WO2020250629A1 - Humidity control unit and humidity control system - Google Patents

Humidity control unit and humidity control system Download PDF

Info

Publication number
WO2020250629A1
WO2020250629A1 PCT/JP2020/019798 JP2020019798W WO2020250629A1 WO 2020250629 A1 WO2020250629 A1 WO 2020250629A1 JP 2020019798 W JP2020019798 W JP 2020019798W WO 2020250629 A1 WO2020250629 A1 WO 2020250629A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity control
air
control unit
space
humidity
Prior art date
Application number
PCT/JP2020/019798
Other languages
French (fr)
Japanese (ja)
Inventor
武士 荒川
宇 江
昂之 砂山
大久保 英作
隆 高橋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20822731.4A priority Critical patent/EP3961120B1/en
Priority to SG11202112648TA priority patent/SG11202112648TA/en
Priority to CN202080039420.4A priority patent/CN113874660A/en
Publication of WO2020250629A1 publication Critical patent/WO2020250629A1/en
Priority to US17/531,171 priority patent/US20220074608A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • F24F7/013Ventilation with forced flow using wall or window fans, displacing air through the wall or window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/065Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit fan combined with single duct; mounting arrangements of a fan in a duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/005Cyclic ventilation, e.g. alternating air supply volume or reversing flow direction

Definitions

  • This disclosure relates to a humidity control unit and a humidity control system.
  • the humidity control device of Patent Document 1 includes two adsorption heat exchangers.
  • the humidity control device dehumidifies the outdoor air with one of the adsorption heat exchangers and supplies it to the room, and at the same time, regenerates the adsorbent of the other adsorption heat exchanger with the indoor air.
  • the humidity control device of Patent Document 1 separately provides a flow path for supplying outdoor air to the room and a flow path for discharging indoor air to the outside, which causes a problem that the size of the humidity control device becomes large. was there.
  • the purpose of this disclosure is to reduce the size of the humidity control unit.
  • the air passage (12) communicating the first space (S1) and the second space (S2), which are the target spaces, and the air passage (12) are arranged to absorb moisture from the air.
  • the air transport mechanism (M) that reversibly conveys the air flow direction in the air passage (12), the heat source (21,22,32), and the air transport mechanism (M) are controlled.
  • It is a humidity control unit characterized by being equipped with a control device (C).
  • the air flow direction can be switched in both directions by the air transport mechanism (M). Therefore, the air in the second space (S2) can be conveyed to the first space (S1) after passing through the moisture absorbing portion (30,32) and the heat source (21,22,32). The air in the first space (S1) can be conveyed to the second space (S2) after passing through the moisture absorbing portion (30,32) and the heat source (21,22,32). Since the air passage (12) is shared in these two operations, the humidity control unit (10) can be miniaturized.
  • the control device (C) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and by the air transport mechanism (M).
  • the humidity control unit is characterized in that the first operation of transporting the air in the second space (S2) to the first space (S1) is executed.
  • the heat source (21,22,32) may directly cool the moisture absorbing portion (30,32), or the moisture absorbing portion (30,32) may be cooled by the air cooled by the heat source (21,22,32). It may be cooled indirectly.
  • the air in the second space (S2) is dehumidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
  • control device (C) heats the moisture absorbing portion (30,32) by the first operation and the heat source (21,22,32) and the air.
  • the humidity control unit is characterized in that the second operation of transporting the air in the first space (S1) to the second space (S2) is alternately executed by the transport mechanism (M).
  • the heat source (21,22,32) may directly heat the hygroscopic part (30,32), or the hygroscopic part (30,32) may be heated by the air heated by the heat source (21,22,32). It may be heated indirectly.
  • the air in the second space (S2) is dehumidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
  • the air in the first space (S1) takes moisture from the moisture absorbing portions (30, 32) and then is transported to the second space (S2).
  • a fourth aspect is that, in the third aspect, the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the first operation and before the start of the second operation. It is a feature.
  • the air transport mechanism (M) is stopped after the end of the first operation. During this period, the low-humidity air conveyed to the first space (S1) can be diffused.
  • control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the second operation and before the start of the first operation. It is a humidity control unit characterized by being allowed to operate.
  • the air transport mechanism (M) is stopped after the end of the second operation. Highly humid air transported to the second space (S2) can be diffused during this period.
  • a sixth aspect is, in any one of the first to fifth aspects, the control device (C) heats the moisture absorbing portion (30,32) by the heat source (21,22,32) and said.
  • the humidity control unit is characterized in that a third operation of transporting air in the second space (S2) to the first space (S1) is executed by an air transport mechanism (M).
  • the air in the second space (S2) is humidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
  • control device (C) cools the moisture absorbing portion (30,32) by the third operation and the heat source (21,22,32) and the air.
  • the humidity control unit is characterized in that the fourth operation of transporting the air in the first space (S1) to the second space (S2) is alternately executed by the transport mechanism (M).
  • the air in the second space (S2) is humidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
  • the air in the first space (S1) imparts moisture to the moisture absorbing portions (30, 32) and then is conveyed to the second space (S2).
  • control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the third operation and before the start of the fourth operation. It is a characteristic humidity control unit.
  • the air transport mechanism (M) is stopped after the end of the third operation. During this period, the highly humid air transported to the first space (S1) can be diffused.
  • control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the fourth operation and before the start of the third operation. It is a humidity control unit characterized by being allowed to operate.
  • the air transport mechanism (M) is stopped after the end of the fourth operation. During this period, the low-humidity air conveyed to the second space (S1) can be diffused.
  • a tenth aspect is, in any one of the first to ninth aspects, characterized in that the first space (S1) is an indoor space and the second space (S2) is an outdoor space. It is a wet unit.
  • the air passage (12) communicates the indoor space (S1) and the outdoor space (S2).
  • the air transport mechanism (M) can switch between the operation of supplying the air in the outdoor space (S2) to the indoor space (S1) and the operation of discharging the air in the indoor space (S1) to the outdoor space (S2). ..
  • the heat source (21,22,32) includes a heat exchange unit (21,22,32) through which a heat medium flows. It is a humidity control unit.
  • the air and the heat medium exchange heat at the heat exchange section (21,22,32).
  • the heat exchange section is arranged on the first space (S1) side of the moisture absorbing section (30) to cool and heat air, and the first heat exchanger (21). It is characterized in that it is arranged on the second space (S2) side of the moisture absorbing portion (30) and includes a second heat exchanger (22) that cools and heats air.
  • the air cooled or heated by the first heat exchanger (21) can be passed through the moisture absorbing portion (30, 32).
  • Air cooled or heated by the second heat exchange section (21,22,32) can be passed through the moisture absorbing section (30,32).
  • the heat exchange unit is an adsorption heat exchanger (32) having an adsorbent that adsorbs and desorbs water and also serves as the moisture absorbing unit (30, 32). It is a humidity control unit characterized by being present.
  • the adsorbent is cooled or heated by the heat medium flowing through the adsorption heat exchanger (32).
  • a fourteenth aspect is a humidity control unit comprising a refrigerant circuit (R) in which a refrigerant as a heat medium circulates to perform a refrigeration cycle in any one of the eleventh to thirteenth aspects. Is.
  • a fifteenth aspect is characterized in that, in the fourteenth aspect, an outdoor unit (20a) having a compressor (23) and an outdoor heat exchanger (24) connected to the refrigerant circuit (R) is provided. It is a humidity control unit.
  • a sixteenth aspect is the humidity control unit according to any one of the first to the fourteenth aspects, wherein the air transport mechanism (M) is a fan capable of rotating in the forward direction and the reverse direction. is there.
  • the air flow in the air passage (12) is switched in both directions by switching the rotation direction of the fan to the reverse direction of the forward direction.
  • the air transport mechanism (M) has a first fan (44) that blows air toward the first space (S1). It is characterized by including a second fan (45) that blows air toward the second space (S2).
  • the air in the second space (S2) can be conveyed to the first space (S1) by operating the first fan (44).
  • the air in the first space (S1) can be conveyed to the second space (S2).
  • the air transport mechanism (M) has at least one fan (46) and an air flow path of the air passage (12).
  • a flow path switching mechanism (D1, D2, D3) for switching between the first state and the second state is provided, and in the air passage (12) in the first state, the air conveyed to the fan (46) is the second.
  • the air conveyed to the fan (46) flows from the first space (S1) to the second space. It is a humidity control unit characterized by flowing to (S2).
  • air is conveyed by the fan (46).
  • the flow path switching mechanism D1, D2, D3
  • a nineteenth aspect is the center of the opening (13) on the first space (S1) side of the air passage (12) and the first aspect of the air passage (12) in any one of the first to eighteenth aspects.
  • the humidity control unit is characterized in that the center of the opening (14) on the two space (S2) side is substantially aligned with the air flow direction of the air passage (12).
  • the passage resistance of the air passage (12) can be reduced.
  • the air passage (12) forms a wall (W) that separates the first space (S1) and the second space (S2). It is a humidity control unit characterized by being provided so as to penetrate.
  • the air passage (12) has an indoor space (S1) as the first space and an outdoor space (S2) as the second space. ),
  • the humidity control unit is provided in the window (5) or the window frame (6).
  • the air passage (12) is more than the moisture absorbing portion (30,32) and the heat source (21,22,32).
  • a filter (38) arranged closer to the outdoor space (S2) as two spaces is provided, and the filter (38) conveys air from the indoor space (S1) as the first space to the outdoor space (S2).
  • This is a humidity control unit characterized in that dust adhering to the filter (38) is removed by air during the operation.
  • dust in the outdoor air can be collected by the filter (38). Dust adhering to the filter (38) can be discharged to the outdoor space (S2) by air.
  • the 23rd aspect is a humidity control system including a plurality of humidity control units for controlling the humidity in the target space, and the plurality of humidity control units are the humidity control units of any one of the first to 22nd modes. It is a humidity control system characterized by being.
  • indoor dehumidification and humidification can be performed by a plurality of humidity control units (10).
  • the 24th aspect is characterized in that, in the 23rd aspect, the interlocking control unit (C) for cooperatively controlling the plurality of humidity control units (10) is provided.
  • a plurality of humidity control units cooperate to operate.
  • the plurality of humidity control units (10) include at least one first humidity control unit (10A) and at least one second humidity control unit (10B).
  • the first humidity control unit (10A) and the second humidity control unit (10B) cool the moisture absorbing portion (30,32) by the heat source (21,22,32) and the air transport mechanism (M).
  • the mechanism (M) is configured to alternately execute the second operation of transporting the air in the first space (S1) to the second space (S2), and the interlocking control unit (C) is the first.
  • a humidity control system characterized in that the first humidity control unit (10A) and the second humidity control unit (10B) are controlled so that the second humidity control unit (10B) performs the first operation. Is.
  • the first space (S1) can be continuously dehumidified and ventilated.
  • At least one of the first humidity control unit (10A) and the second humidity control unit (10B) is said to be between the first operation and the second operation.
  • the air transport mechanism (M) is configured to be stopped for a predetermined period, and the interlocking control unit (C) is set during one of the stop periods of the first humidity control unit (10A) and the second humidity control unit (10B).
  • the first humidity control unit (10A) and the second humidity control unit (10A) so that the other of the first humidity control unit (10A) and the second humidity control unit (10B) performs the first operation or the second operation. It is a humidity control system characterized by controlling 10B).
  • the air conveyed to the first space (S1) or the second space (S2) can be diffused by stopping the air transfer mechanism (M) between the first operation and the second operation.
  • the humidity control unit (10) different from the stopped humidity control unit (10) performs the first operation or the second operation.
  • ventilation of the first space (S1) can be performed even during the period when the air transport mechanism (M) of one of the humidity control units (10) is stopped.
  • the first humidity control unit (10A) and the second humidity control unit (10B) are provided with the moisture absorbing portion (21,22,32) by the heat source (21,22,32).
  • the fourth operation of cooling the moisture absorbing portions (30, 32) and transporting the air in the first space (S1) to the second space (S2) by the air transport mechanism (M) is alternately executed.
  • the second humidity control unit (10B) performs the fourth operation, and the second operation is performed.
  • the first humidity control unit (10A) and the second humidity control unit (10A) so that the second humidity control unit (10B) performs the third operation when the first humidity control unit (10A) performs the fourth operation. It is a humidity control system characterized by controlling the unit (10B).
  • the first space (S1) can be continuously humidified and ventilated.
  • At least one of the first humidity control unit (10A) and the second humidity control unit (10B) is said to be between the third operation and the fourth operation.
  • the air transport mechanism (M) is configured to be stopped for a predetermined period, and the interlocking control unit (C) is set during one of the stop periods of the first humidity control unit (10A) and the second humidity control unit (10B).
  • the first humidity control unit (10A) and the second humidity control unit (10A) so that the other of the first humidity control unit (10A) and the second humidity control unit (10B) performs the third operation or the fourth operation. It is a humidity control system characterized by controlling 10B).
  • the air conveyed to the first space (S1) or the second space (S2) can be diffused by stopping the air transfer mechanism (M) between the third operation and the fourth operation.
  • the humidity control unit (10) different from the stopped humidity control unit (10) performs the third operation or the fourth operation.
  • ventilation of the first space (S1) can be performed even during the period when the air transport mechanism (M) of one of the humidity control units (10) is stopped.
  • the 29th aspect includes the first determination unit (71) for determining the degree of air pollution in the second space (S2) in any one of the 24th to 28th aspects, and the interlocking control unit ( In C), when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the first determination unit (71) is satisfied, the total air supply amount of the plurality of humidity control units (10) is increased.
  • the humidity control system is characterized in that the plurality of humidity control units (10) are controlled so as to be larger than the total displacement of the humidity control unit (10).
  • the total air supply amount of the plurality of humidity control units (10) becomes larger than the total displacement amount under the condition that the degree of air pollution in the second space (S2) is high. As a result, it is possible to prevent air having a high degree of pollution from entering the first space (S1).
  • the thirtieth aspect includes the intrusion detection unit (70) for detecting the intrusion of air from the second space (S2) into the first space (S1) in the 29th aspect, and the interlocking control unit (C).
  • Shall satisfy at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the first determination unit (71) and the condition that the intrusion detection unit (70) detects the intrusion of air.
  • the feature is that the plurality of humidity control units (10) are controlled so that the total air supply amount of the plurality of humidity control units (10) is larger than the total exhaust volume of the plurality of humidity control units (10). It is a humidity control system.
  • a plurality of humidity control units (under conditions where the degree of air pollution in the second space (S2) is high and air invades from the second space (S2) to the first space (S1)). 10) The total air supply amount becomes larger than the total exhaust amount. As a result, it is possible to prevent air having a high degree of pollution from entering the first space (S1).
  • a thirty-first aspect includes a second determination unit (72) for determining the degree of air pollution in the first space (S1) in any one of the 24th to 30th aspects, and the interlocking control unit ( In C), when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the second determination unit (72) is satisfied, the total displacement of the plurality of humidity control units (10) is increased.
  • the humidity control system is characterized in that the plurality of humidity control units (10) are controlled so as to be larger than the total air supply amount of the humidity control unit (10).
  • the total exhaust amount of the plurality of humidity control units (10) becomes larger than the total air supply amount under the condition that the degree of air pollution in the first space (S1) is hard. As a result, air with a high degree of pollution can be discharged to the second space (S2).
  • the interlocking control unit (C) has an approximate total air supply amount and total exhaust amount in the first space (S1) based on the air supply amount or the exhaust amount detected by the air volume detection unit (73). It is a humidity control system characterized in that the plurality of humidity control units (10) are controlled so as to match.
  • the total air supply amount and the total exhaust amount in the first space (S1) and the second space (S2) are provided. Can be balanced with.
  • FIG. 1 is a schematic plan view of a house to which the humidity control system according to the embodiment is applied.
  • FIG. 2 is a schematic configuration diagram of the humidity control unit according to the embodiment, and represents the humidity control unit during the first operation or the third operation.
  • FIG. 3 is a schematic configuration diagram of the humidity control unit according to the embodiment, and represents the humidity control unit during the second operation or the fourth operation.
  • FIG. 4 is a timing chart of the dehumidifying operation of the humidity control system of the embodiment.
  • FIG. 5A is a schematic plan view of a house to which the humidity control system according to the embodiment is applied, and shows the air flow of the first operation or the third operation.
  • FIG. 5A is a schematic plan view of a house to which the humidity control system according to the embodiment is applied, and shows the air flow of the first operation or the third operation.
  • FIG. 5B is a schematic plan view of a house to which the humidity control system according to the embodiment is applied, and shows the air flow of the second operation or the fourth operation.
  • FIG. 6 is a timing chart of the humidification operation of the humidity control system of the embodiment.
  • FIG. 7 is a timing chart of the dehumidifying operation of the humidity control system of the first modification.
  • FIG. 8 is a timing chart of the humidification operation of the humidity control system of the first modification.
  • FIG. 9 is a schematic configuration diagram of the humidity control unit according to the modified example 3.
  • FIG. 10 is a schematic configuration diagram of the humidity control unit according to the modified example 5.
  • FIG. 11 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 6.
  • FIG. 12 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 7.
  • FIG. 13 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 8.
  • FIG. 14 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 9.
  • FIG. 15 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the humidity control unit during the first operation or the third operation.
  • FIG. 16 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the humidity control unit during the second operation or the fourth operation.
  • FIG. 17 is a schematic configuration diagram of the humidity control unit according to the modified example 11, and shows the humidity control unit during the first operation or the third operation.
  • FIG. 18 is a schematic configuration diagram of the humidity control unit according to the modified example 11, and shows the humidity control unit during the third operation or the fourth operation.
  • FIG. 15 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the humidity control unit during the first operation or the third operation.
  • FIG. 16 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the
  • FIG. 19 is a schematic configuration diagram of the humidity control unit according to the modified example 12, and shows the humidity control unit during the first operation or the third operation.
  • FIG. 20 is a schematic configuration diagram of the humidity control unit according to the modified example 12, and represents the humidity control unit during the second operation or the fourth operation.
  • FIG. 21 is an enlarged schematic plan view of a part of the house provided with the humidity control unit according to the modified example 13.
  • FIG. 22 is a schematic plan view of a house to which the humidity control system according to the modified example 14 is applied.
  • FIG. 23 is a schematic plan view of a house to which the humidity control system according to the modified example 16 is applied.
  • FIG. 24 is a schematic plan view of a house to which the humidity control system according to the modified example 19 is applied.
  • An embodiment is a humidity control system (S) that regulates the humidity of the target space.
  • the humidity control system (S) also serves as a ventilation system that ventilates the target space.
  • the humidity control system (S) of the present embodiment is applied to a house.
  • the humidity control system (S) has six humidity control units (10) and an interlocking control unit (C).
  • the number of humidity control units (10) is not limited to this, but is preferably two or more.
  • the interlocking control unit (C) controls these six humidity control units (10) in a coordinated manner.
  • the six humidity control units (10) in this example are classified into three first humidity control units (10A) and three second humidity control units (10B).
  • the three first humidity control units (10A) basically perform the same operation.
  • the three second humidity control units (10B) basically perform the same operation.
  • the first humidity control unit (10A) and the second humidity control unit (10B) basically perform different operations.
  • the humidity control unit (10) includes a casing (11).
  • the casing (11) is attached to the wall (W) so as to penetrate the wall (W) of the house.
  • the casing (11) is formed in a horizontally long tubular shape.
  • the casing (11) may have a cylindrical shape or a square tubular shape.
  • the casing (11) extends in a straight line perpendicular to the wall (W).
  • the air passage (12) is formed inside the casing (11).
  • the air passage (12) communicates the first space (S1) and the second space (S2).
  • the first space (S1) is a target space for humidity control and ventilation.
  • the first space (S1) is an indoor space.
  • the second space (S2) is a space different from the first space (S1). Specifically, the second space (S2) is an outdoor space.
  • the plurality of humidity control units (10) may be targeted at the same indoor space (S1) of the house, or may be targeted at different indoor spaces (S1).
  • the air passage (12) has an internal air opening (13) that opens into the first space (S1).
  • the air passage (12) has an outside air port (14) that opens into the second space (S2).
  • the center (axis center) of the inside air port (13) and the center (axis center) of the outside air port (14) substantially coincide with each other in the air flow direction. As a result, the flow path resistance of the air passage (12) can be reduced.
  • the humidity control unit (10) includes a first heat exchanger (21), a moisture absorption unit (30), a second heat exchanger (22), and a reversible fan (40).
  • a first heat exchanger (21), a moisture absorption unit (30), a second heat exchanger (22), and a reversible fan (40) In the air passage (12), the first heat exchanger (21), the moisture absorption unit (30), the second heat exchanger (22), and the reversible fan (in order from the outdoor space (S2) to the indoor space (S1)). 40) is placed.
  • the reversible fan (40) may be arranged closer to the outdoor space (S2) than the first heat exchanger (21).
  • the first heat exchanger (21) and the second heat exchanger (22) are included in the heat source device (20).
  • the first heat exchanger (21) and the second heat exchanger (22) are heat sources for cooling and heating air.
  • the first heat exchanger (21) and the second heat exchanger (22) are, for example, fin-and-tube heat exchangers.
  • the moisture absorption unit (30) is a moisture absorption unit that absorbs moisture from the air and releases it to the air. In other words, the moisture absorbing unit (30) performs an operation of removing moisture from the air and an operation of releasing moisture into the air.
  • the moisture absorption unit (30) of the present embodiment is an adsorption unit having an adsorbent.
  • the moisture absorption unit (30) includes a base material having a plurality of holes through which air flows, and an adsorbent supported on the surface of the base material.
  • the adsorbent may be any material as long as it is a material that adsorbs or sorbs water.
  • the reversible fan (40) constitutes an air transport mechanism (M) that bidirectionally or reversibly transports the air in the air passage (12) (details will be described later).
  • the humidity control unit (10) includes a heat source device (20) for cooling and heating air.
  • the heat source device (20) includes a first heat exchanger (21), a second heat exchanger (22), and an outdoor unit (20a).
  • the outdoor unit (20a) includes a compressor (23), an outdoor heat exchanger (24), and an outdoor fan (25).
  • the outdoor unit (20a), the first heat exchanger (21), and the second heat exchanger (22) are connected to each other via a refrigerant pipe.
  • a refrigerant circuit (R) through which the refrigerant circulates is configured.
  • the compressor (23), the first heat exchanger (21), the second heat exchanger (22), and the outdoor heat exchanger (24) are connected to the refrigerant circuit (R).
  • a four-way switching valve, an on-off valve, an expansion valve, etc., which are flow path switching mechanisms, are connected to the refrigerant circuit (R) (not shown). By controlling these devices, the refrigerant circulates in the refrigerant circuit (R) to perform a refrigeration cycle.
  • the reversible fan (40) of the present embodiment is composed of an axial fan.
  • the reversible fan (40) includes a motor (41), a shaft (42) that is rotationally driven by the motor (41), and an impeller (43) that is connected to the shaft (42).
  • the motor (41) rotationally drives the shaft (42) in the forward rotation direction and the reverse rotation direction.
  • the impeller (43) has substantially the same axial front view and rear view shapes.
  • the interlocking control unit (C) is a controller for controlling a plurality of humidity control units (10).
  • the interlocking control unit (C) has a processor (for example, a microcontroller) and a memory device (for example, a semiconductor memory) for storing software for operating the processor.
  • the interlocking control unit (C) of the present embodiment also serves as a control device for controlling the heat source device (20) and the air transfer mechanism (M) of each humidity control unit (10).
  • the interlocking control unit (C) is connected to each humidity control unit (10) via wired or wireless. Control signals and the like are exchanged between the interlocking control unit (C) and each humidity control unit (10).
  • the interlocking control unit (C) controls the heat source device (20) and the reversible fan (40) for each of the humidity control units (10).
  • the humidity control system (S) switches between dehumidifying operation and humidifying operation.
  • the dehumidifying operation is performed under the condition that the outside air is hot and humid, for example, in summer.
  • the humidification operation is performed under the condition that the outside air is low temperature and low humidity, for example, in winter.
  • ⁇ Dehumidifying operation> In the dehumidifying operation, the first operation and the second operation are performed in each humidity control unit (10). The first operation and the second operation are alternately and repeatedly performed. The switching of these operations is controlled by the interlocking control unit (C).
  • the moisture absorption unit (30) is cooled by the first heat exchanger (21), and air is transferred from the outdoor space (S2) to the indoor space (S1) by the reversible fan (40). It is an operation.
  • a refrigeration cycle in which the first heat exchanger (21) is used as an evaporator, the second heat exchanger (22) is stopped, and the outdoor heat exchanger (24) is used as a radiator (condenser). (First refrigeration cycle) is performed.
  • the outdoor air (OA) taken into the air passage (12) is cooled by the first heat exchanger (21).
  • the cooled air flows through the moisture absorbing unit (30).
  • moisture in the air is adsorbed by the adsorbent.
  • the air cooled and dehumidified in this way is supplied to the indoor space (S1) as supply air (SA).
  • the moisture absorption unit (30) is heated by the second heat exchanger (22), and air is transferred from the indoor space (S1) to the outdoor space (S2) by the reversible fan (40). It is an operation. Specifically, in the heat source device (20), the second heat exchanger (22) is used as a radiator (condenser), the first heat exchanger (21) is stopped, and the outdoor heat exchanger (24) is evaporated. The refrigeration cycle (second refrigeration cycle) used as a container is performed.
  • the indoor air (RA) taken into the air passage (12) is heated by the second heat exchanger (22).
  • the heated air flows through the moisture absorbing unit (30).
  • the adsorbent is regenerated by air.
  • the air used for the regeneration of the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
  • the first humidity control unit (10A) and the second humidity control unit (10B) are controlled in conjunction with each other.
  • the first operation, the first stop control, the second operation, and the second stop control are repeatedly performed in this order.
  • the first operation is executed during T1
  • the second operation is executed during T2
  • the first stop control is executed during Tb1
  • the second stop control is executed during Tb2.
  • T1 and T2 are set to, for example, several tens of seconds
  • Tb1 and Tb2 are set to, for example, several seconds. In this example, T1 and T2 are equal, and Tb1 and Tb2 are equal.
  • the first operation of the first humidity control unit (10A) and the second operation of the second humidity control unit (10B) are performed at the same time.
  • the second operation of the first humidity control unit (10A) and the first operation of the second humidity control unit (10B) are performed at the same time.
  • the first stop control of the first humidity control unit (10A) and the second stop control of the second humidity control unit (10B) are performed at the same time.
  • the second stop control of the first humidity control unit (10A) and the first stop control of the second humidity control unit (10B) are performed at the same time.
  • each first humidity control unit (10A) supplies the air dehumidified by the moisture absorption unit (30) to the indoor space (S1).
  • Each second humidity control unit (10B) discharges the air used for regenerating the adsorbent of the moisture absorption unit (30) to the outdoor space (S2).
  • ventilation of the indoor space (S1) and dehumidification of the indoor space (S1) are performed at the same time.
  • the first stop control of the first humidity control unit (10A) is performed.
  • the reversible fan (40) of the first humidity control unit (10A) is stopped.
  • the second stop control of the second humidity control unit (10B) is performed.
  • the reversible fan (40) of the second humidity control unit (10B) is stopped.
  • each second humidity control unit (10B) supplies the air dehumidified by the moisture absorption unit (30) to the indoor space (S1).
  • Each first humidity control unit (10A) discharges the air used for regenerating the adsorbent of the moisture absorption unit (30) to the outdoor space (S2).
  • ventilation of the indoor space (S1) and dehumidification of the indoor space (S1) are performed at the same time.
  • the first stop control of the second humidity control unit (10B) is performed.
  • the reversible fan (40) of the second humidity control unit (10B) is stopped.
  • the second stop control of the first humidity control unit (10A) is performed.
  • the reversible fan (40) of the first humidity control unit (10A) is stopped.
  • the first operation and the second operation are alternately performed so as to be deviated from each other.
  • ventilation and dehumidification of the indoor space (S1) can be continuously performed.
  • the reversible fan (40) is stopped in the first stop control between the first operation and the second operation. If the second operation is executed immediately after the first operation in each humidity control unit (10), the low humidity air supplied to the indoor space (S1) in the first operation is released to the outdoor space (S2) by the second operation. ) May be discharged. On the other hand, by stopping the reversible fan (40) between the first operation and the second operation, the low humidity air supplied to the indoor space (S1) by the first operation is diffused in the indoor space (S1). Can be made to. As a result, it is possible to prevent the low-humidity air supplied to the indoor space (S1) by the first operation from being discharged to the outdoor space (S2) by the second operation.
  • the reversible fan (40) is stopped in the second stop control between the second operation and the first operation. If the first operation is executed immediately after the second operation in each humidity control unit (10), the high humidity air discharged to the outdoor space (S2) in the second operation is discharged to the indoor space (S2) by the first operation. There is a possibility that it will be supplied to S1). On the other hand, by stopping the reversible fan (40) between the second operation and the first operation, the high humidity air discharged to the outdoor space (S2) by the second operation is discharged in the outdoor space (S2). It can be diffused. As a result, it is possible to prevent the high-humidity air discharged to the outdoor space (S2) by the second operation from being supplied to the indoor space (S1) by the first operation.
  • compressor (23) may be stopped in the first stop control and the second stop control.
  • ⁇ Humidification operation> In the humidification operation, the third operation and the fourth operation are performed in each humidity control unit (10). The third operation and the fourth operation are alternately and repeatedly performed. The switching of these operations is controlled by the interlocking control unit (C).
  • the moisture absorption unit (30) is heated by the first heat exchanger (21), and air is transferred from the outdoor space (S2) to the indoor space (S1) by the reversible fan (40). It is an operation.
  • a refrigeration cycle in which the first heat exchanger (21) is used as a radiator (condenser), the second heat exchanger (22) is stopped, and the outdoor heat exchanger (24) is used as an evaporator. (Third refrigeration cycle) is performed.
  • the outdoor air (OA) taken into the air passage (12) is heated by the first heat exchanger (21).
  • the heated air flows through the moisture absorbing unit (30).
  • the moisture of the adsorbent is released into the air.
  • the air heated and humidified in this way is supplied to the indoor space (S1) as supply air (SA).
  • the moisture absorption unit (30) is cooled by the second heat exchanger (22), and air is transferred from the indoor space (S1) to the outdoor space (S2) by the reversible fan (40). It is an operation. Specifically, in the heat source device (20), the second heat exchanger (22) is used as an evaporator, the first heat exchanger (21) is stopped, and the outdoor heat exchanger (24) is used as a radiator (condenser). ) Is performed as the refrigeration cycle (fourth refrigeration cycle).
  • the indoor air (RA) taken into the air passage (12) is cooled by the second heat exchanger (22).
  • the cooled air flows through the moisture absorbing unit (30).
  • moisture in the air is adsorbed by the adsorbent.
  • the air in which moisture is added to the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
  • the third operation of the first humidity control unit (10A) and the fourth operation of the second humidity control unit (10B) are performed at the same time.
  • the fourth operation of the first humidity control unit (10A) and the third operation of the second humidity control unit (10B) are performed at the same time.
  • the third stop control of the first humidity control unit (10A) and the fourth stop control of the second humidity control unit (10B) are performed at the same time.
  • the fourth stop control of the first humidity control unit (10A) and the third stop control of the second humidity control unit (10B) are performed at the same time.
  • each first humidity control unit (10A) supplies the air humidified by the moisture absorption unit (30) to the indoor space (S1).
  • Each second humidity control unit (10B) discharges the air obtained by adding moisture to the adsorbent of the moisture absorption unit (30) to the outdoor space (S2).
  • ventilation of the indoor space (S1) and humidification of the indoor space (S1) are performed at the same time.
  • the third stop control of the first humidity control unit (10A) is performed.
  • the reversible fan (40) of the first humidity control unit (10A) is stopped.
  • the fourth stop control of the second humidity control unit (10B) is performed.
  • the reversible fan (40) of the second humidity control unit (10B) is stopped.
  • each second humidity control unit (10B) supplies the air humidified by the moisture absorption unit (30) to the indoor space (S1).
  • Each first humidity control unit (10A) discharges air in which moisture is added to the adsorbent of the moisture absorption unit (30) to the outdoor space (S2). As a result, ventilation of the indoor space (S1) and humidification of the indoor space (S1) are performed at the same time.
  • the third stop control of the second humidity control unit (10B) is performed.
  • the reversible fan (40) of the second humidity control unit (10B) is stopped.
  • the fourth stop control of the first humidity control unit (10A) is performed.
  • the reversible fan (40) of the first humidity control unit (10A) is stopped.
  • the third operation and the fourth operation are alternately performed so as to be deviated from each other.
  • ventilation and humidification of the indoor space (S1) can be continuously performed.
  • the reversible fan (40) is stopped in the third stop control between the third operation and the fourth operation. If the fourth operation is executed immediately after the third operation in each humidity control unit (10), the high-humidity air supplied to the indoor space (S1) in the third operation is transferred to the outdoor space (S1) by the fourth operation. It may be discharged to S2). On the other hand, by stopping the reversible fan between the third operation and the fourth operation, the high humidity air supplied to the indoor space (S1) by the third operation is diffused in the indoor space (S1). Can be done. As a result, it is possible to prevent the high-humidity air supplied to the indoor space (S1) by the third operation from being discharged to the outdoor space (S2) by the fourth operation.
  • the reversible fan (40) is stopped in the fourth stop control between the fourth operation and the third operation. If the third operation is executed immediately after the fourth operation in each humidity control unit (10), the low humidity air discharged to the outdoor space (S2) in the fourth operation is discharged to the indoor space (S1) by the third operation. ) May be supplied. On the other hand, by stopping the reversible fan (40) between the 4th operation and the 3rd operation, the low humidity air discharged to the outdoor space (S2) by the 4th operation is diffused in the outdoor space (S2). Can be made to. As a result, it is possible to prevent the low-humidity air discharged to the outdoor space (S2) by the fourth operation from being supplied to the indoor space (S1) by the third operation.
  • compressor (23) may be stopped in the third stop control and the fourth stop control.
  • the above embodiment is arranged in an air passage (12) and the air passage (12) that communicate the first space (S1) and the second space (S2), which are the target spaces, and absorbs moisture from the air and air.
  • a heat source (21,22,32) arranged in the air passage (12) and performing at least one of cooling and heating of the moisture absorbing portion (30,32) and a moisture absorbing portion (30,32) for releasing moisture to the air passage (12).
  • An air transport mechanism (M) that reversibly conveys the air flow direction in the air passage (12), and the heat source (21,22,32) and the air transport mechanism (M) are controlled. It is equipped with a control device (C).
  • the air flow of the air passage (12) can be switched in both directions by the air transport mechanism (M). Therefore, it is not necessary to separately form the air passage for air supply and the air passage for exhaust, and the humidity control unit (10) can be miniaturized and simplified.
  • the control device (C) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and airs the air in the second space (S2) by the air transport mechanism (M).
  • the moisture absorbing portion (30,32) is heated by the heat source (21,22,32) and the air transport mechanism (M) of the first space (S1).
  • the second operation of transporting air to the second space (S2) is alternately executed.
  • the outdoor air (OA) in the first operation of the dehumidifying operation, can be dehumidified by the moisture absorbing part (30, 32) and supplied to the indoor space (S1) which is the first space.
  • the moisture of the moisture absorbing portion (30, 32) in the second operation of the dehumidifying operation, can be discharged to the indoor air (RA) and discharged to the outdoor space (S2) which is the second space.
  • the indoor space (S1) can be dehumidified intermittently.
  • the indoor space (S1) can be ventilated.
  • the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the first operation and before the start of the second operation.
  • the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the second operation and before the start of the first operation.
  • the control device (C) heats the moisture absorbing portion (30,32) by the heat source (21,22,32) and heats the air in the second space (S2) by the air transport mechanism (M).
  • the outdoor air (OA) in the third operation of the humidification operation, can be humidified by the hygroscopic part (30,32) and supplied to the indoor space (S1) which is the first space.
  • the moisture of the indoor air in the fourth operation of the humidification operation, can be applied to the moisture absorbing portions (30, 32), and this air can be discharged to the outdoor space (S2).
  • the indoor space (S1) can be dehumidified intermittently.
  • the indoor space (S1) can be ventilated.
  • the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the third operation and before the start of the fourth operation.
  • the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the fourth operation and before the start of the third operation.
  • the first space (S1) is an indoor space
  • the second space (S2) is an outdoor space.
  • the indoor space (S1) can be ventilated by the exchange of air between the indoor space (S1) and the outdoor space (S2).
  • the heat source (21,22,32) includes the heat exchange section (21,22,32) through which the heat medium flows.
  • the heat exchange section is arranged closer to the first space (S1) than the moisture absorbing section (30), and is located on the first heat exchanger (21) for cooling and heating air, and the moisture absorbing section (30). It is arranged on the second space (S2) side and includes a second heat exchanger (22) that cools and heats air.
  • the air on the upstream side of the moisture absorption unit (30) can be cooled by the first heat exchanger (21).
  • the air on the upstream side of the moisture absorbing unit (30) can be heated by the second heat exchanger (22).
  • the air on the upstream side of the moisture absorption unit (30) can be heated by the first heat exchanger (21).
  • the air on the upstream side of the moisture absorption unit (30) can be cooled by the second heat exchanger (22).
  • the center of the opening (13) on the first space (S1) side of the air passage (12) and the center of the opening (14) on the second space (S2) side of the air passage (12) are the center of the air passage (12).
  • the air flow directions in 12) are almost the same.
  • the air passage (12) is provided so as to penetrate the wall (W) that separates the first space (S1) and the second space (S2).
  • the humidity control unit (10) can be easily installed as compared with the case where the humidity control unit (10) is provided in the ceiling, for example.
  • the humidity control system (S) is equipped with multiple humidity control units (10).
  • the interlocking control unit (C) cooperatively controls a plurality of humidity control units (10).
  • multiple humidity control units (10) can perform dehumidification, humidification, and ventilation according to the target space.
  • the plurality of humidity control units (10) include at least one first humidity control unit (10A) and at least one second humidity control unit (10B), and the first humidity control unit (10A) and the first humidity control unit (10A).
  • the two humidity control unit (10B) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and air in the second space (S2) by the air transport mechanism (M).
  • the moisture absorbing portion (30,32) is heated by the heat source (21,22,32), and the first space (S1) is heated by the air transport mechanism (M).
  • the first humidity control unit (10A) performs the first operation in an interlocking control unit (C) so as to alternately execute the second operation of transporting the air to the second space (S2).
  • the second humidity control unit (10B) performs the second operation
  • the first humidity control unit (10A) performs the second operation
  • the second humidity control unit (10B) performs the second operation.
  • the first humidity control unit (10A) and the second humidity control unit (10B) are controlled so as to perform the first operation.
  • the indoor space (S1) can be dehumidified continuously.
  • the indoor space (S1) can be ventilated by type 1 ventilation.
  • the first humidity control unit (10A) and the second humidity control unit (10B) heat the moisture absorbing portion (30,32) by the heat source (21,22,32) and by the air transport mechanism (M).
  • the third operation of transporting the air in the second space (S2) to the first space (S1) and the heat source (21,22,32) cool the moisture absorbing portion (30,32) and the air transport mechanism.
  • (M) is configured to alternately execute the fourth operation of transporting the air in the first space (S1) to the second space (S2), and the interlocking control unit (C) is in the first adjustment.
  • the humidity unit (10A) performs the third operation
  • the second humidity control unit (10B) performs the fourth operation
  • the first humidity control unit (10A) performs the fourth operation the said.
  • the first humidity control unit (10A) and the second humidity control unit (10B) are controlled so that the second humidity control unit (10B) performs the third operation.
  • the indoor space (S1) can be continuously humidified.
  • the indoor space (S1) can be ventilated by type 1 ventilation.
  • ⁇ Modification example 1 (Modification example of interlocking control)>
  • the control of each humidity control unit (10) by the interlocking control unit (C) of the above embodiment is different.
  • the timing of the first operation of the first humidity control unit (10A) and the second operation of the second humidity control unit (10B) are different, and the first humidity control unit (10B) is dehumidified.
  • the timing of the second operation of 10A) and the first operation of the second humidity control unit (10B) are different.
  • stop control is performed to stop the air transport mechanism (M) for a predetermined period between the first operation and the second operation.
  • the other humidity control unit (10) is the first while the stop control of one of the first humidity control unit (10A) and the second humidity control unit (10B) is being stopped. Perform an operation or a second operation.
  • the first stop control is performed after the first operation.
  • the second operation of the second humidity control unit (10B) is continuously executed. Therefore, the second humidity control unit (10B) can exhaust the air while the air transport mechanism (M) of the first humidity control unit (10A) is stopped.
  • the third type ventilation can be performed during the stop control of the first humidity control unit (10A).
  • the second stop control is performed after the second operation.
  • the second operation of the first humidity control unit (10A) is executed. Therefore, the first humidity control unit (10A) can exhaust the air while the air transport mechanism (M) of the second humidity control unit (10B) is stopped.
  • the third type ventilation can be performed during the stop control of the second humidity control unit (10B).
  • the second stop control is performed after the second operation.
  • the first operation of the second humidity control unit (10B) is continuously executed. Therefore, air can be supplied by the second humidity control unit (10B) while the air transport mechanism (M) of the first humidity control unit (10A) is stopped.
  • the second type ventilation can be performed during the stop control of the first humidity control unit (10A).
  • the first stop control is performed after the first operation.
  • the first operation of the first humidity control unit (10A) is executed. Therefore, air can be supplied by the first humidity control unit (10A) while the air transport mechanism (M) of the second humidity control unit (10B) is stopped.
  • the second type ventilation can be performed during the stop control of the second humidity control unit (10B).
  • the first humidity control unit (10A) and the second humidity control unit (10B) do not perform stop control at the same time.
  • the other humidity control unit (10) performs the first operation or the second operation. Therefore, at the time of the dehumidifying operation of the humidity control system (S), any one of the first-class ventilation, the second-class ventilation, and the third-class ventilation can always be executed.
  • the timing of the third operation of the first humidity control unit (10A) and the fourth operation of the second humidity control unit (10B) are different, and the first humidity control unit The timing of the fourth operation of (10A) and the third operation of the second humidity control unit (10B) are different.
  • stop control is performed to stop the air transport mechanism (M) for a predetermined period between the third operation and the fourth operation.
  • the other humidity control unit (10) is the third. Perform an operation or a fourth operation.
  • the third stop control is performed after the third operation.
  • the fourth operation of the second humidity control unit (10B) is continuously executed. Therefore, the second humidity control unit (10B) can exhaust the air while the air transport mechanism (M) of the first humidity control unit (10A) is stopped.
  • the third type ventilation can be performed during the stop control of the first humidity control unit (10A).
  • the fourth stop control is performed after the fourth operation.
  • the fourth operation of the first humidity control unit (10A) is executed. Therefore, the first humidity control unit (10A) can exhaust the air while the air transport mechanism (M) of the second humidity control unit (10B) is stopped.
  • the third type ventilation can be performed during the stop control of the second humidity control unit (10B).
  • the fourth stop control is performed after the fourth operation.
  • the third operation of the second humidity control unit (10B) is continuously executed. Therefore, air can be supplied by the second humidity control unit (10B) while the air transport mechanism (M) of the first humidity control unit (10A) is stopped.
  • the second type ventilation can be performed during the stop control of the first humidity control unit (10A).
  • the third stop control is performed after the third operation.
  • the third operation of the first humidity control unit (10A) is executed. Therefore, air can be supplied by the first humidity control unit (10A) while the air transport mechanism (M) of the second humidity control unit (10B) is stopped. In other words, the second type ventilation can be performed during the stop control of the second humidity control unit (10B).
  • the first humidity control unit (10A) and the second humidity control unit (10B) do not perform stop control at the same time.
  • the other humidity control unit (10) performs a third operation or a fourth operation. Therefore, during the humidifying operation of the humidity control system (S), any one of the first-class ventilation, the second-class ventilation, and the third-class ventilation can always be executed.
  • the heat source device (20) of the above embodiment has an outdoor heat exchanger (24) and an outdoor fan (25), and the outdoor heat exchanger (24) exchanges heat between air and a refrigerant.
  • an internal heat exchanger that exchanges heat between water, brine, or the refrigerant may be adopted.
  • a double tube type or shell and tube type heat exchanger can be adopted.
  • the heat source device (20) may be configured to directly supply water, brine, or the like to the first heat exchanger (21) and the second heat exchanger (22).
  • the heat source device (20) of the modification 3 includes a first heat medium circuit (50) and a second heat medium circuit (60).
  • a first pump (51), a first heat exchanger (21), and a first heat source heat exchanger (52) are connected to the first heat medium circuit (50) in this order.
  • a second pump (61), a second heat exchanger (22), and a second heat source heat exchanger (62) are connected to the second heat medium circuit (60) in this order.
  • the first pump (51) circulates the heat medium (for example, water) of the first heat medium circuit (50).
  • the first heat source heat exchanger (52) is a heat medium (eg, water) of the heat medium of the first heat medium circuit (50) and the corresponding secondary flow path (first secondary flow path (52a)).
  • the second pump (61) circulates the heat medium (eg, water) of the second heat medium circuit (60).
  • the second heat source heat exchanger (62) is a heat medium (for example, water) of the heat medium of the second heat medium circuit (60) and the corresponding secondary flow path (second secondary flow path (62a)).
  • Cold water or hot water is supplied to the first secondary side flow path (52a) and the second secondary side flow path (62a) in conjunction with the operation of the humidity control unit (10).
  • the first pump (51) is operated in the humidity control unit (10) during the first operation, and the first secondary side flow path (52) of the first heat source heat exchanger (52) is operated. Cold water is supplied to 52a).
  • the first heat source heat exchanger (52) the water in the first heat medium circuit (50) is cooled, and the cooled water is supplied to the first heat exchanger (21).
  • the second pump (61) is operated in the humidity control unit (10) during the second operation, and hot water is supplied to the second secondary side flow path (62a) of the second heat source heat exchanger (62). Be supplied.
  • the second heat source heat exchanger (62) the water in the second heat medium circuit (60) is heated, and the heated water is supplied to the second heat exchanger (22).
  • the air can be heated by the second heat exchanger (22).
  • the first pump (51) is operated, and hot water is sent to the first secondary side flow path (52a) of the first heat source heat exchanger (52). Be supplied.
  • the first heat source heat exchanger (52) the water in the first heat medium circuit (50) is heated, and the heated water is supplied to the first heat exchanger (21).
  • the second pump (61) is operated, and cold water flows into the second secondary side flow path (62a) of the second heat source heat exchanger (62). Be supplied.
  • the second heat source heat exchanger (62) the water in the second heat medium circuit (60) is cooled, and the cooled water is supplied to the second heat exchanger (22).
  • the air can be heated by the second heat exchanger (22).
  • the cold water and hot water of the primary secondary channel (52a) and the secondary secondary channel (62a) may be supplied from a heat supply facility shared in a predetermined range of areas.
  • Hot water may be generated, for example, by utilizing the heat in the ground.
  • Cold water and hot water may be generated by a heat pump type chiller unit.
  • the means for heating or cooling the moisture absorbing unit (30) may have a configuration other than the above.
  • an electric heater may be used as a means for heating the moisture absorbing unit (30).
  • a Peltier element may be used as a means for cooling and heating the moisture absorption unit (30).
  • the heat source device (20) may perform at least one of cooling and heating of air by using, for example, a magnetic cooling type heat pump or an adsorption type heat pump.
  • the heat exchanger (21,22) or the moisture absorption unit (30) is composed of an adsorption heat exchanger (32) in which an adsorbent is supported on the surface of the heat exchanger.
  • the adsorbent is supported, for example, on the surface of the fins of the heat exchanger.
  • the adsorbent is composed of a material that adsorbs water.
  • the adsorption heat exchanger (32) is connected to the refrigerant circuit (R) of the heat source device (20) as in the above embodiment.
  • the refrigeration cycle (fifth refrigeration cycle) in which the outdoor heat exchanger (24) is used as a radiator and the adsorption heat exchanger (32) is used as an evaporator, and the adsorption heat exchanger (32) are dissipated.
  • the refrigeration cycle (sixth refrigeration cycle) in which the outdoor heat exchanger (24) is used as an evaporator is switched to the vessel.
  • the adsorption heat exchanger (32) becomes an evaporator.
  • the outdoor air (OA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32).
  • the adsorption heat exchanger (32) the moisture in the air is adsorbed by the adsorbent.
  • the heat of adsorption generated at this time is used as the heat of vaporization of the refrigerant.
  • the air cooled and dehumidified by the adsorption heat exchanger (32) is supplied to the indoor space (S1) as supply air (SA).
  • the adsorption heat exchanger (32) becomes a radiator.
  • the indoor air (RA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32).
  • the adsorption heat exchanger (32) the moisture of the adsorbent is released into the air.
  • the air used for the regeneration of the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
  • the adsorption heat exchanger (32) becomes a radiator.
  • the outdoor air (OA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32).
  • the adsorption heat exchanger (32) the moisture of the adsorbent is released into the air.
  • the air heated and humidified by the adsorption heat exchanger (32) is supplied to the indoor space (S1) as supply air (SA).
  • the adsorption heat exchanger (32) becomes an evaporator.
  • the indoor air (RA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32).
  • the adsorption heat exchanger (32) the moisture in the air is adsorbed by the adsorbent.
  • the air in which moisture is added to the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
  • the moisture absorbing unit (30) of the modified example 6 is formed in a substantially columnar shape.
  • the moisture absorption unit (30) has a columnar base material (33) having a plurality of small holes and an adsorbent supported on the base material (33).
  • the moisture absorbing unit (30) is arranged in the air passage (12) so that its axial direction coincides with the direction of the air flow.
  • the moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
  • the moisture absorbing unit (30) of the modified example 7 is formed in a substantially rectangular parallelepiped shape.
  • the moisture absorbing unit (30) has a rectangular parallelepiped base material (33) having a plurality of small holes and an adsorbent supported on the base material (33).
  • the moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
  • the moisture absorbing unit (30) of the modified example 8 has a mesh-shaped container (34) and a granular adsorbent (35) filled inside the container (34).
  • the mesh container (34) is arranged in the air passage (12).
  • the air in the air passage (12) passes through the mesh container (34) and flows around the adsorbent (35).
  • the moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
  • the moisture absorbing unit (30) of the modified example 9 has a storage tank (36).
  • a liquid absorbent is stored inside the storage tank (36).
  • the liquid absorbent is, for example, an aqueous solution of lithium chloride.
  • the moisture absorption unit (30) has a plurality of air flow pipes (37).
  • the air flow pipe (37) penetrates the storage tank (36) in the air flow direction of the air passage (12).
  • the air flow pipe (37) is composed of a tubular moisture permeable membrane.
  • the moisture permeable membrane is a membrane that does not allow the liquid absorbent to permeate but allows water vapor to permeate.
  • the moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
  • the air cooled by the first heat exchanger (21) flows through a plurality of air flow pipes (37). Moisture in the air is absorbed by the liquid absorbent through the permeable membrane.
  • the air heated by the second heat exchanger (22) flows through the plurality of air flow pipes (37).
  • the water vapor of the liquid absorbent is applied to the air through the permeable membrane.
  • the air heated by the first heat exchanger (21) flows through a plurality of air flow pipes (37).
  • the air flow pipe (37) the water vapor of the liquid absorber imparts a permeable membrane to the air.
  • the air cooled by the second heat exchanger (22) flows through the plurality of air flow pipes (37). Moisture in the air is absorbed by the liquid absorbent through the permeable membrane.
  • the humidity control unit (10) of the modified example 10 has a different configuration of the air transport mechanism (M) from the above embodiment.
  • the air transport mechanism (M) of the modified example 10 includes a first fan (44) and a second fan (45).
  • the first fan (44) and the second fan (45) carry air in only one direction.
  • the first fan (44) carries air only toward the indoor space (S1).
  • the second fan (45) conveys air only toward the outdoor space (S2).
  • the first fan (44) is operated and the second fan (45) is stopped.
  • the outdoor air (OA) in the outdoor space (S2) can be supplied to the indoor space (S1) as the supply air (SA).
  • the second fan (45) is operated and the first fan (44) is stopped.
  • the indoor air (RA) in the indoor space (S1) can be discharged to the outdoor space (S2) as exhaust air (EA).
  • the first fan (44) is operated and the second fan (45) is stopped.
  • the outdoor air (OA) in the outdoor space (S2) can be supplied to the indoor space (S1) as the supply air (SA).
  • the second fan (45) is operated and the first fan (44) is stopped.
  • the indoor air (RA) in the indoor space (S1) can be discharged to the outdoor space (S2) as exhaust air (EA).
  • the humidity control unit (10) of the modified example 11 has a different configuration of the air transport mechanism (M) from the above embodiment.
  • the air transport mechanism (M) of the modified example 11 includes a one-way fan (46).
  • the one-way fan (46) carries air in only one direction.
  • the air transport mechanism (M) has a first damper (D1), a second damper (D2), and a third damper (D3). These dampers (D1, D2, D3) form a flow path switching mechanism.
  • the flow path switching mechanism switches the air passage (12) between the first state and the second state. In the air passage (12) in the first state shown in FIG.
  • the air passage (12) of the humidity control unit (10) includes the first passage (P1), the second passage (P2), the third passage (P3), and the fourth passage (P4).
  • a first heat exchanger (21), a moisture absorbing unit (30), and a second heat exchanger (22) are arranged in this order in the first passage (P1).
  • the first passage (P1) can communicate with the outside air port (14), the inside air port (13), the second passage (P2), and the fourth passage (P4).
  • the second passage (P2) can communicate with the first passage (P1) and the third passage (P3).
  • a first fan (44) is arranged in the third passage (P3).
  • the third passage (P3) can at least communicate with the outside air port (14), the first passage (P1), and the fourth passage (P4).
  • the fourth passage (P4) can at least communicate with the inside air port (13), the first passage (P1), and the third passage (P3).
  • the first damper (D1) has a first state of blocking the inside air port (13) and the first passage (P1) and a second state of communicating the inside air port (13) and the first passage (P1). Can be switched.
  • the second damper (D2) is the first state in which the fourth passage (P4) and the third passage (P3) are communicated with each other and the outside air port (14) and the third passage (P3) are blocked, and the fourth passage (P3). It is switched to the second state in which the P4) and the third passage (P3) are blocked and the third passage (P3) and the outside air port (14) are communicated with each other.
  • the third damper (D3) has a first state of blocking the second passage (P2) and the outside air port (14) and a second state of communicating the first passage (P1) and the second passage (P2). Can be switched.
  • the one-way fan (46) is operated, and the air passage (12) is switched to the first state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the first state.
  • the outdoor air (OA) flows through the first passage (P1) and is cooled and dehumidified by the first heat exchanger (21). This air flows through the third passage (P3) and the fourth passage (P4) in this order, and is supplied to the indoor space (S1) as supply air (SA).
  • SA supply air
  • the one-way fan (46) is operated, and the air passage (12) is switched to the second state by the flow path switching mechanism.
  • the first damper (D1), the second damper (D2), and the third damper (D3) are in the second state.
  • the indoor air (RA) flows through the first passage (P1) and regenerates the adsorbent of the second heat exchanger (22).
  • This air flows through the second passage (P2) and the third passage (P3) in this order, and is discharged to the outdoor space (S2) as exhaust air.
  • the one-way fan (46) is operated, and the air passage (12) is switched to the first state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the first state.
  • the outdoor air (OA) flows through the first passage (P1) and is heated and humidified by the first heat exchanger (21). This air flows through the third passage (P3) and the fourth passage (P4) in this order, and is supplied to the indoor space (S1) as supply air (SA).
  • the one-way fan (46) is operated, and the air passage (12) is switched to the second state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the second state.
  • the indoor air (RA) flows through the first passage (P1) and imparts moisture to the adsorbent of the second heat exchanger (22). This air flows through the second passage (P2) and the third passage (P3) in this order, and is discharged to the outdoor space (S2) as exhaust air (EA).
  • the humidity control unit (10) of the modified example 12 has a filter (38).
  • the filter (38) is arranged closer to the outdoor space (S2) than the moisture absorbing unit (30), the first heat exchanger (21), and the second heat exchanger (22).
  • the filter (38) is placed near the outside air port (14).
  • the filter (38) collects dust in the outdoor air (OA) flowing into the air passage (12).
  • the filter (38) is configured to remove dust adhering to the filter (38) by air during the operation of transporting air from the outdoor space (S2) to the indoor space (S1).
  • the humidity control unit (10) of the embodiment is provided on the wall (W) of the house. As shown in FIG. 21, the humidity control unit (10) may be provided in the window (5) or the window frame (6) of the house.
  • ⁇ Modification 14 (Positive pressure control (1)>>>
  • the humidity control system (S) of the modification 14 shown in FIG. 22 controls a plurality of humidity control units (10) based on the degree of contamination of the outside air and the presence or absence of intrusion of the outside air.
  • the humidity control system (S) has an intrusion detection unit (70) that detects the intrusion of outside air from the outdoor space (S2) into the indoor space (S1), and a first determination unit (71) that determines the degree of contamination of the outside air. And.
  • the intrusion detection unit (70) in this example is an open / close detection unit that detects the opening / closing of the door (7) of the house. When the door (7) is opened, the intrusion detection unit (70) outputs a signal indicating that outside air is invading to the interlocking control unit (C).
  • the first judgment unit (71) acquires information on the degree of pollution of the outside air. Examples of the degree of contamination of the outside air include pollen in the outside air, suspended particulate matter, and odorous components.
  • the first determination unit (71) of this example acquires pollen information in the outside air as information indicating the degree of contamination of the outside air.
  • the first judgment unit (71) receives information from an external organization such as the Japan Meteorological Agency via the Internet.
  • the first determination unit (71) may be a sensor that directly detects the degree of contamination such as pollen in the outside air.
  • the interlocking control unit (C) controls a plurality of humidity control units (10) so that the indoor space (S1) becomes a positive pressure.
  • the first condition is a condition in which the degree of contamination of the outside air is higher than a predetermined threshold value.
  • the second condition is a condition in which the intrusion detection unit (70) detects the intrusion of outside air. If these conditions are met, pollen in the outside air will invade the indoor space (S1) through the open door.
  • the interlocking control unit (C) makes the total air supply amount of the plurality of humidity control units (10) larger than the total displacement amount of the plurality of humidity control units (10). Control multiple humidity control units (10).
  • the indoor space (S1) is maintained at a positive pressure. Therefore, it is possible to prevent pollen and the like in the outside air from entering the indoor space (S1).
  • the interlocking control unit (C) when only the first condition is satisfied, the total air supply amount of the plurality of humidity control units (10) becomes larger than the total displacement amount of the plurality of humidity control units (10). As such, a plurality of humidity control units (10) may be controlled. When only the second condition is satisfied, the interlocking control unit (C) makes the total air supply amount of the plurality of humidity control units (10) larger than the total displacement amount of the plurality of humidity control units (10). , A plurality of humidity control units (10) may be controlled.
  • the humidity control system (S) of the modified example 15 is provided with a positive pressure operation mode in which the indoor space (S1) is always kept at a positive pressure regardless of the state of dirt or intrusion of the outside air.
  • This positive pressure operation mode is executed in a clean room, an operating room, or the like.
  • the plurality of humidity control units so that the total air supply amount of the plurality of humidity control units (10) becomes larger than the total exhaust amount of the plurality of humidity control units (10). (10) is controlled.
  • the humidity control system (S) of the modification 16 shown in FIG. 23 controls a plurality of humidity control units (10) based on the degree of air pollution in the indoor space (S1).
  • the humidity control system (S) is provided with a second determination unit (72) that determines the degree of air pollution in the indoor space (S1).
  • the second determination unit (72) of this example is an air quality sensor that is arranged in the indoor space (S1) and detects the air quality of the indoor air. Examples of the air quality indicating the degree of air pollution include dust, odorous components, formaldehyde, and VOC (volatile organic compounds).
  • the information detected by the second determination unit (72) is output to the interlocking control unit (C).
  • the interlocking control unit (C) controls a plurality of humidity control units (10) so that the indoor space (S1) becomes a negative pressure when the third condition is satisfied.
  • the third condition is a condition in which the degree of air pollution in the indoor space (S1) is higher than a predetermined threshold value.
  • the interlocking control unit (C) makes the total exhaust amount of the plurality of humidity control units (10) larger than the total air supply amount of the plurality of humidity control units (10). Control multiple humidity control units (10).
  • the humidity control system (S) of the modified example 17 includes a concentration sensor.
  • the CO 2 concentration sensor is arranged in the indoor space (S1).
  • the interlocking control unit (C) controls the air supply amount and the exhaust amount of the plurality of humidity control units (10) so that the CO 2 concentration detected by the CO 2 concentration sensor becomes a predetermined value or less.
  • the humidity control system (S) of the modification 18 is operated in conjunction with the air conditioner.
  • the air conditioner targets the indoor space (S1) for air conditioning.
  • the interlocking control unit (C) interlocks and controls the air conditioner and a plurality of humidity control units (10).
  • the calculation unit of the interlocking control unit (C) predicts the operation efficiency E1 during the first operation and the operation efficiency E2 during the second operation based on the outside air temperature, the inside air temperature, the outside air humidity, the inside air humidity, and the like.
  • the calculation unit determines that E1 is larger than E2 the first operation is executed.
  • the calculation unit determines that E2 is larger than E1 the second operation is executed.
  • the third operation is to humidify with the humidity control unit (10) and at the same time to heat with the air conditioner, and the third operation to stop the air conditioner and humidify only with the humidity control unit (10). It is possible to switch between 4 operations.
  • the interlocking control unit (C) interlocks and controls the air conditioner and a plurality of humidity control units (10).
  • the calculation unit of the interlocking control unit (C) predicts the operation efficiency E3 during the third operation and the operation efficiency E4 during the fourth operation based on the outside air temperature, the inside air temperature, the outside air humidity, the inside air humidity, and the like.
  • the calculation unit determines that E3 is larger than E4 the third operation is executed.
  • the calculation unit determines that E4 is larger than E3 the fourth operation is executed.
  • the humidity control system (S) of the modification 19 shown in FIG. 24 controls a plurality of humidity control units (10) so that the total air supply amount and the total exhaust amount of the indoor space (S1) are substantially equal to each other.
  • a range hood (8) which is another ventilation device, is provided in the indoor space (S1) of this example.
  • the humidity control system (S) includes an air volume detection unit (73) that detects the air volume of the range hood (8).
  • the air volume (displacement in this example) of the range hood (8) detected by the air volume detection unit (73) is output to the interlocking control unit (C).
  • the interlocking control unit (C) has a plurality of humidity control units so that the total air supply amount as a whole of the range hood (8) and the plurality of humidity control units (10) is substantially equal to the total exhaust amount as a whole. Control the air supply amount and exhaust amount of the unit (10). In other words, a plurality of humidity control units (10) are controlled so that the total air supply amount and the total exhaust amount in the indoor space (S1) are substantially the same. Even when the range hood (8) is turned on, the air supply / exhaust amount of the entire interior space (S1) can be balanced.
  • the other ventilation device may be an exhaust fan other than the range hood (8) or an air supply fan.
  • the humidity control system (S) of the above embodiment includes a plurality of humidity control units (10).
  • the dehumidifying operation or the humidifying operation may be performed by only one humidity control unit (10).
  • the first operation and the second operation are alternately and repeatedly performed in one humidity control unit (10).
  • the third operation and the fourth operation are alternately and repeatedly performed in one humidity control unit (10).
  • control device that controls a plurality of humidity control units (10) is also used as the interlocking control unit (C).
  • a control device for controlling the corresponding humidity control unit (10) may be provided.
  • the humidity control unit (10) is provided on the wall (W), window (5), or window frame (6) of the house.
  • the humidity control unit (10) may be installed in the space behind the ceiling to supply and exhaust air through a duct.
  • the first stop control is performed after the end of the first operation and before the start of the second operation
  • the second stop control is performed after the end of the second operation and before the start of the first operation.
  • either one or both of the first stop control and the second stop control may be omitted.
  • the third stop control is performed after the end of the third operation and before the start of the fourth operation
  • the fourth stop control is performed after the end of the fourth operation and before the start of the third operation.
  • either one or both of the third stop control and the fourth stop control may be omitted.
  • the present disclosure is useful for the humidity control unit and the humidity control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A humidity control unit (10) comprises: an air passage (12) that provides communication between a first space (S1), which is a space to be humidity-controlled, and a second space (S2); a moisture-absorbing unit (30, 32) that is disposed in the air passage (12) and absorbs moisture from air and releases moisture into the air; a heat source (21, 22, 32) that is disposed in the air passage (12) and cools and/or heats the moisture-absorbing unit (30, 32); an air transport mechanism (M) that transports air in such a manner that the direction of air flow in the air passage (12) is reversible; and a control device (C) that controls the heat source (21, 22, 32) and the air transport mechanism (M).

Description

調湿ユニット、及び調湿システムHumidity control unit and humidity control system
 本開示は、調湿ユニット、及び調湿システムに関する。 This disclosure relates to a humidity control unit and a humidity control system.
 特許文献1の調湿装置は、2つの吸着熱交換器を備える。調湿装置は、室外空気を一方の吸着熱交換器で除湿し室内へ供給すると同時に、室内空気によって他方の吸着熱交換器の吸着剤を再生する運転を行う。 The humidity control device of Patent Document 1 includes two adsorption heat exchangers. The humidity control device dehumidifies the outdoor air with one of the adsorption heat exchangers and supplies it to the room, and at the same time, regenerates the adsorbent of the other adsorption heat exchanger with the indoor air.
特許第4569150号Patent No. 4569150
 特許文献1の調湿装置は、室外空気を室内へ供給するための流路と、室内空気を室外へ排出するための流路とを個別に設けており、調湿装置のサイズが大きくなる問題があった。 The humidity control device of Patent Document 1 separately provides a flow path for supplying outdoor air to the room and a flow path for discharging indoor air to the outside, which causes a problem that the size of the humidity control device becomes large. was there.
 本開示の目的は、調湿ユニットの小型化を図ることである。 The purpose of this disclosure is to reduce the size of the humidity control unit.
 第1の態様は、対象空間である第1空間(S1)と、第2空間(S2)とを連通する空気通路(12)と、前記空気通路(12)に配置され、空気からの吸湿と空気への放湿とを行う吸湿部(30,32)と、前記空気通路(12)に配置され、前記吸湿部(30,32)の冷却及び加熱の少なくとも一方を行う熱源(21,22,32)と、前記空気通路(12)の空気の流れの方向を可逆に該空気を搬送する空気搬送機構(M)と、前記熱源(21,22,32)及び空気搬送機構(M)を制御する制御装置(C)とを備えていることを特徴とする調湿ユニットである。 In the first aspect, the air passage (12) communicating the first space (S1) and the second space (S2), which are the target spaces, and the air passage (12) are arranged to absorb moisture from the air. A heat source (21,22,) arranged in the air passage (12) and performing at least one of cooling and heating of the moisture absorbing portion (30,32) and a moisture absorbing portion (30,32) for releasing moisture to the air. 32), the air transport mechanism (M) that reversibly conveys the air flow direction in the air passage (12), the heat source (21,22,32), and the air transport mechanism (M) are controlled. It is a humidity control unit characterized by being equipped with a control device (C).
 第1の態様では、空気搬送機構(M)によって空気の流れ方向を双方向に切り換えることができる。このため、第2空間(S2)の空気を吸湿部(30,32)及び熱源(21,22,32)を通過させた後、第1空間(S1)へ搬送できる。第1空間(S1)の空気を吸湿部(30,32)及び熱源(21,22,32)を通過させた後、第2空間(S2)へ搬送できる。これらの2つの動作では、空気通路(12)が共用されるので、調湿ユニット(10)の小型化を図ることができる。 In the first aspect, the air flow direction can be switched in both directions by the air transport mechanism (M). Therefore, the air in the second space (S2) can be conveyed to the first space (S1) after passing through the moisture absorbing portion (30,32) and the heat source (21,22,32). The air in the first space (S1) can be conveyed to the second space (S2) after passing through the moisture absorbing portion (30,32) and the heat source (21,22,32). Since the air passage (12) is shared in these two operations, the humidity control unit (10) can be miniaturized.
 第2の態様は、第1の態様において、前記制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作を実行させることを特徴とする調湿ユニットである。 In the second aspect, in the first aspect, the control device (C) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and by the air transport mechanism (M). The humidity control unit is characterized in that the first operation of transporting the air in the second space (S2) to the first space (S1) is executed.
 なお、熱源(21,22,32)は吸湿部(30,32)を直接的に冷却してもよいし、熱源(21,22,32)で冷却した空気によって吸湿部(30,32)を間接的に冷却してもよい。 The heat source (21,22,32) may directly cool the moisture absorbing portion (30,32), or the moisture absorbing portion (30,32) may be cooled by the air cooled by the heat source (21,22,32). It may be cooled indirectly.
 第2の態様では、第1動作において、第2空間(S2)の空気が吸湿部(30,32)で除湿された後、第1空間(S1)へ搬送される。 In the second aspect, in the first operation, the air in the second space (S2) is dehumidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
 第3の態様は、第2の態様において、前記制御装置(C)は、前記第1動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行させることを特徴とする調湿ユニットである。 In the third aspect, in the second aspect, the control device (C) heats the moisture absorbing portion (30,32) by the first operation and the heat source (21,22,32) and the air. The humidity control unit is characterized in that the second operation of transporting the air in the first space (S1) to the second space (S2) is alternately executed by the transport mechanism (M).
 なお、熱源(21,22,32)は吸湿部(30,32)を直接的に加熱してもよいし、熱源(21,22,32)で加熱した空気によって吸湿部(30,32)を間接的に加熱してもよい。 The heat source (21,22,32) may directly heat the hygroscopic part (30,32), or the hygroscopic part (30,32) may be heated by the air heated by the heat source (21,22,32). It may be heated indirectly.
 第3の態様では、第1動作において、第2空間(S2)の空気が吸湿部(30,32)で除湿された後、第1空間(S1)へ搬送される。第2動作において、第1空間(S1)の空気が吸湿部(30,32)から水分を奪った後、第2空間(S2)へ搬送される。 In the third aspect, in the first operation, the air in the second space (S2) is dehumidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1). In the second operation, the air in the first space (S1) takes moisture from the moisture absorbing portions (30, 32) and then is transported to the second space (S2).
 第4の態様は、第3の態様において、前記制御装置(C)は、前記第1動作の終了後、前記第2動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする。 A fourth aspect is that, in the third aspect, the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the first operation and before the start of the second operation. It is a feature.
 第4の態様では、第1動作の終了後に空気搬送機構(M)が停止する。この期間に第1空間(S1)へ搬送した低湿の空気を拡散できる。 In the fourth aspect, the air transport mechanism (M) is stopped after the end of the first operation. During this period, the low-humidity air conveyed to the first space (S1) can be diffused.
 第5の態様は、第3又は第4の態様において、前記制御装置(C)は、前記第2動作の終了後、前記第1動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニットである。 In a fifth aspect, in the third or fourth aspect, the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the second operation and before the start of the first operation. It is a humidity control unit characterized by being allowed to operate.
 第5の態様では、第2動作の終了後に空気搬送機構(M)が停止する。この期間に第2空間(S2)に搬送した高湿の空気を拡散できる。 In the fifth aspect, the air transport mechanism (M) is stopped after the end of the second operation. Highly humid air transported to the second space (S2) can be diffused during this period.
 第6の態様は、第1~第5のいずれか1つの態様において、前記制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作を実行させることを特徴とする調湿ユニットである。 A sixth aspect is, in any one of the first to fifth aspects, the control device (C) heats the moisture absorbing portion (30,32) by the heat source (21,22,32) and said. The humidity control unit is characterized in that a third operation of transporting air in the second space (S2) to the first space (S1) is executed by an air transport mechanism (M).
 第6の態様では、第3動作において、第2空間(S2)の空気が吸湿部(30,32)で加湿された後、第1空間(S1)へ搬送される。 In the sixth aspect, in the third operation, the air in the second space (S2) is humidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1).
 第7の態様は、第6の態様において、前記制御装置(C)は、前記第3動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させることを特徴とする調湿ユニットである。 In a seventh aspect, in the sixth aspect, the control device (C) cools the moisture absorbing portion (30,32) by the third operation and the heat source (21,22,32) and the air. The humidity control unit is characterized in that the fourth operation of transporting the air in the first space (S1) to the second space (S2) is alternately executed by the transport mechanism (M).
 第7の態様では、第3動作において、第2空間(S2)の空気が吸湿部(30,32)で加湿された後、第1空間(S1)へ搬送される。第4動作において、第1空間(S1)の空気が吸湿部(30,32)に水分を付与した後、第2空間(S2)へ搬送される。 In the seventh aspect, in the third operation, the air in the second space (S2) is humidified by the moisture absorbing portions (30, 32) and then transported to the first space (S1). In the fourth operation, the air in the first space (S1) imparts moisture to the moisture absorbing portions (30, 32) and then is conveyed to the second space (S2).
 第8の態様は、第7の態様において、前記制御装置(C)は、前記第3動作の終了後、前記第4動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニットである。 In the eighth aspect, in the seventh aspect, the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the third operation and before the start of the fourth operation. It is a characteristic humidity control unit.
 第8の態様では、第3動作の終了後に空気搬送機構(M)が停止する。この期間に第1空間(S1)へ搬送した高湿の空気を拡散できる。 In the eighth aspect, the air transport mechanism (M) is stopped after the end of the third operation. During this period, the highly humid air transported to the first space (S1) can be diffused.
 第9の態様は、第7又は第8の態様において、前記制御装置(C)は、前記第4動作の終了後、前記第3動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニットである。 In the ninth aspect, in the seventh or eighth aspect, the control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the fourth operation and before the start of the third operation. It is a humidity control unit characterized by being allowed to operate.
 第9の態様では、第4動作の終了後に空気搬送機構(M)が停止する。この期間に第2空間(S1)へ搬送した低湿の空気を拡散できる。 In the ninth aspect, the air transport mechanism (M) is stopped after the end of the fourth operation. During this period, the low-humidity air conveyed to the second space (S1) can be diffused.
 第10の態様は、第1~第9のいずれか1つの態様において、前記第1空間(S1)は室内空間であり、前記第2空間(S2)は室外空間であることを特徴とする調湿ユニットである。 A tenth aspect is, in any one of the first to ninth aspects, characterized in that the first space (S1) is an indoor space and the second space (S2) is an outdoor space. It is a wet unit.
 第10の態様では、空気通路(12)が室内空間(S1)と室外空間(S2)とを連通させる。空気搬送機構(M)により、室外空間(S2)の空気を室内空間(S1)へ供給する動作と、室内空間(S1)の空気を室外空間(S2)へ排出する動作とを切り換えることができる。 In the tenth aspect, the air passage (12) communicates the indoor space (S1) and the outdoor space (S2). The air transport mechanism (M) can switch between the operation of supplying the air in the outdoor space (S2) to the indoor space (S1) and the operation of discharging the air in the indoor space (S1) to the outdoor space (S2). ..
 第11の態様は、第1~第10のいずれか1つにおいて、前記熱源(21,22,32)は、熱媒体が流れる熱交換部(21,22,32)を含むことを特徴とする調湿ユニットである。 An eleventh aspect is characterized in that, in any one of the first to tenth aspects, the heat source (21,22,32) includes a heat exchange unit (21,22,32) through which a heat medium flows. It is a humidity control unit.
 第11の態様では、空気と熱媒体とが熱交換部(21,22,32)において熱交換する。 In the eleventh aspect, the air and the heat medium exchange heat at the heat exchange section (21,22,32).
 第12の態様は、前記熱交換部は、前記吸湿部(30)よりも前記第1空間(S1)側に配置され、空気の冷却及び加熱を行う第1熱交換器(21)と、前記吸湿部(30)よりも前記第2空間(S2)側に配置され、空気の冷却及び加熱を行う第2熱交換器(22)と含んでいることを特徴とする。 In a twelfth aspect, the heat exchange section is arranged on the first space (S1) side of the moisture absorbing section (30) to cool and heat air, and the first heat exchanger (21). It is characterized in that it is arranged on the second space (S2) side of the moisture absorbing portion (30) and includes a second heat exchanger (22) that cools and heats air.
 第12の態様は、第1熱交換器(21)で冷却又は加熱した空気を吸湿部(30,32)に通過させることができる。第2熱交換部(21,22,32)で冷却又は加熱した空気を吸湿部(30,32)に通過させることができる。 In the twelfth aspect, the air cooled or heated by the first heat exchanger (21) can be passed through the moisture absorbing portion (30, 32). Air cooled or heated by the second heat exchange section (21,22,32) can be passed through the moisture absorbing section (30,32).
 第13の態様は、第11の態様において、前記熱交換部は、水を吸着及び脱離する吸着剤を有するとともに、前記吸湿部(30,32)を兼用する吸着熱交換器(32)であることを特徴とする調湿ユニットである。 In the thirteenth aspect, in the eleventh aspect, the heat exchange unit is an adsorption heat exchanger (32) having an adsorbent that adsorbs and desorbs water and also serves as the moisture absorbing unit (30, 32). It is a humidity control unit characterized by being present.
 第13の態様では、吸着熱交換器(32)を流れる熱媒体によって、吸着剤が冷却又は加熱される。 In the thirteenth aspect, the adsorbent is cooled or heated by the heat medium flowing through the adsorption heat exchanger (32).
 第14の態様は、第11~第13のいずれか1つの態様において、前記熱媒体としての冷媒が循環して冷凍サイクルを行う冷媒回路(R)を備えていることを特徴とする調湿ユニットである。 A fourteenth aspect is a humidity control unit comprising a refrigerant circuit (R) in which a refrigerant as a heat medium circulates to perform a refrigeration cycle in any one of the eleventh to thirteenth aspects. Is.
 第15の態様は、第14の態様において、前記冷媒回路(R)に接続される圧縮機(23)及び室外熱交換器(24)を有する室外機(20a)を備えていることを特徴とする調湿ユニットである。 A fifteenth aspect is characterized in that, in the fourteenth aspect, an outdoor unit (20a) having a compressor (23) and an outdoor heat exchanger (24) connected to the refrigerant circuit (R) is provided. It is a humidity control unit.
 第16の態様は、第1~第14のいずれか1つの態様において、前記空気搬送機構(M)は、正方向と逆方向の回転が可能なファンであることを特徴とする調湿ユニットである。 A sixteenth aspect is the humidity control unit according to any one of the first to the fourteenth aspects, wherein the air transport mechanism (M) is a fan capable of rotating in the forward direction and the reverse direction. is there.
 第16の態様では、ファンの回転方向が正方向の逆方向とに切り換わることで、空気通路(12)の空気流れが双方向に切り換えられる。 In the 16th aspect, the air flow in the air passage (12) is switched in both directions by switching the rotation direction of the fan to the reverse direction of the forward direction.
 第17の態様は、第1~第14のいずれか1つの態様において、前記空気搬送機構(M)は、前記第1空間(S1)に向かって空気を送風する第1ファン(44)と、前記第2空間(S2)に向かって空気を送風する第2ファン(45)とを含んでいることを特徴とする。 In the seventeenth aspect, in any one of the first to the fourteenth aspects, the air transport mechanism (M) has a first fan (44) that blows air toward the first space (S1). It is characterized by including a second fan (45) that blows air toward the second space (S2).
 第17の態様では、第1ファン(44)を運転することで、第2空間(S2)の空気を第1空間(S1)へ搬送できる。第2ファン(45)を運転することで、第1空間(S1)の空気を第2空間(S2)へ搬送できる。 In the 17th aspect, the air in the second space (S2) can be conveyed to the first space (S1) by operating the first fan (44). By operating the second fan (45), the air in the first space (S1) can be conveyed to the second space (S2).
 第18の態様は、第1~第14のいずれか1つの態様において、前記空気搬送機構(M)は、少なくとも1つのファン(46)と、前記空気通路(12)の空気の流路を第1状態と第2状態とに切り換える流路切換機構(D1,D2,D3)とを備え、前記第1状態の空気通路(12)では、前記ファン(46)に搬送される空気が前記第2空間(S2)から前記第1空間(S1)へ流れ、前記第2状態の空気通路(12)では、前記ファン(46)に搬送される空気が前記第1空間(S1)から前記第2空間(S2)へ流れることを特徴とする調湿ユニットである。 In the eighteenth aspect, in any one of the first to the fourteenth aspects, the air transport mechanism (M) has at least one fan (46) and an air flow path of the air passage (12). A flow path switching mechanism (D1, D2, D3) for switching between the first state and the second state is provided, and in the air passage (12) in the first state, the air conveyed to the fan (46) is the second. In the air passage (12) in the second state, which flows from the space (S2) to the first space (S1), the air conveyed to the fan (46) flows from the first space (S1) to the second space. It is a humidity control unit characterized by flowing to (S2).
 第18の態様では、ファン(46)によって空気が搬送される。流路切換機構(D1,D2,D3)により空気の流路を第1状態と第2状態とに切り換えることで、空気通路(12)の流れ方向が可逆になる。 In the eighteenth aspect, air is conveyed by the fan (46). By switching the air flow path between the first state and the second state by the flow path switching mechanism (D1, D2, D3), the flow direction of the air passage (12) becomes reversible.
 第19の態様は、第1~第18のいずれか1つの態様において、前記空気通路(12)の第1空間(S1)側の開口(13)の中心と、前記空気通路(12)の第2空間(S2)側の開口(14)の中心とが、該空気通路(12)の空気流れ方向において略一致していることを特徴とする調湿ユニットである。 A nineteenth aspect is the center of the opening (13) on the first space (S1) side of the air passage (12) and the first aspect of the air passage (12) in any one of the first to eighteenth aspects. The humidity control unit is characterized in that the center of the opening (14) on the two space (S2) side is substantially aligned with the air flow direction of the air passage (12).
 第19の態様では、空気通路(12)の流路抵抗を低減できる。 In the 19th aspect, the passage resistance of the air passage (12) can be reduced.
 第20の態様は、第1~第19のいずれか1つの態様において、前記空気通路(12)は、前記第1空間(S1)と前記第2空間(S2)とを仕切る壁(W)を貫通するように設けられることを特徴とする調湿ユニットである。 In the twentieth aspect, in any one of the first to nineteenth aspects, the air passage (12) forms a wall (W) that separates the first space (S1) and the second space (S2). It is a humidity control unit characterized by being provided so as to penetrate.
 第21の態様は、第1~第19のいずれか1つの態様において、前記空気通路(12)は、前記第1空間としての室内空間(S1)と、前記第2空間としての室外空間(S2)との間の窓(5)、又は窓枠(6)に設けられることを特徴とする調湿ユニットである。 In the 21st aspect, in any one of the 1st to 19th aspects, the air passage (12) has an indoor space (S1) as the first space and an outdoor space (S2) as the second space. ), The humidity control unit is provided in the window (5) or the window frame (6).
 第22の態様は、第1~第21のいずれか1つの態様において、前記空気通路(12)には、前記吸湿部(30,32)及び前記熱源(21,22,32)よりも前記第2空間としての室外空間(S2)寄りに配置されるフィルタ(38)を備え、前記フィルタ(38)は、前記第1空間としての室内空間(S1)から前記室外空間(S2)へ空気を搬送する動作中に、該フィルタ(38)に付着した塵埃が空気によって取り除かれるように構成されることを特徴とする調湿ユニットである。 In the 22nd aspect, in any one of the 1st to 21st aspects, the air passage (12) is more than the moisture absorbing portion (30,32) and the heat source (21,22,32). A filter (38) arranged closer to the outdoor space (S2) as two spaces is provided, and the filter (38) conveys air from the indoor space (S1) as the first space to the outdoor space (S2). This is a humidity control unit characterized in that dust adhering to the filter (38) is removed by air during the operation.
 第22の態様では、室外空気中の塵埃をフィルタ(38)によって捕集できる。フィルタ(38)に付着した塵埃を空気によって室外空間(S2)へ排出できる。 In the 22nd aspect, dust in the outdoor air can be collected by the filter (38). Dust adhering to the filter (38) can be discharged to the outdoor space (S2) by air.
 第23の態様は、対象空間を調湿する複数の調湿ユニットを備えた調湿システムであって、前記複数の調湿ユニットが、第1~第22のいずれか1つの態様の調湿ユニットであることを特徴とする調湿システムである。 The 23rd aspect is a humidity control system including a plurality of humidity control units for controlling the humidity in the target space, and the plurality of humidity control units are the humidity control units of any one of the first to 22nd modes. It is a humidity control system characterized by being.
 第23の態様では、複数の調湿ユニット(10)により、室内の除湿や加湿を行うことができる。 In the 23rd aspect, indoor dehumidification and humidification can be performed by a plurality of humidity control units (10).
 第24の態様は、第23の態様において、前記複数の調湿ユニット(10)を協調して制御する連動制御部(C)を備えていることを特徴とする。 The 24th aspect is characterized in that, in the 23rd aspect, the interlocking control unit (C) for cooperatively controlling the plurality of humidity control units (10) is provided.
 第24の態様では、複数の調湿ユニット(10)が協調して運転を行う。 In the 24th aspect, a plurality of humidity control units (10) cooperate to operate.
 第25の態様は、第24の態様において、複数の調湿ユニット(10)は、少なくとも1つの第1調湿ユニット(10A)と、少なくとも1つの第2調湿ユニット(10B)とを含み、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行するように構成され、前記連動制御部(C)は、前記第1調湿ユニット(10A)が前記第1動作を行うときに前記第2調湿ユニット(10B)が前記第2動作を行い、前記第1調湿ユニット(10A)が前記第2動作を行うときに前記第2調湿ユニット(10B)が前記第1動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御することを特徴とする調湿システムである。 In the 25th aspect, in the 24th aspect, the plurality of humidity control units (10) include at least one first humidity control unit (10A) and at least one second humidity control unit (10B). The first humidity control unit (10A) and the second humidity control unit (10B) cool the moisture absorbing portion (30,32) by the heat source (21,22,32) and the air transport mechanism (M). The first operation of transporting the air in the second space (S2) to the first space (S1), and the heat source (21,22,32) heating the moisture absorbing portion (30,32) and transporting the air. The mechanism (M) is configured to alternately execute the second operation of transporting the air in the first space (S1) to the second space (S2), and the interlocking control unit (C) is the first. When the second humidity control unit (10B) performs the second operation and the first humidity control unit (10A) performs the second operation when the first humidity control unit (10A) performs the first operation. A humidity control system characterized in that the first humidity control unit (10A) and the second humidity control unit (10B) are controlled so that the second humidity control unit (10B) performs the first operation. Is.
 第25の態様では、第1空間(S1)を連続的に除湿し、且つ換気できる。 In the 25th aspect, the first space (S1) can be continuously dehumidified and ventilated.
 第26の態様は、第25の態様において、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の少なくとも一方は、前記第1動作と前記第2動作との間に前記空気搬送機構(M)を所定期間停止させるように構成され、前記連動制御部(C)は、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の一方の停止期間に、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の他方が第1動作又は第2動作を行うように、第1調湿ユニット(10A)及び第2調湿ユニット(10B)を制御することを特徴とする調湿システムである。 In the 26th aspect, in the 25th aspect, at least one of the first humidity control unit (10A) and the second humidity control unit (10B) is said to be between the first operation and the second operation. The air transport mechanism (M) is configured to be stopped for a predetermined period, and the interlocking control unit (C) is set during one of the stop periods of the first humidity control unit (10A) and the second humidity control unit (10B). , The first humidity control unit (10A) and the second humidity control unit (10A) so that the other of the first humidity control unit (10A) and the second humidity control unit (10B) performs the first operation or the second operation. It is a humidity control system characterized by controlling 10B).
 第26の態様では、第1動作と第2動作との間に空気搬送機構(M)を停止させることで、第1空間(S1)又は第2空間(S2)へ搬送した空気を拡散できる。この際、停止した調湿ユニット(10)と異なる調湿ユニット(10)が第1動作又は第2動作を行う。これにより、一方の調湿ユニット(10)の空気搬送機構(M)を停止させた期間においても、第1空間(S1)の換気を行うことができる。 In the 26th aspect, the air conveyed to the first space (S1) or the second space (S2) can be diffused by stopping the air transfer mechanism (M) between the first operation and the second operation. At this time, the humidity control unit (10) different from the stopped humidity control unit (10) performs the first operation or the second operation. As a result, ventilation of the first space (S1) can be performed even during the period when the air transport mechanism (M) of one of the humidity control units (10) is stopped.
 第27の態様は、第25又は第26の態様において、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させるように構成され、前記連動制御部(C)は、前記第1調湿ユニット(10A)が前記第3動作を行うときに前記第2調湿ユニット(10B)が前記第4動作を行い、前記第1調湿ユニット(10A)が前記第4動作を行うときに前記第2調湿ユニット(10B)が前記第3動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御することを特徴とする調湿システムである。 In the 27th aspect, in the 25th or 26th aspect, the first humidity control unit (10A) and the second humidity control unit (10B) are provided with the moisture absorbing portion (21,22,32) by the heat source (21,22,32). The third operation of heating 30,32) and transporting the air in the second space (S2) to the first space (S1) by the air transport mechanism (M) and the heat source (21, 22, 32) The fourth operation of cooling the moisture absorbing portions (30, 32) and transporting the air in the first space (S1) to the second space (S2) by the air transport mechanism (M) is alternately executed. In the interlocking control unit (C), when the first humidity control unit (10A) performs the third operation, the second humidity control unit (10B) performs the fourth operation, and the second operation is performed. The first humidity control unit (10A) and the second humidity control unit (10A) so that the second humidity control unit (10B) performs the third operation when the first humidity control unit (10A) performs the fourth operation. It is a humidity control system characterized by controlling the unit (10B).
 第27の態様では、第1空間(S1)を連続的に加湿し、且つ換気することができる。 In the 27th aspect, the first space (S1) can be continuously humidified and ventilated.
 第28の態様は、第27の態様において、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の少なくとも一方は、前記第3動作と前記第4動作との間に前記空気搬送機構(M)を所定期間停止させるように構成され、前記連動制御部(C)は、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の一方の停止期間に、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の他方が第3動作又は第4動作を行うように、第1調湿ユニット(10A)及び第2調湿ユニット(10B)を制御することを特徴とする調湿システムである。 In the 28th aspect, in the 27th aspect, at least one of the first humidity control unit (10A) and the second humidity control unit (10B) is said to be between the third operation and the fourth operation. The air transport mechanism (M) is configured to be stopped for a predetermined period, and the interlocking control unit (C) is set during one of the stop periods of the first humidity control unit (10A) and the second humidity control unit (10B). , The first humidity control unit (10A) and the second humidity control unit (10A) so that the other of the first humidity control unit (10A) and the second humidity control unit (10B) performs the third operation or the fourth operation. It is a humidity control system characterized by controlling 10B).
 第28の態様では、第3動作と第4動作との間に空気搬送機構(M)を停止させることで、第1空間(S1)又は第2空間(S2)へ搬送した空気を拡散できる。この際、停止した調湿ユニット(10)と異なる調湿ユニット(10)が第3動作又は第4動作を行う。これにより、一方の調湿ユニット(10)の空気搬送機構(M)を停止させた期間においても、第1空間(S1)の換気を行うことができる。 In the 28th aspect, the air conveyed to the first space (S1) or the second space (S2) can be diffused by stopping the air transfer mechanism (M) between the third operation and the fourth operation. At this time, the humidity control unit (10) different from the stopped humidity control unit (10) performs the third operation or the fourth operation. As a result, ventilation of the first space (S1) can be performed even during the period when the air transport mechanism (M) of one of the humidity control units (10) is stopped.
 第29の態様は、第24~第28のいずれか1つの態様において、前記第2空間(S2)の空気の汚れの度合いを判定する第1判定部(71)を備え、前記連動制御部(C)は、前記第1判定部(71)により空気の汚れの度合いが所定値より高いと判定される条件が少なくとも成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システムである。 The 29th aspect includes the first determination unit (71) for determining the degree of air pollution in the second space (S2) in any one of the 24th to 28th aspects, and the interlocking control unit ( In C), when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the first determination unit (71) is satisfied, the total air supply amount of the plurality of humidity control units (10) is increased. The humidity control system is characterized in that the plurality of humidity control units (10) are controlled so as to be larger than the total displacement of the humidity control unit (10).
 第29の態様では、第2空間(S2)の空気の汚れの度合いが高い条件下において、複数の調湿ユニット(10)の総給気量が総排気量より大きくなる。これにより、汚れの度合いが高い空気が第1空間(S1)に侵入することを抑制できる。 In the 29th aspect, the total air supply amount of the plurality of humidity control units (10) becomes larger than the total displacement amount under the condition that the degree of air pollution in the second space (S2) is high. As a result, it is possible to prevent air having a high degree of pollution from entering the first space (S1).
 第30の態様は、第29の態様において、前記第2空間(S2)から前記第1空間(S1)への空気の侵入を検知する侵入検知部(70)を備え、前記連動制御部(C)は、前記第1判定部(71)により空気の汚れの度合いが所定値より高いと判定される条件と、前記侵入検知部(70)が前記空気の侵入を検知する条件とが少なくとも成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システムである。 The thirtieth aspect includes the intrusion detection unit (70) for detecting the intrusion of air from the second space (S2) into the first space (S1) in the 29th aspect, and the interlocking control unit (C). ) Shall satisfy at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the first determination unit (71) and the condition that the intrusion detection unit (70) detects the intrusion of air. The feature is that the plurality of humidity control units (10) are controlled so that the total air supply amount of the plurality of humidity control units (10) is larger than the total exhaust volume of the plurality of humidity control units (10). It is a humidity control system.
 第30の態様では、第2空間(S2)の空気の汚れの度合いが高く、且つ第2空間(S2)から第1空間(S1)へ空気が侵入する条件下において、複数の調湿ユニット(10)の総給気量が総排気量より大きくなる。これにより、汚れの度合いが高い空気が第1空間(S1)に侵入することを抑制できる。 In the thirtieth aspect, a plurality of humidity control units (under conditions where the degree of air pollution in the second space (S2) is high and air invades from the second space (S2) to the first space (S1)). 10) The total air supply amount becomes larger than the total exhaust amount. As a result, it is possible to prevent air having a high degree of pollution from entering the first space (S1).
 第31の態様は、第24~第30のいずれか1つの態様において、前記第1空間(S1)の空気の汚れの度合いを判定する第2判定部(72)を備え、前記連動制御部(C)は、前記第2判定部(72)により空気の汚れの度合いが所定値より高いと判定される条件が少なくとも成立すると、複数の調湿ユニット(10)の総排気量が、該複数の調湿ユニット(10)の総給気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システムである。 A thirty-first aspect includes a second determination unit (72) for determining the degree of air pollution in the first space (S1) in any one of the 24th to 30th aspects, and the interlocking control unit ( In C), when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the second determination unit (72) is satisfied, the total displacement of the plurality of humidity control units (10) is increased. The humidity control system is characterized in that the plurality of humidity control units (10) are controlled so as to be larger than the total air supply amount of the humidity control unit (10).
 第31の態様では、第1空間(S1)の空気の汚れの度合いが硬い条件下において、複数の調湿ユニット(10)の総排気量が総給気量より大きくなる。これにより、汚れの度合いが高い空気を第2空間(S2)に排出できる。 In the 31st aspect, the total exhaust amount of the plurality of humidity control units (10) becomes larger than the total air supply amount under the condition that the degree of air pollution in the first space (S1) is hard. As a result, air with a high degree of pollution can be discharged to the second space (S2).
 第32の態様は、第24~第31のいずれか1つにおいて、前記第1空間(S1)に設置される換気装置(8)の給気量又は排気量を検知する風量検知部(73)を備え、前記連動制御部(C)は、前記風量検知部(73)で検出した給気量又は排気量に基づき、前記第1空間(S1)における総給気量と総排気量とが略一致するように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システムである。 In the 32nd aspect, in any one of the 24th to 31st, the air volume detecting unit (73) for detecting the air supply amount or the exhaust amount of the ventilation device (8) installed in the first space (S1). The interlocking control unit (C) has an approximate total air supply amount and total exhaust amount in the first space (S1) based on the air supply amount or the exhaust amount detected by the air volume detection unit (73). It is a humidity control system characterized in that the plurality of humidity control units (10) are controlled so as to match.
 第32の態様では、第1空間(S1)の換気装置(8)を給気あるいは排気を行っても、第1空間(S1)と第2空間(S2)の総給気量と総排気量とをバランスさせることができる。 In the 32nd aspect, even if the ventilation device (8) in the first space (S1) is supplied or exhausted, the total air supply amount and the total exhaust amount in the first space (S1) and the second space (S2) are provided. Can be balanced with.
図1は、実施形態に係る調湿システムが適用される住宅の概略の平面図である。FIG. 1 is a schematic plan view of a house to which the humidity control system according to the embodiment is applied. 図2は、実施形態に係る調湿ユニットの概略構成図であり、第1動作中又は第3動作中の調湿ユニットを表している。FIG. 2 is a schematic configuration diagram of the humidity control unit according to the embodiment, and represents the humidity control unit during the first operation or the third operation. 図3は、実施形態に係る調湿ユニットの概略構成図であり、第2動作中又は第4動作中の調湿ユニットを表している。FIG. 3 is a schematic configuration diagram of the humidity control unit according to the embodiment, and represents the humidity control unit during the second operation or the fourth operation. 図4は、実施形態の調湿システムの除湿運転のタイミングチャートである。FIG. 4 is a timing chart of the dehumidifying operation of the humidity control system of the embodiment. 図5(A)は、実施形態に係る調湿システムが適用される住宅の概略の平面図であり、第1動作又は第3動作の空気の流れを表している。図5(B)は、実施形態に係る調湿システムが適用される住宅の概略の平面図であり、第2動作又は第4動作の空気の流れを表している。FIG. 5A is a schematic plan view of a house to which the humidity control system according to the embodiment is applied, and shows the air flow of the first operation or the third operation. FIG. 5B is a schematic plan view of a house to which the humidity control system according to the embodiment is applied, and shows the air flow of the second operation or the fourth operation. 図6は、実施形態の調湿システムの加湿運転のタイミングチャートである。FIG. 6 is a timing chart of the humidification operation of the humidity control system of the embodiment. 図7は、変形例1の調湿システムの除湿運転のタイミングチャートである。FIG. 7 is a timing chart of the dehumidifying operation of the humidity control system of the first modification. 図8は、変形例1の調湿システムの加湿運転のタイミングチャートである。FIG. 8 is a timing chart of the humidification operation of the humidity control system of the first modification. 図9は、変形例3に係る調湿ユニットの概略構成図である。FIG. 9 is a schematic configuration diagram of the humidity control unit according to the modified example 3. 図10は、変形例5に係る調湿ユニットの概略構成図である。FIG. 10 is a schematic configuration diagram of the humidity control unit according to the modified example 5. 図11は、変形例6に係る吸湿ユニットの概略構成図である。FIG. 11 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 6. 図12は、変形例7に係る吸湿ユニットの概略構成図である。FIG. 12 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 7. 図13は、変形例8に係る吸湿ユニットの概略構成図である。FIG. 13 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 8. 図14は、変形例9に係る吸湿ユニットの概略構成図である。FIG. 14 is a schematic configuration diagram of the moisture absorbing unit according to the modified example 9. 図15は、変形例10に係る調湿ユニットの概略構成図であり、第1動作中又は第3動作中の調湿ユニットを表している。FIG. 15 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the humidity control unit during the first operation or the third operation. 図16は、変形例10に係る調湿ユニットの概略構成図であり、第2動作中又は第4動作中の調湿ユニットを表している。FIG. 16 is a schematic configuration diagram of the humidity control unit according to the modified example 10, and shows the humidity control unit during the second operation or the fourth operation. 図17は、変形例11に係る調湿ユニットの概略構成図であり、第1動作中又は第3動作中の調湿ユニットを表している。FIG. 17 is a schematic configuration diagram of the humidity control unit according to the modified example 11, and shows the humidity control unit during the first operation or the third operation. 図18は、変形例11に係る調湿ユニットの概略構成図であり、第3動作中又は第4動作中の調湿ユニットを表している。FIG. 18 is a schematic configuration diagram of the humidity control unit according to the modified example 11, and shows the humidity control unit during the third operation or the fourth operation. 図19は、変形例12に係る調湿ユニットの概略構成図であり、第1動作中又は第3動作中の調湿ユニットを表している。FIG. 19 is a schematic configuration diagram of the humidity control unit according to the modified example 12, and shows the humidity control unit during the first operation or the third operation. 図20は、変形例12に係る調湿ユニットの概略構成図であり、第2動作中又は第4動作中の調湿ユニットを表している。FIG. 20 is a schematic configuration diagram of the humidity control unit according to the modified example 12, and represents the humidity control unit during the second operation or the fourth operation. 図21は、変形例13に係る調湿ユニットが設けられた住宅の一部を拡大した概略の平面図である。FIG. 21 is an enlarged schematic plan view of a part of the house provided with the humidity control unit according to the modified example 13. 図22は、変形例14に係る調湿システムが適用される住宅の概略の平面図である。FIG. 22 is a schematic plan view of a house to which the humidity control system according to the modified example 14 is applied. 図23は、変形例16に係る調湿システムが適用される住宅の概略の平面図である。FIG. 23 is a schematic plan view of a house to which the humidity control system according to the modified example 16 is applied. 図24は、変形例19に係る調湿システムが適用される住宅の概略の平面図である。FIG. 24 is a schematic plan view of a house to which the humidity control system according to the modified example 19 is applied.
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the following embodiments are essentially preferred examples and are not intended to limit the scope of the present invention, its applications, or its uses.
 《実施形態》
 実施形態は、対象空間の湿度を調節する調湿システム(S)である。調湿システム(S)は、対象空間の換気を行う換気システムを兼用する。
<< Embodiment >>
An embodiment is a humidity control system (S) that regulates the humidity of the target space. The humidity control system (S) also serves as a ventilation system that ventilates the target space.
 〈調湿システムの全体構成〉
 図1に示すように、本実施形態の調湿システム(S)は、住宅に適用される。調湿システム(S)は、6つの調湿ユニット(10)と、連動制御部(C)とを有する。調湿ユニット(10)の数量は、これに限られないが、2つ以上であるのが好ましい。連動制御部(C)は、これらの6つの調湿ユニット(10)を協調させながら制御する。
<Overall configuration of humidity control system>
As shown in FIG. 1, the humidity control system (S) of the present embodiment is applied to a house. The humidity control system (S) has six humidity control units (10) and an interlocking control unit (C). The number of humidity control units (10) is not limited to this, but is preferably two or more. The interlocking control unit (C) controls these six humidity control units (10) in a coordinated manner.
 本例の6つの調湿ユニット(10)は、3つの第1調湿ユニット(10A)と、3つの第2調湿ユニット(10B)に分類される。3つの第1調湿ユニット(10A)は、基本的には同じ動作を行う。3つの第2調湿ユニット(10B)は、基本的には同じ動作を行う。第1調湿ユニット(10A)と第2調湿ユニット(10B)とは、基本的には異なる動作を行う。 The six humidity control units (10) in this example are classified into three first humidity control units (10A) and three second humidity control units (10B). The three first humidity control units (10A) basically perform the same operation. The three second humidity control units (10B) basically perform the same operation. The first humidity control unit (10A) and the second humidity control unit (10B) basically perform different operations.
 〈調湿ユニットの全体構成〉
 図2に示すように、調湿ユニット(10)は、ケーシング(11)を備える。ケーシング(11)は、住宅の壁(W)を貫通するように該壁(W)に取り付けられる。ケーシング(11)は、横長の筒状に形成される。ケーシング(11)は、円筒状であってもよいし、角型筒状であってもよい。ケーシング(11)は、壁(W)と垂直に直線状に延びている。
<Overall configuration of humidity control unit>
As shown in FIG. 2, the humidity control unit (10) includes a casing (11). The casing (11) is attached to the wall (W) so as to penetrate the wall (W) of the house. The casing (11) is formed in a horizontally long tubular shape. The casing (11) may have a cylindrical shape or a square tubular shape. The casing (11) extends in a straight line perpendicular to the wall (W).
 ケーシング(11)の内部には、空気通路(12)が形成される。空気通路(12)は、第1空間(S1)と第2空間(S2)とを連通させる。第1空間(S1)は、湿度調節、及び換気の対象空間である。第1空間(S1)は室内空間である。第2空間(S2)は第1空間(S1)と異なる空間である。具体的には、第2空間(S2)は室外空間である。 An air passage (12) is formed inside the casing (11). The air passage (12) communicates the first space (S1) and the second space (S2). The first space (S1) is a target space for humidity control and ventilation. The first space (S1) is an indoor space. The second space (S2) is a space different from the first space (S1). Specifically, the second space (S2) is an outdoor space.
 複数の調湿ユニット(10)は、住宅の同一の室内空間(S1)を対象としてもよいし、異なる室内空間(S1)を対象としてもよい。 The plurality of humidity control units (10) may be targeted at the same indoor space (S1) of the house, or may be targeted at different indoor spaces (S1).
 空気通路(12)は、第1空間(S1)に開口する内気口(13)を有する。空気通路(12)は、第2空間(S2)に開口する外気口(14)を有する。内気口(13)の中心(軸心)と、外気口(14)の中心(軸心)とは、空気流れ方向において略一致している。これにより、空気通路(12)の流路抵抗を低減できる。 The air passage (12) has an internal air opening (13) that opens into the first space (S1). The air passage (12) has an outside air port (14) that opens into the second space (S2). The center (axis center) of the inside air port (13) and the center (axis center) of the outside air port (14) substantially coincide with each other in the air flow direction. As a result, the flow path resistance of the air passage (12) can be reduced.
 調湿ユニット(10)は、第1熱交換器(21)、吸湿ユニット(30)、第2熱交換器(22)、可逆ファン(40)を備える。空気通路(12)では、室外空間(S2)から室内空間(S1)に向かって順に、第1熱交換器(21)、吸湿ユニット(30)、第2熱交換器(22)、可逆ファン(40)が配置される。可逆ファン(40)を第1熱交換器(21)よりも室外空間(S2)側に配置してもよい。 The humidity control unit (10) includes a first heat exchanger (21), a moisture absorption unit (30), a second heat exchanger (22), and a reversible fan (40). In the air passage (12), the first heat exchanger (21), the moisture absorption unit (30), the second heat exchanger (22), and the reversible fan (in order from the outdoor space (S2) to the indoor space (S1)). 40) is placed. The reversible fan (40) may be arranged closer to the outdoor space (S2) than the first heat exchanger (21).
 第1熱交換器(21)及び第2熱交換器(22)は、熱源装置(20)に含まれている。第1熱交換器(21)及び第2熱交換器(22)は、空気の冷却及び加熱を行う熱源である。第1熱交換器(21)及び第2熱交換器(22)は、例えばフィンアンドチューブ式の熱交換器である。 The first heat exchanger (21) and the second heat exchanger (22) are included in the heat source device (20). The first heat exchanger (21) and the second heat exchanger (22) are heat sources for cooling and heating air. The first heat exchanger (21) and the second heat exchanger (22) are, for example, fin-and-tube heat exchangers.
 吸湿ユニット(30)は、空気からの吸湿と、空気への放湿とを行う吸湿部である。換言すると、吸湿ユニット(30)は、空気中から水分を奪う動作と、空気中へ水分を放出する動作とを行う。本実施形態の吸湿ユニット(30)は、吸着剤を有する吸着ユニットである。吸湿ユニット(30)は、空気が流通する複数の孔を有する基材と、基材の表面に担持される吸着剤とを含む。吸着剤は、水分を吸着ないし収着する材料であれば如何なる材料であってもよい。 The moisture absorption unit (30) is a moisture absorption unit that absorbs moisture from the air and releases it to the air. In other words, the moisture absorbing unit (30) performs an operation of removing moisture from the air and an operation of releasing moisture into the air. The moisture absorption unit (30) of the present embodiment is an adsorption unit having an adsorbent. The moisture absorption unit (30) includes a base material having a plurality of holes through which air flows, and an adsorbent supported on the surface of the base material. The adsorbent may be any material as long as it is a material that adsorbs or sorbs water.
 可逆ファン(40)は、空気通路(12)の空気を双方向ないし可逆に搬送する空気搬送機構(M)を構成する(詳細は後述する)。 The reversible fan (40) constitutes an air transport mechanism (M) that bidirectionally or reversibly transports the air in the air passage (12) (details will be described later).
 〈熱源装置〉
 図2に示すように、調湿ユニット(10)は、空気を冷却及び加熱するための熱源装置(20)を含む。熱源装置(20)は、第1熱交換器(21)と、第2熱交換器(22)と、室外機(20a)とを含んでいる。室外機(20a)は、圧縮機(23)と、室外熱交換器(24)と、室外ファン(25)とを含んでいる。室外機(20a)と、第1熱交換器(21)と、第2熱交換器(22)とは、冷媒配管を介して互いに接続される。これにより、熱源装置(20)では、冷媒が循環する冷媒回路(R)が構成される。圧縮機(23)、第1熱交換器(21)、第2熱交換器(22)、室外熱交換器(24)は、冷媒回路(R)に接続される。冷媒回路(R)には、流路切換機構である四方切換弁、開閉弁、膨張弁などが接続される(図示省略)。これらの機器を制御することにより、冷媒回路(R)では、冷媒が循環して冷凍サイクルが行われる。
<Heat source device>
As shown in FIG. 2, the humidity control unit (10) includes a heat source device (20) for cooling and heating air. The heat source device (20) includes a first heat exchanger (21), a second heat exchanger (22), and an outdoor unit (20a). The outdoor unit (20a) includes a compressor (23), an outdoor heat exchanger (24), and an outdoor fan (25). The outdoor unit (20a), the first heat exchanger (21), and the second heat exchanger (22) are connected to each other via a refrigerant pipe. As a result, in the heat source device (20), a refrigerant circuit (R) through which the refrigerant circulates is configured. The compressor (23), the first heat exchanger (21), the second heat exchanger (22), and the outdoor heat exchanger (24) are connected to the refrigerant circuit (R). A four-way switching valve, an on-off valve, an expansion valve, etc., which are flow path switching mechanisms, are connected to the refrigerant circuit (R) (not shown). By controlling these devices, the refrigerant circulates in the refrigerant circuit (R) to perform a refrigeration cycle.
 〈可逆ファンの詳細〉
 本実施形態の可逆ファン(40)は、軸流ファンで構成される。可逆ファン(40)は、モータ(41)と、モータ(41)に回転駆動させる軸(42)と、軸(42)に連結されるインペラ(43)とを備える。モータ(41)は、正回転方向と逆回転方向とに軸(42)を回転駆動する。インペラ(43)は、軸方向の前面視及び後面視の形状が概ね等しい。
<Details of reversible fan>
The reversible fan (40) of the present embodiment is composed of an axial fan. The reversible fan (40) includes a motor (41), a shaft (42) that is rotationally driven by the motor (41), and an impeller (43) that is connected to the shaft (42). The motor (41) rotationally drives the shaft (42) in the forward rotation direction and the reverse rotation direction. The impeller (43) has substantially the same axial front view and rear view shapes.
 モータ(41)が駆動軸(42)を正回転方向に駆動させると、インペラ(43)が第1回転方向に回転する(図2を参照)。これにより、室外空間(S2)の室外空気(OA)が空気通路(12)に吸い込まれる。吸い込まれた室外空気(OA)は、供給空気(SA)として室内空間(S1)へ供給される。モータ(41)が駆動軸(42)を逆回転方向に駆動させると、インペラ(43)が第2回転方向に回転する(図3を参照)。これにより、室内空間(S1)の室内空気(RA)が空気通路(12)に吸い込まれる。吸い込まれた室内空気(RA)は、排出空気(EA)として室外空間(S2)へ排出される。 When the motor (41) drives the drive shaft (42) in the forward rotation direction, the impeller (43) rotates in the first rotation direction (see FIG. 2). As a result, the outdoor air (OA) in the outdoor space (S2) is sucked into the air passage (12). The sucked outdoor air (OA) is supplied to the indoor space (S1) as supply air (SA). When the motor (41) drives the drive shaft (42) in the reverse rotation direction, the impeller (43) rotates in the second rotation direction (see FIG. 3). As a result, the indoor air (RA) in the indoor space (S1) is sucked into the air passage (12). The sucked indoor air (RA) is discharged to the outdoor space (S2) as exhaust air (EA).
 〈連動制御部〉
 図1に示すように、連動制御部(C)は、複数の調湿ユニット(10)を制御するためのコントローラである。連動制御部(C)は、プロセッサ(例えばマイクロコントローラ)と、該プロセッサを動作させるためのソフトウェアを格納するメモリディバイス(例えば半導体メモリ)とを有する。本実施形態の連動制御部(C)は、各調湿ユニット(10)の熱源装置(20)及び空気搬送機構(M)を制御する制御装置を兼用している。
<Interlocking control unit>
As shown in FIG. 1, the interlocking control unit (C) is a controller for controlling a plurality of humidity control units (10). The interlocking control unit (C) has a processor (for example, a microcontroller) and a memory device (for example, a semiconductor memory) for storing software for operating the processor. The interlocking control unit (C) of the present embodiment also serves as a control device for controlling the heat source device (20) and the air transfer mechanism (M) of each humidity control unit (10).
 連動制御部(C)は、有線又は無線を介して各調湿ユニット(10)と接続される。連動制御部(C)と各調湿ユニット(10)の間で制御信号などの授受が行われる。連動制御部(C)は、調湿ユニット(10)の各々について、熱源装置(20)及び可逆ファン(40)をそれぞれ制御する。 The interlocking control unit (C) is connected to each humidity control unit (10) via wired or wireless. Control signals and the like are exchanged between the interlocking control unit (C) and each humidity control unit (10). The interlocking control unit (C) controls the heat source device (20) and the reversible fan (40) for each of the humidity control units (10).
 -運転動作-
 調湿システム(S)の運転動作について説明する。調湿システム(S)は、除湿運転と加湿運転とを切り換えて行う。除湿運転は、例えば夏季において、外気が高温高湿である条件下で実行される。加湿運転は、例えば冬季において、外気が低温低湿である条件下で実行される。
-Driving operation-
The operation operation of the humidity control system (S) will be described. The humidity control system (S) switches between dehumidifying operation and humidifying operation. The dehumidifying operation is performed under the condition that the outside air is hot and humid, for example, in summer. The humidification operation is performed under the condition that the outside air is low temperature and low humidity, for example, in winter.
 〈除湿運転〉
 除湿運転では、各調湿ユニット(10)において第1動作と第2動作とが行われる。第1動作と第2動作とは交互に繰り返し行われる。これらの動作の切換は、連動制御部(C)によって制御される。
<Dehumidifying operation>
In the dehumidifying operation, the first operation and the second operation are performed in each humidity control unit (10). The first operation and the second operation are alternately and repeatedly performed. The switching of these operations is controlled by the interlocking control unit (C).
 〈第1動作〉
 図2に示す第1動作は、第1熱交換器(21)により吸湿ユニット(30)を冷却し、且つ可逆ファン(40)により室外空間(S2)から室内空間(S1)へ空気を搬送する動作である。熱源装置(20)では、第1熱交換器(21)を蒸発器とし、第2熱交換器(22)を停止させ、室外熱交換器(24)を放熱器(凝縮器)とする冷凍サイクル(第1冷凍サイクル)が行われる。
<First operation>
In the first operation shown in FIG. 2, the moisture absorption unit (30) is cooled by the first heat exchanger (21), and air is transferred from the outdoor space (S2) to the indoor space (S1) by the reversible fan (40). It is an operation. In the heat source device (20), a refrigeration cycle in which the first heat exchanger (21) is used as an evaporator, the second heat exchanger (22) is stopped, and the outdoor heat exchanger (24) is used as a radiator (condenser). (First refrigeration cycle) is performed.
 第1動作では、空気通路(12)に取り込まれた室外空気(OA)が第1熱交換器(21)で冷却される。冷却された空気は、吸湿ユニット(30)を流れる。吸湿ユニット(30)では、空気中の水分が吸着剤に吸着される。このように冷却及び除湿された空気は、供給空気(SA)として室内空間(S1)へ供給される。 In the first operation, the outdoor air (OA) taken into the air passage (12) is cooled by the first heat exchanger (21). The cooled air flows through the moisture absorbing unit (30). In the moisture absorption unit (30), moisture in the air is adsorbed by the adsorbent. The air cooled and dehumidified in this way is supplied to the indoor space (S1) as supply air (SA).
 〈第2動作〉
 図3に示す第2動作は、第2熱交換器(22)により吸湿ユニット(30)を加熱し、且つ可逆ファン(40)により室内空間(S1)から室外空間(S2)へ空気を搬送する動作である。具体的には、熱源装置(20)では、第2熱交換器(22)を放熱器(凝縮器)とし、第1熱交換器(21)を停止させ、室外熱交換器(24)を蒸発器とする冷凍サイクル(第2冷凍サイクル)が行われる。
<Second operation>
In the second operation shown in FIG. 3, the moisture absorption unit (30) is heated by the second heat exchanger (22), and air is transferred from the indoor space (S1) to the outdoor space (S2) by the reversible fan (40). It is an operation. Specifically, in the heat source device (20), the second heat exchanger (22) is used as a radiator (condenser), the first heat exchanger (21) is stopped, and the outdoor heat exchanger (24) is evaporated. The refrigeration cycle (second refrigeration cycle) used as a container is performed.
 第2動作では、空気通路(12)に取り込まれた室内空気(RA)が第2熱交換器(22)で加熱される。加熱された空気は、吸湿ユニット(30)を流れる。吸湿ユニット(30)では、空気によって吸着剤が再生される。吸着剤の再生に利用された空気は、排出空気(EA)として室外空間(S2)へ排出される。 In the second operation, the indoor air (RA) taken into the air passage (12) is heated by the second heat exchanger (22). The heated air flows through the moisture absorbing unit (30). In the moisture absorption unit (30), the adsorbent is regenerated by air. The air used for the regeneration of the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
 〈除湿運転の連動制御〉
 除湿運転の連動制御について図4及び図5を参照しながら詳細に説明する。除湿運転では、第1調湿ユニット(10A)と第2調湿ユニット(10B)とが連動して制御される。本実施形態では、各調湿ユニット(10)において、第1動作、第1停止制御、第2動作、第2停止制御が順に繰り返し行われる。第1動作はT1、第2動作はT2、第1停止制御はTb1、第2停止制御はTb2の間、実行される。T1及びT2は、例えば数十秒、Tb1及びTb2は、例えば数秒に設定される。本例では、T1とT2が等しく、Tb1とTb2とが等しい。
<Interlocking control of dehumidifying operation>
The interlocking control of the dehumidifying operation will be described in detail with reference to FIGS. 4 and 5. In the dehumidifying operation, the first humidity control unit (10A) and the second humidity control unit (10B) are controlled in conjunction with each other. In the present embodiment, in each humidity control unit (10), the first operation, the first stop control, the second operation, and the second stop control are repeatedly performed in this order. The first operation is executed during T1, the second operation is executed during T2, the first stop control is executed during Tb1, and the second stop control is executed during Tb2. T1 and T2 are set to, for example, several tens of seconds, and Tb1 and Tb2 are set to, for example, several seconds. In this example, T1 and T2 are equal, and Tb1 and Tb2 are equal.
 本例では、第1調湿ユニット(10A)の第1動作と、第2調湿ユニット(10B)の第2動作とが同時に行われる。第1調湿ユニット(10A)の第2動作と、第2調湿ユニット(10B)の第1動作とが同時に行われる。第1調湿ユニット(10A)の第1停止制御と、第2調湿ユニット(10B)の第2停止制御とが同時に行われる。第1調湿ユニット(10A)の第2停止制御と、第2調湿ユニット(10B)の第1停止制御とが同時に行われる。 In this example, the first operation of the first humidity control unit (10A) and the second operation of the second humidity control unit (10B) are performed at the same time. The second operation of the first humidity control unit (10A) and the first operation of the second humidity control unit (10B) are performed at the same time. The first stop control of the first humidity control unit (10A) and the second stop control of the second humidity control unit (10B) are performed at the same time. The second stop control of the first humidity control unit (10A) and the first stop control of the second humidity control unit (10B) are performed at the same time.
 図4及び図5(A)に示すように、除湿運転において、3台の第1調湿ユニット(10A)が第1動作を実行すると、残りの3台の第2調湿ユニット(10B)が第2動作を実行する。各第1調湿ユニット(10A)は、吸湿ユニット(30)で除湿した空気を室内空間(S1)へ供給する。各第2調湿ユニット(10B)は、吸湿ユニット(30)の吸着剤の再生に利用した空気を室外空間(S2)に排出する。これにより、室内空間(S1)の換気と、室内空間(S1)の除湿とが同時に行われる。 As shown in FIGS. 4 and 5 (A), when the three first humidity control units (10A) execute the first operation in the dehumidification operation, the remaining three second humidity control units (10B) move. Execute the second operation. Each first humidity control unit (10A) supplies the air dehumidified by the moisture absorption unit (30) to the indoor space (S1). Each second humidity control unit (10B) discharges the air used for regenerating the adsorbent of the moisture absorption unit (30) to the outdoor space (S2). As a result, ventilation of the indoor space (S1) and dehumidification of the indoor space (S1) are performed at the same time.
 第1調湿ユニット(10A)の第1動作が終了すると、第1調湿ユニット(10A)の第1停止制御が行われる。第1調湿ユニット(10A)の第1停止制御では、第1調湿ユニット(10A)の可逆ファン(40)が停止状態となる。第2調湿ユニット(10B)の第2動作が終了すると、第2調湿ユニット(10B)の第2停止制御が行われる。第2調湿ユニット(10B)の第2停止制御では、第2調湿ユニット(10B)の可逆ファン(40)が停止状態となる。 When the first operation of the first humidity control unit (10A) is completed, the first stop control of the first humidity control unit (10A) is performed. In the first stop control of the first humidity control unit (10A), the reversible fan (40) of the first humidity control unit (10A) is stopped. When the second operation of the second humidity control unit (10B) is completed, the second stop control of the second humidity control unit (10B) is performed. In the second stop control of the second humidity control unit (10B), the reversible fan (40) of the second humidity control unit (10B) is stopped.
 図4及び図5(B)に示すように、除湿運転において、3台の第2調湿ユニット(10B)が第1動作を実行すると、残りの3台の第1調湿ユニット(10A)が第2動作を実行する。各第2調湿ユニット(10B)は、吸湿ユニット(30)で除湿した空気を室内空間(S1)へ供給する。各第1調湿ユニット(10A)は、吸湿ユニット(30)の吸着剤の再生に利用した空気を室外空間(S2)に排出する。これにより、室内空間(S1)の換気と、室内空間(S1)の除湿とが同時に行われる。 As shown in FIGS. 4 and 5 (B), when the three second humidity control units (10B) execute the first operation in the dehumidification operation, the remaining three first humidity control units (10A) move. Execute the second operation. Each second humidity control unit (10B) supplies the air dehumidified by the moisture absorption unit (30) to the indoor space (S1). Each first humidity control unit (10A) discharges the air used for regenerating the adsorbent of the moisture absorption unit (30) to the outdoor space (S2). As a result, ventilation of the indoor space (S1) and dehumidification of the indoor space (S1) are performed at the same time.
 第2調湿ユニット(10B)の第1動作が終了すると、第2調湿ユニット(10B)の第1停止制御が行われる。第2調湿ユニット(10B)の第1停止制御では、第2調湿ユニット(10B)の可逆ファン(40)が停止状態となる。第1調湿ユニット(10A)の第2動作が終了すると、第1調湿ユニット(10A)の第2停止制御が行われる。第1調湿ユニット(10A)の第2停止制御では、第1調湿ユニット(10A)の可逆ファン(40)が停止状態となる。 When the first operation of the second humidity control unit (10B) is completed, the first stop control of the second humidity control unit (10B) is performed. In the first stop control of the second humidity control unit (10B), the reversible fan (40) of the second humidity control unit (10B) is stopped. When the second operation of the first humidity control unit (10A) is completed, the second stop control of the first humidity control unit (10A) is performed. In the second stop control of the first humidity control unit (10A), the reversible fan (40) of the first humidity control unit (10A) is stopped.
 以上のように、調湿システム(S)では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)において、第1動作と第2動作とが互いにずれるように交互に行われる。これにより、室内空間(S1)の換気及び除湿を連続的に行うことができる。 As described above, in the humidity control system (S), in the first humidity control unit (10A) and the second humidity control unit (10B), the first operation and the second operation are alternately performed so as to be deviated from each other. As a result, ventilation and dehumidification of the indoor space (S1) can be continuously performed.
 除湿運転では第1動作と第2動作との間の第1停止制御において、可逆ファン(40)を停止させる。仮に各調湿ユニット(10)において、第1動作の後、直ぐに第2動作を実行すると、第1動作において室内空間(S1)に供給される低湿の空気を、第2動作により室外空間(S2)へ排出してしまう可能性がある。これに対し、第1動作と第2動作との間に、可逆ファン(40)を停止させることで、第1動作により室内空間(S1)へ供給する低湿の空気を室内空間(S1)で拡散させることができる。これにより、第1動作により室内空間(S1)へ供給される低湿の空気が、第2動作により室外空間(S2)へ排出されることを抑制できる。 In the dehumidifying operation, the reversible fan (40) is stopped in the first stop control between the first operation and the second operation. If the second operation is executed immediately after the first operation in each humidity control unit (10), the low humidity air supplied to the indoor space (S1) in the first operation is released to the outdoor space (S2) by the second operation. ) May be discharged. On the other hand, by stopping the reversible fan (40) between the first operation and the second operation, the low humidity air supplied to the indoor space (S1) by the first operation is diffused in the indoor space (S1). Can be made to. As a result, it is possible to prevent the low-humidity air supplied to the indoor space (S1) by the first operation from being discharged to the outdoor space (S2) by the second operation.
 同様に、除湿運転では第2動作と第1動作との間の第2停止制御において、可逆ファン(40)を停止させる。仮に各調湿ユニット(10)において、第2動作の後、直ぐに第1動作を実行すると、第2動作において室外空間(S2)へ排出される高湿の空気を、第1動作により室内空間(S1)へ供給してしまう可能性がある。これに対し、第2動作と第1動作との間に、可逆ファン(40)を停止させることで、第2動作により室外空間(S2)へ排出した高湿の空気を室外空間(S2)で拡散させることができる。これにより、第2動作により室外空間(S2)へ排出される高湿の空気が、第1動作により室内空間(S1)へ供給されることを抑制できる。 Similarly, in the dehumidifying operation, the reversible fan (40) is stopped in the second stop control between the second operation and the first operation. If the first operation is executed immediately after the second operation in each humidity control unit (10), the high humidity air discharged to the outdoor space (S2) in the second operation is discharged to the indoor space (S2) by the first operation. There is a possibility that it will be supplied to S1). On the other hand, by stopping the reversible fan (40) between the second operation and the first operation, the high humidity air discharged to the outdoor space (S2) by the second operation is discharged in the outdoor space (S2). It can be diffused. As a result, it is possible to prevent the high-humidity air discharged to the outdoor space (S2) by the second operation from being supplied to the indoor space (S1) by the first operation.
 なお、第1停止制御及び第2停止制御において、圧縮機(23)を停止してもよい。 Note that the compressor (23) may be stopped in the first stop control and the second stop control.
 〈加湿運転〉
 加湿運転では、各調湿ユニット(10)において第3動作と第4動作とが行われる。第3動作と第4動作とは交互に繰り返し行われる。これらの動作の切換は、連動制御部(C)によって制御される。
<Humidification operation>
In the humidification operation, the third operation and the fourth operation are performed in each humidity control unit (10). The third operation and the fourth operation are alternately and repeatedly performed. The switching of these operations is controlled by the interlocking control unit (C).
 〈第3動作〉
 図2に示す第3動作は、第1熱交換器(21)により吸湿ユニット(30)を加熱し、且つ可逆ファン(40)により室外空間(S2)から室内空間(S1)へ空気を搬送する動作である。熱源装置(20)では、第1熱交換器(21)を放熱器(凝縮器)とし、第2熱交換器(22)を停止させ、室外熱交換器(24)を蒸発器とする冷凍サイクル(第3冷凍サイクル)が行われる。
<Third operation>
In the third operation shown in FIG. 2, the moisture absorption unit (30) is heated by the first heat exchanger (21), and air is transferred from the outdoor space (S2) to the indoor space (S1) by the reversible fan (40). It is an operation. In the heat source device (20), a refrigeration cycle in which the first heat exchanger (21) is used as a radiator (condenser), the second heat exchanger (22) is stopped, and the outdoor heat exchanger (24) is used as an evaporator. (Third refrigeration cycle) is performed.
 第3動作では、空気通路(12)に取り込まれた室外空気(OA)が第1熱交換器(21)で加熱される。加熱された空気は、吸湿ユニット(30)を流れる。吸湿ユニット(30)では、吸着剤の水分が空気中に放出される。このように加熱及び加湿された空気は、供給空気(SA)として室内空間(S1)へ供給される。 In the third operation, the outdoor air (OA) taken into the air passage (12) is heated by the first heat exchanger (21). The heated air flows through the moisture absorbing unit (30). In the moisture absorption unit (30), the moisture of the adsorbent is released into the air. The air heated and humidified in this way is supplied to the indoor space (S1) as supply air (SA).
 〈第4動作〉
 図3に示す第4動作は、第2熱交換器(22)により吸湿ユニット(30)を冷却し、且つ可逆ファン(40)により室内空間(S1)から室外空間(S2)へ空気を搬送する動作である。具体的には、熱源装置(20)では、第2熱交換器(22)を蒸発器とし、第1熱交換器(21)を停止させ、室外熱交換器(24)を放熱器(凝縮器)とする冷凍サイクル(第4冷凍サイクル)が行われる。
<Fourth operation>
In the fourth operation shown in FIG. 3, the moisture absorption unit (30) is cooled by the second heat exchanger (22), and air is transferred from the indoor space (S1) to the outdoor space (S2) by the reversible fan (40). It is an operation. Specifically, in the heat source device (20), the second heat exchanger (22) is used as an evaporator, the first heat exchanger (21) is stopped, and the outdoor heat exchanger (24) is used as a radiator (condenser). ) Is performed as the refrigeration cycle (fourth refrigeration cycle).
 第4動作では、空気通路(12)に取り込まれた室内空気(RA)が第2熱交換器(22)で冷却される。冷却された空気は、吸湿ユニット(30)を流れる。吸湿ユニット(30)では、空気中の水分が吸着剤に吸着される。吸着剤に水分を付与した空気は、排出空気(EA)として室外空間(S2)へ排出される。 In the fourth operation, the indoor air (RA) taken into the air passage (12) is cooled by the second heat exchanger (22). The cooled air flows through the moisture absorbing unit (30). In the moisture absorption unit (30), moisture in the air is adsorbed by the adsorbent. The air in which moisture is added to the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
 〈加湿運転の連動制御〉
 加湿運転の連動制御について図5及び図6を参照しながら詳細に説明する。加湿運転では、第1調湿ユニット(10A)と第2調湿ユニット(10B)とが連動して制御される。本実施形態では、各調湿ユニット(10)において、第3動作、第3停止制御、第4動作、第4停止制御が順に繰り返し行われる。第3動作はT3、第4動作はT4、第3停止制御はTb3、第4停止制御はTb4の間、実行される。第3動作はT3、第4動作はT4、第3停止制御はTb3、第4停止制御はTb4の間、実行される。T3及びT4は、例えば数十秒、Tb3及びTb4は、例えば数秒に設定される。本例では、T3とT4が等しく、Tb3とTb4とが等しい。
<Interlocking control of humidification operation>
The interlocking control of the humidification operation will be described in detail with reference to FIGS. 5 and 6. In the humidification operation, the first humidity control unit (10A) and the second humidity control unit (10B) are controlled in conjunction with each other. In the present embodiment, in each humidity control unit (10), the third operation, the third stop control, the fourth operation, and the fourth stop control are repeatedly performed in this order. The third operation is executed during T3, the fourth operation is executed during T4, the third stop control is executed during Tb3, and the fourth stop control is executed during Tb4. The third operation is executed during T3, the fourth operation is executed during T4, the third stop control is executed during Tb3, and the fourth stop control is executed during Tb4. T3 and T4 are set to, for example, several tens of seconds, and Tb3 and Tb4 are set to, for example, several seconds. In this example, T3 and T4 are equal, and Tb3 and Tb4 are equal.
 本例では、第1調湿ユニット(10A)の第3動作と、第2調湿ユニット(10B)の第4動作とが同時に行われる。第1調湿ユニット(10A)の第4動作と、第2調湿ユニット(10B)の第3動作とが同時に行われる。第1調湿ユニット(10A)の第3停止制御と、第2調湿ユニット(10B)の第4停止制御とが同時に行われる。第1調湿ユニット(10A)の第4停止制御と、第2調湿ユニット(10B)の第3停止制御とが同時に行われる。 In this example, the third operation of the first humidity control unit (10A) and the fourth operation of the second humidity control unit (10B) are performed at the same time. The fourth operation of the first humidity control unit (10A) and the third operation of the second humidity control unit (10B) are performed at the same time. The third stop control of the first humidity control unit (10A) and the fourth stop control of the second humidity control unit (10B) are performed at the same time. The fourth stop control of the first humidity control unit (10A) and the third stop control of the second humidity control unit (10B) are performed at the same time.
 図5(A)及び図6に示すように、加湿運転において、3台の第1調湿ユニット(10A)が第3動作を実行すると、残りの3台の第2調湿ユニット(10B)が第4動作を実行する。各第1調湿ユニット(10A)は、吸湿ユニット(30)で加湿した空気を室内空間(S1)へ供給する。各第2調湿ユニット(10B)は、吸湿ユニット(30)の吸着剤に水分を付与した空気を室外空間(S2)に排出する。これにより、室内空間(S1)の換気と、室内空間(S1)の加湿とが同時に行われる。 As shown in FIGS. 5A and 6, when the three first humidity control units (10A) execute the third operation in the humidification operation, the remaining three second humidity control units (10B) move. The fourth operation is executed. Each first humidity control unit (10A) supplies the air humidified by the moisture absorption unit (30) to the indoor space (S1). Each second humidity control unit (10B) discharges the air obtained by adding moisture to the adsorbent of the moisture absorption unit (30) to the outdoor space (S2). As a result, ventilation of the indoor space (S1) and humidification of the indoor space (S1) are performed at the same time.
 第1調湿ユニット(10A)の第3動作が終了すると、第1調湿ユニット(10A)の第3停止制御が行われる。第1調湿ユニット(10A)の第3停止制御では、第1調湿ユニット(10A)の可逆ファン(40)が停止状態となる。第2調湿ユニット(10B)の第3動作が終了すると、第2調湿ユニット(10B)の第4停止制御が行われる。第2調湿ユニット(10B)の第4停止制御では、第2調湿ユニット(10B)の可逆ファン(40)が停止状態となる。 When the third operation of the first humidity control unit (10A) is completed, the third stop control of the first humidity control unit (10A) is performed. In the third stop control of the first humidity control unit (10A), the reversible fan (40) of the first humidity control unit (10A) is stopped. When the third operation of the second humidity control unit (10B) is completed, the fourth stop control of the second humidity control unit (10B) is performed. In the fourth stop control of the second humidity control unit (10B), the reversible fan (40) of the second humidity control unit (10B) is stopped.
 図5(B)及び図6に示すように、加湿運転において、3台の第2調湿ユニット(10B)が第3動作を実行すると、残りの3台の第1調湿ユニット(10A)が第4動作を実行する。各第2調湿ユニット(10B)は、吸湿ユニット(30)で加湿した空気を室内空間(S1)へ供給する。各第1調湿ユニット(10A)は、吸湿ユニット(30)の吸着剤に水分を付与した空気を室外空間(S2)に排出する。これにより、室内空間(S1)の換気と、室内空間(S1)の加湿とが同時に行われる。 As shown in FIGS. 5B and 6, when the three second humidity control units (10B) execute the third operation in the humidification operation, the remaining three first humidity control units (10A) move. The fourth operation is executed. Each second humidity control unit (10B) supplies the air humidified by the moisture absorption unit (30) to the indoor space (S1). Each first humidity control unit (10A) discharges air in which moisture is added to the adsorbent of the moisture absorption unit (30) to the outdoor space (S2). As a result, ventilation of the indoor space (S1) and humidification of the indoor space (S1) are performed at the same time.
 第2調湿ユニット(10B)の第3動作が終了すると、第2調湿ユニット(10B)の第3停止制御が行われる。第2調湿ユニット(10B)の第3停止制御では、第2調湿ユニット(10B)の可逆ファン(40)が停止状態となる。第1調湿ユニット(10A)の第4動作が終了すると、第1調湿ユニット(10A)の第4停止制御が行われる。第1調湿ユニット(10A)の第4停止制御では、第1調湿ユニット(10A)の可逆ファン(40)が停止状態となる。 When the third operation of the second humidity control unit (10B) is completed, the third stop control of the second humidity control unit (10B) is performed. In the third stop control of the second humidity control unit (10B), the reversible fan (40) of the second humidity control unit (10B) is stopped. When the fourth operation of the first humidity control unit (10A) is completed, the fourth stop control of the first humidity control unit (10A) is performed. In the fourth stop control of the first humidity control unit (10A), the reversible fan (40) of the first humidity control unit (10A) is stopped.
 以上のように、調湿システム(S)では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)において、第3動作と第4動作とが互いにずれるように交互に行われる。これにより、室内空間(S1)の換気及び加湿を連続的に行うことができる。 As described above, in the humidity control system (S), in the first humidity control unit (10A) and the second humidity control unit (10B), the third operation and the fourth operation are alternately performed so as to be deviated from each other. As a result, ventilation and humidification of the indoor space (S1) can be continuously performed.
 加湿運転では第3動作と第4動作との間の第3停止制御において、可逆ファン(40)を停止させる。仮に各調湿ユニット(10)において、第3動作の後、直ぐに第4動作を実行すると、第3動作において室内空間(S1)に供給される高湿の空気を、第4動作により室外空間(S2)へ排出してしまう可能性がある。これに対し、第3動作と第4動作との間に、可逆ファンを停止させることで、第3動作により室内空間(S1)へ供給する高湿の空気を室内空間(S1)で拡散させることができる。これにより、第3動作により室内空間(S1)へ供給される高湿の空気が、第4動作により室外空間(S2)へ排出されることを抑制できる。 In the humidifying operation, the reversible fan (40) is stopped in the third stop control between the third operation and the fourth operation. If the fourth operation is executed immediately after the third operation in each humidity control unit (10), the high-humidity air supplied to the indoor space (S1) in the third operation is transferred to the outdoor space (S1) by the fourth operation. It may be discharged to S2). On the other hand, by stopping the reversible fan between the third operation and the fourth operation, the high humidity air supplied to the indoor space (S1) by the third operation is diffused in the indoor space (S1). Can be done. As a result, it is possible to prevent the high-humidity air supplied to the indoor space (S1) by the third operation from being discharged to the outdoor space (S2) by the fourth operation.
 同様に、加湿運転では第4動作と第3動作との間の第4停止制御において、可逆ファン(40)を停止させる。仮に各調湿ユニット(10)において、第4動作の後、直ぐに第3動作を実行すると、第4動作において室外空間(S2)へ排出される低湿の空気を、第3動作により室内空間(S1)へ供給してしまう可能性がある。これに対し、第4動作と第3動作との間に、可逆ファン(40)を停止させることで、第4動作により室外空間(S2)へ排出した低湿の空気を室外空間(S2)で拡散させることができる。これにより、第4動作により室外空間(S2)へ排出される低湿の空気が、第3動作により室内空間(S1)へ供給されることを抑制できる。 Similarly, in the humidification operation, the reversible fan (40) is stopped in the fourth stop control between the fourth operation and the third operation. If the third operation is executed immediately after the fourth operation in each humidity control unit (10), the low humidity air discharged to the outdoor space (S2) in the fourth operation is discharged to the indoor space (S1) by the third operation. ) May be supplied. On the other hand, by stopping the reversible fan (40) between the 4th operation and the 3rd operation, the low humidity air discharged to the outdoor space (S2) by the 4th operation is diffused in the outdoor space (S2). Can be made to. As a result, it is possible to prevent the low-humidity air discharged to the outdoor space (S2) by the fourth operation from being supplied to the indoor space (S1) by the third operation.
 なお、第3停止制御及び第4停止制御において、圧縮機(23)を停止してもよい。 Note that the compressor (23) may be stopped in the third stop control and the fourth stop control.
 -実施形態の効果-
 上記実施形態は、対象空間である第1空間(S1)と、第2空間(S2)とを連通する空気通路(12)と、前記空気通路(12)に配置され、空気からの吸湿と空気への放湿とを行う吸湿部(30,32)と、前記空気通路(12)に配置され、前記吸湿部(30,32)の冷却及び加熱の少なくとも一方を行う熱源(21,22,32)と、前記空気通路(12)の空気の流れの方向を可逆に該空気を搬送する空気搬送機構(M)と、前記熱源(21,22,32)及び空気搬送機構(M)を制御する制御装置(C)とを備えている。
-Effect of embodiment-
The above embodiment is arranged in an air passage (12) and the air passage (12) that communicate the first space (S1) and the second space (S2), which are the target spaces, and absorbs moisture from the air and air. A heat source (21,22,32) arranged in the air passage (12) and performing at least one of cooling and heating of the moisture absorbing portion (30,32) and a moisture absorbing portion (30,32) for releasing moisture to the air passage (12). ), An air transport mechanism (M) that reversibly conveys the air flow direction in the air passage (12), and the heat source (21,22,32) and the air transport mechanism (M) are controlled. It is equipped with a control device (C).
 この構成では、空気搬送機構(M)により空気通路(12)の空気流れを双方向に切り換えることができる。このため、給気用の空気通路と、排気用の空気通路とをそれぞれ別に形成する必要がなく、調湿ユニット(10)の小型化・簡素化を図ることができる。 In this configuration, the air flow of the air passage (12) can be switched in both directions by the air transport mechanism (M). Therefore, it is not necessary to separately form the air passage for air supply and the air passage for exhaust, and the humidity control unit (10) can be miniaturized and simplified.
 制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行させる。 The control device (C) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and airs the air in the second space (S2) by the air transport mechanism (M). In the first operation of transporting to the space (S1), the moisture absorbing portion (30,32) is heated by the heat source (21,22,32) and the air transport mechanism (M) of the first space (S1). The second operation of transporting air to the second space (S2) is alternately executed.
 この構成では、除湿運転の第1動作において、室外空気(OA)を吸湿部(30,32)で除湿し、第1空間である室内空間(S1)へ供給できる。除湿運転の第2動作において、吸湿部(30,32)の水分を室内空気(RA)に放出させ、第2空間である室外空間(S2)へ排出できる。第1動作と第2動作とを交互に繰り返すことで、室内空間(S1)を間欠的に除湿できる。加えて、室内空間(S1)を換気できる。 In this configuration, in the first operation of the dehumidifying operation, the outdoor air (OA) can be dehumidified by the moisture absorbing part (30, 32) and supplied to the indoor space (S1) which is the first space. In the second operation of the dehumidifying operation, the moisture of the moisture absorbing portion (30, 32) can be discharged to the indoor air (RA) and discharged to the outdoor space (S2) which is the second space. By alternately repeating the first operation and the second operation, the indoor space (S1) can be dehumidified intermittently. In addition, the indoor space (S1) can be ventilated.
 制御装置(C)は、前記第1動作の終了後、前記第2動作の開始前に前記空気搬送機構(M)を所定期間停止させる。 The control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the first operation and before the start of the second operation.
 この構成では、除湿運転の第1動作により、室内空間(S1)に供給した低湿の空気が、第2動作によって室外空間(S2)へ排出されてしまうことを抑制できる。従って、調湿ユニット(10)の除湿能力の低下を抑制できる。 In this configuration, it is possible to prevent the low-humidity air supplied to the indoor space (S1) from being discharged to the outdoor space (S2) by the second operation by the first operation of the dehumidifying operation. Therefore, it is possible to suppress a decrease in the dehumidifying capacity of the humidity control unit (10).
 制御装置(C)は、前記第2動作の終了後、前記第1動作の開始前に前記空気搬送機構(M)を所定期間停止させる。 The control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the second operation and before the start of the first operation.
 この構成では、除湿運転の第2動作により、室外空間(S2)に排出した高湿の空気が、第1動作によって室内空間(S1)側へ戻ってしまうことを抑制できる。従って、調湿ユニット(10)の除湿能力の低下を抑制できる。 In this configuration, it is possible to prevent the highly humid air discharged to the outdoor space (S2) from returning to the indoor space (S1) side by the first operation by the second operation of the dehumidifying operation. Therefore, it is possible to suppress a decrease in the dehumidifying capacity of the humidity control unit (10).
 制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させる。 The control device (C) heats the moisture absorbing portion (30,32) by the heat source (21,22,32) and heats the air in the second space (S2) by the air transport mechanism (M). The third operation of transporting to the space (S1), the heat source (21,22,32) cools the moisture absorbing portion (30,32), and the air transport mechanism (M) cools the air in the first space (S1). Is alternately executed with the fourth operation of transporting the air to the second space (S2).
 この構成では、加湿運転の第3動作において、室外空気(OA)を吸湿部(30,32)で加湿し、第1空間である室内空間(S1)へ供給できる。加湿運転の第4動作において、室内空気の水分を吸湿部(30,32)に付与し、この空気を室外空間(S2)へ排出できる。第3動作と第4動作とを交互に繰り返すことで、室内空間(S1)を間欠的に除湿できる。加えて、室内空間(S1)を換気できる。 In this configuration, in the third operation of the humidification operation, the outdoor air (OA) can be humidified by the hygroscopic part (30,32) and supplied to the indoor space (S1) which is the first space. In the fourth operation of the humidification operation, the moisture of the indoor air can be applied to the moisture absorbing portions (30, 32), and this air can be discharged to the outdoor space (S2). By alternately repeating the third operation and the fourth operation, the indoor space (S1) can be dehumidified intermittently. In addition, the indoor space (S1) can be ventilated.
 制御装置(C)は、前記第3動作の終了後、前記第4動作の開始前に前記空気搬送機構(M)を所定期間停止させる。 The control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the third operation and before the start of the fourth operation.
 この構成では、加湿運転の第3動作により、室内空間(S1)に供給した高湿の空気が、第4動作によって室外空間(S2)に排出されてしまうことを抑制できる。従って、調湿ユニット(10)の加湿能力の低下を抑制できる。 In this configuration, it is possible to prevent the high humidity air supplied to the indoor space (S1) from being discharged to the outdoor space (S2) by the fourth operation by the third operation of the humidification operation. Therefore, it is possible to suppress a decrease in the humidifying capacity of the humidity control unit (10).
 制御装置(C)は、前記第4動作の終了後、前記第3動作の開始前に前記空気搬送機構(M)を所定期間停止させる。 The control device (C) stops the air transport mechanism (M) for a predetermined period after the end of the fourth operation and before the start of the third operation.
 この構成では、加湿運転の第4動作により、室外空間(S2)に排出した低湿の空気が、第3動作によって室内空間(S1)側に戻ってしまうことを抑制できる。従って、調湿ユニット(10)の加湿能力の低下を抑制できる。 In this configuration, it is possible to prevent the low-humidity air discharged to the outdoor space (S2) from returning to the indoor space (S1) side by the third operation by the fourth operation of the humidification operation. Therefore, it is possible to suppress a decrease in the humidifying capacity of the humidity control unit (10).
 第1空間(S1)は室内空間であり、前記第2空間(S2)は室外空間である。 The first space (S1) is an indoor space, and the second space (S2) is an outdoor space.
 この構成では、室内空間(S1)と室外空間(S2)との間での空気の行き来により、室内空間(S1)の換気を行うことができる。 In this configuration, the indoor space (S1) can be ventilated by the exchange of air between the indoor space (S1) and the outdoor space (S2).
 熱源(21,22,32)は、熱媒体が流れる熱交換部(21,22,32)を含む。熱交換部は、前記吸湿部(30)よりも前記第1空間(S1)側に配置され、空気の冷却及び加熱を行う第1熱交換器(21)と、前記吸湿部(30)よりも前記第2空間(S2)側に配置され、空気の冷却及び加熱を行う第2熱交換器(22)と含んでいる。 The heat source (21,22,32) includes the heat exchange section (21,22,32) through which the heat medium flows. The heat exchange section is arranged closer to the first space (S1) than the moisture absorbing section (30), and is located on the first heat exchanger (21) for cooling and heating air, and the moisture absorbing section (30). It is arranged on the second space (S2) side and includes a second heat exchanger (22) that cools and heats air.
 この構成では、除湿運転の第1動作において、吸湿ユニット(30)の上流側の空気を第1熱交換器(21)で冷却できる。除湿運転の第2動作において、吸湿ユニット(30)の上流側の空気を第2熱交換器(22)で加熱できる。加湿運転の第3動作において、吸湿ユニット(30)の上流側の空気を第1熱交換器(21)で加熱できる。加湿運転の第4動作において、吸湿ユニット(30)の上流側の空気を第2熱交換器(22)で冷却できる。 In this configuration, in the first operation of the dehumidification operation, the air on the upstream side of the moisture absorption unit (30) can be cooled by the first heat exchanger (21). In the second operation of the dehumidifying operation, the air on the upstream side of the moisture absorbing unit (30) can be heated by the second heat exchanger (22). In the third operation of the humidification operation, the air on the upstream side of the moisture absorption unit (30) can be heated by the first heat exchanger (21). In the fourth operation of the humidification operation, the air on the upstream side of the moisture absorption unit (30) can be cooled by the second heat exchanger (22).
 空気通路(12)の第1空間(S1)側の開口(13)の中心と、前記空気通路(12)の第2空間(S2)側の開口(14)の中心とが、該空気通路(12)の空気流れ方向において略一致している。 The center of the opening (13) on the first space (S1) side of the air passage (12) and the center of the opening (14) on the second space (S2) side of the air passage (12) are the center of the air passage (12). The air flow directions in 12) are almost the same.
 この構成では、内気口(13)と外気口(14)とが軸方向の一致するため、空気通路(12)の流路抵抗を低減できる。従って、可逆ファン(40)の動力を削減できる。 In this configuration, since the inside air port (13) and the outside air port (14) coincide in the axial direction, the flow path resistance of the air passage (12) can be reduced. Therefore, the power of the reversible fan (40) can be reduced.
 空気通路(12)は、第1空間(S1)と第2空間(S2)とを仕切る壁(W)を貫通するように設けられる。 The air passage (12) is provided so as to penetrate the wall (W) that separates the first space (S1) and the second space (S2).
 この構成では、例えば天井裏などに調湿ユニット(10)を設ける場合と比較して、調湿ユニット(10)の設置を容易に行うことができる。 In this configuration, the humidity control unit (10) can be easily installed as compared with the case where the humidity control unit (10) is provided in the ceiling, for example.
 調湿システム(S)は、複数の調湿ユニット(10)を備える。連動制御部(C)は、複数の調湿ユニット(10)を協調して制御する。 The humidity control system (S) is equipped with multiple humidity control units (10). The interlocking control unit (C) cooperatively controls a plurality of humidity control units (10).
 この構成では、複数の調湿ユニット(10)により、対象空間に応じた除湿、加湿、換気を行うことができる。 In this configuration, multiple humidity control units (10) can perform dehumidification, humidification, and ventilation according to the target space.
 複数の調湿ユニット(10)は、少なくとも1つの第1調湿ユニット(10A)と、少なくとも1つの第2調湿ユニット(10B)とを含み、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行するように構成され、前記連動制御部(C)は、前記第1調湿ユニット(10A)が前記第1動作を行うときに前記第2調湿ユニット(10B)が前記第2動作を行い、前記第1調湿ユニット(10A)が前記第2動作を行うときに前記第2調湿ユニット(10B)が前記第1動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御する。 The plurality of humidity control units (10) include at least one first humidity control unit (10A) and at least one second humidity control unit (10B), and the first humidity control unit (10A) and the first humidity control unit (10A). The two humidity control unit (10B) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and air in the second space (S2) by the air transport mechanism (M). In the first operation of transporting to one space (S1), the moisture absorbing portion (30,32) is heated by the heat source (21,22,32), and the first space (S1) is heated by the air transport mechanism (M). In the interlocking control unit (C), the first humidity control unit (10A) performs the first operation in an interlocking control unit (C) so as to alternately execute the second operation of transporting the air to the second space (S2). When the second humidity control unit (10B) performs the second operation, and when the first humidity control unit (10A) performs the second operation, the second humidity control unit (10B) performs the second operation. The first humidity control unit (10A) and the second humidity control unit (10B) are controlled so as to perform the first operation.
 この構成では、実質的には、室内空間(S1)を連続的に除湿できる。加えて、室内空間(S1)を第1種換気により換気できる。 With this configuration, the indoor space (S1) can be dehumidified continuously. In addition, the indoor space (S1) can be ventilated by type 1 ventilation.
 第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作と、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させるように構成され、連動制御部(C)は、前記第1調湿ユニット(10A)が前記第3動作を行うときに前記第2調湿ユニット(10B)が前記第4動作を行い、前記第1調湿ユニット(10A)が前記第4動作を行うときに前記第2調湿ユニット(10B)が前記第3動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御する。 The first humidity control unit (10A) and the second humidity control unit (10B) heat the moisture absorbing portion (30,32) by the heat source (21,22,32) and by the air transport mechanism (M). The third operation of transporting the air in the second space (S2) to the first space (S1) and the heat source (21,22,32) cool the moisture absorbing portion (30,32) and the air transport mechanism. (M) is configured to alternately execute the fourth operation of transporting the air in the first space (S1) to the second space (S2), and the interlocking control unit (C) is in the first adjustment. When the humidity unit (10A) performs the third operation, the second humidity control unit (10B) performs the fourth operation, and when the first humidity control unit (10A) performs the fourth operation, the said. The first humidity control unit (10A) and the second humidity control unit (10B) are controlled so that the second humidity control unit (10B) performs the third operation.
 この構成では、実質的には、室内空間(S1)を連続的に加湿できる。加えて、室内空間(S1)を第1種換気により換気できる。 With this configuration, the indoor space (S1) can be continuously humidified. In addition, the indoor space (S1) can be ventilated by type 1 ventilation.
  《実施形態の変形例》
 上記実施形態については以下のような変形例の構成としてもよい。
<< Modified example of the embodiment >>
The above embodiment may be configured as a modified example as follows.
 <変形例1(連動制御の変形例)>
 変形例1の調湿システム(S)は、上記実施形態の連動制御部(C)による各調湿ユニット(10)の制御が異なる。
<Modification example 1 (Modification example of interlocking control)>
In the humidity control system (S) of the first modification, the control of each humidity control unit (10) by the interlocking control unit (C) of the above embodiment is different.
 図7に示す変形例の除湿運転では、第1調湿ユニット(10A)の第1動作と、第2調湿ユニット(10B)の第2動作とのタイミングがずれ、且つ第1調湿ユニット(10A)の第2動作と、第2調湿ユニット(10B)の第1動作とのタイミングがずれている。第1調湿ユニット(10A)及び第2調湿ユニット(10B)では、第1動作及び第2動作の間に、空気搬送機構(M)を所定期間停止させる停止制御が行われる。変形例1では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)のうちの一方の調湿ユニット(10)の停止制御中において、他方の調湿ユニット(10)が第1動作又は第2動作を行う。 In the dehumidifying operation of the modified example shown in FIG. 7, the timing of the first operation of the first humidity control unit (10A) and the second operation of the second humidity control unit (10B) are different, and the first humidity control unit (10B) is dehumidified. The timing of the second operation of 10A) and the first operation of the second humidity control unit (10B) are different. In the first humidity control unit (10A) and the second humidity control unit (10B), stop control is performed to stop the air transport mechanism (M) for a predetermined period between the first operation and the second operation. In the first modification, the other humidity control unit (10) is the first while the stop control of one of the first humidity control unit (10A) and the second humidity control unit (10B) is being stopped. Perform an operation or a second operation.
 具体的には、例えば第1調湿ユニット(10A)では、第1動作の後に第1停止制御が行われる。第1調湿ユニット(10A)の第1停止制御中には、第2調湿ユニット(10B)の第2動作が継続して実行される。このため、第1調湿ユニット(10A)の空気搬送機構(M)が停止している期間に、第2調湿ユニット(10B)で排気を行うことができる。換言すると、第1調湿ユニット(10A)の停止制御中において、第3種換気を行うことができる。 Specifically, for example, in the first humidity control unit (10A), the first stop control is performed after the first operation. During the first stop control of the first humidity control unit (10A), the second operation of the second humidity control unit (10B) is continuously executed. Therefore, the second humidity control unit (10B) can exhaust the air while the air transport mechanism (M) of the first humidity control unit (10A) is stopped. In other words, the third type ventilation can be performed during the stop control of the first humidity control unit (10A).
 次いで、第2調湿ユニット(10B)では、第2動作の後に第2停止制御が行われる。第2調湿ユニット(10B)の第2停止制御中には、第1調湿ユニット(10A)の第2動作が実行される。このため、第2調湿ユニット(10B)の空気搬送機構(M)が停止している期間に、第1調湿ユニット(10A)で排気を行うことができる。換言すると、第2調湿ユニット(10B)の停止制御中において、第3種換気を行うことができる。 Next, in the second humidity control unit (10B), the second stop control is performed after the second operation. During the second stop control of the second humidity control unit (10B), the second operation of the first humidity control unit (10A) is executed. Therefore, the first humidity control unit (10A) can exhaust the air while the air transport mechanism (M) of the second humidity control unit (10B) is stopped. In other words, the third type ventilation can be performed during the stop control of the second humidity control unit (10B).
 次いで、第1調湿ユニット(10A)では、第2動作の後に第2停止制御が行われる。第1調湿ユニット(10A)の第2停止制御中には、第2調湿ユニット(10B)の第1動作が継続して実行される。このため、第1調湿ユニット(10A)の空気搬送機構(M)が停止している期間に、第2調湿ユニット(10B)で給気を行うことができる。換言すると、第1調湿ユニット(10A)の停止制御中において、第2種換気を行うことができる。 Next, in the first humidity control unit (10A), the second stop control is performed after the second operation. During the second stop control of the first humidity control unit (10A), the first operation of the second humidity control unit (10B) is continuously executed. Therefore, air can be supplied by the second humidity control unit (10B) while the air transport mechanism (M) of the first humidity control unit (10A) is stopped. In other words, the second type ventilation can be performed during the stop control of the first humidity control unit (10A).
 次いで、第2調湿ユニット(10B)では、第1動作の後に第1停止制御が行われる。第2調湿ユニット(10B)の第1停止制御中には、第1調湿ユニット(10A)の第1動作が実行される。このため、第2調湿ユニット(10B)の空気搬送機構(M)が停止している期間に、第1調湿ユニット(10A)で給気を行うことができる。換言すると、第2調湿ユニット(10B)の停止制御中において、第2種換気を行うことができる。 Next, in the second humidity control unit (10B), the first stop control is performed after the first operation. During the first stop control of the second humidity control unit (10B), the first operation of the first humidity control unit (10A) is executed. Therefore, air can be supplied by the first humidity control unit (10A) while the air transport mechanism (M) of the second humidity control unit (10B) is stopped. In other words, the second type ventilation can be performed during the stop control of the second humidity control unit (10B).
 以上のように、変形例1では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)が同時に停止制御を行わない。一方の調湿ユニット(10)の停止制御中に、他方の調湿ユニット(10)が第1動作又は第2動作を行う。このため、調湿システム(S)の除湿運転時において、第1種換気、第2種換気、及び第3種換気のいずれかを常に実行できる。 As described above, in the modified example 1, the first humidity control unit (10A) and the second humidity control unit (10B) do not perform stop control at the same time. During the stop control of one humidity control unit (10), the other humidity control unit (10) performs the first operation or the second operation. Therefore, at the time of the dehumidifying operation of the humidity control system (S), any one of the first-class ventilation, the second-class ventilation, and the third-class ventilation can always be executed.
 図8に示す変形例1の加湿運転では、第1調湿ユニット(10A)の第3動作と、第2調湿ユニット(10B)の第4動作とのタイミングがずれ、且つ第1調湿ユニット(10A)の第4動作と、第2調湿ユニット(10B)の第3動作とのタイミングがずれている。第1調湿ユニット(10A)及び第2調湿ユニット(10B)では、第3動作及び第4動作の間に、空気搬送機構(M)を所定期間停止させる停止制御が行われる。変形例1では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)のうちの一方の調湿ユニット(10)の停止制御中において、他方の調湿ユニット(10)が第3動作又は第4動作を行う。 In the humidification operation of the first modification shown in FIG. 8, the timing of the third operation of the first humidity control unit (10A) and the fourth operation of the second humidity control unit (10B) are different, and the first humidity control unit The timing of the fourth operation of (10A) and the third operation of the second humidity control unit (10B) are different. In the first humidity control unit (10A) and the second humidity control unit (10B), stop control is performed to stop the air transport mechanism (M) for a predetermined period between the third operation and the fourth operation. In the first modification, while one of the first humidity control unit (10A) and the second humidity control unit (10B) is stopped and controlled, the other humidity control unit (10) is the third. Perform an operation or a fourth operation.
 具体的には、例えば第1調湿ユニット(10A)では、第3動作の後に第3停止制御が行われる。第1調湿ユニット(10A)の第3停止制御中には、第2調湿ユニット(10B)の第4動作が継続して実行される。このため、第1調湿ユニット(10A)の空気搬送機構(M)が停止している期間に、第2調湿ユニット(10B)で排気を行うことができる。換言すると、第1調湿ユニット(10A)の停止制御中において、第3種換気を行うことができる。 Specifically, for example, in the first humidity control unit (10A), the third stop control is performed after the third operation. During the third stop control of the first humidity control unit (10A), the fourth operation of the second humidity control unit (10B) is continuously executed. Therefore, the second humidity control unit (10B) can exhaust the air while the air transport mechanism (M) of the first humidity control unit (10A) is stopped. In other words, the third type ventilation can be performed during the stop control of the first humidity control unit (10A).
 次いで、第2調湿ユニット(10B)では、第4動作の後に第4停止制御が行われる。第2調湿ユニット(10B)の第4停止制御中には、第1調湿ユニット(10A)の第4動作が実行される。このため、第2調湿ユニット(10B)の空気搬送機構(M)が停止している期間に、第1調湿ユニット(10A)で排気を行うことができる。換言すると、第2調湿ユニット(10B)の停止制御中において、第3種換気を行うことができる。 Next, in the second humidity control unit (10B), the fourth stop control is performed after the fourth operation. During the fourth stop control of the second humidity control unit (10B), the fourth operation of the first humidity control unit (10A) is executed. Therefore, the first humidity control unit (10A) can exhaust the air while the air transport mechanism (M) of the second humidity control unit (10B) is stopped. In other words, the third type ventilation can be performed during the stop control of the second humidity control unit (10B).
 次いで、第1調湿ユニット(10A)では、第4動作の後に第4停止制御が行われる。第1調湿ユニット(10A)の第4停止制御中には、第2調湿ユニット(10B)の第3動作が継続して実行される。このため、第1調湿ユニット(10A)の空気搬送機構(M)が停止している期間に、第2調湿ユニット(10B)で給気を行うことができる。換言すると、第1調湿ユニット(10A)の停止制御中において、第2種換気を行うことができる。 Next, in the first humidity control unit (10A), the fourth stop control is performed after the fourth operation. During the fourth stop control of the first humidity control unit (10A), the third operation of the second humidity control unit (10B) is continuously executed. Therefore, air can be supplied by the second humidity control unit (10B) while the air transport mechanism (M) of the first humidity control unit (10A) is stopped. In other words, the second type ventilation can be performed during the stop control of the first humidity control unit (10A).
 次いで、第2調湿ユニット(10B)では、第3動作の後に第3停止制御が行われる。第2調湿ユニット(10B)の第3停止制御中には、第1調湿ユニット(10A)の第3動作が実行される。このため、第2調湿ユニット(10B)の空気搬送機構(M)が停止している期間に、第1調湿ユニット(10A)で給気を行うことができる。換言すると、第2調湿ユニット(10B)の停止制御中において、第2種換気を行うことができる。 Next, in the second humidity control unit (10B), the third stop control is performed after the third operation. During the third stop control of the second humidity control unit (10B), the third operation of the first humidity control unit (10A) is executed. Therefore, air can be supplied by the first humidity control unit (10A) while the air transport mechanism (M) of the second humidity control unit (10B) is stopped. In other words, the second type ventilation can be performed during the stop control of the second humidity control unit (10B).
 以上のように、変形例1では、第1調湿ユニット(10A)及び第2調湿ユニット(10B)が同時に停止制御を行わない。一方の調湿ユニット(10)の停止制御中に、他方の調湿ユニット(10)が第3動作又は第4動作を行う。このため、調湿システム(S)の加湿運転時において、第1種換気、第2種換気、及び第3種換気のいずれかを常に実行できる。 As described above, in the modified example 1, the first humidity control unit (10A) and the second humidity control unit (10B) do not perform stop control at the same time. During the stop control of one humidity control unit (10), the other humidity control unit (10) performs a third operation or a fourth operation. Therefore, during the humidifying operation of the humidity control system (S), any one of the first-class ventilation, the second-class ventilation, and the third-class ventilation can always be executed.
 〈変形例2(熱源装置の変形例(1)〉
 上記実施形態の熱源装置(20)は、室外熱交換器(24)及び室外ファン(25)を有し、室外熱交換器(24)で空気と冷媒とを熱交換させている。しかし、室外熱交換器(24)に代えて、水やブラインなどと、冷媒とを熱交換させる内部熱交換器を採用してもよい。内部熱交換器としては、二重管式、あるいはシェルアンドチューブ式の熱交換器を採用できる。
<Modification 2 (Modification of heat source device (1)>>
The heat source device (20) of the above embodiment has an outdoor heat exchanger (24) and an outdoor fan (25), and the outdoor heat exchanger (24) exchanges heat between air and a refrigerant. However, instead of the outdoor heat exchanger (24), an internal heat exchanger that exchanges heat between water, brine, or the refrigerant may be adopted. As the internal heat exchanger, a double tube type or shell and tube type heat exchanger can be adopted.
 〈変形例3(熱源装置の変形例(2)〉
 図9に示すように、熱源装置(20)は、第1熱交換器(21)及び第2熱交換器(22)に水やブラインなどを直接供給する構成であってもよい。
<Modification example 3 (Modification example (2) of heat source device>
As shown in FIG. 9, the heat source device (20) may be configured to directly supply water, brine, or the like to the first heat exchanger (21) and the second heat exchanger (22).
 変形例3の熱源装置(20)は、第1熱媒体回路(50)と、第2熱媒体回路(60)とを備える。第1熱媒体回路(50)には、第1ポンプ(51)、第1熱交換器(21)、第1熱源熱交換器(52)が順に接続される。第2熱媒体回路(60)には、第2ポンプ(61)、第2熱交換器(22)、第2熱源熱交換器(62)が順に接続される。 The heat source device (20) of the modification 3 includes a first heat medium circuit (50) and a second heat medium circuit (60). A first pump (51), a first heat exchanger (21), and a first heat source heat exchanger (52) are connected to the first heat medium circuit (50) in this order. A second pump (61), a second heat exchanger (22), and a second heat source heat exchanger (62) are connected to the second heat medium circuit (60) in this order.
 第1ポンプ(51)は、第1熱媒体回路(50)の熱媒体(例えば水)を循環させる。第1熱源熱交換器(52)は、第1熱媒体回路(50)の熱媒体と、対応する二次側流路(第1二次側流路(52a))の熱媒体(例えば水)とを熱交換させる。第2ポンプ(61)は、第2熱媒体回路(60)の熱媒体(例えば水)を循環させる。第2熱源熱交換器(62)は、第2熱媒体回路(60)の熱媒体と、対応する二次側流路(第2二次側流路(62a))の熱媒体(例えば水)とを熱交換させる。第1二次側流路(52a)及び第2二次側流路(62a)には、調湿ユニット(10)の動作に連動して、冷水又は温水が供給される。 The first pump (51) circulates the heat medium (for example, water) of the first heat medium circuit (50). The first heat source heat exchanger (52) is a heat medium (eg, water) of the heat medium of the first heat medium circuit (50) and the corresponding secondary flow path (first secondary flow path (52a)). And heat exchange. The second pump (61) circulates the heat medium (eg, water) of the second heat medium circuit (60). The second heat source heat exchanger (62) is a heat medium (for example, water) of the heat medium of the second heat medium circuit (60) and the corresponding secondary flow path (second secondary flow path (62a)). And heat exchange. Cold water or hot water is supplied to the first secondary side flow path (52a) and the second secondary side flow path (62a) in conjunction with the operation of the humidity control unit (10).
 具体的には、除湿運転において、第1動作中の調湿ユニット(10)では、第1ポンプ(51)が運転され、第1熱源熱交換器(52)の第1二次側流路(52a)に冷水が供給される。第1熱源熱交換器(52)では、第1熱媒体回路(50)の水が冷却され、冷却された水が第1熱交換器(21)に供給される。これにより、第1熱交換器(21)で空気を冷却できる。除湿運転において、第2動作中の調湿ユニット(10)では、第2ポンプ(61)が運転され、第2熱源熱交換器(62)の第2二次側流路(62a)に温水が供給される。第2熱源熱交換器(62)では、第2熱媒体回路(60)の水が加熱され、加熱された水が第2熱交換器(22)に供給される。これにより、第2熱交換器(22)で空気を加熱できる。 Specifically, in the dehumidifying operation, the first pump (51) is operated in the humidity control unit (10) during the first operation, and the first secondary side flow path (52) of the first heat source heat exchanger (52) is operated. Cold water is supplied to 52a). In the first heat source heat exchanger (52), the water in the first heat medium circuit (50) is cooled, and the cooled water is supplied to the first heat exchanger (21). As a result, the air can be cooled by the first heat exchanger (21). In the dehumidifying operation, the second pump (61) is operated in the humidity control unit (10) during the second operation, and hot water is supplied to the second secondary side flow path (62a) of the second heat source heat exchanger (62). Be supplied. In the second heat source heat exchanger (62), the water in the second heat medium circuit (60) is heated, and the heated water is supplied to the second heat exchanger (22). As a result, the air can be heated by the second heat exchanger (22).
 加湿運転において、第3動作中の調湿ユニット(10)では、第1ポンプ(51)が運転され、第1熱源熱交換器(52)の第1二次側流路(52a)に温水が供給される。第1熱源熱交換器(52)では、第1熱媒体回路(50)の水が加熱され、加熱された水が第1熱交換器(21)に供給される。これにより、第1熱交換器(21)で空気を加熱できる。加湿運転において、第2動作中の調湿ユニット(10)では、第2ポンプ(61)が運転され、第2熱源熱交換器(62)の第2二次側流路(62a)に冷水が供給される。第2熱源熱交換器(62)では、第2熱媒体回路(60)の水が冷却され、冷却された水が第2熱交換器(22)に供給される。これにより、第2熱交換器(22)で空気を加熱できる。 In the humidification operation, in the humidity control unit (10) during the third operation, the first pump (51) is operated, and hot water is sent to the first secondary side flow path (52a) of the first heat source heat exchanger (52). Be supplied. In the first heat source heat exchanger (52), the water in the first heat medium circuit (50) is heated, and the heated water is supplied to the first heat exchanger (21). As a result, the air can be heated by the first heat exchanger (21). In the humidification operation, in the humidity control unit (10) during the second operation, the second pump (61) is operated, and cold water flows into the second secondary side flow path (62a) of the second heat source heat exchanger (62). Be supplied. In the second heat source heat exchanger (62), the water in the second heat medium circuit (60) is cooled, and the cooled water is supplied to the second heat exchanger (22). As a result, the air can be heated by the second heat exchanger (22).
 なお、第1二次側流路(52a)及び第2二次側流路(62a)の冷水や温水は、所定範囲の地域において共有される熱供給設備から供給されてもよい。温水は、例えば地中の熱を利用して生成されてもよい。冷水や温水は、ヒートポンプ式のチラーユニットにより生成してもよい。 The cold water and hot water of the primary secondary channel (52a) and the secondary secondary channel (62a) may be supplied from a heat supply facility shared in a predetermined range of areas. Hot water may be generated, for example, by utilizing the heat in the ground. Cold water and hot water may be generated by a heat pump type chiller unit.
 〈変形例4(熱源装置の変形例(3)〉
 吸湿ユニット(30)を加熱又は冷却する手段は、上記以外の構成であってもよい。例えば吸湿ユニット(30)を加熱する手段としては、電気ヒータを用いてもよい。吸湿ユニット(30)を冷却及び加熱する手段としては、ペルチェ素子を用いてもよい。熱源装置(20)は、例えば磁気冷却式ヒートポンプや、吸着式ヒートポンプを用いて、空気の冷却及び加熱の少なくとも一方を行ってもよい。
<Modification example 4 (Modification example (3) of heat source device>
The means for heating or cooling the moisture absorbing unit (30) may have a configuration other than the above. For example, an electric heater may be used as a means for heating the moisture absorbing unit (30). A Peltier element may be used as a means for cooling and heating the moisture absorption unit (30). The heat source device (20) may perform at least one of cooling and heating of air by using, for example, a magnetic cooling type heat pump or an adsorption type heat pump.
 〈変形例5(吸湿部の変形例(1)〉
 図10に示す変形例5の調湿ユニット(10)は、上記実施形態の吸湿ユニット(30)と熱交換器(21,22)とが兼用されている。熱交換器(21,22)ないし吸湿ユニット(30)は、熱交換器の表面に吸着剤が担持された吸着熱交換器(32)で構成される。吸着剤は、例えば熱交換器のフィンの表面に担持される。吸着剤は、水分を吸着する材料で構成される。
<Modification 5 (Modification of moisture absorbing part (1))>
In the humidity control unit (10) of the modified example 5 shown in FIG. 10, the moisture absorption unit (30) and the heat exchangers (21, 22) of the above-described embodiment are used in combination. The heat exchanger (21,22) or the moisture absorption unit (30) is composed of an adsorption heat exchanger (32) in which an adsorbent is supported on the surface of the heat exchanger. The adsorbent is supported, for example, on the surface of the fins of the heat exchanger. The adsorbent is composed of a material that adsorbs water.
 吸着熱交換器(32)は、上記実施形態と同様、熱源装置(20)の冷媒回路(R)に接続される。冷媒回路(R)では、室外熱交換器(24)を放熱器とし、吸着熱交換器(32)を蒸発器とする冷凍サイクル(第5冷凍サイクル)と、吸着熱交換器(32)を放熱器とし、室外熱交換器(24)を蒸発器とする冷凍サイクル(第6冷凍サイクル)とが切り換えて行われる。 The adsorption heat exchanger (32) is connected to the refrigerant circuit (R) of the heat source device (20) as in the above embodiment. In the refrigerant circuit (R), the refrigeration cycle (fifth refrigeration cycle) in which the outdoor heat exchanger (24) is used as a radiator and the adsorption heat exchanger (32) is used as an evaporator, and the adsorption heat exchanger (32) are dissipated. The refrigeration cycle (sixth refrigeration cycle) in which the outdoor heat exchanger (24) is used as an evaporator is switched to the vessel.
 除湿運転の第1動作では、吸着熱交換器(32)が蒸発器となる。空気搬送機構(M)によって空気通路(12)に取り込まれた室外空気(OA)は、吸着熱交換器(32)を通過する。吸着熱交換器(32)では、空気中の水分が吸着剤に吸着される。この際に生じる吸着熱は、冷媒の蒸発熱として利用される。吸着熱交換器(32)で冷却及び除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。 In the first operation of the dehumidifying operation, the adsorption heat exchanger (32) becomes an evaporator. The outdoor air (OA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32). In the adsorption heat exchanger (32), the moisture in the air is adsorbed by the adsorbent. The heat of adsorption generated at this time is used as the heat of vaporization of the refrigerant. The air cooled and dehumidified by the adsorption heat exchanger (32) is supplied to the indoor space (S1) as supply air (SA).
 除湿運転の第2動作では、吸着熱交換器(32)が放熱器となる。空気搬送機構(M)によって空気通路(12)に取り込まれた室内空気(RA)は、吸着熱交換器(32)を通過する。吸着熱交換器(32)では、吸着剤の水分が空気へ放出される。吸着剤の再生に利用された空気は、排出空気(EA)として室外空間(S2)に排出される。 In the second operation of the dehumidifying operation, the adsorption heat exchanger (32) becomes a radiator. The indoor air (RA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32). In the adsorption heat exchanger (32), the moisture of the adsorbent is released into the air. The air used for the regeneration of the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
 加湿運転の第3動作では、吸着熱交換器(32)が放熱器となる。空気搬送機構(M)によって空気通路(12)に取り込まれた室外空気(OA)は、吸着熱交換器(32)を通過する。吸着熱交換器(32)では、吸着剤の水分が空気へ放出される。吸着熱交換器(32)で加熱及び加湿された空気は、供給空気(SA)として室内空間(S1)に供給される。 In the third operation of the humidification operation, the adsorption heat exchanger (32) becomes a radiator. The outdoor air (OA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32). In the adsorption heat exchanger (32), the moisture of the adsorbent is released into the air. The air heated and humidified by the adsorption heat exchanger (32) is supplied to the indoor space (S1) as supply air (SA).
 加湿運転の第4動作では、吸着熱交換器(32)が蒸発器となる。空気搬送機構(M)によって空気通路(12)に取り込まれた室内空気(RA)は、吸着熱交換器(32)を通過する。吸着熱交換器(32)では、空気中の水分が吸着剤に吸着される。吸着剤に水分を付与した空気は、排出空気(EA)として室外空間(S2)に排出される。 In the fourth operation of the humidification operation, the adsorption heat exchanger (32) becomes an evaporator. The indoor air (RA) taken into the air passage (12) by the air transport mechanism (M) passes through the adsorption heat exchanger (32). In the adsorption heat exchanger (32), the moisture in the air is adsorbed by the adsorbent. The air in which moisture is added to the adsorbent is discharged to the outdoor space (S2) as exhaust air (EA).
 〈変形例6(吸湿部の変形例(2)〉
 図11に示すように、変形例6の吸湿ユニット(30)は、略円柱状に形成される。吸湿ユニット(30)は、複数の小孔を有する円柱状の基材(33)と、該基材(33)に担持される吸着剤とを有する。吸湿ユニット(30)は、その軸方向が空気流れの方向と一致するように、空気通路(12)に配置される。吸湿ユニット(30)は、上記実施形態と同様、第1熱交換器(21)と第2熱交換器(22)との間に配置される。
<Modification 6 (Modification of moisture absorbing part (2))>
As shown in FIG. 11, the moisture absorbing unit (30) of the modified example 6 is formed in a substantially columnar shape. The moisture absorption unit (30) has a columnar base material (33) having a plurality of small holes and an adsorbent supported on the base material (33). The moisture absorbing unit (30) is arranged in the air passage (12) so that its axial direction coincides with the direction of the air flow. The moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
 〈変形例7(吸湿部の変形例(3)〉
 図12に示すように、変形例7の吸湿ユニット(30)は、略直方体状に形成される。吸湿ユニット(30)は、複数の小孔を有する直方体状の基材(33)と、該基材(33)に担持される吸着剤とを有する。吸湿ユニット(30)は、上記実施形態と同様、第1熱交換器(21)と第2熱交換器(22)との間に配置される。
<Modification 7 (Modification of moisture absorbing part (3))>
As shown in FIG. 12, the moisture absorbing unit (30) of the modified example 7 is formed in a substantially rectangular parallelepiped shape. The moisture absorbing unit (30) has a rectangular parallelepiped base material (33) having a plurality of small holes and an adsorbent supported on the base material (33). The moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
 〈変形例8(吸湿部の変形例(4)〉
 図13に示すように、変形例8の吸湿ユニット(30)は、メッシュ状の容器(34)と、該容器(34)の内部に充填される粒状の吸着剤(35)とを有する。メッシュ状の容器(34)は、空気通路(12)に配置される。空気通路(12)の空気は、メッシュ状の容器(34)を通過し、吸着剤(35)の周囲を流れる。吸湿ユニット(30)は、上記実施形態と同様、第1熱交換器(21)と第2熱交換器(22)との間に配置される。
<Modification 8 (Modification of moisture absorbing part (4))>
As shown in FIG. 13, the moisture absorbing unit (30) of the modified example 8 has a mesh-shaped container (34) and a granular adsorbent (35) filled inside the container (34). The mesh container (34) is arranged in the air passage (12). The air in the air passage (12) passes through the mesh container (34) and flows around the adsorbent (35). The moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
 〈変形例9(吸湿部の変形例(5)〉
 図14に示すように、変形例9の吸湿ユニット(30)は、貯留槽(36)を有する。貯留槽(36)の内部には、液体吸収剤が貯留される。液体吸収剤は、例えば塩化リチウム水溶液である。吸湿ユニット(30)は、複数の空気流通管(37)を有する。空気流通管(37)は、貯留槽(36)を空気通路(12)の空気流れ方向に貫通している。空気流通管(37)は、筒状の透湿膜によって構成される。透湿膜は、液体吸収剤を透過させず、水蒸気を透過させる膜である。吸湿ユニット(30)は、上記実施形態と同様、第1熱交換器(21)と第2熱交換器(22)との間に配置される。
<Modification 9 (Modification of moisture absorbing part (5))>
As shown in FIG. 14, the moisture absorbing unit (30) of the modified example 9 has a storage tank (36). A liquid absorbent is stored inside the storage tank (36). The liquid absorbent is, for example, an aqueous solution of lithium chloride. The moisture absorption unit (30) has a plurality of air flow pipes (37). The air flow pipe (37) penetrates the storage tank (36) in the air flow direction of the air passage (12). The air flow pipe (37) is composed of a tubular moisture permeable membrane. The moisture permeable membrane is a membrane that does not allow the liquid absorbent to permeate but allows water vapor to permeate. The moisture absorption unit (30) is arranged between the first heat exchanger (21) and the second heat exchanger (22) as in the above embodiment.
 除湿運転の第1動作において、第1熱交換器(21)で冷却された空気は、複数の空気流通管(37)を流れる。空気中の水分は、透過膜を介して液体吸収剤に吸収される。除湿運転の第2動作において、第2熱交換器(22)で加熱された空気は、複数の空気流通管(37)を流れる。空気流通管(37)では、液体吸収剤の水蒸気が透過膜を介して空気に付与される。 In the first operation of the dehumidifying operation, the air cooled by the first heat exchanger (21) flows through a plurality of air flow pipes (37). Moisture in the air is absorbed by the liquid absorbent through the permeable membrane. In the second operation of the dehumidifying operation, the air heated by the second heat exchanger (22) flows through the plurality of air flow pipes (37). In the air flow pipe (37), the water vapor of the liquid absorbent is applied to the air through the permeable membrane.
 加湿運転の第3動作において、第1熱交換器(21)で加熱された空気は、複数の空気流通管(37)を流れる。空気流通管(37)では、液体吸収剤の水蒸気が透過膜を空気に付与される。加湿運転の第4動作において、第2熱交換器(22)で冷却された空気は、複数の空気流通管(37)を流れる。空気中の水分は、透過膜を介して液体吸収剤に吸収される。 In the third operation of the humidification operation, the air heated by the first heat exchanger (21) flows through a plurality of air flow pipes (37). In the air flow pipe (37), the water vapor of the liquid absorber imparts a permeable membrane to the air. In the fourth operation of the humidification operation, the air cooled by the second heat exchanger (22) flows through the plurality of air flow pipes (37). Moisture in the air is absorbed by the liquid absorbent through the permeable membrane.
 〈変形例10(空気搬送機構の変形例(1)〉
 図15及び図16に示すように、変形例10の調湿ユニット(10)は、上記実施形態と空気搬送機構(M)の構成が異なる。変形例10の空気搬送機構(M)は、第1ファン(44)と第2ファン(45)とを備える。第1ファン(44)及び第2ファン(45)は、一方向のみに空気を搬送する。第1ファン(44)は、室内空間(S1)に向かってのみ空気を搬送する。第2ファン(45)は、室外空間(S2)に向かってのみ空気を搬送する。
<Modification example 10 (Modification example (1) of air transport mechanism>
As shown in FIGS. 15 and 16, the humidity control unit (10) of the modified example 10 has a different configuration of the air transport mechanism (M) from the above embodiment. The air transport mechanism (M) of the modified example 10 includes a first fan (44) and a second fan (45). The first fan (44) and the second fan (45) carry air in only one direction. The first fan (44) carries air only toward the indoor space (S1). The second fan (45) conveys air only toward the outdoor space (S2).
 図15に示すように、除湿運転の第1動作では、第1ファン(44)が運転され、第2ファン(45)が停止する。これにより、室外空間(S2)の室外空気(OA)を供給空気(SA)として室内空間(S1)へ供給できる。図16に示すように、除湿運転の第2動作では、第2ファン(45)が運転され、第1ファン(44)が停止する。これにより、室内空間(S1)の室内空気(RA)を排出空気(EA)として室外空間(S2)へ排出できる。 As shown in FIG. 15, in the first operation of the dehumidifying operation, the first fan (44) is operated and the second fan (45) is stopped. As a result, the outdoor air (OA) in the outdoor space (S2) can be supplied to the indoor space (S1) as the supply air (SA). As shown in FIG. 16, in the second operation of the dehumidifying operation, the second fan (45) is operated and the first fan (44) is stopped. As a result, the indoor air (RA) in the indoor space (S1) can be discharged to the outdoor space (S2) as exhaust air (EA).
 図15に示すように、加湿運転の第3動作では、第1ファン(44)が運転され、第2ファン(45)が停止する。これにより、室外空間(S2)の室外空気(OA)を供給空気(SA)として室内空間(S1)へ供給できる。図16に示すように、加湿運転の第4動作では、第2ファン(45)が運転され、第1ファン(44)が停止する。これにより、室内空間(S1)の室内空気(RA)を排出空気(EA)として室外空間(S2)へ排出できる。 As shown in FIG. 15, in the third operation of the humidification operation, the first fan (44) is operated and the second fan (45) is stopped. As a result, the outdoor air (OA) in the outdoor space (S2) can be supplied to the indoor space (S1) as the supply air (SA). As shown in FIG. 16, in the fourth operation of the humidification operation, the second fan (45) is operated and the first fan (44) is stopped. As a result, the indoor air (RA) in the indoor space (S1) can be discharged to the outdoor space (S2) as exhaust air (EA).
 〈変形例11(空気搬送機構の変形例(2)〉
 図17及び図18に示すように、変形例11の調湿ユニット(10)は、上記実施形態と空気搬送機構(M)の構成が異なる。変形例11の空気搬送機構(M)は、一方向ファン(46)を備える。一方向ファン(46)は、一方向のみに空気を搬送する。加えて、空気搬送機構(M)は、第1ダンパ(D1)、第2ダンパ(D2)、及び第3ダンパ(D3)を有する。これらのダンパ(D1,D2,D3)は、流路切換機構を構成する。流路切換機構は、空気通路(12)を第1状態と第2状態とに切り換える。図17に示す第1状態の空気通路(12)では、一方向ファン(46)に搬送される空気が、室外空間(S2)から室内空間(S1)へ流れる。図18に示す第2状態の空気通路(12)では、一方向ファン(46)に搬送される空気が、室内空間(S1)から室外空間(S2)へ流れる。
<Modification example 11 (Modification example (2) of air transport mechanism>
As shown in FIGS. 17 and 18, the humidity control unit (10) of the modified example 11 has a different configuration of the air transport mechanism (M) from the above embodiment. The air transport mechanism (M) of the modified example 11 includes a one-way fan (46). The one-way fan (46) carries air in only one direction. In addition, the air transport mechanism (M) has a first damper (D1), a second damper (D2), and a third damper (D3). These dampers (D1, D2, D3) form a flow path switching mechanism. The flow path switching mechanism switches the air passage (12) between the first state and the second state. In the air passage (12) in the first state shown in FIG. 17, the air conveyed to the one-way fan (46) flows from the outdoor space (S2) to the indoor space (S1). In the second state air passage (12) shown in FIG. 18, the air conveyed to the one-way fan (46) flows from the indoor space (S1) to the outdoor space (S2).
 調湿ユニット(10)の空気通路(12)は、第1通路(P1)、第2通路(P2)、第3通路(P3)、及び第4通路(P4)を含む。第1通路(P1)には、第1熱交換器(21)、吸湿ユニット(30)、第2熱交換器(22)が順に配置される。第1通路(P1)は、外気口(14)、内気口(13)、第2通路(P2)、及び第4通路(P4)と連通可能である。第2通路(P2)は、第1通路(P1)及び第3通路(P3)と連通可能である。第3通路(P3)には、第1ファン(44)が配置される。第3通路(P3)は、外気口(14)、第1通路(P1)、及び第4通路(P4)と少なくとも連通可能である。第4通路(P4)は、内気口(13)、第1通路(P1)、及び第3通路(P3)と少なくとも連通可能である。 The air passage (12) of the humidity control unit (10) includes the first passage (P1), the second passage (P2), the third passage (P3), and the fourth passage (P4). A first heat exchanger (21), a moisture absorbing unit (30), and a second heat exchanger (22) are arranged in this order in the first passage (P1). The first passage (P1) can communicate with the outside air port (14), the inside air port (13), the second passage (P2), and the fourth passage (P4). The second passage (P2) can communicate with the first passage (P1) and the third passage (P3). A first fan (44) is arranged in the third passage (P3). The third passage (P3) can at least communicate with the outside air port (14), the first passage (P1), and the fourth passage (P4). The fourth passage (P4) can at least communicate with the inside air port (13), the first passage (P1), and the third passage (P3).
 第1ダンパ(D1)は、内気口(13)と第1通路(P1)とを遮断する第1状態と、内気口(13)と第1通路(P1)とを連通する第2状態とに切り換えられる。第2ダンパ(D2)は、第4通路(P4)と第3通路(P3)とを連通させ且つ外気口(14)と第3通路(P3)を遮断する第1状態と、第4通路(P4)と第3通路(P3)とを遮断し且つ第3通路(P3)と外気口(14)を連通する第2状態とに切り換えられる。第3ダンパ(D3)は、第2通路(P2)と外気口(14)を遮断する第1状態と、第1通路(P1)と第2通路(P2)とを連通させる第2状態とに切り換えられる。 The first damper (D1) has a first state of blocking the inside air port (13) and the first passage (P1) and a second state of communicating the inside air port (13) and the first passage (P1). Can be switched. The second damper (D2) is the first state in which the fourth passage (P4) and the third passage (P3) are communicated with each other and the outside air port (14) and the third passage (P3) are blocked, and the fourth passage (P3). It is switched to the second state in which the P4) and the third passage (P3) are blocked and the third passage (P3) and the outside air port (14) are communicated with each other. The third damper (D3) has a first state of blocking the second passage (P2) and the outside air port (14) and a second state of communicating the first passage (P1) and the second passage (P2). Can be switched.
 図17に示すように、除湿運転の第1動作では、一方向ファン(46)が運転され、流路切換機構により空気通路(12)が第1状態に切り換えられる。具体的には、第1ダンパ(D1)、第2ダンパ(D2)、及び第3ダンパ(D3)が第1状態になる。室外空気(OA)は、第1通路(P1)を流れ、第1熱交換器(21)で冷却・除湿される。この空気は、第3通路(P3)、第4通路(P4)を順に流れ、供給空気(SA)として室内空間(S1)へ供給される。 図18に示すように、除湿運転の第2動作では、一方向ファン(46)が運転され、流路切換機構により空気通路(12)が第2状態に切り換えられる。具体的には、第1ダンパ(D1)、第2ダンパ(D2)、及び第3ダンパ(D3)が第2状態になる。室内空気(RA)は、第1通路(P1)を流れ、第2熱交換器(22)の吸着剤を再生する。この空気は、第2通路(P2)、第3通路(P3)を順に流れ、排出空気として室外空間(S2)へ排出される。 As shown in FIG. 17, in the first operation of the dehumidifying operation, the one-way fan (46) is operated, and the air passage (12) is switched to the first state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the first state. The outdoor air (OA) flows through the first passage (P1) and is cooled and dehumidified by the first heat exchanger (21). This air flows through the third passage (P3) and the fourth passage (P4) in this order, and is supplied to the indoor space (S1) as supply air (SA). As shown in FIG. 18, in the second operation of the dehumidifying operation, the one-way fan (46) is operated, and the air passage (12) is switched to the second state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the second state. The indoor air (RA) flows through the first passage (P1) and regenerates the adsorbent of the second heat exchanger (22). This air flows through the second passage (P2) and the third passage (P3) in this order, and is discharged to the outdoor space (S2) as exhaust air.
 図17に示すように、加湿運転の第3動作では、一方向ファン(46)が運転され、流路切換機構により空気通路(12)が第1状態に切り換えられる。具体的には、第1ダンパ(D1)、第2ダンパ(D2)、及び第3ダンパ(D3)が第1状態になる。室外空気(OA)は、第1通路(P1)を流れ、第1熱交換器(21)で加熱・加湿される。この空気は、第3通路(P3)、第4通路(P4)を順に流れ、供給空気(SA)として室内空間(S1)へ供給される。 As shown in FIG. 17, in the third operation of the humidification operation, the one-way fan (46) is operated, and the air passage (12) is switched to the first state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the first state. The outdoor air (OA) flows through the first passage (P1) and is heated and humidified by the first heat exchanger (21). This air flows through the third passage (P3) and the fourth passage (P4) in this order, and is supplied to the indoor space (S1) as supply air (SA).
 図18に示すように、加湿運転の第4動作では、一方向ファン(46)が運転され、流路切換機構により空気通路(12)が第2状態に切り換えられる。具体的には、第1ダンパ(D1)、第2ダンパ(D2)、及び第3ダンパ(D3)が第2状態になる。室内空気(RA)は、第1通路(P1)を流れ、第2熱交換器(22)の吸着剤に水分を付与する。この空気は、第2通路(P2)、第3通路(P3)を順に流れ、排出空気(EA)として室外空間(S2)へ排出される。 As shown in FIG. 18, in the fourth operation of the humidification operation, the one-way fan (46) is operated, and the air passage (12) is switched to the second state by the flow path switching mechanism. Specifically, the first damper (D1), the second damper (D2), and the third damper (D3) are in the second state. The indoor air (RA) flows through the first passage (P1) and imparts moisture to the adsorbent of the second heat exchanger (22). This air flows through the second passage (P2) and the third passage (P3) in this order, and is discharged to the outdoor space (S2) as exhaust air (EA).
 〈変形例12(フィルタ〉〉
 図19及び図20に示すように、変形例12の調湿ユニット(10)は、フィルタ(38)を有する。フィルタ(38)は、吸湿ユニット(30)、第1熱交換器(21)、第2熱交換器(22)よりも室外空間(S2)寄りに配置される。フィルタ(38)は、外気口(14)の付近に配置される。フィルタ(38)は、空気通路(12)に流入する室外空気(OA)中の塵埃を捕集する。
<Modification 12 (filter >>)
As shown in FIGS. 19 and 20, the humidity control unit (10) of the modified example 12 has a filter (38). The filter (38) is arranged closer to the outdoor space (S2) than the moisture absorbing unit (30), the first heat exchanger (21), and the second heat exchanger (22). The filter (38) is placed near the outside air port (14). The filter (38) collects dust in the outdoor air (OA) flowing into the air passage (12).
 フィルタ(38)は、室外空間(S2)から室内空間(S1)へ空気を搬送する動作中に、該フィルタ(38)に付着した塵埃を空気によって取り除くように構成される。 The filter (38) is configured to remove dust adhering to the filter (38) by air during the operation of transporting air from the outdoor space (S2) to the indoor space (S1).
 具体的には、図19に示すように、除湿運転の第1動作では、フィルタ(38)の外面に塵埃が捕集される。この状態から図20に示すように、除湿運転の第2動作が実行されると、排出空気(EA)がフィルタ(38)を通過する。この排出空気(EA)によって、フィルタ(38)の外面に付着した塵埃を室外空間(S2)へ放出できる。除湿運転において、第1動作と第2動作とを交互に行うことで、フィルタ(38)の塵埃の付着量を実質的に減らすことができる。これにより、フィルタ(38)の寿命を延ばすことができる。 Specifically, as shown in FIG. 19, in the first operation of the dehumidifying operation, dust is collected on the outer surface of the filter (38). From this state, as shown in FIG. 20, when the second operation of the dehumidifying operation is executed, the exhaust air (EA) passes through the filter (38). This exhaust air (EA) can discharge the dust adhering to the outer surface of the filter (38) to the outdoor space (S2). By alternately performing the first operation and the second operation in the dehumidifying operation, the amount of dust adhering to the filter (38) can be substantially reduced. As a result, the life of the filter (38) can be extended.
 図19に示すように、加湿運転の第3動作では、フィルタ(38)の外面に塵埃が捕集される。この状態から図20に示すように、加湿運転の第4動作が実行されると、排出空気(EA)がフィルタ(38)を通過する。この排出空気(EA)によって、フィルタ(38)の外面に付着した塵埃を室外空間(S2)へ放出できる。加湿運転において、第3動作と第4動作とを交互に行うことで、フィルタ(38)の塵埃の付着量を実質的に減らすことができる。これにより、フィルタ(38)の寿命を延ばすことができる。 As shown in FIG. 19, in the third operation of the humidification operation, dust is collected on the outer surface of the filter (38). From this state, as shown in FIG. 20, when the fourth operation of the humidification operation is executed, the exhaust air (EA) passes through the filter (38). This exhaust air (EA) can discharge the dust adhering to the outer surface of the filter (38) to the outdoor space (S2). By alternately performing the third operation and the fourth operation in the humidification operation, the amount of dust adhering to the filter (38) can be substantially reduced. As a result, the life of the filter (38) can be extended.
 〈変形例13(調湿ユニットの他の配置〉〉
 実施形態の調湿ユニット(10)は、住居の壁(W)に設けられる。図21に示すように、調湿ユニット(10)を住居の窓(5)、ないし窓枠(6)に設けてもよい。
<Modification 13 (Other arrangement of humidity control unit>>
The humidity control unit (10) of the embodiment is provided on the wall (W) of the house. As shown in FIG. 21, the humidity control unit (10) may be provided in the window (5) or the window frame (6) of the house.
 〈変形例14(陽圧制御(1)〉
 図22に示す変形例14の調湿システム(S)は、外気の汚れの度合い、及び外気の侵入の有無に基づいて、複数の調湿ユニット(10)を制御する。
<Modification 14 (Positive pressure control (1)>>
The humidity control system (S) of the modification 14 shown in FIG. 22 controls a plurality of humidity control units (10) based on the degree of contamination of the outside air and the presence or absence of intrusion of the outside air.
 調湿システム(S)は、室外空間(S2)から室内空間(S1)への外気の侵入を検知する侵入検知部(70)と、外気の汚れの度合いを判定する第1判定部(71)とを備える。 The humidity control system (S) has an intrusion detection unit (70) that detects the intrusion of outside air from the outdoor space (S2) into the indoor space (S1), and a first determination unit (71) that determines the degree of contamination of the outside air. And.
 本例の侵入検知部(70)は、住居のドア(7)の開閉を検知する開閉検知部である。ドア(7)が開放されると、侵入検知部(70)は、外気が侵入していることを示す信号を連動制御部(C)に出力する。 The intrusion detection unit (70) in this example is an open / close detection unit that detects the opening / closing of the door (7) of the house. When the door (7) is opened, the intrusion detection unit (70) outputs a signal indicating that outside air is invading to the interlocking control unit (C).
 第1判定部(71)は、外気の汚れの度合いに関する情報を取得する。外気の汚れの度合いとしては、外気中の花粉、浮遊粒子状物質、臭気成分などがあげられる。本例の第1判定部(71)は、外気の汚れの度合いを示す情報として、外気中の花粉情報を取得する。第1判定部(71)は、気象庁などの外部機関からの情報をインターネット経由で受信する。第1判定部(71)は、外気中の花粉などの汚れの度合いを直接的に検知するセンサであってもよい。 The first judgment unit (71) acquires information on the degree of pollution of the outside air. Examples of the degree of contamination of the outside air include pollen in the outside air, suspended particulate matter, and odorous components. The first determination unit (71) of this example acquires pollen information in the outside air as information indicating the degree of contamination of the outside air. The first judgment unit (71) receives information from an external organization such as the Japan Meteorological Agency via the Internet. The first determination unit (71) may be a sensor that directly detects the degree of contamination such as pollen in the outside air.
 連動制御部(C)は、第1条件と第2条件とが成立すると、室内空間(S1)が陽圧になるように複数の調湿ユニット(10)を制御する。第1条件は、外気の汚れの度合いが所定の閾値よりも高い条件である。第2条件は、侵入検知部(70)が外気の侵入を検知した条件である。これらの条件が成立する場合、外気中の花粉が開放されたドア口より室内空間(S1)に侵入してしまう。連動制御部(C)は、これらの条件が成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように、複数の調湿ユニット(10)を制御する。 When the first condition and the second condition are satisfied, the interlocking control unit (C) controls a plurality of humidity control units (10) so that the indoor space (S1) becomes a positive pressure. The first condition is a condition in which the degree of contamination of the outside air is higher than a predetermined threshold value. The second condition is a condition in which the intrusion detection unit (70) detects the intrusion of outside air. If these conditions are met, pollen in the outside air will invade the indoor space (S1) through the open door. When these conditions are satisfied, the interlocking control unit (C) makes the total air supply amount of the plurality of humidity control units (10) larger than the total displacement amount of the plurality of humidity control units (10). Control multiple humidity control units (10).
 具体的には、給気を行う調湿ユニット(10)の台数を、排気を行う調湿ユニット(10)の台数よりも多くする。あるいは、給気を行う調湿ユニット(10)の給気風量を増大させる。逆に、排気を行う調湿ユニット(10)の排気風量を減少させる。このような制御により、室内空間(S1)が陽圧に保たれる。従って、外気中の花粉等が室内空間(S1)に侵入することを抑制できる。 Specifically, increase the number of humidity control units (10) that supply air to the number of humidity control units (10) that exhaust air. Alternatively, the air supply air volume of the humidity control unit (10) that supplies air is increased. On the contrary, the exhaust air volume of the humidity control unit (10) that exhausts air is reduced. By such control, the indoor space (S1) is maintained at a positive pressure. Therefore, it is possible to prevent pollen and the like in the outside air from entering the indoor space (S1).
 なお、連動制御部(C)は、第1条件のみが成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように、複数の調湿ユニット(10)を制御してもよい。連動制御部(C)は、第2条件のみが成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように、複数の調湿ユニット(10)を制御してもよい。 In the interlocking control unit (C), when only the first condition is satisfied, the total air supply amount of the plurality of humidity control units (10) becomes larger than the total displacement amount of the plurality of humidity control units (10). As such, a plurality of humidity control units (10) may be controlled. When only the second condition is satisfied, the interlocking control unit (C) makes the total air supply amount of the plurality of humidity control units (10) larger than the total displacement amount of the plurality of humidity control units (10). , A plurality of humidity control units (10) may be controlled.
 〈変形例15(陽圧制御(2)〉
 変形例15の調湿システム(S)は、外気の汚れや侵入の状態に基づかず、室内空間(S1)を常に陽圧に保つ陽圧運転モードを備えている。この陽圧運転モードは、クリーンルームや手術室などで実行される。陽圧運転モードが実行されると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように、複数の調湿ユニット(10)が制御される。これにより、クリーンルームや手術室への外部空間からの空気の侵入を常に防止できる。
<Modification 15 (Positive pressure control (2)>>
The humidity control system (S) of the modified example 15 is provided with a positive pressure operation mode in which the indoor space (S1) is always kept at a positive pressure regardless of the state of dirt or intrusion of the outside air. This positive pressure operation mode is executed in a clean room, an operating room, or the like. When the positive pressure operation mode is executed, the plurality of humidity control units so that the total air supply amount of the plurality of humidity control units (10) becomes larger than the total exhaust amount of the plurality of humidity control units (10). (10) is controlled. As a result, it is possible to always prevent the intrusion of air from the external space into the clean room or the operating room.
 〈変形例16(負圧制御)〉
 図23に示す変形例16の調湿システム(S)は、室内空間(S1)の空気の汚れ度合いに基づいて、複数の調湿ユニット(10)を制御する。
<Modification example 16 (negative pressure control)>
The humidity control system (S) of the modification 16 shown in FIG. 23 controls a plurality of humidity control units (10) based on the degree of air pollution in the indoor space (S1).
 調湿システム(S)は、室内空間(S1)の空気の汚れの度合いを判定する第2判定部(72)を備える。本例の第2判定部(72)は、室内空間(S1)に配置され、室内空気の空気質を検知する空気質センサである。空気の汚れの度合いを示す空気質としては、粉じん、臭気成分、ホルムアルデヒド、VOC(揮発性有機化合物)などがあげられる。第2判定部(72)で検知された情報は、連動制御部(C)に出力される。 The humidity control system (S) is provided with a second determination unit (72) that determines the degree of air pollution in the indoor space (S1). The second determination unit (72) of this example is an air quality sensor that is arranged in the indoor space (S1) and detects the air quality of the indoor air. Examples of the air quality indicating the degree of air pollution include dust, odorous components, formaldehyde, and VOC (volatile organic compounds). The information detected by the second determination unit (72) is output to the interlocking control unit (C).
 連動制御部(C)は、第3条件とが成立すると、室内空間(S1)が負圧になるように複数の調湿ユニット(10)を制御する。第3条件は、室内空間(S1)の空気の汚れの度合いが所定の閾値よりも高い条件である。連動制御部(C)は、これらの条件が成立すると、複数の調湿ユニット(10)の総排気量が、該複数の調湿ユニット(10)の総給気量よりも大きくなるように、複数の調湿ユニット(10)を制御する。 The interlocking control unit (C) controls a plurality of humidity control units (10) so that the indoor space (S1) becomes a negative pressure when the third condition is satisfied. The third condition is a condition in which the degree of air pollution in the indoor space (S1) is higher than a predetermined threshold value. When these conditions are satisfied, the interlocking control unit (C) makes the total exhaust amount of the plurality of humidity control units (10) larger than the total air supply amount of the plurality of humidity control units (10). Control multiple humidity control units (10).
 具体的には、排気を行う調湿ユニット(10)の台数を、給気を行う調湿ユニット(10)の台数よりも多くする。あるいは、排気を行う調湿ユニット(10)の排気風量を増大させる。逆に、給気を行う調湿ユニット(10)の給気風量を減少させる。このような制御により、室内空間(S1)の空気中の粉じん、臭気成分などを速やかに室外空間(S2)へ排出できる。 Specifically, increase the number of humidity control units (10) that exhaust air more than the number of humidity control units (10) that supply air. Alternatively, the exhaust air volume of the humidity control unit (10) that exhausts air is increased. On the contrary, the air supply air volume of the humidity control unit (10) that supplies air is reduced. With such control, dust, odorous components, etc. in the air in the indoor space (S1) can be quickly discharged to the outdoor space (S2).
 〈変形例17(CO濃度に基づく制御)〉
 変形例17の調湿システム(S)は、濃度センサを備える。CO濃度センサは、室内空間(S1)に配置される。連動制御部(C)は、CO濃度センサで検出されるCO濃度が所定値以下となるように、複数の調湿ユニット(10)の給気量及び排気量を制御する。
<Modification 17 (control based on CO 2 concentration)>
The humidity control system (S) of the modified example 17 includes a concentration sensor. The CO 2 concentration sensor is arranged in the indoor space (S1). The interlocking control unit (C) controls the air supply amount and the exhaust amount of the plurality of humidity control units (10) so that the CO 2 concentration detected by the CO 2 concentration sensor becomes a predetermined value or less.
 〈変形例18(空気調和機との連動制御)〉
 変形例18の調湿システム(S)は、空気調和機と連動して運転される。空気調和機は、室内空間(S1)を空調の対象とする。調湿システム(S)では、調湿ユニット(10)で除湿を行うと同時に空気調和機で冷房を行う第1運転と、空気調和機を停止し調湿ユニット(10)のみで除湿を行う第2運転とが切換可能である。連動制御部(C)は、空気調和機及び複数の調湿ユニット(10)を連動して制御する。
<Modification 18 (Interlocking control with air conditioner)>
The humidity control system (S) of the modification 18 is operated in conjunction with the air conditioner. The air conditioner targets the indoor space (S1) for air conditioning. In the humidity control system (S), the first operation of dehumidifying with the humidity control unit (10) and cooling with the air conditioner at the same time, and the first operation of stopping the air conditioner and dehumidifying only with the humidity control unit (10). It is possible to switch between two operations. The interlocking control unit (C) interlocks and controls the air conditioner and a plurality of humidity control units (10).
 連動制御部(C)の演算部は、外気温、内気温、外気湿度、内気湿度などに基づいて、第1運転時の運転効率E1と、第2運転時の運転効率E2とを予測する。演算部により、E1がE2より大きいと判定されると、第1運転を実行する。演算部により、E2がE1より大きいと判定されると、第2運転を実行する。 The calculation unit of the interlocking control unit (C) predicts the operation efficiency E1 during the first operation and the operation efficiency E2 during the second operation based on the outside air temperature, the inside air temperature, the outside air humidity, the inside air humidity, and the like. When the calculation unit determines that E1 is larger than E2, the first operation is executed. When the calculation unit determines that E2 is larger than E1, the second operation is executed.
 調湿システム(S)では、調湿ユニット(10)で加湿を行うと同時に空気調和機で暖房を行う第3運転と、空気調和機を停止し調湿ユニット(10)のみで加湿を行う第4運転とが切換可能である。連動制御部(C)は、空気調和機及び複数の調湿ユニット(10)を連動して制御する。 In the humidity control system (S), the third operation is to humidify with the humidity control unit (10) and at the same time to heat with the air conditioner, and the third operation to stop the air conditioner and humidify only with the humidity control unit (10). It is possible to switch between 4 operations. The interlocking control unit (C) interlocks and controls the air conditioner and a plurality of humidity control units (10).
 連動制御部(C)の演算部は、外気温、内気温、外気湿度、内気湿度などに基づいて、第3運転時の運転効率E3と、第4運転時の運転効率E4とを予測する。演算部により、E3がE4より大きいと判定されると、第3運転を実行する。演算部により、E4がE3より大きいと判定されると、第4運転を実行する。 The calculation unit of the interlocking control unit (C) predicts the operation efficiency E3 during the third operation and the operation efficiency E4 during the fourth operation based on the outside air temperature, the inside air temperature, the outside air humidity, the inside air humidity, and the like. When the calculation unit determines that E3 is larger than E4, the third operation is executed. When the calculation unit determines that E4 is larger than E3, the fourth operation is executed.
 〈変形例19(風量制御)〉
 図24に示す変形例19の調湿システム(S)は、室内空間(S1)の総給気量と総排気量とが略等しくなるように複数の調湿ユニット(10)を制御する。本例の室内空間(S1)には、他の換気装置であるレンジフード(8)が設けられる。調湿システム(S)は、レンジフード(8)の風量を検知する風量検知部(73)を備える。風量検知部(73)で検出されたレンジフード(8)の風量(本例では排気量)は、連動制御部(C)に出力される。
<Modification example 19 (air volume control)>
The humidity control system (S) of the modification 19 shown in FIG. 24 controls a plurality of humidity control units (10) so that the total air supply amount and the total exhaust amount of the indoor space (S1) are substantially equal to each other. In the indoor space (S1) of this example, a range hood (8), which is another ventilation device, is provided. The humidity control system (S) includes an air volume detection unit (73) that detects the air volume of the range hood (8). The air volume (displacement in this example) of the range hood (8) detected by the air volume detection unit (73) is output to the interlocking control unit (C).
 連動制御部(C)は、レンジフード(8)及び複数の調湿ユニット(10)の全体としての総給気量と、全体としての総排気量とが略等しくなるように、複数の調湿ユニット(10)の給気量及び排気量を制御する。換言すると、室内空間(S1)における総給気量と総排気量とが略一致するよう複数の調湿ユニット(10)が制御される。レンジフード(8)がONされた場合にも、室内空間(S1)全体の給排気量をバランスさせることができる。 The interlocking control unit (C) has a plurality of humidity control units so that the total air supply amount as a whole of the range hood (8) and the plurality of humidity control units (10) is substantially equal to the total exhaust amount as a whole. Control the air supply amount and exhaust amount of the unit (10). In other words, a plurality of humidity control units (10) are controlled so that the total air supply amount and the total exhaust amount in the indoor space (S1) are substantially the same. Even when the range hood (8) is turned on, the air supply / exhaust amount of the entire interior space (S1) can be balanced.
 なお、他の換気装置は、レンジフード(8)以外の排気扇であってもよいし、給気扇であってもよい。 The other ventilation device may be an exhaust fan other than the range hood (8) or an air supply fan.
 《その他の実施形態》
 上記実施形態、及びそれらの変形例については以下の構成としてもよい。
<< Other Embodiments >>
The above-described embodiment and modifications thereof may have the following configurations.
 上記実施形態の調湿システム(S)は、複数の調湿ユニット(10)を備える。しかし、1つの調湿ユニット(10)のみで除湿運転や加湿運転を行ってもよい。この場合、除湿運転では、1つの調湿ユニット(10)において、第1動作と第2動作とが交互に繰り返し行われる。加湿運転では、1つの調湿ユニット(10)において、第3動作と第4動作とが交互に繰り返し行われる。 The humidity control system (S) of the above embodiment includes a plurality of humidity control units (10). However, the dehumidifying operation or the humidifying operation may be performed by only one humidity control unit (10). In this case, in the dehumidifying operation, the first operation and the second operation are alternately and repeatedly performed in one humidity control unit (10). In the humidification operation, the third operation and the fourth operation are alternately and repeatedly performed in one humidity control unit (10).
 上記実施形態では、複数の調湿ユニット(10)を制御する制御装置が連動制御部(C)に兼用されている。しかし、調湿ユニット(10)毎に、対応する調湿ユニット(10)を制御する制御装置を設けてもよい。 In the above embodiment, the control device that controls a plurality of humidity control units (10) is also used as the interlocking control unit (C). However, for each humidity control unit (10), a control device for controlling the corresponding humidity control unit (10) may be provided.
 上記実施形態では、調湿ユニット(10)が住居の壁(W)、窓(5)、又は窓枠(6)に設けられる。しかし、調湿ユニット(10)を天井裏の空間に設置し、ダクトを介して給気や排気を行うようにしてもよい。 In the above embodiment, the humidity control unit (10) is provided on the wall (W), window (5), or window frame (6) of the house. However, the humidity control unit (10) may be installed in the space behind the ceiling to supply and exhaust air through a duct.
 上記実施形態の除湿運転では、第1動作の終了後、第2動作の開始前に第1停止制御を行い、且つ第2動作の終了後、第1動作の開始前に第2停止制御を行っている。しかし、第1停止制御と第2停止制御のうちのいずれか一方、又は両方を省略してもよい。 In the dehumidifying operation of the above embodiment, the first stop control is performed after the end of the first operation and before the start of the second operation, and the second stop control is performed after the end of the second operation and before the start of the first operation. ing. However, either one or both of the first stop control and the second stop control may be omitted.
 上記実施形態の加湿運転では、第3動作の終了後、第4動作の開始前に第3停止制御を行い、且つ第4動作の終了後、第3動作の開始前に第4停止制御を行っている。しかし、第3停止制御と第4停止制御のうちのいずれか一方、又は両方を省略してもよい。 In the humidifying operation of the above embodiment, the third stop control is performed after the end of the third operation and before the start of the fourth operation, and the fourth stop control is performed after the end of the fourth operation and before the start of the third operation. ing. However, either one or both of the third stop control and the fourth stop control may be omitted.
 以上、実施形態よび変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the purpose and scope of the claims. In addition, the above embodiments, modifications, and other embodiments may be appropriately combined or replaced as long as they do not impair the functions of the present disclosure. The above-mentioned descriptions of "first", "second", "third" ... Are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. It's not something to do.
 以上説明したように、本開示は、調湿ユニット、及び調湿システムについて有用である。 As described above, the present disclosure is useful for the humidity control unit and the humidity control system.
      S1  室内空間(第1空間)
      S2  室外空間(第2空間) 
      5   窓
      6   窓枠
      8   換気装置
     10   調湿ユニット
     10A  第1調湿ユニット
     10B  第2調湿ユニット
     12   空気通路
     13   内気口(開口)
     14   外気口(開口)
     20a  室外機
     21   第1熱交換器(熱交換部、熱源)
     22   第2熱交換器(熱交換部、熱源)
     23   圧縮機
     24   室外熱交換器
     30   吸湿ユニット(吸湿部)
     32   吸着熱交換器(吸湿部、熱源)
     38   フィルタ
     44   第1ファン
     45   第2ファン
     46   一方向ファン(ファン)
     70   侵入検知部
     71   第1判定部
     72   第2判定部
     73   風量検知部
     D1   第1ダンパ(流路切換機構)
     D2   第2ダンパ(流路切換機構)
     D3   第3ダンパ(流路切換機構)
     M    空気搬送機構
S1 indoor space (first space)
S2 outdoor space (second space)
5 Window 6 Window frame 8 Ventilation device 10 Humidity control unit 10A 1st humidity control unit 10B 2nd humidity control unit 12 Air passage 13 Inside air port (opening)
14 Outside air port (opening)
20a Outdoor unit 21 First heat exchanger (heat exchanger, heat source)
22 Second heat exchanger (heat exchanger, heat source)
23 Compressor 24 Outdoor heat exchanger 30 Moisture absorption unit (moisture absorption part)
32 Adsorption heat exchanger (moisture absorbing part, heat source)
38 Filter 44 1st fan 45 2nd fan 46 One-way fan (fan)
70 Intrusion detection unit 71 1st judgment unit 72 2nd judgment unit 73 Air volume detection unit D1 1st damper (flow path switching mechanism)
D2 2nd damper (flow path switching mechanism)
D3 3rd damper (flow path switching mechanism)
M air transport mechanism

Claims (32)

  1.  対象空間である第1空間(S1)と、第2空間(S2)とを連通する空気通路(12)と、
     前記空気通路(12)に配置され、空気からの吸湿と空気への放湿とを行う吸湿部(30,32)と、
     前記空気通路(12)に配置され、前記吸湿部(30,32)の冷却及び加熱の少なくとも一方を行う熱源(21,22,32)と、
     前記空気通路(12)の空気の流れの方向を可逆に該空気を搬送する空気搬送機構(M)と、
     前記熱源(21,22,32)及び空気搬送機構(M)を制御する制御装置(C)とを備えていることを特徴とする調湿ユニット。
    An air passage (12) that connects the first space (S1), which is the target space, and the second space (S2),
    Moisture absorbing parts (30, 32) arranged in the air passage (12) and absorbing moisture from the air and releasing moisture to the air,
    A heat source (21,22,32) arranged in the air passage (12) and performing at least one of cooling and heating of the moisture absorbing portion (30,32).
    An air transport mechanism (M) that reversibly conveys the direction of air flow in the air passage (12), and an air transport mechanism (M).
    A humidity control unit including the heat source (21, 22, 32) and a control device (C) for controlling an air transport mechanism (M).
  2.  請求項1において、
     前記制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作を実行させることを特徴とする調湿ユニット。
    In claim 1,
    The control device (C) cools the moisture absorbing portion (30,32) by the heat source (21,22,32) and air in the second space (S2) by the air transport mechanism (M). A humidity control unit characterized by executing the first operation of transporting to one space (S1).
  3.  請求項2において、
     前記制御装置(C)は、
      前記第1動作と、
      前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行させることを特徴とする調湿ユニット。
    In claim 2,
    The control device (C) is
    The first operation and
    The moisture absorbing portion (30, 32) is heated by the heat source (21,22,32), and the air in the first space (S1) is transferred to the second space (S2) by the air transport mechanism (M). A humidity control unit characterized in that the second operation is alternately executed.
  4.  請求項3において、
     前記制御装置(C)は、前記第1動作の終了後、前記第2動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニット。
    In claim 3,
    The control device (C) is a humidity control unit characterized in that the air transport mechanism (M) is stopped for a predetermined period after the end of the first operation and before the start of the second operation.
  5.  請求項3又は4において、
     前記制御装置(C)は、前記第2動作の終了後、前記第1動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニット。
    In claim 3 or 4,
    The control device (C) is a humidity control unit characterized in that the air transport mechanism (M) is stopped for a predetermined period after the end of the second operation and before the start of the first operation.
  6.  請求項1~5のいずれか1つにおいて、
     前記制御装置(C)は、前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作を実行させることを特徴とする調湿ユニット。
    In any one of claims 1 to 5,
    The control device (C) heats the moisture absorbing portion (30, 32) by the heat source (21, 22, 32) and heats the air in the second space (S2) by the air transport mechanism (M). A humidity control unit characterized by executing a third operation of transporting to one space (S1).
  7.  請求項6において、
     前記制御装置(C)は、
      前記第3動作と、
      前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させることを特徴とする調湿ユニット。
    In claim 6,
    The control device (C) is
    With the third operation
    The heat source (21,22,32) cools the moisture absorbing portion (30,32), and the air transport mechanism (M) transports the air in the first space (S1) to the second space (S2). A humidity control unit characterized by alternately executing four operations.
  8.  請求項7において、
     前記制御装置(C)は、前記第3動作の終了後、前記第4動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニット。
    In claim 7,
    The control device (C) is a humidity control unit characterized in that the air transport mechanism (M) is stopped for a predetermined period after the end of the third operation and before the start of the fourth operation.
  9.  請求項7又は8において、
     前記制御装置(C)は、前記第4動作の終了後、前記第3動作の開始前に前記空気搬送機構(M)を所定期間停止させることを特徴とする調湿ユニット。
    In claim 7 or 8,
    The control device (C) is a humidity control unit characterized in that the air transport mechanism (M) is stopped for a predetermined period after the end of the fourth operation and before the start of the third operation.
  10.  請求項1~9のいずれか1つにおいて、
     前記第1空間(S1)は室内空間であり、前記第2空間(S2)は室外空間であることを特徴とする調湿ユニット。
    In any one of claims 1 to 9,
    A humidity control unit characterized in that the first space (S1) is an indoor space and the second space (S2) is an outdoor space.
  11.  請求項1~10のいずれか1つにおいて、
     前記熱源(21,22,32)は、熱媒体が流れる熱交換部(21,22,32)を含むことを特徴とする調湿ユニット。
    In any one of claims 1 to 10,
    The heat source (21,22,32) is a humidity control unit including a heat exchange unit (21,22,32) through which a heat medium flows.
  12.  請求項11において、
     前記熱交換部は、
      前記吸湿部(30)よりも前記第1空間(S1)側に配置され、空気の冷却及び加熱を行う第1熱交換器(21)と、
      前記吸湿部(30)よりも前記第2空間(S2)側に配置され、空気の冷却及び加熱を行う第2熱交換器(22)と含んでいることを特徴とする調湿ユニット。
    11.
    The heat exchange unit
    A first heat exchanger (21) arranged on the first space (S1) side of the hygroscopic portion (30) to cool and heat air.
    A humidity control unit that is arranged on the second space (S2) side of the moisture absorbing portion (30) and includes a second heat exchanger (22) that cools and heats air.
  13.  請求項11において、
     前記熱交換部は、水を吸着及び脱離する吸着剤を有するとともに、前記吸湿部(30,32)を兼用する吸着熱交換器(32)であることを特徴とする調湿ユニット。
    11.
    A humidity control unit characterized in that the heat exchange unit is an adsorption heat exchanger (32) that has an adsorbent that adsorbs and desorbs water and also serves as the moisture absorbing unit (30, 32).
  14.  請求項11~13のいずれか1つにおいて、
     前記熱媒体としての冷媒が循環して冷凍サイクルを行う冷媒回路(R)を備えていることを特徴とする調湿ユニット。
    In any one of claims 11 to 13,
    A humidity control unit including a refrigerant circuit (R) in which a refrigerant as a heat medium circulates to perform a refrigeration cycle.
  15.  請求項14において、
     前記冷媒回路(R)に接続される圧縮機(23)及び室外熱交換器(24)を有する室外機(20a)を備えていることを特徴とする調湿ユニット。
    In claim 14,
    A humidity control unit including an outdoor unit (20a) having a compressor (23) and an outdoor heat exchanger (24) connected to the refrigerant circuit (R).
  16.  請求項1~14のいずれか1つにおいて、
     前記空気搬送機構(M)は、正方向と逆方向の回転が可能なファンであることを特徴とする調湿ユニット。
    In any one of claims 1 to 14,
    The air transport mechanism (M) is a humidity control unit characterized by being a fan capable of rotating in the forward direction and the reverse direction.
  17.  請求項1~14のいずれか1つにおいて、
     前記空気搬送機構(M)は、前記第1空間(S1)に向かって空気を送風する第1ファン(44)と、前記第2空間(S2)に向かって空気を送風する第2ファン(45)とを含んでいることを特徴とする調湿ユニット。
    In any one of claims 1 to 14,
    The air transport mechanism (M) has a first fan (44) that blows air toward the first space (S1) and a second fan (45) that blows air toward the second space (S2). ) And a humidity control unit.
  18.  請求項1~14のいずれか1つにおいて、
     前記空気搬送機構(M)は、
      少なくとも1つのファン(46)と、
      前記空気通路(12)の空気の流路を第1状態と第2状態とに切り換える流路切換機構(D1,D2,D3)とを備え、
     前記第1状態の空気通路(12)では、前記ファン(46)に搬送される空気が前記第2空間(S2)から前記第1空間(S1)へ流れ、前記第2状態の空気通路(12)では、前記ファン(46)に搬送される空気が前記第1空間(S1)から前記第2空間(S2)へ流れることを特徴とする調湿ユニット。
    In any one of claims 1 to 14,
    The air transport mechanism (M)
    With at least one fan (46)
    It is provided with a flow path switching mechanism (D1, D2, D3) for switching the air flow path of the air passage (12) between the first state and the second state.
    In the air passage (12) in the first state, the air conveyed to the fan (46) flows from the second space (S2) to the first space (S1), and the air passage (12) in the second state. ), The humidity control unit is characterized in that the air conveyed to the fan (46) flows from the first space (S1) to the second space (S2).
  19.  請求項1~18のいずれか1つにおいて、
     前記空気通路(12)の第1空間(S1)側の開口(13)の中心と、前記空気通路(12)の第2空間(S2)側の開口(14)の中心とが、該空気通路(12)の空気流れ方向において略一致していることを特徴とする調湿ユニット。
    In any one of claims 1 to 18,
    The center of the opening (13) on the first space (S1) side of the air passage (12) and the center of the opening (14) on the second space (S2) side of the air passage (12) are the air passages. A humidity control unit characterized in that the air flow directions of (12) are substantially the same.
  20.  請求項1~19のいずれか1つにおいて、
     前記空気通路(12)は、前記第1空間(S1)と前記第2空間(S2)とを仕切る壁(W)を貫通するように設けられることを特徴とする調湿ユニット。
    In any one of claims 1 to 19,
    The humidity control unit is characterized in that the air passage (12) is provided so as to penetrate a wall (W) that separates the first space (S1) and the second space (S2).
  21.  請求項1~19のいずれか1つにおいて、
     前記空気通路(12)は、前記第1空間としての室内空間(S1)と、前記第2空間としての室外空間(S2)との間の窓(5)、又は窓枠(6)に設けられることを特徴とする調湿ユニット。
    In any one of claims 1 to 19,
    The air passage (12) is provided in a window (5) or a window frame (6) between the indoor space (S1) as the first space and the outdoor space (S2) as the second space. Humidity control unit characterized by that.
  22.  請求項1~21のいずれか1つにおいて、
     前記空気通路(12)には、前記吸湿部(30,32)及び前記熱源(21,22,32)よりも前記第2空間としての室外空間(S2)寄りに配置されるフィルタ(38)を備え、
     前記フィルタ(38)は、前記第1空間としての室内空間(S1)から前記室外空間(S2)へ空気を搬送する動作中に、該フィルタ(38)に付着した塵埃が空気によって取り除かれるように構成されることを特徴とする調湿ユニット。
    In any one of claims 1 to 21,
    In the air passage (12), a filter (38) arranged closer to the outdoor space (S2) as the second space than the moisture absorbing portion (30,32) and the heat source (21,22,32) is provided. Prepare,
    The filter (38) is such that dust adhering to the filter (38) is removed by the air during the operation of transporting air from the indoor space (S1) as the first space to the outdoor space (S2). A humidity control unit characterized by being composed.
  23.  対象空間を調湿する複数の調湿ユニットを備えた調湿システムであって、
     前記複数の調湿ユニットが、請求項1~22のいずれか1つに記載の調湿ユニットであることを特徴とする調湿システム。
    It is a humidity control system equipped with multiple humidity control units that control the humidity of the target space.
    A humidity control system according to any one of claims 1 to 22, wherein the plurality of humidity control units are the humidity control units according to any one of claims 1 to 22.
  24.  請求項23において、
     前記複数の調湿ユニット(10)を協調して制御する連動制御部(C)を備えていることを特徴とする調湿システム。
    23.
    A humidity control system including an interlocking control unit (C) that cooperatively controls the plurality of humidity control units (10).
  25.  請求項24において、
     複数の調湿ユニット(10)は、少なくとも1つの第1調湿ユニット(10A)と、少なくとも1つの第2調湿ユニット(10B)とを含み、
     前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、
      前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第1動作と、
      前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第2動作とを交互に実行するように構成され、
     前記連動制御部(C)は、前記第1調湿ユニット(10A)が前記第1動作を行うときに前記第2調湿ユニット(10B)が前記第2動作を行い、前記第1調湿ユニット(10A)が前記第2動作を行うときに前記第2調湿ユニット(10B)が前記第1動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御することを特徴とする調湿システム。
    24.
    The plurality of humidity control units (10) include at least one first humidity control unit (10A) and at least one second humidity control unit (10B).
    The first humidity control unit (10A) and the second humidity control unit (10B) are
    The heat source (21,22,32) cools the moisture absorbing portion (30,32), and the air transport mechanism (M) transports the air in the second space (S2) to the first space (S1). 1 operation and
    The moisture absorbing portion (30, 32) is heated by the heat source (21,22,32), and the air in the first space (S1) is transferred to the second space (S2) by the air transport mechanism (M). It is configured to perform the second operation alternately,
    In the interlocking control unit (C), when the first humidity control unit (10A) performs the first operation, the second humidity control unit (10B) performs the second operation, and the first humidity control unit (10B) performs the second operation. The first humidity control unit (10A) and the second humidity control unit (10B) so that the second humidity control unit (10B) performs the first operation when (10A) performs the second operation. Humidity control system characterized by controlling.
  26.  請求項25において、
     前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の少なくとも一方は、前記第1動作と前記第2動作との間に前記空気搬送機構(M)を所定期間停止させるように構成され、
     前記連動制御部(C)は、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の一方の停止期間に、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の他方が第1動作又は第2動作を行うように、第1調湿ユニット(10A)及び第2調湿ユニット(10B)を制御することを特徴とする調湿システム。
    In claim 25
    At least one of the first humidity control unit (10A) and the second humidity control unit (10B) is such that the air transport mechanism (M) is stopped for a predetermined period between the first operation and the second operation. Consists of
    The interlocking control unit (C) has the first humidity control unit (10A) and the second humidity control unit (10A) during a stop period of one of the first humidity control unit (10A) and the second humidity control unit (10B). A humidity control system characterized in that the first humidity control unit (10A) and the second humidity control unit (10B) are controlled so that the other side of the unit (10B) performs the first operation or the second operation.
  27.  請求項25又は26において、
     前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)は、
     前記熱源(21,22,32)により前記吸湿部(30,32)を加熱し且つ前記空気搬送機構(M)により第2空間(S2)の空気を前記第1空間(S1)へ搬送する第3動作と、
     前記熱源(21,22,32)により前記吸湿部(30,32)を冷却し且つ前記空気搬送機構(M)により前記第1空間(S1)の空気を前記第2空間(S2)へ搬送する第4動作とを交互に実行させるように構成され、
     前記連動制御部(C)は、前記第1調湿ユニット(10A)が前記第3動作を行うときに前記第2調湿ユニット(10B)が前記第4動作を行い、前記第1調湿ユニット(10A)が前記第4動作を行うときに前記第2調湿ユニット(10B)が前記第3動作を行うように、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)を制御することを特徴とする調湿システム。
    In claim 25 or 26
    The first humidity control unit (10A) and the second humidity control unit (10B) are
    The heat source (21,22,32) heats the moisture absorbing portion (30,32), and the air transport mechanism (M) transports the air in the second space (S2) to the first space (S1). 3 movements and
    The heat source (21,22,32) cools the moisture absorbing portion (30,32), and the air transport mechanism (M) transports the air in the first space (S1) to the second space (S2). It is configured to execute the fourth operation alternately,
    In the interlocking control unit (C), when the first humidity control unit (10A) performs the third operation, the second humidity control unit (10B) performs the fourth operation, and the first humidity control unit (10B) performs the fourth operation. The first humidity control unit (10A) and the second humidity control unit (10B) so that the second humidity control unit (10B) performs the third operation when the (10A) performs the fourth operation. Humidity control system characterized by controlling.
  28.  請求項27において、
     前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の少なくとも一方は、前記第3動作と前記第4動作との間に前記空気搬送機構(M)を所定期間停止させるように構成され、
     前記連動制御部(C)は、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の一方の停止期間に、前記第1調湿ユニット(10A)及び前記第2調湿ユニット(10B)の他方が第3動作又は第4動作を行うように、第1調湿ユニット(10A)及び第2調湿ユニット(10B)を制御することを特徴とする調湿システム。
    27.
    At least one of the first humidity control unit (10A) and the second humidity control unit (10B) causes the air transport mechanism (M) to be stopped for a predetermined period between the third operation and the fourth operation. Consists of
    The interlocking control unit (C) has the first humidity control unit (10A) and the second humidity control unit (10A) during a stop period of one of the first humidity control unit (10A) and the second humidity control unit (10B). A humidity control system comprising controlling a first humidity control unit (10A) and a second humidity control unit (10B) so that the other of the units (10B) performs a third operation or a fourth operation.
  29.  請求項24~28のいずれか1つにおいて、
     前記第2空間(S2)の空気の汚れの度合いを判定する第1判定部(71)を備え、
     前記連動制御部(C)は、前記第1判定部(71)により空気の汚れの度合いが所定値より高いと判定される条件が少なくとも成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システム。
    In any one of claims 24 to 28
    A first determination unit (71) for determining the degree of air pollution in the second space (S2) is provided.
    The interlocking control unit (C) is the total air supply of the plurality of humidity control units (10) when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the first determination unit (71) is satisfied. A humidity control system, characterized in that the plurality of humidity control units (10) are controlled so that the amount is larger than the total displacement of the plurality of humidity control units (10).
  30.  請求項29において、
     前記第2空間(S2)から前記第1空間(S1)への空気の侵入を検知する侵入検知部(70)を備え、
     前記連動制御部(C)は、前記第1判定部(71)により空気の汚れの度合いが所定値より高いと判定される条件と、前記侵入検知部(70)が前記空気の侵入を検知する条件とが少なくとも成立すると、複数の調湿ユニット(10)の総給気量が、該複数の調湿ユニット(10)の総排気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システム。
    29.
    An intrusion detection unit (70) for detecting the intrusion of air from the second space (S2) into the first space (S1) is provided.
    The interlocking control unit (C) detects a condition in which the degree of air pollution is determined to be higher than a predetermined value by the first determination unit (71) and the intrusion detection unit (70) detects the intrusion of air. When the conditions are at least satisfied, the plurality of humidity control units (10) are provided so that the total air supply amount of the plurality of humidity control units (10) becomes larger than the total displacement of the plurality of humidity control units (10). Humidity control system characterized by controlling.
  31.  請求項24~30のいずれか1つにおいて、
     前記第1空間(S1)の空気の汚れの度合いを判定する第2判定部(72)を備え、
     前記連動制御部(C)は、前記第2判定部(72)により空気の汚れの度合いが所定値より高いと判定される条件が少なくとも成立すると、複数の調湿ユニット(10)の総排気量が、該複数の調湿ユニット(10)の総給気量よりも大きくなるように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システム。
    In any one of claims 24 to 30,
    A second determination unit (72) for determining the degree of air pollution in the first space (S1) is provided.
    The interlocking control unit (C) has the total displacement of the plurality of humidity control units (10) when at least the condition that the degree of air pollution is determined to be higher than the predetermined value by the second determination unit (72) is satisfied. However, the humidity control system is characterized in that the plurality of humidity control units (10) are controlled so as to be larger than the total air supply amount of the plurality of humidity control units (10).
  32.  請求項24~31のいずれか1つにおいて、
     前記第1空間(S1)に設置される換気装置(8)の給気量又は排気量を検知する風量検知部(73)を備え、
     前記連動制御部(C)は、前記風量検知部(73)で検出した給気量又は排気量に基づき、前記第1空間(S1)における総給気量と総排気量とが略一致するように前記複数の調湿ユニット(10)を制御することを特徴とする調湿システム。
    In any one of claims 24 to 31,
    The ventilation device (8) installed in the first space (S1) is provided with an air volume detecting unit (73) for detecting the air supply amount or the exhaust amount.
    The interlocking control unit (C) substantially matches the total air supply amount and the total exhaust amount in the first space (S1) based on the air supply amount or the exhaust amount detected by the air volume detection unit (73). A humidity control system characterized in that the plurality of humidity control units (10) are controlled.
PCT/JP2020/019798 2019-06-10 2020-05-19 Humidity control unit and humidity control system WO2020250629A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20822731.4A EP3961120B1 (en) 2020-05-19 Humidity control unit and humidity control system
SG11202112648TA SG11202112648TA (en) 2019-06-10 2020-05-19 Humidity control unit and humidity control system
CN202080039420.4A CN113874660A (en) 2019-06-10 2020-05-19 Humidity control unit and humidity control system
US17/531,171 US20220074608A1 (en) 2019-06-10 2021-11-19 Humidity control unit and humidity control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019107782A JP2020200985A (en) 2019-06-10 2019-06-10 Humidity control unit and humidity control system
JP2019-107782 2019-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/531,171 Continuation US20220074608A1 (en) 2019-06-10 2021-11-19 Humidity control unit and humidity control system

Publications (1)

Publication Number Publication Date
WO2020250629A1 true WO2020250629A1 (en) 2020-12-17

Family

ID=73742665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019798 WO2020250629A1 (en) 2019-06-10 2020-05-19 Humidity control unit and humidity control system

Country Status (5)

Country Link
US (1) US20220074608A1 (en)
JP (1) JP2020200985A (en)
CN (1) CN113874660A (en)
SG (1) SG11202112648TA (en)
WO (1) WO2020250629A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113040A1 (en) 2021-12-17 2023-06-22 ダイキン工業株式会社 Air-conditioning system and air-conditioning control device
WO2024004319A1 (en) * 2022-06-27 2024-01-04 シャープ株式会社 Total heat exchanger and ventilator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525945A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Wind fan and dehumidifier in one
JPH07275640A (en) * 1993-05-10 1995-10-24 Berner Erling Air dehumidifier
JP2004324896A (en) * 2003-04-21 2004-11-18 Fujitsu General Ltd Air-conditioner
JP4569150B2 (en) 2004-03-31 2010-10-27 ダイキン工業株式会社 Humidity control device
JP2010249485A (en) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp Air conditioner and air conditioning system
JP2011043311A (en) * 2009-08-24 2011-03-03 Okayama Eco Energy Gijutsu Kenkyusho:Kk Advanced humidity control system and method of operating the same
JP2011177657A (en) * 2010-03-02 2011-09-15 Toyota Industries Corp Dehumidifying device
JP2014077584A (en) * 2012-10-10 2014-05-01 Daikin Ind Ltd Humidity conditioning ventilation device
WO2016027429A1 (en) * 2014-08-21 2016-02-25 株式会社デンソー Humidifier
JP2016142448A (en) * 2015-02-02 2016-08-08 パナソニックIpマネジメント株式会社 Fan filter unit system
JP2018035984A (en) * 2016-08-30 2018-03-08 三菱電機株式会社 Air cleaning system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2265067A1 (en) * 1998-03-09 1999-09-09 Grant Reuter Module-controlled building drying system and process
TW564770U (en) * 2000-08-17 2003-12-01 Daikin Ind Ltd Dehumidifying device and a device for dehumidifying local space
DE10220631A1 (en) * 2002-05-10 2003-11-20 Loeffler Michael Process for sorption air conditioning with process control in a heat exchanger
JP5018402B2 (en) * 2007-10-31 2012-09-05 ダイキン工業株式会社 Humidity control device
CN201527055U (en) * 2009-10-23 2010-07-14 清华大学 Air handling device with natural heat supply and humidity control
EP3339756B1 (en) * 2010-12-22 2019-11-06 Mitsubishi Electric Corporation Air-conditioning system and humidity control device
JP5229368B2 (en) * 2011-09-29 2013-07-03 ダイキン工業株式会社 Humidity control device
US10907911B2 (en) * 2013-04-24 2021-02-02 Mitsubishi Electric Corporation Dehumidifier
EP2990092B1 (en) * 2013-04-24 2018-03-28 Mitsubishi Electric Corporation Dehumidifying device
WO2016046982A1 (en) * 2014-09-26 2016-03-31 三菱電機株式会社 Dehumidifying device
CN107003078B (en) * 2014-10-27 2020-01-21 英德科斯控股私人有限公司 Dehumidification system and dehumidification method
CN106678992A (en) * 2017-03-08 2017-05-17 孙金鹏 Intelligent fresh and return air volume adjusting type air purifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525945A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Wind fan and dehumidifier in one
JPH07275640A (en) * 1993-05-10 1995-10-24 Berner Erling Air dehumidifier
JP2004324896A (en) * 2003-04-21 2004-11-18 Fujitsu General Ltd Air-conditioner
JP4569150B2 (en) 2004-03-31 2010-10-27 ダイキン工業株式会社 Humidity control device
JP2010249485A (en) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp Air conditioner and air conditioning system
JP2011043311A (en) * 2009-08-24 2011-03-03 Okayama Eco Energy Gijutsu Kenkyusho:Kk Advanced humidity control system and method of operating the same
JP2011177657A (en) * 2010-03-02 2011-09-15 Toyota Industries Corp Dehumidifying device
JP2014077584A (en) * 2012-10-10 2014-05-01 Daikin Ind Ltd Humidity conditioning ventilation device
WO2016027429A1 (en) * 2014-08-21 2016-02-25 株式会社デンソー Humidifier
JP2016142448A (en) * 2015-02-02 2016-08-08 パナソニックIpマネジメント株式会社 Fan filter unit system
JP2018035984A (en) * 2016-08-30 2018-03-08 三菱電機株式会社 Air cleaning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961120A4

Also Published As

Publication number Publication date
EP3961120A4 (en) 2023-01-04
CN113874660A (en) 2021-12-31
EP3961120A1 (en) 2022-03-02
SG11202112648TA (en) 2021-12-30
JP2020200985A (en) 2020-12-17
US20220074608A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6447770B2 (en) Ventilation system
JP7104339B2 (en) Air quality adjustment system
JP3596549B2 (en) Humidity control device
JP3891207B2 (en) Humidity control device
JP4954018B2 (en) Air conditioner
WO2011004590A1 (en) Ventilation system
JP4646309B2 (en) Desiccant ventilator
WO2020250629A1 (en) Humidity control unit and humidity control system
JP2018115821A (en) Air conditioning system
JP4683548B2 (en) Desiccant ventilator
JP5547524B2 (en) Desiccant air conditioner
JP2008142656A (en) Dehumidification apparatus
JP4784340B2 (en) Dehumidifier
JP4784341B2 (en) Dehumidifier
JP2005164148A (en) Humidity conditioning device
JP4956145B2 (en) Air conditioner indoor unit
JP3649196B2 (en) Humidity control device
EP3961120B1 (en) Humidity control unit and humidity control system
JP2014129950A (en) Humidification unit
JP2005134005A (en) Humidity conditioning device
JP2005164220A (en) Air conditioner
JP2002147803A (en) Humidity controlling ventilator
JP2008241212A (en) Air conditioner
JP2005315465A (en) Heat exchanger
JP6443402B2 (en) Humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020822731

Country of ref document: EP

Effective date: 20211123

NENP Non-entry into the national phase

Ref country code: DE