JP2011034731A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2011034731A
JP2011034731A JP2009178235A JP2009178235A JP2011034731A JP 2011034731 A JP2011034731 A JP 2011034731A JP 2009178235 A JP2009178235 A JP 2009178235A JP 2009178235 A JP2009178235 A JP 2009178235A JP 2011034731 A JP2011034731 A JP 2011034731A
Authority
JP
Japan
Prior art keywords
welded
magnetic flux
detection coil
inter
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009178235A
Other languages
Japanese (ja)
Other versions
JP5456405B2 (en
Inventor
Takeshi Honda
武 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009178235A priority Critical patent/JP5456405B2/en
Publication of JP2011034731A publication Critical patent/JP2011034731A/en
Application granted granted Critical
Publication of JP5456405B2 publication Critical patent/JP5456405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To non-destructively and surely detect welded part defects obtained by welding inter-cells connectors each other in cells adjacent to each other through a battery case barrier plate in a through-hole of the barrier plate. <P>SOLUTION: This inspection device inspects the state of the welded portion of a pair of the inter-cell connectors 14A, 14B welded through the through-hole 21A in a lead acid battery 12 having the inter-cell connectors 14A, 14B derived from straps 13A, 13B to which the lug parts of same polarity electrode plates are collectively welded respectively, and the battery case barrier plate 21 having the through-hole 21A, using an electromagnetic induction crack detecting method. The inspection device includes a detection coil 11 to generate and transmit AC magnetic flux, and passing it the welded part, and receive the AC magnetic flux after passing the welded parts to output an inspection signal, a magnetic path forming member 33 to lead the AC magnetic flux before it passes the welded part and goes toward the lug parts 23A, 23B to the receiving side of the detection coil, and a determination part to determine whether the welded parts are proper or not based on the detection signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、検査装置に係り、特にモノブロック式の鉛蓄電池において、セル間接続体の溶接状態を非破壊で検査することが可能な検査装置に関する。   The present invention relates to an inspection apparatus, and more particularly to an inspection apparatus capable of nondestructively inspecting the welded state of an inter-cell connector in a monoblock lead-acid battery.

従来、鉛蓄電池のセル間接続にはいくつかの方式が用いられてきた。
その代表的な方式として隔壁貫通方式(スルーパーティション方式)が知られている(例えば、特許文献1参照)。このスルーパーティション方式は、隔壁を介して隣接するセル室内の中間極柱同士を、隔壁の貫通孔において溶接し接続するものである。これは従来から用いられてきた隔壁オーバー方式に比べ、接続に必要な導体を短くすることができるので、電圧特性が向上し、使用する鉛合金の量も低減可能となる利点を有している。
Conventionally, several methods have been used for inter-cell connection of lead acid batteries.
As a typical method, a partition wall penetration method (through partition method) is known (for example, see Patent Document 1). In this through partition system, intermediate poles in adjacent cell chambers are welded and connected to each other through a partition wall through a partition wall. This has the advantage that the conductor required for connection can be shortened compared to the partition over method that has been used conventionally, so that the voltage characteristics are improved and the amount of lead alloy used can be reduced. .

スルーパーティション方式の鉛蓄電池の溶接部においては、セル間接続体(中間極柱)は複数枚の極板の耳部を溶接一体化させたものである。そして、セル間接続体が隣接するセル間の隔壁に設けられた貫通孔において溶接されている。このスルーパーティション方式では、溶接部に要求される特性を確保し、かつ、量産性に優れているという理由から、抵抗溶接を採用している。
スルーパーティション方式の抵抗溶接においては、セル間の隔壁に設けた貫通孔を挟む形でセル間接続体(中間極柱)を配置する。
次に、電極を押圧した状態で正負それぞれのセル間接続体に接触させ、この電極により両セル間接続体を加圧して変形させ、セル間の隔壁の貫通孔内へ導入して、貫通孔内部で両セル間接続体を接触させる。その後、電極に所定の溶接電流を流して、両セル間接続体の接触面で抵抗溶接を行う。
In the weld portion of the lead-part battery of the through partition system, the inter-cell connector (intermediate pole column) is obtained by welding and integrating the ear portions of a plurality of electrode plates. And the connection body between cells is welded in the through-hole provided in the partition between the adjacent cells. In this through partition method, resistance welding is adopted because the characteristics required for the welded portion are ensured and the mass productivity is excellent.
In the resistance welding of the through partition method, the inter-cell connection body (intermediate pole column) is arranged so as to sandwich the through hole provided in the partition between the cells.
Next, the electrode is pressed and brought into contact with the positive and negative intercellular connecting bodies, and the intercellular connecting bodies are pressed and deformed by the electrodes, introduced into the through holes of the partition walls between the cells. The connecting body between both cells is brought into contact inside. Thereafter, a predetermined welding current is passed through the electrodes, and resistance welding is performed on the contact surfaces of the connection bodies between the cells.

特開平10−106535号公報Japanese Patent Laid-Open No. 10-106535

ところで、この抵抗溶接時に正負それぞれのセル間接続体の間に絶縁物あるいは不純物が存在すると、溶接不十分となったり、セル間接続体を構成している鉛合金が溶けて溶融鉛が飛散してしまったりする可能性がある。
また、溶接不十分な状態や、溶融鉛が飛散した状態であっても、外観からはその発見が困難であるという問題点があった。
さらに溶接時の溶融鉛の飛散は、その後の化成工程や、実際の使用状態において動作不良などの不具合が生じる可能性があり、セル間接続体の溶接状態を非破壊で確実に検出できることが望まれていた。
そこで、本発明の目的は、電槽隔壁を介して隣接するセル内に配置されたセル間接続体同士を、隔壁の貫通孔内において溶接することにより得られる溶接部の欠陥を非破壊で確実に検出することができる検査装置を提供することにある。
By the way, if there are insulators or impurities between the positive and negative intercellular connections during this resistance welding, welding will be insufficient, or the lead alloy that constitutes the intercellular connections will melt and molten lead will scatter. There is a possibility that it will be.
In addition, there is a problem that it is difficult to find from the appearance even in a state where welding is insufficient or molten lead is scattered.
Furthermore, the scattering of molten lead at the time of welding may cause malfunctions such as a malfunction during the subsequent chemical conversion process or in actual use, and it is hoped that the welded state of the inter-cell connected body can be reliably detected without destruction. It was rare.
Therefore, an object of the present invention is to ensure non-destructive defects in the welded portion obtained by welding the inter-cell connecting members arranged in the adjacent cells via the battery case partition walls in the through holes of the partition walls. It is an object of the present invention to provide an inspection apparatus capable of detecting the above.

上記課題を解決するため、本発明は、同極性極板の耳部がそれぞれ集合溶接された金属材料製の複数のストラップと、各前記ストラップから導出されたセル間接続体と、貫通孔を有する電槽隔壁と、を有する鉛蓄電池における、前記貫通孔を介して溶接された一対の前記セル間接続体の溶接部の状態を、電磁誘導探傷法を用いて検査する検査装置において、交流磁束を発生して送信し、前記溶接部を通過させて、通過後の前記交流磁束を受信して検査信号を出力する検出コイルと、前記溶接部を通過し前記耳部に向かう前の交流磁束を記検出コイルの受信側に導く磁路形成部材と、前記検査信号に基づいて、前記溶接部の状態の適否を判別する判別部と、を備えたことを特徴としている。   In order to solve the above-mentioned problems, the present invention has a plurality of straps made of a metal material in which the ears of the same polarity electrode plate are each welded together, an inter-cell connecting body derived from each of the straps, and a through hole In an inspection apparatus for inspecting the state of a welded portion of the pair of inter-cell connecting bodies welded through the through holes in a lead storage battery having a battery case partition wall using an electromagnetic induction flaw detection method, A detection coil that generates and transmits, passes through the weld, receives the alternating magnetic flux after passing through, and outputs an inspection signal; and describes the alternating magnetic flux that passes through the weld and travels toward the ear. The magnetic path forming member led to the receiving side of the detection coil, and a determination unit that determines the suitability of the state of the welded part based on the inspection signal.

上記構成によれば、検出コイルは、交流磁束を発生して送信し、前記溶接部を通過させる。
これにより、磁路形成部材は、溶接部を通過し耳部に向かう前の交流磁束を前記検出コイルの受信側に導き、検出コイルは受信した交流磁束に基づいて検査信号を判別部に出力する。
判別部は、検査信号に基づいて、セル間接続体の溶接部の状態(溶接部における溶接状態)の適否を判別する。
According to the said structure, a detection coil produces | generates and transmits alternating current magnetic flux, and lets the said welding part pass.
As a result, the magnetic path forming member guides the alternating magnetic flux that has passed through the welded portion and headed toward the ear portion to the receiving side of the detection coil, and the detection coil outputs an inspection signal to the determination unit based on the received alternating magnetic flux. .
A discrimination | determination part discriminate | determines the suitability of the state (welding state in a welding part) of the welding part of the connection body between cells based on an inspection signal.

したがって、交流磁束は、溶接部を通過し、耳部に向かう前に検出コイルの受信側に導かれるため、ストラップと耳部との集合溶接部分の形状、あるいは、集合溶接部分の溶接状態の影響を受けることなく、セル間接続体の溶接部の溶接状態の適否を判別することができ、より正確に溶接状態の適否を判別することができる。   Therefore, the AC magnetic flux passes through the welded portion and is guided to the receiving side of the detection coil before going to the ear portion. Therefore, the influence of the shape of the collective weld portion between the strap and the ear portion, or the weld state of the collective weld portion. Therefore, the suitability of the welded state of the welded portion of the inter-cell connected body can be determined, and the suitability of the welded state can be determined more accurately.

この場合において、前記磁路形成部材及び前記検出コイルが前記セル間接続体に直接触れないように前記検出コイルに対向するようにカバー部を設け、該カバー部と検出コイルとを一体に保持した検査プロープを備えることが好ましい。
上記構成によれば、検査プローブをセル間接続体に対し、適切な位置に配置するだけで、検出コイルから送信された交流磁束を、確実に溶接部を通過させ、耳部に向かう前に検出コイルの受信側に導かせることができるので、より容易に検査を行うことができる。
In this case, a cover portion is provided so as to face the detection coil so that the magnetic path forming member and the detection coil do not directly contact the inter-cell connection body, and the cover portion and the detection coil are integrally held. It is preferable to provide an inspection probe.
According to the above configuration, the AC magnetic flux transmitted from the detection coil can be reliably passed through the welded portion and detected before heading to the ears by simply placing the inspection probe at an appropriate position with respect to the inter-cell connector. Since the coil can be guided to the receiving side, the inspection can be performed more easily.

また、前記磁路形成部材は、前記ストラップを構成する金属材料の比透磁率よりも大きな比透磁率を有する非磁性体で構成されているようにしてもよい。
上記構成によれば、溶接部を通過した後の交流磁束を確実に耳部に向かう前に検出コイルの受信側に導かせることができるので、ストラップと耳部との集合溶接部分の形状あるいは溶接状態の影響を受けることなく、確実に検査が行える。
The magnetic path forming member may be made of a nonmagnetic material having a relative permeability larger than that of a metal material constituting the strap.
According to the above configuration, since the alternating magnetic flux after passing through the welded portion can be reliably guided to the receiving side of the detection coil before going to the ear portion, the shape or welding of the collective weld portion between the strap and the ear portion The inspection can be performed reliably without being affected by the condition.

本発明によれば、ストラップと耳部との集合溶接部分の形状、あるいは、集合溶接部分の溶接状態の影響を受けることなく、セル間接続部の溶接部の欠陥を非破壊で確実に検出することができるという効果を奏する。   According to the present invention, it is possible to reliably detect non-destructive defects in the welded portion of the inter-cell connecting portion without being affected by the shape of the collective welded portion between the strap and the ear or the welding state of the collective welded portion. There is an effect that can be.

実施形態の検査装置の概要構成ブロック図である。It is a general | schematic block diagram of the inspection apparatus of embodiment. 検出プローブの外観斜視図である。It is an external appearance perspective view of a detection probe. 検出プローブの動作説明図である。It is operation | movement explanatory drawing of a detection probe. セル室を有する電槽を備えた鉛蓄電池の良品/不良品判定結果の説明図である。It is explanatory drawing of the non-defective product / defective product determination result of the lead storage battery provided with the battery case having the cell chamber.

以下、図面を参照して本発明の実施形態について説明する。
図1は、実施形態の検査装置の概要構成ブロック図である。
検査装置10は、大別すると、検出コイル11を有し、鉛蓄電池12を構成するストラップ13A、13Bから導出されたセル間接続体14A、14Bの溶接部15に対向して溶接部15の検査を行うための検査プローブ16と、参照コイル17と、検出コイル11及び参照コイル17からの検査信号SD1、SD2に基づいて溶接部15の適否判定を行う検査装置本体18と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration block diagram of an inspection apparatus according to an embodiment.
The inspection apparatus 10 has a detection coil 11 and is roughly divided to inspect the welded portion 15 so as to face the welded portion 15 of the inter-cell connectors 14A and 14B derived from the straps 13A and 13B constituting the lead storage battery 12. An inspection probe 16, a reference coil 17, and an inspection apparatus main body 18 that determines the suitability of the welded portion 15 based on inspection signals SD1 and SD2 from the detection coil 11 and the reference coil 17.

次に検査対象の鉛蓄電池の構成について説明する。なお、図1においては、電槽内が6個のセル室に仕切られた6セルモノブロック式の鉛蓄電池の電槽の部分断面図が示されており、隣接する二つのセル室22を示しているが、実際には6つのセル室22からなる電槽を有する鉛蓄電池である。
鉛蓄電池12は、スルーパーティション方式のモノブロック式鉛蓄電池であり、電槽内は、電槽隔壁21により各セル室22に仕切られ、電槽隔壁21の上部には貫通孔21Aが形成されている。
各セル室22内には、図示しない複数の正極板と、負極板とが図示しないセパレーターを介して交互に積層された極板群が収容されており、符号13Aは、二つのセル室22のうち、一方のセル室22内に収納された極板群の正極板のみの複数の耳部23Aをキャストオンストラップ法(COS)等により形成したストラップである。また符号13Bは、他方のセル室22内に収納された極板群の負極板のみの複数の耳部23Bをキャストオンストラップ法(COS)等により形成したストラップである。
各ストラップ13A、13Eは、金属材料(鉛合金等)で形成されている。各ストラップ13A、13Bの一端側の端部には、上方に起立するセル間接続体14A、14Bが導出されており、このセル間接続体14A、14Bは、電槽隔壁21の貫通孔21A内で溶接などによって一体化されている。
Next, the configuration of the lead storage battery to be inspected will be described. In addition, in FIG. 1, the fragmentary sectional view of the battery case of the 6-cell monoblock type lead-acid battery in which the inside of the battery case is divided into six cell chambers is shown, and two adjacent cell chambers 22 are shown. Although it is actually a lead storage battery having a battery case composed of six cell chambers 22.
The lead storage battery 12 is a through-partition type monoblock lead storage battery, and the inside of the battery case is partitioned into cell chambers 22 by battery case partition walls 21, and through holes 21 </ b> A are formed above the battery case partition walls 21. Yes.
Each cell chamber 22 accommodates a group of electrode plates in which a plurality of positive electrode plates and negative electrode plates (not shown) are alternately stacked via separators (not shown). Reference numeral 13A denotes two cell chambers 22. Of these, a plurality of ears 23 </ b> A of only the positive electrode plate of the electrode plate group housed in one cell chamber 22 is formed by a cast-on strap method (COS) or the like. Reference numeral 13 </ b> B is a strap in which a plurality of ears 23 </ b> B of only the negative electrode plate of the electrode plate group housed in the other cell chamber 22 is formed by a cast-on strap method (COS) or the like.
Each strap 13A, 13E is formed of a metal material (such as a lead alloy). The inter-cell connecting bodies 14A and 14B that stand upward are led out from the end portions of the straps 13A and 13B on the one end side. The inter-cell connecting bodies 14A and 14B are provided in the through holes 21A of the battery cell partition wall 21. It is integrated by welding.

そして、正極のセル間接続体14Aと、負極のセル間接続体14Bとが貫通孔21Aを介して両面で密着して互いに対向して配置され、圧接した状態で抵抗溶接され、溶接部15が形成されている。
そして、図示しない両端のセル室22のストラップ13A、13Bからそれぞれ導出された正極柱および負極柱を図示しない電槽蓋体を介して上方に起立する正極端子、負極端子を形成し、鉛蓄電池として構成している。
Then, the positive inter-cell connection body 14A and the negative inter-cell connection body 14B are arranged in close contact with each other through the through-hole 21A and face each other, resistance welded in a pressure contact state, and the weld 15 Is formed.
Then, a positive electrode terminal and a negative electrode terminal respectively led out from the straps 13A and 13B of the cell chambers 22 at both ends (not shown) are formed to rise upward via a battery case cover (not shown) to form a lead storage battery. It is composed.

図2は、検出プローブの外観斜視図である。
また、図3は、検出プローブの動作説明図である。
検査プローブ16は、交流磁束を発生する検出コイル11と、検出コイル11から引き出された信号ケーブル31と、検査時にセル間接続体14A、14Bを構成する金属材料に検出コイル11が直接ふれないようにするための樹脂製のカバー部32と、セル間接続体14A、14Bにおける溶接部15を通過し耳部23A、23Bに向かう前の交流磁束を捕捉し、検出コイル11の受信側に導く磁路形成部材33と、を備えている。
FIG. 2 is an external perspective view of the detection probe.
FIG. 3 is an explanatory diagram of the operation of the detection probe.
The inspection probe 16 prevents the detection coil 11 from directly touching the detection coil 11 that generates AC magnetic flux, the signal cable 31 drawn from the detection coil 11, and the metal material that constitutes the inter-cell connectors 14A and 14B at the time of inspection. The magnetic flux that passes through the resin-made cover portion 32 and the welded portion 15 in the inter-cell connectors 14A and 14B and captures the alternating magnetic flux before going to the ear portions 23A and 23B and guides it to the receiving side of the detection coil 11 A path forming member 33.

ここで、磁路形成部材33について説明する。
磁路形成部材33としては、ストラップ13A、13Bを構成する金属材料(鉛合金)の比透磁率よりも大きな比透磁率を有する非磁性体材料で構成する。
具体的には、ストラップ13A、13Bの比透磁率=0.999の場合に、比透磁率=1.015のステンレス(SUS304)を磁路形成部材33としている。
この場合において、本実施形態では、磁路形成部材33を板状としているが、このときストラップ13A、13B側から見て、直径xφ、厚さL1の検出コイル11が見えないように下方側を覆うように、幅W≧x、奥行きL2≧L1となるように磁路形成部材33の寸法を定めるのが好ましい。
Here, the magnetic path forming member 33 will be described.
The magnetic path forming member 33 is made of a nonmagnetic material having a relative permeability larger than that of the metal material (lead alloy) constituting the straps 13A and 13B.
Specifically, when the relative permeability of the straps 13 </ b> A and 13 </ b> B is 0.999, stainless steel (SUS304) having a relative permeability = 1.015 is used as the magnetic path forming member 33.
In this case, in this embodiment, the magnetic path forming member 33 has a plate shape, but when viewed from the strap 13A, 13B side at this time, the lower side is arranged so that the detection coil 11 having the diameter xφ and the thickness L1 cannot be seen. It is preferable to determine the dimensions of the magnetic path forming member 33 so as to cover the width W ≧ x and the depth L2 ≧ L1.

また、この好ましい寸法よりも幅Wあるいは奥行きL2が小さい場合でも実用的には問題がない場合があるが、その場合には、検出コイル11への印加電圧あるいは交流磁束の周波数を適宜設定するのが好ましい。ここで、印加電圧を変更すると、検査範囲が変わり、交流磁束の周波数を変更すると、磁力線の透過しやすさが変わることとなる。
すなわち、印加電圧を高くすると検査範囲が広くなり、交流磁束の周波数を上げると磁力線の透過がしがたくなる。
また、板状ではなく、磁路形成部材33を円筒を直径部分で切った半円筒状としたり、検出コイル11の周囲を覆うことが可能な円筒形状や、断面矩形状の筒形状としたりしてもよい。
Further, even if the width W or the depth L2 is smaller than this preferred dimension, there may be no practical problem. In this case, the voltage applied to the detection coil 11 or the frequency of the alternating magnetic flux is appropriately set. Is preferred. Here, when the applied voltage is changed, the inspection range is changed, and when the frequency of the alternating magnetic flux is changed, the ease of transmission of the magnetic lines of force is changed.
That is, when the applied voltage is increased, the inspection range is widened, and when the frequency of the alternating magnetic flux is increased, it is difficult to transmit the magnetic lines of force.
Further, the magnetic path forming member 33 is not a plate, but a semi-cylindrical shape in which a cylinder is cut at a diameter portion, a cylindrical shape capable of covering the periphery of the detection coil 11, or a cylindrical shape having a rectangular cross section. May be.

次に検出コイル11とストラップ13A、13Bとの配置関係について詳細に説明する。
検出コイル11は、図2に示すように、略ドーナツ形状を有しており、その発生する磁界中の磁束経路中にストラップ13A、13Bから導出されたセル間接続体14A、14Bを溶接することにより得られる溶接部15が位置するように、図3に示すように、検出コイル11の回転中心軸CCが電槽隔壁21の貫通孔21Aの中心とほぼ一致するように配置することが好ましい。
このため、磁路形成部材33の厚さは、検出コイル11の回転中心軸CCが貫通孔21Aの中心とほぼ一致するのを必要以上に妨げない厚さとすることが好ましい。
Next, the arrangement relationship between the detection coil 11 and the straps 13A and 13B will be described in detail.
As shown in FIG. 2, the detection coil 11 has a substantially donut shape, and welds the inter-cell connectors 14A and 14B led out from the straps 13A and 13B into the magnetic flux path in the generated magnetic field. As shown in FIG. 3, the rotation center axis CC of the detection coil 11 is preferably arranged so as to substantially coincide with the center of the through hole 21 </ b> A of the battery case partition 21 so that the welded portion 15 obtained by the above is located.
For this reason, the thickness of the magnetic path forming member 33 is preferably set to a thickness that does not unnecessarily prevent the rotation center axis CC of the detection coil 11 from being substantially coincident with the center of the through hole 21A.

また、検出コイル11は、できる限りセル間接続体14A、14Bに近い方が交流磁束の利用効率的にも好ましいので、図3に示すように、カバー部32のすぐ裏面に配置されている。この場合において、カバー部32の厚さは、0.5〜1mm程度とすることが好ましい。
続いて、検査原理について説明する。
参照コイル17により送信され、受信されて出力される検査信号SD2は、検出対象を地磁気以外の影響を受けていない大気としているため、一様であり、変動しない。
Further, since the detection coil 11 is preferably as close to the inter-cell connecting bodies 14A and 14B as possible from the viewpoint of the utilization efficiency of the alternating magnetic flux, it is disposed immediately on the back surface of the cover portion 32 as shown in FIG. In this case, the thickness of the cover part 32 is preferably about 0.5 to 1 mm.
Next, the inspection principle will be described.
The inspection signal SD2 transmitted, received, and output by the reference coil 17 is uniform and does not fluctuate because the detection target is the atmosphere not affected by anything other than geomagnetism.

これに対し、検出コイル11により送信されて受信されて出力される検査信号SD1は、溶接部15の状態(不純物、鬆(す)、割れなどの不均一層の存在)により大きく影響を受け、磁力線の実効的な経路長等が変化し、検出コイル11により受信された交流磁束により発生する電圧の振幅および位相が変化することとなるので、これに対応する検査信号SD1が入力された検査装置本体18は、検査信号SD2に対応する交流磁束により発生する電圧の振幅及び位相と比較して、これらを解析することにより、溶接部15の良品/不良品を判別することができることとなる。   On the other hand, the inspection signal SD1 transmitted and received and output by the detection coil 11 is greatly influenced by the state of the welded portion 15 (the presence of non-uniform layers such as impurities, voids, cracks, etc.) Since the effective path length of the magnetic field lines changes and the amplitude and phase of the voltage generated by the AC magnetic flux received by the detection coil 11 change, the inspection apparatus to which the corresponding inspection signal SD1 is input. The main body 18 compares the amplitude and phase of the voltage generated by the AC magnetic flux corresponding to the inspection signal SD2 and analyzes them to determine whether the welded part 15 is good or defective.

例えば、不良品に対応する検査信号SD1の波形は、検査信号SD2の波形に対し、電圧が高く位相がずれることとなる。したがって、電圧差あるいは位相差について、良品/不良品を識別するためのしきい値を予め定めておくことにより、検査装置本体18は、このしきい値を超えたら不良品として判別するようにしている。この場合において、検査により得られる位相差は、ストラップや耳部の形状、材料などにより大きく変化するため、良品/不良品判定のためのしきい値THは、検査対象により実験などにより定めることとなる。   For example, the waveform of the inspection signal SD1 corresponding to the defective product is higher in voltage and out of phase with respect to the waveform of the inspection signal SD2. Accordingly, by determining in advance a threshold value for identifying a non-defective product / defective product for the voltage difference or the phase difference, the inspection apparatus body 18 determines that the product is defective when the threshold value is exceeded. Yes. In this case, since the phase difference obtained by the inspection varies greatly depending on the shape and material of the strap and the ear part, the threshold value TH for determining the non-defective product / defective product is determined by an experiment or the like depending on the inspection object. Become.

次に具体的な動作について説明する。
まず、検査装置本体18は、予め設定された電圧及び周波数の交流電力を検出コイル11及び参照コイル17に出力する。
これにより所定の周波数を有する交流磁束が検出コイル11及び参照コイル17から送信されることとなる。
この状態で、オペレーターが検査プローブ16の把持部16Aを把持して、図3に示すように、ストラップ13Bの上面に検査プローブ16を載せ、カバー部32をセル間接続体14Bに押し当てるようにすると、検出コイル11の回転中心軸CCは、溶接部15の中心とほぼ一致するような位置となる。
Next, a specific operation will be described.
First, the inspection apparatus body 18 outputs AC power having a preset voltage and frequency to the detection coil 11 and the reference coil 17.
As a result, an alternating magnetic flux having a predetermined frequency is transmitted from the detection coil 11 and the reference coil 17.
In this state, the operator holds the grip 16A of the inspection probe 16, places the inspection probe 16 on the upper surface of the strap 13B, and presses the cover 32 against the inter-cell connector 14B as shown in FIG. Then, the rotation center axis CC of the detection coil 11 is positioned so as to substantially coincide with the center of the welded portion 15.

そして、溶接部15の中心より上方では、検出コイル11の送信側(図3中、検出コイル11の左端面)から送信された交流磁束は、図3に実線MG1,MG2で示すような経路に沿って溶接部15を通過して再び検出コイル11の受信側(図3中、検出コイル11の右端面)に受信されることとなる。
一方、溶接部15の中心より下方では、検出コイル11から送信された交流磁束は、磁路形成部材33を設けない場合には、図3に破線MG3で示すような経路に沿って溶接部15を通過して再び検出コイル11に受信されることとなる。この結果、ストラップ13Aの下方に溶接されている耳部23Aおよびストラップ13Bの下方に溶接されている耳部23Bの材料および形状の影響を受けてしまうこととなり、正確な溶接部15の状態を把握することは困難となるが、本実施形態では、磁路形成部材33としてSUS304の板状部材を検出コイル11とストラップ13Bとの間の位置に配置するようにしているので、検出コイル11から送信された交流磁束は、図3に実線MG2で示すように、ストラップ13Bよりも交流磁束が通過しやすい、磁路形成部材33の中、あるいは、近傍を通って、再び検出コイル11に受信されることとなる。
Above the center of the welded portion 15, the AC magnetic flux transmitted from the transmission side of the detection coil 11 (the left end surface of the detection coil 11 in FIG. 3) follows a path as indicated by solid lines MG <b> 1 and MG <b> 2 in FIG. 3. Then, it passes through the welded portion 15 and is received again on the receiving side of the detection coil 11 (the right end surface of the detection coil 11 in FIG. 3).
On the other hand, below the center of the welded portion 15, the AC magnetic flux transmitted from the detection coil 11, when the magnetic path forming member 33 is not provided, is along the path indicated by the broken line MG <b> 3 in FIG. 3. Will be received by the detection coil 11 again. As a result, it will be influenced by the material and shape of the ear | edge part 23A welded under the strap 13A and the ear | edge part 23B welded under the strap 13B, and the exact state of the welded part 15 will be grasped. In this embodiment, since the plate-like member of SUS304 is arranged as a magnetic path forming member 33 at a position between the detection coil 11 and the strap 13B, transmission from the detection coil 11 is performed. As shown by the solid line MG <b> 2 in FIG. 3, the AC magnetic flux is received by the detection coil 11 again through or near the magnetic path forming member 33 where the AC magnetic flux passes more easily than the strap 13 </ b> B. It will be.

この結果、ストラップ13Aの下方に溶接されている耳部23Aおよびストラップ13Bの下方に溶接されている耳部23Bの材料および形状の影響を受けずに、溶接部15の情報を含む検査信号SD1を得ることが可能となっている。   As a result, the inspection signal SD1 including the information of the welded portion 15 is obtained without being affected by the material and shape of the ear 23A welded below the strap 13A and the ear 23B welded below the strap 13B. It is possible to obtain.

図4は、セル室を有する電槽を備えた鉛蓄電池の良品/不良品判定結果の説明図である。
一つの鉛蓄電池12が6個のセル室22を有する電槽とした場合には、溶接部15は、電槽隔壁21の枚数5枚と等しい、5箇所存在する。
そこで、二つの鉛蓄電池A、Bのそれぞれの溶接部について、上述したような方法で、測定結果を得ると、得られる位相差(°)は、図4に示すようなものとなっていた。
この場合に、不良品判別用のしきい値THとして、位相差20°と設定したとすると、一方の鉛蓄電池Aは、全ての溶接部15において、しきい値TH=位相差20°以下となっているため、検査装置本体18により良品と判別される。
FIG. 4 is an explanatory diagram of a non-defective / defective product determination result of a lead storage battery including a battery case having a cell chamber.
When one lead storage battery 12 is a battery case having six cell chambers 22, there are five welds 15, which is equal to the number of battery wall partitions 21.
Therefore, when the measurement results are obtained by the above-described method for the welded portions of the two lead storage batteries A and B, the obtained phase difference (°) is as shown in FIG.
In this case, assuming that a phase difference of 20 ° is set as the threshold TH for defective product discrimination, one lead storage battery A has a threshold TH = phase difference of 20 ° or less in all the welds 15. Therefore, the inspection apparatus body 18 determines that the product is non-defective.

これに対し、他方の鉛蓄電池Bは、第三番目の溶接部15の検査により得られる位相差は、しきい値TH=位相差20°を越えていたため、検査装置本体18により不良品と判別されることとなった。
この場合において、同一の鉛蓄電池に対して、磁路形成部材33を設けた場合には、溶接部15が良品である場合には、その値が磁路形成部材33を設けない場合と比較して位相差が小さく検出され、溶接部15が不良品である場合には、その値が磁路形成部材33を設けない場合と比較して位相差が大きく検出されていた。
このため、磁路形成部材33を設けなかった従来においては、しきい値THをより大きな値とする必要があり(例えば、従来はしきい値THを位相差30°に設定)、検査精度をあまり高くすることができなかったが、本実施形態のように磁路形成部材33を設けることで、しきい値THを上述したように小さな値とすることができ、より確実、かつ、高精度で不良品を判別できることがわかった。
On the other hand, the other lead storage battery B is determined to be defective by the inspection apparatus body 18 because the phase difference obtained by the inspection of the third welded portion 15 exceeds the threshold value TH = phase difference of 20 °. It was to be done.
In this case, when the magnetic path forming member 33 is provided for the same lead storage battery, when the welded portion 15 is a non-defective product, the value is compared with the case where the magnetic path forming member 33 is not provided. In the case where the phase difference is detected to be small and the welded part 15 is a defective product, the phase difference is detected to be large compared to the case where the magnetic path forming member 33 is not provided.
For this reason, in the conventional case where the magnetic path forming member 33 is not provided, the threshold value TH must be set to a larger value (for example, the threshold value TH is conventionally set to a phase difference of 30 °), and the inspection accuracy is improved. Although it could not be increased too much, by providing the magnetic path forming member 33 as in the present embodiment, the threshold value TH can be set to a small value as described above, and it is more reliable and highly accurate. It has been found that defective products can be identified.

以上の説明のように、本実施形態によれば、検出コイル11により発生された交流磁束は、セル間接続体14A、14Bの溶接部15を通過し、検出コイル11に戻ることとなるが、このとき、磁路形成部材33によりセル間接続体14A、14Bにおける溶接部15を通過し耳部23A、23Bに向かう前の交流磁束は、捕捉されて耳部23A、23B側をほとんど通らずに検出コイル11の受信側に導かれるので、それらによる検査信号の劣化(ノイズの増加など)を招くことなく、良好な検査信号を得ることができ、ひいては、確実に鉛蓄電池の溶接部の良品/不良品判定を行うことができる。   As described above, according to the present embodiment, the alternating magnetic flux generated by the detection coil 11 passes through the welded portion 15 of the inter-cell connectors 14A and 14B and returns to the detection coil 11. At this time, the alternating magnetic flux before passing through the welded portion 15 in the inter-cell connectors 14A and 14B to the ear portions 23A and 23B by the magnetic path forming member 33 is captured and hardly passes through the ear portions 23A and 23B side. Since it is guided to the receiving side of the detection coil 11, it is possible to obtain a good inspection signal without causing deterioration of the inspection signal (increase in noise or the like) due to them, and as a result, it is possible to reliably produce a good / A defective product can be determined.

以上の説明においては、磁路形成部材33として、ステンレスの場合について説明したが、ストラップ13A、13Bおよび耳部23A、23Bを含む交流磁束の通路の実効的な比透磁率よりも大きな比透磁率を有し、かつ、非磁性体(おおよそ比透磁率として、1.02未満の材料)であれば、同様に適用が可能である。   In the above description, the case where stainless steel is used as the magnetic path forming member 33 has been described. However, the relative permeability larger than the effective relative permeability of the AC magnetic flux path including the straps 13A and 13B and the ear portions 23A and 23B. And a non-magnetic material (approximately less than 1.02 as a relative permeability) can be similarly applied.

10 検査装置
11 検出コイル
12 鉛蓄電池
13A ストラップ
13B ストラップ
14A、14B セル間接続体
15 溶接部
16 検査プローブ
17 参照コイル
18 検査装置本体(判別部)
21 電槽隔壁
21A 貫通孔
22 セル室
23A、23B 耳部
32 カバー部
33 磁路形成部材
CC 回転中心軸
SD1、SD2 検査信号
TH しきい値
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 11 Detection coil 12 Lead storage battery 13A Strap 13B Strap 14A, 14B Connection between cells 15 Welding part 16 Inspection probe 17 Reference coil 18 Inspection apparatus main body (discriminating part)
21 Battery case 21A Through hole 22 Cell chamber 23A, 23B Ear 32 Cover 33 Magnetic path forming member CC Rotation center axis SD1, SD2 Inspection signal TH threshold

Claims (2)

同極性極板の耳部がそれぞれ集合溶接された金属材料製の複数のストラップと、各前記ストラップから導出されたセル間接続体と、貫通孔を有する電槽隔壁と、を有する鉛蓄電池における、前記貫通孔を介して溶接された一対の前記セル間接続体の溶接部の状態を、電磁誘導探傷法を用いて検査する検査装置において、
交流磁束を発生して送信し、前記溶接部を通過させて、通過後の前記交流磁束を受信して検査信号を出力する検出コイルと、
前記溶接部を通過し前記耳部に向かう前の交流磁束を記検出コイルの受信側に導く磁路形成部材と、
前記検査信号に基づいて、前記溶接部の状態の適否を判別する判別部と、
を備えたことを特徴とする検査装置。
In a lead-acid battery having a plurality of straps made of metal materials in which the ears of the same polarity electrode plates are respectively welded together, an inter-cell connecting body derived from each of the straps, and a battery case partition wall having a through hole, In the inspection apparatus for inspecting the state of the welded portion of the pair of inter-cell connected bodies welded through the through hole using an electromagnetic induction flaw detection method,
A detection coil that generates and transmits an alternating magnetic flux, passes through the weld, receives the alternating magnetic flux after passage, and outputs an inspection signal;
A magnetic path forming member that guides the alternating magnetic flux before passing through the weld and toward the ear to the receiving side of the detection coil;
Based on the inspection signal, a determination unit that determines the suitability of the state of the weld,
An inspection apparatus comprising:
請求項1記載の検査装置において、
前記磁路形成部材は、前記ストラップを構成する金属材料の比透磁率よりも大きな比透磁率を有する非磁性体で構成されていることを特徴とする検査装置。
The inspection apparatus according to claim 1,
2. The inspection apparatus according to claim 1, wherein the magnetic path forming member is made of a nonmagnetic material having a relative permeability larger than a relative permeability of a metal material constituting the strap.
JP2009178235A 2009-07-30 2009-07-30 Inspection device Active JP5456405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178235A JP5456405B2 (en) 2009-07-30 2009-07-30 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178235A JP5456405B2 (en) 2009-07-30 2009-07-30 Inspection device

Publications (2)

Publication Number Publication Date
JP2011034731A true JP2011034731A (en) 2011-02-17
JP5456405B2 JP5456405B2 (en) 2014-03-26

Family

ID=43763627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178235A Active JP5456405B2 (en) 2009-07-30 2009-07-30 Inspection device

Country Status (1)

Country Link
JP (1) JP5456405B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167747A1 (en) * 2012-12-17 2014-06-19 Hyundai Motor Company Welded portion quality determining system
CN111906051A (en) * 2020-06-24 2020-11-10 风帆有限责任公司 Welding quality detection equipment for storage battery busbar
CN113497309A (en) * 2021-08-02 2021-10-12 安徽和鼎机电设备有限公司 Lithium battery electrode series or parallel assembling and welding device
CN113748338A (en) * 2019-07-30 2021-12-03 株式会社Lg新能源 Method for evaluating resistance welding quality of battery by using eddy current signal characteristics
CN117169753A (en) * 2023-11-03 2023-12-05 合肥国轩高科动力能源有限公司 Method and device for determining parameters of electric connection pieces of batteries connected in series and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126543A (en) * 1985-11-28 1987-06-08 Toshiba Battery Co Ltd Manufacture of sealed battery
JPS62200656A (en) * 1986-02-26 1987-09-04 Shin Kobe Electric Mach Co Ltd Defect detecting method for cast-on weld
JPH03218456A (en) * 1989-02-28 1991-09-26 Sumitomo Chem Co Ltd Method for measuring carburization thickness and probe for measurement
JPH0627086A (en) * 1992-07-07 1994-02-04 Matsushita Electric Ind Co Ltd Inspecting method of lead storage battery
JPH07311180A (en) * 1994-05-19 1995-11-28 Hitachi Cable Ltd Eddy current flaw detection coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126543A (en) * 1985-11-28 1987-06-08 Toshiba Battery Co Ltd Manufacture of sealed battery
JPS62200656A (en) * 1986-02-26 1987-09-04 Shin Kobe Electric Mach Co Ltd Defect detecting method for cast-on weld
JPH03218456A (en) * 1989-02-28 1991-09-26 Sumitomo Chem Co Ltd Method for measuring carburization thickness and probe for measurement
JPH0627086A (en) * 1992-07-07 1994-02-04 Matsushita Electric Ind Co Ltd Inspecting method of lead storage battery
JPH07311180A (en) * 1994-05-19 1995-11-28 Hitachi Cable Ltd Eddy current flaw detection coil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167747A1 (en) * 2012-12-17 2014-06-19 Hyundai Motor Company Welded portion quality determining system
US9176097B2 (en) * 2012-12-17 2015-11-03 Hyundai Motor Company Welded portion quality determining system
CN113748338A (en) * 2019-07-30 2021-12-03 株式会社Lg新能源 Method for evaluating resistance welding quality of battery by using eddy current signal characteristics
EP3922394A4 (en) * 2019-07-30 2022-04-20 LG Energy Solution, Ltd. Method for evaluating resistance welding quality of battery by using eddy current signal characteristics
JP2022525864A (en) * 2019-07-30 2022-05-20 エルジー エナジー ソリューション リミテッド Quality evaluation method for resistance welding of batteries using the characteristics of eddy current signals
CN113748338B (en) * 2019-07-30 2023-10-10 株式会社Lg新能源 Method for evaluating resistance welding quality of battery by using eddy current signal characteristics
CN111906051A (en) * 2020-06-24 2020-11-10 风帆有限责任公司 Welding quality detection equipment for storage battery busbar
CN113497309A (en) * 2021-08-02 2021-10-12 安徽和鼎机电设备有限公司 Lithium battery electrode series or parallel assembling and welding device
CN117169753A (en) * 2023-11-03 2023-12-05 合肥国轩高科动力能源有限公司 Method and device for determining parameters of electric connection pieces of batteries connected in series and electronic equipment
CN117169753B (en) * 2023-11-03 2024-03-08 合肥国轩高科动力能源有限公司 Method and device for determining parameters of electric connection pieces of batteries connected in series and electronic equipment

Also Published As

Publication number Publication date
JP5456405B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5456405B2 (en) Inspection device
KR102151175B1 (en) Electrode damage inspection electrode damage method of pouch type secondary battery
CN113300050B (en) Inspection system for battery electrodes
US11543387B2 (en) Method for characterizing a weld
CN101520435A (en) Method and device for detecting corrosion of component with permeability magnetic material protective layer
JP7374327B2 (en) Big data-based battery inspection method
US10921294B2 (en) System for non-destructively inspecting and determining sealing of aluminum pouch by using ultrasonic waves
KR101509867B1 (en) Inspecting method and inspecting system
JP7152618B2 (en) Quality Evaluation Method of Battery Resistance Welding Using Characteristics of Eddy Current Signals
JP4175181B2 (en) Magnetic flux leakage flaw detector
JP2007115512A (en) Diagnostic method of fuel cell and fuel cell system with means for executing sane
KR20220095730A (en) System for detecting crack of battery cell using the eddy current sensor
JP6565849B2 (en) Magnetic flux leakage inspection device
KR20220090911A (en) Welding inspection device of cylindrical battery tab
KR20210057965A (en) An apparatus and method for detecting electrode damage in pouch type secondary battery
CN112985984A (en) Many electric core solder joints quality detection device
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
KR102659097B1 (en) Disconnection inspection system through precise measurement of disconnection length of pouch-type secondary battery cells
JP2018190509A (en) Inspection method for power storage device
CN111895901B (en) Method and system device for detecting gap between ferromagnetic and non-ferromagnetic metal plates
KR20220136851A (en) Nondestructive inspection method of inner crack of pouch type secondary battery
JP6492554B2 (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus
KR20220060880A (en) Eddy current sensor for detecting crack of battery cell and system for detecting crack of battery including the same
JP2017049211A (en) Inspection device and inspection method
KR20220095318A (en) Eddy current sensor for detecting crack of pouch type battery cell and method for detecting crack of battery cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150