltd Adsorption type dehumidifier
JP2007032912A (en) * 2005-07-26 2007-02-08 Shin Nippon Air Technol Co Ltd Desiccant type ventilator
JP2008247305A (en) * 2007-03-30 2008-10-16 Mitsubishi Chemicals Corp Vehicular dehumidification/humidification device
JP2009097837A (en) * 2007-10-19 2009-05-07 Shin Nippon Air Technol Co Ltd Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
JP2009103373A (en) * 2007-10-24 2009-05-14 Japan Organo Co Ltd Air conditioner
JP2009115327A (en) * 2007-11-01 2009-05-28 Tokyu Construction Co Ltd Humidity control system and humidity control building material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027429A1 (en) * 2014-08-21 2016-02-25 株式会社デンソー Humidifier
JP2016044963A (en) * 2014-08-21 2016-04-04 株式会社デンソー Humidifier
CN106574793A (en) * 2014-08-21 2017-04-19 株式会社电装 Humidifier
US10112460B2 (en) 2014-08-21 2018-10-30 Denso Corporation Humidifier
WO2020250629A1 (en) * 2019-06-10 2020-12-17 ダイキン工業株式会社 Humidity control unit and humidity control system
JP2020200985A (en) * 2019-06-10 2020-12-17 ダイキン工業株式会社 Humidity control unit and humidity control system
CN113874660A (en) * 2019-06-10 2021-12-31 大金工业株式会社 Humidity control unit and humidity control system
EP3961120A4 (en) * 2019-06-10 2023-01-04 Daikin Industries, Ltd. Humidity control unit and humidity control system
CN113883618A (en) * 2021-09-02 2022-01-04 祝雯倩 Fan capable of adjusting indoor humidity

Similar Documents

Publication Publication Date Title
US6199388B1 (en) System and method for controlling temperature and humidity
JP7464868B2 (en) Air quality control system
EP2351970B1 (en) Desiccant air conditioning device
JP3992051B2 (en) Air conditioning system
JP2004257588A (en) Dehumidifying air-conditioner
JP4729409B2 (en) Desiccant ventilation system
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP5497492B2 (en) Desiccant air conditioner
JP2011089665A (en) Humidity conditioner
KR20200092221A (en) An air conditioning system
JP2011033302A (en) Humidity control ventilator
JP2011043295A (en) Air conditioner and air conditioning system
SG183110A1 (en) A dehumidifier and a method of dehumidification
JP2011043311A (en) Advanced humidity control system and method of operating the same
CN112923459A (en) Fresh air system
WO2013115143A1 (en) Static desiccant air conditioner and operation method
JP2004069222A (en) Ventilating and humidity conditioning apparatus
JP5473404B2 (en) Regenerative humidity control air conditioning system
JP3438671B2 (en) Humidity controller
JP2005164220A (en) Air conditioner
JP2016084982A (en) Dehumidifier
JP7425355B2 (en) Humidity control device
JP6188438B2 (en) Air conditioner and operation method thereof
JP2017138078A (en) Dehumidification system
JP2023174337A (en) Humidity conditioning device, air-conditioning/humidity-conditioning device, and dwelling house provided with air-conditioning/humidity-conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Effective date: 20130627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105