JP2011034724A - Lithium battery, and electronic device using the same - Google Patents

Lithium battery, and electronic device using the same Download PDF

Info

Publication number
JP2011034724A
JP2011034724A JP2009177967A JP2009177967A JP2011034724A JP 2011034724 A JP2011034724 A JP 2011034724A JP 2009177967 A JP2009177967 A JP 2009177967A JP 2009177967 A JP2009177967 A JP 2009177967A JP 2011034724 A JP2011034724 A JP 2011034724A
Authority
JP
Japan
Prior art keywords
lithium battery
positive electrode
negative electrode
solid electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009177967A
Other languages
Japanese (ja)
Inventor
Shigeo Matsuzaki
滋夫 松崎
Hiromichi Kojika
博道 小鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009177967A priority Critical patent/JP2011034724A/en
Publication of JP2011034724A publication Critical patent/JP2011034724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium battery formed of a battery element which prevents warpage, distortion, peeling and cracks when a pressure is released. <P>SOLUTION: The lithium battery 1 includes a positive electrode layer 10, a solid electrolyte layer 20, and a negative electrode layer 30. The package pressure is 0-1 MPa, and a capacity maintenance rate at the 20th cycle is 80% or higher. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はリチウム二次電池に関し、さらにそれを備えた電子機器に関する。   The present invention relates to a lithium secondary battery, and further relates to an electronic device including the lithium secondary battery.

近年、ビデオカメラ、携帯電話、ポータブルパソコン等の携帯機器の普及に伴い、二次電池の需要が高まっている。現行のリチウムイオン二次電池には、電解質として有機系電解液が主に用いられている。
有機系電解液は高いイオン伝導度を示すものの、電解液が液体でかつ可燃性であることから電池として用いた場合、漏洩、発火等の危険性が懸念されている。次世代リチウムイオン二次電池用電解質として、より安全性の高い固体電解質の開発が期待されている。
全固体電池を実現するために、固体電解質の開発が精力的に行なわれているが、イオン伝導度が有機系電解液に比べて一般的に小さく、実用化が難しいのが現状である。
In recent years, with the widespread use of portable devices such as video cameras, mobile phones, and portable personal computers, the demand for secondary batteries has increased. In the current lithium ion secondary battery, an organic electrolyte is mainly used as an electrolyte.
Although the organic electrolyte exhibits high ionic conductivity, there is a concern about the risk of leakage, ignition, etc. when used as a battery because the electrolyte is liquid and flammable. Development of a safer solid electrolyte is expected as an electrolyte for next-generation lithium ion secondary batteries.
In order to realize an all-solid-state battery, solid electrolytes have been energetically developed, but the ionic conductivity is generally smaller than that of organic electrolytes, and the practical use is difficult.

固体電解質として室温で高いイオン伝導度(10−3Scm−1)を示す材料としてLiNをベースとするリチウムイオン伝導性セラミックが報告されているが、分解電圧が低く3V以上で作動する全固体電池を構成することが困難であった。 As a solid electrolyte, lithium ion conductive ceramics based on Li 3 N have been reported as materials exhibiting high ionic conductivity at room temperature (10 −3 Scm −1 ). It was difficult to construct a solid state battery.

硫化物系固体電解質としては、特許文献1に10−4Scm−1台の固体電解質を開示されており、また特許文献2ではLiSとPから合成された電解質で同様に10−4Scm−1台のイオン伝導性が開示されている。特許文献3ではLiSとPを68〜74モル%:26〜32モル%の比率で合成した硫化物系結晶化ガラスで10−3Scm−1台のイオン伝導性を実現している。 As a sulfide-based solid electrolyte, Patent Document 1 discloses 10 −4 Scm −1 solid electrolytes. In Patent Document 2, an electrolyte synthesized from Li 2 S and P 2 S 5 is similarly 10 -4 Scm- 1 ion conductivity is disclosed. In Patent Document 3, an ion conductivity of 10 −3 Scm −1 is realized by a sulfide-based crystallized glass in which Li 2 S and P 2 S 5 are synthesized in a ratio of 68 to 74 mol%: 26 to 32 mol%. ing.

酸化物系固体電解質も各種提案されているが、10−4〜5Scm−1台のイオン伝導性であり、満足できるものではなかった。 Various oxide-based solid electrolytes have been proposed, but the ion conductivity of 10 −4 to 5 Scm −1 units was not satisfactory.

上記特許文献のように正極、負極、固体電解質に粉体を適用する場合、電池性能(高容量、高電圧、サイクル特性)を向上させるためには、各粒子層の充填率を上げる必要があり、そのため高圧力下で成型する必要があった。また、上記特許文献に記載の電池では、高圧のパッケージ圧をかけなければ、電池として駆動しないという問題があった。   When the powder is applied to the positive electrode, the negative electrode, and the solid electrolyte as in the above patent document, it is necessary to increase the filling rate of each particle layer in order to improve the battery performance (high capacity, high voltage, cycle characteristics). Therefore, it was necessary to mold under high pressure. Further, the battery described in the above-mentioned patent document has a problem that it does not drive as a battery unless a high package pressure is applied.

特許文献4では、正極及び固体電解質層を室温〜250℃程度の雰囲気下で750〜2000MPaの高圧力成型することにより、見かけ密度を95%以上とし、電解液を適用した電池と同等の性能まで高めることを開示している。しかし、加圧条件が非常に高圧であるため、作製できる電池の面積が制限される上、加圧装置も特殊なプレス機を必要とする。
また、駆動時に圧力(パッケージ圧)を印加する方法が検討されている。
In Patent Document 4, the positive density and the solid electrolyte layer are molded at a high pressure of 750 to 2000 MPa in an atmosphere of room temperature to about 250 ° C., thereby making the apparent density 95% or more and the same performance as the battery to which the electrolyte is applied. It is disclosed to enhance. However, since the pressurizing condition is very high pressure, the area of the battery that can be manufactured is limited, and the pressurizing apparatus also requires a special press machine.
Further, a method of applying pressure (package pressure) during driving has been studied.

特許文献5では全固体電池素子に対して50〜1000kgf/cmの圧力を印加し、外装体と密着させた電池を提案している。
特許文献6では全固体電池素子を挟持する支持板を配置し、1.5〜200MPa(実施例の数値に直す)の圧力を印加し、締め付けることにより界面が取れなくなるのを防ぐ方法が開示されている。
Patent Document 5 proposes a battery in which a pressure of 50 to 1000 kgf / cm 2 is applied to the all-solid battery element to bring it into close contact with the exterior body.
Patent Document 6 discloses a method for preventing the interface from being lost by disposing a support plate that sandwiches the all-solid-state battery element, applying a pressure of 1.5 to 200 MPa (correcting the numerical values in the examples), and tightening. ing.

このように全固体電解質では、性能維持も含め挟持板とビスにより加圧することで界面の接触を維持することが必要な状況であった。しかし、駆動時に締め付け状態を維持するには、余分な挟持板やビスが必要であり、省スペース化ができない上に、モバイル等の移動機器においては重量が増加するため望ましくなかった。   As described above, in the all solid electrolyte, it is necessary to maintain the interface contact by pressurizing with a sandwich plate and screws including maintaining the performance. However, in order to maintain the tightened state during driving, an extra clamping plate and screws are required, and space saving cannot be achieved. In addition, a mobile device such as a mobile device is undesirably increased in weight.

特開平4−202024号公報JP-A-4-202024 特開2002−109955号公報JP 2002-109955 A 特開2005−228570号公報JP 2005-228570 A 特開2008−91328号公報JP 2008-91328 A 特開2000−106154号公報JP 2000-106154 A 特開2008−103284号公報JP 2008-103284 A

本発明では、パッケージ圧がゼロ又は小さくても駆動する全固体リチウム電池を提供することを課題とする。   It is an object of the present invention to provide an all solid lithium battery that can be driven even when the package pressure is zero or small.

本発明によれば、以下のリチウム電池等が提供される。
1.正極層、固体電解質層及び負極層を備えるリチウム電池であって、
パッケージ圧が0〜1MPaであり、
20回目のサイクル時の容量維持率が80%以上であることを特徴とするリチウム電池。
2.20回サイクル時の放電開始電圧の変化が0.5V以下であることを特徴とする1に記載のリチウム電池。
3.正極層、固体電解質層及び負極層を備えるリチウム電池であって、
パッケージ圧が0〜1MPaであり、
大気圧下で、前記正極層、固体電解質層及び負極層の断面の平均クラック長さが1000μm以下であることを特徴とするリチウム電池。
4.大気圧下で、最大歪みが200μm以下であることを特徴とする3に記載のリチウム電池。
5.前記正極層、固体電解質層及び負極層のうち少なくとも1つが粒子を含むことを特徴とする1〜4のいずれかに記載のリチウム電池。
6.1〜5のいずれかに記載のリチウム電池を搭載したことを特徴とする電子機器。
According to the present invention, the following lithium batteries and the like are provided.
1. A lithium battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
The package pressure is 0 to 1 MPa,
A lithium battery having a capacity retention rate of 80% or more at the 20th cycle.
2. The lithium battery according to 1, wherein a change in discharge start voltage during 20 cycles is 0.5 V or less.
3. A lithium battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
The package pressure is 0 to 1 MPa,
The lithium battery, wherein an average crack length of a cross section of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is 1000 μm or less under atmospheric pressure.
4). 3. The lithium battery according to 3, wherein the maximum strain is 200 μm or less under atmospheric pressure.
5). 5. The lithium battery according to any one of 1 to 4, wherein at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer contains particles.
6. An electronic apparatus comprising the lithium battery according to any one of items 1 to 5.

本発明によれば、パッケージ圧がゼロ又は小さくても駆動する全固体リチウム電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state lithium battery which can drive even if a package pressure is zero or small can be provided.

本発明のリチウム電池の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the lithium battery of this invention. 図1のリチウム電池の略式X−X縦断面図である。FIG. 2 is an abbreviated XX vertical sectional view of the lithium battery of FIG. 1. リチウム電池に発生したクラックを示すX−X縦断面図であり、(a)は界面でのクラック、(b)は層内でのクラック、(c)は端部でのクラックを示す。It is XX longitudinal cross-sectional view which shows the crack which generate | occur | produced in the lithium battery, (a) shows the crack in an interface, (b) shows the crack in a layer, (c) shows the crack in an edge part. 内部にクラックを含むリチウム電池のY−Y横断面図である。It is a YY transverse cross section of a lithium battery which contains a crack inside. 図4のクラックの拡大図である。It is an enlarged view of the crack of FIG. 端部にクラックを含むリチウム電池のY−Y横断面図である。It is a YY transverse cross section of a lithium battery containing a crack in an end. 図6のクラックの拡大図である。It is an enlarged view of the crack of FIG. 図4の直線Iを示す模式図である。It is a schematic diagram which shows the straight line I of FIG. 図6の直線IIを示す模式図である。It is a schematic diagram which shows the straight line II of FIG. リチウム電池の最大歪みを示すX−X縦断面図であり、(a)は弓形変形の最大歪み、(b)は太鼓形変形の最大歪み、(c)は波形変形の最大歪み、(d)はそり形変形の最大歪みを示す。It is XX longitudinal cross-sectional view which shows the maximum distortion of a lithium battery, (a) is the maximum distortion of an arcuate deformation, (b) is the maximum distortion of a drum-shaped deformation, (c) is the maximum distortion of a waveform deformation, (d) Indicates the maximum strain of the warp deformation. そり形変形しているリチウム電池のX−X縦断面図である。It is XX longitudinal cross-sectional view of the lithium battery which carried out warping deformation. 実施例1で得られたリチウム電池のX線CT結果を示す図である。It is a figure which shows the X-ray CT result of the lithium battery obtained in Example 1. 実施例2で得られたリチウム電池のX線CT結果を示す図である。It is a figure which shows the X-ray CT result of the lithium battery obtained in Example 2. 比較例1で得られたリチウム電池のX線CT結果を示す図である。It is a figure which shows the X-ray CT result of the lithium battery obtained by the comparative example 1. 比較例2で得られたリチウム電池のX線CT結果を示す図である。It is a figure which shows the X-ray CT result of the lithium battery obtained by the comparative example 2. 比較例3で得られたリチウム電池のX線CT結果を示す図である。It is a figure which shows the X-ray CT result of the lithium battery obtained by the comparative example 3.

以下、本発明の実施形態を図面に基づいて説明する。ただし、本発明は下記の実施形態に何ら限定されるものではない。
図1は、本発明のリチウム電池の一実施形態を示す斜視図である。
図2は、図1のリチウム電池のX−X縦断面図である。
図2において、リチウム電池1は、電池素子3が、正極集電体5及び負極集電体7により挟持されている。電池素子3は、正極層10及び負極層30からなる一対の電極層間に固体電解質層20がある。
本発明では、パッケージ圧は0〜1MPaである。パッケージ圧は、充放電駆動時に印加される圧力をいい、電池積層面に対して垂直方向に一軸方向に加える圧である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
FIG. 1 is a perspective view showing an embodiment of a lithium battery of the present invention.
FIG. 2 is an XX longitudinal sectional view of the lithium battery of FIG.
In FIG. 2, the lithium battery 1 includes a battery element 3 sandwiched between a positive electrode current collector 5 and a negative electrode current collector 7. The battery element 3 includes a solid electrolyte layer 20 between a pair of electrode layers including the positive electrode layer 10 and the negative electrode layer 30.
In the present invention, the package pressure is 0 to 1 MPa. The package pressure refers to a pressure applied during charge / discharge driving, and is a pressure applied in a uniaxial direction perpendicular to the battery stack surface.

本発明のリチウム電池は、20回サイクル後の初期の放電容量に対する容量維持率が好ましくは80%以上、より好ましくは83%以上のサイクル特性を有する。
ここで、1回サイクルは、充放電を一回ずつ行うことをいう。
従って、20回サイクルとは、充放電を20回ずつ行うことをいう。
The lithium battery of the present invention has a cycle characteristic in which the capacity retention rate with respect to the initial discharge capacity after 20 cycles is preferably 80% or more, more preferably 83% or more.
Here, the one-time cycle refers to performing charging and discharging once.
Therefore, the cycle of 20 times means performing charging and discharging 20 times each.

容量維持率は以下のようにして求める。電池を0.2mA/cmの電流密度で充電後、0.2mA/cmで放電し、そのときの放電容量を測定する。この充放電工程を20回繰り返し行う。
ここで、充電時のカット電圧は4.2Vであり、放電時のカット電圧は1.5Vである。放電容量は、時間毎に得られた電流量(mAh)を正極活物質重量(g)で割った値であり、単位は、mAh/gである。
容量維持率は、下記式(1)に従う。
A=B/C×100…(1)
ここで、Aは容量維持率(%)、Bは第20回サイクル後の放電の際の放電容量(mAh/g)、Cは第1回目のサイクル時の放電の際の放電容量(mAh/g)である。
The capacity maintenance rate is obtained as follows. After charging the batteries at a current density of 0.2 mA / cm 2, and discharged at 0.2 mA / cm 2, to measure the discharge capacity at that time. This charge / discharge process is repeated 20 times.
Here, the cut voltage at the time of charging is 4.2V, and the cut voltage at the time of discharging is 1.5V. The discharge capacity is a value obtained by dividing the amount of current (mAh) obtained every hour by the weight (g) of the positive electrode active material, and the unit is mAh / g.
The capacity maintenance rate follows the following formula (1).
A = B / C × 100 (1)
Here, A is the capacity retention rate (%), B is the discharge capacity (mAh / g) at the time of discharge after the 20th cycle, and C is the discharge capacity (mAh / g) at the time of discharge at the first cycle. g).

また、好ましくは、20回サイクル後の電圧変化は0.5V以下である。この電圧は、放電開始直後の電圧値であり、第1回目のサイクル時の放電開始電圧と20回サイクル後の放電開始電圧の差である。好ましくは0.1V以下である。
ここで、電池を製造後にまず充電を行い、次に放電を行うものは、充電と放電の順番により1回ずつ行うと1サイクルが完了したことになる。このような電池としては、正極がLCO等のLiを含む物質である正極であり、負極はグラファイト等を含む負極である。
一方、電池を製造後にまず放電を行い、次に充電を行うものは、放電と充電の順番により1回ずつ行うと1サイクルが完了したことになる。このような電池としては、負極がLi金属のようなLiを含む物質である負極であり、正極は、インジウムなどを含む負極である。
Preferably, the voltage change after 20 cycles is 0.5 V or less. This voltage is a voltage value immediately after the start of discharge, and is the difference between the discharge start voltage at the first cycle and the discharge start voltage after the 20th cycle. Preferably it is 0.1 V or less.
Here, when the battery is first charged after the battery is manufactured and then discharged, one cycle is completed when it is performed once in the order of charging and discharging. As such a battery, the positive electrode is a positive electrode which is a substance containing Li such as LCO, and the negative electrode is a negative electrode containing graphite or the like.
On the other hand, when the battery is first discharged after manufacturing and then charged, one cycle is completed when it is performed once in the order of discharging and charging. As such a battery, a negative electrode is a negative electrode which is a substance containing Li like Li metal, and a positive electrode is a negative electrode containing indium etc.

また、本発明のリチウム電池は、好ましくは、パッケージ圧が加わらない大気圧下で、正極層、固体電解質層及び負極の断面の平均クラック長さが1000μm以下である。平均クラック長さを1000μm以下とすることにより容量維持率を高め放電開始電圧の変化を小さくすることができる。   In the lithium battery of the present invention, preferably, the average crack length of the cross section of the positive electrode layer, the solid electrolyte layer, and the negative electrode is 1000 μm or less under an atmospheric pressure where no package pressure is applied. By setting the average crack length to 1000 μm or less, the capacity retention rate can be increased and the change in the discharge start voltage can be reduced.

平均クラック長さは1000μm以下が望ましく、700μm以下がさらに望ましい。平均クラック長さが1000μmを超えると電池駆動時の正極及び負極間でのイオン伝導が困難となり、電池性能が極端に悪化する恐れがある。   The average crack length is desirably 1000 μm or less, and more desirably 700 μm or less. When the average crack length exceeds 1000 μm, ion conduction between the positive electrode and the negative electrode during battery driving becomes difficult, and battery performance may be extremely deteriorated.

電池素子の平均クラック長さは、成型した電池素子を脱圧(圧力を開放した状態)し適宜ラミネートフィルム等で封止した後、X線CT法により断面観察をすることで計測する。
素子のクラックとしては、図3(a)に示す界面でのクラック、図3(b)に示す層内部でのクラック、図3(c)に示す素子端部でのクラックの3種類に大別される。
The average crack length of the battery element is measured by depressurizing the molded battery element (in a state in which the pressure is released), sealing it with a laminate film or the like, and then observing the cross section by the X-ray CT method.
The cracks in the element are roughly classified into three types: cracks at the interface shown in FIG. 3 (a), cracks in the layer shown in FIG. 3 (b), and cracks at the end of the element shown in FIG. 3 (c). Is done.

図3(a),(b)の平均クラック長さは次のように測定する。まず、1つのクラックにおける、端部間の直線の長さが最大になる部分の直線の長さ(以下、「クラック最大長さ(mm)」という)を求める。具体的には、図4,5に示すように、電解質層の平面方向と平行な断面(以下、横断面という)におけるクラックの端部から端部までの長さが最大になる長さ(αとβ間の距離)を測定する。そして、断面(mm、例えば、15.5mm×(9.6×10−2)mm)中のすべてのクラックのクラック最大長さを測定する。同様に複数の他の断面(例えば、3断面)でクラック最大長さを測定し、これら任意の複数の断面で観察されたすべてのクラック最大長さの和(以下、「クラック最大長さ和」という)を求める。そして、クラック最大長さ和を断面の数(観察した断面の数)で割って、平均クラック長さを求める。 The average crack length in FIGS. 3A and 3B is measured as follows. First, the length of the straight line of the portion where the length of the straight line between the end portions in one crack is maximum (hereinafter referred to as “the maximum crack length (mm)”) is obtained. Specifically, as shown in FIGS. 4 and 5, the length (α where the length from the end portion to the end portion of the crack in the cross section parallel to the planar direction of the electrolyte layer (hereinafter referred to as a transverse cross section) is maximized (α And the distance between β and β. The cross section (mm 2, for example, 15.5mm × (9.6 × 10 -2 ) mm) to measure the crack maximum length of all cracks in. Similarly, the maximum crack length is measured in a plurality of other cross sections (for example, three cross sections), and the sum of all the maximum crack lengths observed in any of the plurality of cross sections (hereinafter referred to as “the maximum crack length sum”). Ask). Then, the average maximum crack length is obtained by dividing the sum of the maximum crack lengths by the number of cross sections (the number of observed cross sections).

言い換えると平均クラック長さは式(2)に従う。
D=E/F…(2)
ここで、Dは平均クラック長さ(mm)、Eはクラック最大長さ和(mm),Fは観察した断面の数を意味する。
In other words, the average crack length follows equation (2).
D = E / F (2)
Here, D is the average crack length (mm), E is the maximum crack length sum (mm), and F is the number of cross sections observed.

図3(c)の平均クラック長さは次のように測定する。まず、1つのクラックにおける、端部間の直線の長さが最大になる部分の直線の長さ(以下、「クラック最大長さ」という)を求める。具体的には、図6,7に示すように、電解質層の平面方向と平行な断面におけるクラックの端部から端部までの長さが最大になる長さ(α’とβ’間の距離、以下、「クラック最大長さ(mm)」という)を測定する。そして、上記断面(mm、例えば、15.5mm×(9.6×10−2)mm)中のすべてのクラックのクラック最大長さを測定する。同様に複数の他の断面(例えば、断面が3つ)でクラック最大長さを測定し、これら任意の複数の断面で観察されたすべてのクラック最大長さの和(以下、「クラック最大長さ和(mm)」という)を求める。そして、クラック最大長さ和を断面の数(観察した断面の数)で割って、平均クラック長さを求める。 The average crack length in FIG. 3 (c) is measured as follows. First, the length of the straight line of the portion where the length of the straight line between the end portions is maximum in one crack (hereinafter referred to as “the maximum crack length”) is obtained. Specifically, as shown in FIGS. 6 and 7, the length (distance between α ′ and β ′) at which the length from the end to the end of the crack in the cross section parallel to the planar direction of the electrolyte layer is maximized. , Hereinafter, referred to as “crack maximum length (mm)”). Then, the cross section (mm 2, for example, 15.5mm × (9.6 × 10 -2 ) mm) to measure the crack maximum length of all cracks in. Similarly, the maximum crack length is measured at a plurality of other cross sections (for example, three cross sections), and the sum of all the maximum crack lengths observed at any of the plurality of cross sections (hereinafter referred to as “the maximum crack length”). Sum (mm) ". Then, the average maximum crack length is obtained by dividing the sum of the maximum crack lengths by the number of cross sections (the number of observed cross sections).

言い換えると平均クラック長さは式(3)に従う。
D’=E’/F’…(3)
ここで、D’は平均クラック長さ(mm)、E’はクラック最大長さ和(mm),F’は観察した断面の数を意味する。
In other words, the average crack length follows equation (3).
D '= E' / F '... (3)
Here, D ′ means the average crack length (mm), E ′ means the maximum crack length sum (mm), and F ′ means the number of cross sections observed.

加圧成型後に素子を取り出す際に割れや剥離により素子自体が崩れてしまう場合、厚みにも依るが素子作製用の冶具(樹脂製,碍子製、金属製等)ごと観察することができるため、敢えて取り出す必要はない。
X線CT法では積算画像からデータ画像を得るため、画像上で正確な距離数値を得ることができる。
If the element itself collapses due to cracking or peeling when the element is taken out after pressure molding, depending on the thickness, it can be observed together with the jig for making the element (made of resin, insulator, metal, etc.) There is no need to take it out.
In the X-ray CT method, since a data image is obtained from an integrated image, an accurate distance value can be obtained on the image.

また、下記式(4)を満たすことが好ましい
G/H≦6.7×10−1…(4)
より好ましくは、下記式(5)を満たす。
G/H≦4.7×10−1…(5)
ここで、Gは、平均クラック長さ(mm)、Hは、観察した断面の面積の平均(mm)を示す。
Moreover, it is preferable to satisfy | fill following formula (4) G / H <= 6.7 * 10 < -1 > ... (4)
More preferably, the following formula (5) is satisfied.
G / H ≦ 4.7 × 10 −1 (5)
Here, G represents the average crack length (mm), and H represents the average (mm 2 ) of the cross-sectional area observed.

また、図4,6に示すように、電解質層の平面方向と平行な断面(例えば図1に示すY−Y横断面図)の直線(断面の辺をつなぐ直線)の内、長さが長いものから、複数の直線を選択する(図4,6では電池が円柱であるため、長さが長いものは、直径になる)。図8,9は、図4,6に示す直線I,IIであり、それぞれ選択した直線の長さとクラック部分の長さを模式的に示す。そして、選択した直線の内、クラック部分の長さ(mm)を測定し、選択した直線のクラック部分の長さの和(mm)を出すとともに、選択した直線の長さの和(mm)を出す。この選択した直線とクラック部分の長さの和が式(6)を満たすことが好ましい。
式(7)を満たすことがより好ましい。
As shown in FIGS. 4 and 6, the length of the straight line (the straight line connecting the sides of the cross section) parallel to the planar direction of the electrolyte layer (for example, the YY cross section shown in FIG. 1) is long. A plurality of straight lines are selected from those (in FIGS. 4 and 6, since the battery is a cylinder, a long one has a diameter). 8 and 9 are the straight lines I and II shown in FIGS. 4 and 6, respectively, schematically showing the length of the selected straight line and the length of the crack portion. Then, the length (mm) of the crack part in the selected straight line is measured, and the sum (mm) of the length of the crack part of the selected straight line is obtained, and the sum (mm) of the length of the selected straight line is obtained. put out. It is preferable that the sum of the length of the selected straight line and the crack portion satisfies the formula (6).
It is more preferable to satisfy the formula (7).

I/J≦6.5×10−2…(6)
I/J≦4.5×10−2…(7)
ここで、Iはクラック部分の長さの和(mm)、Jは選択した直線の長さの和(mm)を意味する。
なお、本実施形態では、断面により測定したが、断面の一部に基づいて測定することもできることはいうまでもない。
I / J ≦ 6.5 × 10 −2 (6)
I / J ≦ 4.5 × 10 −2 (7)
Here, I means the sum (mm) of the length of the crack portion, and J means the sum (mm) of the length of the selected straight line.
In this embodiment, the cross section is used for measurement, but it is needless to say that measurement can be performed based on a part of the cross section.

また、好ましくは、大気圧下で、最大歪みは200μm以下である。より好ましくは、大気圧下で、最大歪みは150μm以下である。最大歪みとは、正極側最大変位と負極側最大変位の和である。素子の歪み方には、例えば、図10(a)に示す弓形、図10(b)に示す太鼓形、図10(c)に示す波形、図10(d)に示すそり形の4種類がある。図10(a)〜(d)の正極側電池素子の両端部A,A’点及び負極側電池素子の両端部B,B’点を結び、正極側最大変位aと負極側最大変位bをこの直線からの垂直方向距離(a+b)を求め、その和を求め、その和を最大歪みとする。   Preferably, the maximum strain is 200 μm or less under atmospheric pressure. More preferably, the maximum strain is 150 μm or less under atmospheric pressure. The maximum strain is the sum of the positive electrode side maximum displacement and the negative electrode side maximum displacement. There are four types of element distortion, for example, an arc shape shown in FIG. 10A, a drum shape shown in FIG. 10B, a waveform shown in FIG. 10C, and a warp shape shown in FIG. is there. 10 (a) to 10 (d), both ends A and A 'of the positive electrode side battery element and both ends B and B' of the negative electrode side battery element are connected, and the positive electrode side maximum displacement a and the negative electrode side maximum displacement b are obtained. The vertical distance (a + b) from this straight line is obtained, the sum is obtained, and the sum is taken as the maximum distortion.

また、下記式(8)に従うことが好ましい。
K/L≦1.06×10−3…(8)
下記式(9)に従うことがより好ましい。
K/L≦3.70×10−3…(9)
ここで、Kは、最大歪み(mm)、Lは、観察した断面の面積(mm)を示す。
Moreover, it is preferable to follow the following formula (8).
K / L ≦ 1.06 × 10 −3 (8)
It is more preferable to follow the following formula (9).
K / L ≦ 3.70 × 10 −3 (9)
Here, K represents the maximum strain (mm), and L represents the area (mm 2 ) of the observed cross section.

また、図1,11に示すように、電解質層の平面方向に対する垂直方向の断面(例えば図1に示すX−X縦断面図)の直線(断面の辺をつなぐ直線)の内、長さが長いものから、複数の直線を選択し、垂直方向の断面を選択する。そして、選択した断面の最大歪み(図11では(a+b))を測定する。   In addition, as shown in FIGS. 1 and 11, the length of the straight line (straight line connecting the sides of the cross section) of the cross section perpendicular to the plane direction of the electrolyte layer (for example, the XX vertical cross section shown in FIG. 1) is the length. Select multiple straight lines from the longest and select the vertical cross section. Then, the maximum strain ((a + b) in FIG. 11) of the selected cross section is measured.

好ましくは、式(10)を満たし、より好ましくは式(11)を満たす。
M/N≦1.29×10−2…(10)
M/N≦4.52×10−2…(11)
ここで、Mは最大歪みの長さ(mm)、Nは選択した直線の長さの平均(mm)を意味する。
Preferably, formula (10) is satisfied, more preferably, formula (11) is satisfied.
M / N ≦ 1.29 × 10 −2 (10)
M / N ≦ 4.52 × 10 −2 (11)
Here, M represents the length (mm) of the maximum strain, and N represents the average (mm) of the lengths of the selected straight lines.

最大歪みも成型した電池素子を脱圧(圧力を開放した状態)し適宜ラミネートフィルム等で封止した後、X線CT法により断面観察して計測する。   The maximum strain is also measured by depressurizing the molded battery element (in a state where the pressure is released) and sealing it appropriately with a laminate film or the like, followed by cross-sectional observation by the X-ray CT method.

本発明のリチウム電池は、好ましくは、正極層、固体電解質層及び負極層のうち、少なくとも1つが粒子を含む。   In the lithium battery of the present invention, preferably, at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer contains particles.

例えば、固体電解質層は固体電解質粒子を堆積させた後、適切な荷重をかける等により成型する。このとき固体電解質層の膜厚としては特に制限を受けないが、10〜1000μmが望ましい。   For example, the solid electrolyte layer is formed by depositing solid electrolyte particles and applying an appropriate load. At this time, the thickness of the solid electrolyte layer is not particularly limited, but is preferably 10 to 1000 μm.

例えば、電極層(正極層及び負極層)は電極活物質粒子と固体電解質粒子を含み、粉体を堆積させた後、適切な荷重をかける等により成型する。このとき電極層の膜厚としては特に制限を受けないが、10〜200μmが望ましい。   For example, the electrode layers (positive electrode layer and negative electrode layer) include electrode active material particles and solid electrolyte particles, and are formed by depositing powder and then applying an appropriate load. At this time, the thickness of the electrode layer is not particularly limited, but is preferably 10 to 200 μm.

固体電解質層に用いられる固体電解質は特に限定されず、例えばポリマー電解質、無機電解質化合物、又はこれらの混合体からなる材料を用いることができる。好ましくは、硫化物系や酸化物系の無機電解質化合物であり、より好ましくは、イオン伝導性に優れる硫黄、リン及びリチウムを少なくとも含む硫化物系固体電解質が適用できる。
硫化物系固体電解質の例としては、特開平4−202024等に記載の固体電解質が使用できる。具体的にはLiSと、SiS、GeS、P、Bのいずれかとから成る固体電解質に、適宜、LiPO、ハロゲン、ハロゲン化合物を添加して用いる。硫黄、リン、リチウムからなる硫化物系固体電解質の製造方法としては、特開2005−228570に記載されるようにLiSとPを原料とし、メカニカルミリング法(以下MM法)により合成する方法が簡便であり好適である。より具体的には、LiSを70モル%、Pを30モル%の比率で混合し、遊星型ボールミルを用いたMM法により硫化物系固体電解質ガラスが得られる。
その後、得られた硫化物系固体電解質ガラスを所定の温度で熱処理することにより、結晶成分を含有する硫化物系固体電解質ガラスセラミックが合成される。熱処理温度は、好ましくは190℃〜340℃、より好ましくは195℃〜335℃、特に好ましくは200℃〜330℃である。
このようにして得られた結晶成分を含有する硫化物系固体電解質ガラスセラミックのイオン伝導度は、7.0×10−4〜5.0×10−3(S/cm)程度である。
The solid electrolyte used for the solid electrolyte layer is not particularly limited, and for example, a material composed of a polymer electrolyte, an inorganic electrolyte compound, or a mixture thereof can be used. Preferably, it is a sulfide-based or oxide-based inorganic electrolyte compound, and more preferably a sulfide-based solid electrolyte containing at least sulfur, phosphorus, and lithium excellent in ion conductivity.
As an example of the sulfide-based solid electrolyte, a solid electrolyte described in JP-A-4-202024 can be used. Specifically, Li 3 PO 4 , halogen, and a halogen compound are appropriately added to a solid electrolyte composed of Li 2 S and any of SiS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 . As a method for producing a sulfide-based solid electrolyte comprising sulfur, phosphorus, and lithium, as described in JP-A-2005-228570, Li 2 S and P 2 S 5 are used as raw materials, and mechanical milling (hereinafter referred to as MM method) is used. The synthesis method is simple and preferable. More specifically, a sulfide-based solid electrolyte glass can be obtained by MM method using a planetary ball mill by mixing Li 2 S at a ratio of 70 mol% and P 2 S 5 at a ratio of 30 mol%.
Thereafter, the obtained sulfide-based solid electrolyte glass is heat-treated at a predetermined temperature to synthesize a sulfide-based solid electrolyte glass ceramic containing a crystal component. The heat treatment temperature is preferably 190 ° C to 340 ° C, more preferably 195 ° C to 335 ° C, and particularly preferably 200 ° C to 330 ° C.
The ionic conductivity of the sulfide-based solid electrolyte glass ceramic containing the crystal component thus obtained is about 7.0 × 10 −4 to 5.0 × 10 −3 (S / cm).

正極層に用いられる正極活物質として、特に限定されるものではないが、LiCoO,LiNiCoO,LiNiO,LiNiMnCoO,LiFeMnO,LiMnNiO,LiMn,LiNiMnO,LiNiVO,LiCrMnO,LiCoVO,LiCoPO,LiFePO,LiFe(SO,LiNi0.8Co0.15Al0.05等の遷移金属複合酸化物リチウム塩が用いられる。これら正極活物質と固体電解質の混合物である正極合材も使用できる。
正極合材は正極活物質と固体電解質を混合して作製する。割合は、正極活物質の重量%として、50wt%〜90wt%が好ましく、さらに好ましくは60wt%〜80wt%である。混合する方法としては、特に限定されず、乾燥紛体をメノウ乳鉢等で混ぜる方法や有機溶媒を加えて混合する方法等適宜選択すればよい。
As a positive electrode active material used in the positive electrode layer, it is not particularly limited, LiCoO 2, LiNiCoO 2, LiNiO 2, LiNiMnCoO 2, LiFeMnO 2, LiMnNiO 4, LiMn 2 O 4, LiNiMnO 2, LiNiVO 4, LiCrMnO 4 , LiCoVO 4 , LiCoPO 4 , LiFePO 4 , LiFe (SO 4 ) 3 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and other transition metal complex oxide lithium salts are used. A positive electrode mixture which is a mixture of these positive electrode active materials and solid electrolytes can also be used.
The positive electrode mixture is prepared by mixing a positive electrode active material and a solid electrolyte. The ratio is preferably 50 wt% to 90 wt%, more preferably 60 wt% to 80 wt%, as the weight% of the positive electrode active material. The method of mixing is not particularly limited, and may be appropriately selected such as a method of mixing the dried powder in an agate mortar or the like, a method of adding an organic solvent and mixing.

負極層に用いられる負極活物質として、特に限定されるものではないが、黒鉛やグラファイト等の炭素材料やSn金属、In金属、Li金属等を好適に用いることができる。より具体的には、天然黒鉛や各種グラファイト、Sn,Si,Al,Sb,Zn,Bi等の金属粉、SnCu,SnCo,SnFe、Ti−Sn、Ti−Si等の金属合金粉、酸化物(Li4/3Ti5/3O)、窒化物(LiCoN)等の化合物が挙げられ、これらと固体電解質の混合物である負極合材も使用できる。
負極合材は負極活物質と固体電解質を混合して作製する。割合は、負極活物質の重量%として、40wt%〜80wt%が好ましく、さらに好ましくは50wt%〜80wt%である。混合する方法としては、乾燥紛体をメノウ乳鉢等で混ぜる方法や有機溶媒を加えて混合する方法等適宜選択すればよい。
Although it does not specifically limit as a negative electrode active material used for a negative electrode layer, Carbon materials, such as graphite and graphite, Sn metal, In metal, Li metal, etc. can be used suitably. More specifically, natural graphite, various graphites, metal powders such as Sn, Si, Al, Sb, Zn, Bi, Sn 5 Cu 6 , Sn 2 Co, Sn 2 Fe, Ti—Sn, Ti—Si, etc. Examples include metal alloy powders, oxides (Li 4/3 Ti 5/3 O), nitrides (LiCoN), and the like, and a negative electrode mixture that is a mixture of these and a solid electrolyte can also be used.
The negative electrode mixture is prepared by mixing a negative electrode active material and a solid electrolyte. The ratio is preferably 40 wt% to 80 wt%, more preferably 50 wt% to 80 wt%, as the weight% of the negative electrode active material. As a mixing method, a method of mixing the dried powder with an agate mortar or a method of adding and mixing an organic solvent may be selected as appropriate.

集電体としては、Cu、Mg、SUS鋼、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Li又はこれらの合金等からなる板状体や箔状体等を使用できる。正極集電体と負極集電体は同一でも異なっていてもよい。   As the current collector, a plate or foil made of Cu, Mg, SUS steel, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Li, or an alloy thereof can be used. The positive electrode current collector and the negative electrode current collector may be the same or different.

本発明に用いる電池素子は、正極層、固体電解質層、負極層を貼り合せ成型することにより製造することができる。成型する方法としては、各部材を堆積させた後、一括して加圧・圧着する方法、ロール間を通して加圧する方法等の他、各層を個別に成型した後に重ね合わせ一括して成型する方法等がある。
平均クラック長さを抑制した電池素子は、その材料種や積層方法により異なるが、成型時の圧力を調整する方法、各層を単独で成型後に積層する方法、加圧下熱処理を行なう方法、加圧下充放電サイクル処理を数回行なう方法等で得ることができる。
The battery element used in the present invention can be produced by bonding and molding a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. As a method of molding, after depositing each member, a method of pressurizing and pressing in a lump, a method of pressurizing between rolls, a method of molding each layer individually and then molding in a lump, etc. There is.
Battery elements with suppressed average crack length vary depending on the material type and lamination method, but the method of adjusting the pressure during molding, the method of laminating each layer individually after molding, the method of performing heat treatment under pressure, the charging under pressure It can be obtained by a method of performing the discharge cycle treatment several times.

接合面でのイオン伝導性を損なわない程度に接着物質を介して成型してもよい。また、固体電解質や活物質の結晶構造等に変化が及ばない程度に加熱融着処理を施してもよい。   You may shape | mold through an adhesive substance to such an extent that the ionic conductivity in a joining surface is not impaired. Further, heat fusion treatment may be performed to such an extent that the solid electrolyte and the crystal structure of the active material do not change.

本発明によれば、上述のリチウム電池を搭載した電子機器が提供される。電子機器としては、特に限定されるものではないが、携帯電話やモバイルパソコン等のモバイル機器や、電気自動車や電動自転車等の移動機器、電動工具等が挙げられる。   According to this invention, the electronic device carrying the above-mentioned lithium battery is provided. Although it does not specifically limit as an electronic device, Mobile devices, such as a mobile telephone and a mobile personal computer, Mobile devices, such as an electric vehicle and an electric bicycle, An electric tool etc. are mentioned.

実施例1
市販のLiS及びP(アルドリッチ製)をモル比70:30で混合し、遊星型ボールミルにより硫化物系固体電解質ガラスを得た。その後、300℃にて2時間処理して結晶成分を含有する硫化物系固体電解質ガラスセラミックを得た。得られた硫化物系固体電解質ガラスセラミックのイオン伝導度は、1.3×10−3S/cmであった。
得られた固体電解質ガラスセラミック粒子と正極活物質であるLiNi0.8Co0.15Al0.05を重量比で30wt%:70wt%で混合して正極合材とした。
また、得られた固体電解質ガラスセラミック粒子と負極活物質である黒鉛粉末を重量比で40wt%:60wt%で混合して負極合材とした。
作製した固体電解質ガラスセラミック粒子200mgを直径15.5mmの金属金型に投入して20MPaの圧力で加圧成型した。さらに上記正極合材100mgを投入して再び60MPaで加圧成型し、正極合材の反対側から上記負極合材を62.4mg投入して再度60MPaで加圧成型することでリチウム二次電池素子を得た。
Example 1
Commercially available Li 2 S and P 2 S 5 (manufactured by Aldrich) were mixed at a molar ratio of 70:30, and a sulfide-based solid electrolyte glass was obtained by a planetary ball mill. Then, it processed at 300 degreeC for 2 hours, and obtained the sulfide type solid electrolyte glass ceramic containing a crystal component. The ionic conductivity of the obtained sulfide-based solid electrolyte glass ceramic was 1.3 × 10 −3 S / cm.
The obtained solid electrolyte glass ceramic particles and the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 were mixed at a weight ratio of 30 wt%: 70 wt% to obtain a positive electrode mixture.
The obtained solid electrolyte glass ceramic particles and graphite powder as the negative electrode active material were mixed at a weight ratio of 40 wt%: 60 wt% to obtain a negative electrode mixture.
200 mg of the produced solid electrolyte glass ceramic particles were put into a metal mold having a diameter of 15.5 mm and subjected to pressure molding at a pressure of 20 MPa. Further, 100 mg of the positive electrode mixture was added and pressure-molded again at 60 MPa, and 62.4 mg of the negative electrode mixture was charged from the opposite side of the positive electrode mixture and again pressure-molded at 60 MPa to form a lithium secondary battery element. Got.

金属製の台座上に素子を置いた状態でアルミラミネートにより封止しX線CTで観察した(パッケージ圧は、0MPaである)。図12にX線CT観察結果を示す。上側が正極、下側が負極である。観察視野(15.5mm×(9.6×10−2)mm)内のクラックを全て見出しその長さを計測した。同様に他の3視野についても計測し、その総和は1.549mmであった。その結果、平均クラック長さは387μmであった。素子両端部を結び、垂直方向への各最大変位を計測した。その結果、正極側最大変位が0μmと負極側最大変位が53μmとなり、これらの和で定義される最大歪みは53μmであった。 The element was placed on a metal pedestal and sealed with aluminum laminate and observed with X-ray CT (package pressure was 0 MPa). FIG. 12 shows the results of X-ray CT observation. The upper side is the positive electrode and the lower side is the negative electrode. All the cracks in the observation visual field (15.5 mm × (9.6 × 10 −2 ) mm) were found and the length thereof was measured. Similarly, the other three visual fields were also measured, and the total was 1.549 mm. As a result, the average crack length was 387 μm. The two ends of the element were connected, and each maximum displacement in the vertical direction was measured. As a result, the positive electrode side maximum displacement was 0 μm and the negative electrode side maximum displacement was 53 μm, and the maximum strain defined by the sum thereof was 53 μm.

上記素子の両面を集電体としてTiホイルで挟み電池を得た(パッケージ圧は、0MPaである。)。以下の方法に従いこの電池を評価した。
電池を0.2mA/cmの電流密度で充電後、0.2mA/cmで放電し、そのときの放電容量を測定した。この充放電工程を20回繰り返し行ない、初回と20回目の放電容量の変化から容量維持率を求めた。
充電時のカット電圧は4.2V、放電時のカット電圧は1.5Vであった。容量は、時間毎に得られた電流量を正極活物質重量で規格化したmAh/gで計測した。放電開始電圧は、放電開始直後の電圧値を計測した。
さらに比較のために、電池に10MPaの圧力を印加した状態で0.2mA/cmの電流密度で充電後、0.2mA/cmで放電し、そのときの放電容量も測定した。この充放電工程を20回繰り返し行ない、1回目のサイクル時の放電容量と20回目のサイクル時の放電容量から容量維持率を求めた。
結果を表1及び表2に示す。
尚、電池素子作製時に生じた反りや歪み、剥離やクラックは、20MPaのパッケージ圧力により接点が取れる形に改善され、ほぼ性能を取り戻した。
A battery was obtained by sandwiching both surfaces of the element as current collectors with Ti foil (the package pressure was 0 MPa). The battery was evaluated according to the following method.
After charging the batteries at a current density of 0.2 mA / cm 2, and discharged at 0.2 mA / cm 2, to measure the discharge capacity at that time. This charge / discharge process was repeated 20 times, and the capacity retention rate was determined from the change in the discharge capacity at the first time and the 20th time.
The cut voltage during charging was 4.2V, and the cut voltage during discharging was 1.5V. The capacity was measured by mAh / g obtained by normalizing the amount of current obtained every hour with the weight of the positive electrode active material. As the discharge start voltage, a voltage value immediately after the start of discharge was measured.
For comparison, the battery was charged at a current density of 0.2 mA / cm 2 with a pressure of 10 MPa applied, and then discharged at 0.2 mA / cm 2 , and the discharge capacity at that time was also measured. This charge / discharge process was repeated 20 times, and the capacity retention rate was determined from the discharge capacity at the first cycle and the discharge capacity at the 20th cycle.
The results are shown in Tables 1 and 2.
In addition, the warp, distortion, peeling, and crack generated at the time of producing the battery element were improved so that the contact could be taken by the package pressure of 20 MPa, and the performance was almost recovered.

実施例2
直径15.5mmの金属金型を用い、固体電解質の成型圧を10MPa、片面に正極合材投入後の成型圧を40MPa、もう一方に負極合材投入後の成型圧を40MPaにした以外は実施例1と同様にしてリチウム二次電池素子を得た。
得られたリチウム二次電池素子を実施例1と同様にX線CT観察した。X線CT観察した結果を図13に示す。上側が負極、下側が正極である。台座が歪んでおり水平が保たれていないが観察視野内のクラックを全て見出しその長さを計測した。同様に残り3視野についても計測した結果、クラック総和は3.074mmであり、平均クラック長さは769μmであった。正極側最大変位が0μmと負極側最大変位が53μmとなり、これらの和で定義される最大歪みは53μmであった。
実施例1と同様に電池を作製し電池評価した。結果を表1及び表2に示す。
Example 2
Implemented except that a metal mold with a diameter of 15.5 mm was used, the molding pressure of the solid electrolyte was 10 MPa, the molding pressure after charging the positive electrode mixture was 40 MPa on one side, and the molding pressure after charging the negative electrode mixture was 40 MPa on the other side. In the same manner as in Example 1, a lithium secondary battery element was obtained.
The obtained lithium secondary battery element was observed by X-ray CT in the same manner as in Example 1. The result of X-ray CT observation is shown in FIG. The upper side is a negative electrode, and the lower side is a positive electrode. Although the pedestal was distorted and the level was not maintained, all the cracks in the observation field were found and the length was measured. Similarly, as a result of measuring the remaining three visual fields, the total crack was 3.074 mm and the average crack length was 769 μm. The maximum displacement on the positive electrode side was 0 μm and the maximum displacement on the negative electrode side was 53 μm, and the maximum strain defined by the sum of these was 53 μm.
A battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

比較例1
直径15.5mmのPET製金型を用い、固体電解質の成型圧を20MPa、片面に正極合材投入後の成型圧を70MPa、もう一方に負極合材投入後の成型圧を70MPaにした以外は実施例1と同様にしてリチウム二次電池素子を得た。
成型後に抜き出すのが困難であったため、得られたリチウム二次電池素子をそのままX線CT観察した結果が図14である。上側が負極、下側が正極である。観察視野内のクラックを全て見出しその長さを計測した。同様に残り3視野についても計測した。総和は26.279mmであり、平均クラック長さは6570μmであった。正極側最大変位が386μmと負極側最大変位が562μmとなり、これらの和で定義される最大歪みは948μmであった。
実施例1と同様に電池を作製し電池評価した。結果を表1及び表2に示す。
Comparative Example 1
Other than using a PET mold with a diameter of 15.5 mm, the molding pressure of the solid electrolyte was 20 MPa, the molding pressure after the positive electrode mixture was charged on one side was 70 MPa, and the molding pressure after the negative electrode mixture was charged on the other side was 70 MPa. A lithium secondary battery element was obtained in the same manner as Example 1.
Since it was difficult to extract after molding, FIG. 14 shows the result of X-ray CT observation of the obtained lithium secondary battery element as it is. The upper side is a negative electrode, and the lower side is a positive electrode. All the cracks in the observation field were found and the length was measured. Similarly, the remaining 3 fields of view were also measured. The total was 26.279 mm and the average crack length was 6570 μm. The maximum positive electrode side displacement was 386 μm and the negative electrode side maximum displacement was 562 μm, and the maximum strain defined by the sum of these was 948 μm.
A battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

比較例2
直径15.5mmのPET製金型を用い、固体電解質の成型圧を10MPa、片面に正極合材投入後の成型圧を20MPa、もう一方に負極合材投入後の成型圧を20MPaにした以外は実施例1と同様にしてリチウム二次電池素子を得た。
得られたリチウム二次電池素子をそのままX線CT観察した結果が図15である。上側が負極、下側が正極である。観察視野内のクラックを全て見出しその長さを計測した。同様に残り3視野についても計測した。総和は26.854mmであり、平均クラック長さは6714μmであった。正極側最大変位が246μmと負極側最大変位が387μmとなり、これらの和で定義される最大歪みは633μmであった。
実施例1と同様に電池を作製し電池評価した。結果を表1及び表2に示す。
Comparative Example 2
Other than using a PET mold with a diameter of 15.5 mm, the molding pressure of the solid electrolyte was 10 MPa, the molding pressure after charging the positive electrode mixture on one side was 20 MPa, and the molding pressure after charging the negative electrode mixture on the other side was 20 MPa. A lithium secondary battery element was obtained in the same manner as Example 1.
FIG. 15 shows the result of X-ray CT observation of the obtained lithium secondary battery element as it is. The upper side is a negative electrode, and the lower side is a positive electrode. All the cracks in the observation field were found and the length was measured. Similarly, the remaining 3 fields of view were also measured. The sum total was 26.854 mm and the average crack length was 6714 μm. The maximum displacement on the positive electrode side was 246 μm and the maximum displacement on the negative electrode side was 387 μm, and the maximum strain defined by the sum of these was 633 μm.
A battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

比較例3
直径15.5mmのPET製金型を用い、固体電解質の成型圧を10MPa、片面に正極合材投入後の成型圧を70MPa、もう一方に負極合材投入後の成型圧を70MPaにした以外は実施例1と同様にしてリチウム二次電池素子を得た。
得られたリチウム二次電池素子をそのままX線CT観察した結果が図16である。上側が負極、下側が正極である。観察視野内のクラックを全て見出しその長さを計測した。同様に残り3視野についても計測した。総和は36.840mmであり、平均クラック長さは9210μmであった。正極側最大変位が316μmと負極側最大変位が457μmとなり、これらの和で定義される最大歪みは773μmであった。
実施例1と同様に電池を作製し電池評価した。結果を表1及び表2に示す。
Comparative Example 3
Other than using a mold made of PET with a diameter of 15.5 mm, the molding pressure of the solid electrolyte was 10 MPa, the molding pressure after charging the positive electrode mixture on one side was 70 MPa, and the molding pressure after charging the negative electrode mixture on the other side was 70 MPa. A lithium secondary battery element was obtained in the same manner as Example 1.
FIG. 16 shows the result of X-ray CT observation of the obtained lithium secondary battery element as it is. The upper side is a negative electrode, and the lower side is a positive electrode. All the cracks in the observation field were found and the length was measured. Similarly, the remaining 3 fields of view were also measured. The sum total was 36.840 mm, and the average crack length was 9210 μm. The maximum positive electrode side displacement was 316 μm and the negative electrode side maximum displacement was 457 μm, and the maximum strain defined by the sum thereof was 773 μm.
A battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

本発明のリチウム電池は、携帯電話やモバイルパソコン等のモバイル機器や、電気自動車や電動自転車等の移動機器、電動工具等に使用できる。   The lithium battery of the present invention can be used for mobile devices such as mobile phones and mobile personal computers, mobile devices such as electric cars and electric bicycles, and electric tools.

1 リチウム電子
3 電池素子
5 正極集電体
7 負極集電体
10 正極層
20 固体電解質層
30 負極層
DESCRIPTION OF SYMBOLS 1 Lithium electron 3 Battery element 5 Positive electrode collector 7 Negative electrode collector 10 Positive electrode layer 20 Solid electrolyte layer 30 Negative electrode layer

Claims (6)

正極層、固体電解質層及び負極層を備えるリチウム電池であって、
パッケージ圧が0〜1MPaであり、
20回目のサイクル時の容量維持率が80%以上であることを特徴とするリチウム電池。
A lithium battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
The package pressure is 0 to 1 MPa,
A lithium battery having a capacity retention rate of 80% or more at the 20th cycle.
20回サイクル時の放電開始電圧の変化が0.5V以下であることを特徴とする請求項1に記載のリチウム電池。   2. The lithium battery according to claim 1, wherein a change in the discharge start voltage during 20 cycles is 0.5 V or less. 正極層、固体電解質層及び負極層を備えるリチウム電池であって、
パッケージ圧が0〜1MPaであり、
大気圧下で、前記正極層、固体電解質層及び負極層の断面の平均クラック長さが1000μm以下であることを特徴とするリチウム電池。
A lithium battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
The package pressure is 0 to 1 MPa,
The lithium battery, wherein an average crack length of a cross section of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is 1000 μm or less under atmospheric pressure.
大気圧下で、最大歪みが200μm以下であることを特徴とする請求項3に記載のリチウム電池。   The lithium battery according to claim 3, wherein the maximum strain is 200 μm or less under atmospheric pressure. 前記正極層、固体電解質層及び負極層のうち少なくとも1つが粒子を含むことを特徴とする請求項1〜4のいずれかに記載のリチウム電池。   The lithium battery according to claim 1, wherein at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes particles. 請求項1〜5のいずれかに記載のリチウム電池を搭載したことを特徴とする電子機器。   An electronic device comprising the lithium battery according to claim 1.
JP2009177967A 2009-07-30 2009-07-30 Lithium battery, and electronic device using the same Pending JP2011034724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177967A JP2011034724A (en) 2009-07-30 2009-07-30 Lithium battery, and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177967A JP2011034724A (en) 2009-07-30 2009-07-30 Lithium battery, and electronic device using the same

Publications (1)

Publication Number Publication Date
JP2011034724A true JP2011034724A (en) 2011-02-17

Family

ID=43763621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177967A Pending JP2011034724A (en) 2009-07-30 2009-07-30 Lithium battery, and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2011034724A (en)

Similar Documents

Publication Publication Date Title
JP6975392B2 (en) Electrode body for all-solid-state battery and its manufacturing method
KR102188823B1 (en) Solid electrolyte material and all solid lithium battery
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
WO2018193994A1 (en) All-solid lithium ion secondary battery
KR102608245B1 (en) Elctrically conductive hybrid membrane, making method thereof, secondary battery and electronic device comprising the same
CN111463437B (en) All-solid battery
JP5487719B2 (en) Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery obtained by the manufacturing method
JP7336692B2 (en) Solid electrolyte and battery using the same
JP2011081915A (en) Solid electrolyte, solid electrolyte film containing solid electrolyte and all solid lithium secondary battery using the solid electrolyte
JP5796686B2 (en) All-solid battery and method for manufacturing the same
WO2019189007A1 (en) Solid-state battery
JPWO2015147122A1 (en) All solid state secondary battery
JP6070471B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
JP2016134254A (en) Method of manufacturing all-solid battery
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
KR102525019B1 (en) All-solid-state battery, method of producing battery element, and method of producing all-solid-state battery
EP3982438A1 (en) Electrode moulded body production method
JP2011154900A (en) All-solid battery
Kali et al. Effects of residual stress on overpotentials and mechanical integrity during electrochemical Li-alloying of Al film electrodes
JP2013097969A (en) Electrode for all-solid battery, and all-solid battery including the same
JP7078801B2 (en) Manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery, as well as all-solid-state secondary battery sheet and all-solid-state secondary battery
JP2011086546A (en) Lithium battery and electronic equipment using the same
JP2011034724A (en) Lithium battery, and electronic device using the same
JP2022106441A (en) Method for manufacturing solid state battery
JP6859234B2 (en) Manufacturing method of all-solid-state battery