JP2011033677A - Device for measuring amount of downward rotation of eyeball - Google Patents

Device for measuring amount of downward rotation of eyeball Download PDF

Info

Publication number
JP2011033677A
JP2011033677A JP2009177444A JP2009177444A JP2011033677A JP 2011033677 A JP2011033677 A JP 2011033677A JP 2009177444 A JP2009177444 A JP 2009177444A JP 2009177444 A JP2009177444 A JP 2009177444A JP 2011033677 A JP2011033677 A JP 2011033677A
Authority
JP
Japan
Prior art keywords
eyeball
line
wearer
sight
eye point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009177444A
Other languages
Japanese (ja)
Inventor
Osamu Wada
修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009177444A priority Critical patent/JP2011033677A/en
Publication of JP2011033677A publication Critical patent/JP2011033677A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring an amount of downward rotation of eyeball by which an amount of downward rotation of eyeball can correctly be obtained according to each wearer. <P>SOLUTION: The device includes: a sight line location detecting means 3 for detecting the location of a front sight line LF corresponding to a distant eye point FP of a wearer and the location of a lower sight line LN corresponding to a near eye point NP; and a calculating means 5 for calculating a distance between the positions of the distant eye point FP and near eye point NP, detected by the sight line location detecting means 3. Since a wearer is in a state of being wearing glasses when an amount Indih of downward rotation of eyeball is measured, regardless of the position of the wearer, the distant eye point FP and near eye point NP can be correctly detected. Thus, the amount Indih of downward rotation of eyeball can be measured correctly and easily at low costs. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、眼鏡レンズにおける眼球下転量測定装置に関する。   The present invention relates to an eyeball downward amount measuring apparatus for spectacle lenses.

眼鏡レンズには単焦点眼鏡レンズの他に累進屈折力眼鏡レンズがある。この累進屈折力レンズは、遠方視に対応する屈折力(度数)を持つ遠用部領域と近方視に対応する屈折力を持つ近用部領域とを備えた非球面レンズである。遠用部領域はレンズの上方位置に設定され、近用部領域はレンズの下方位置に設定され、これら両領域の間で屈折力が累進的に変化する累進帯を備えている。これらの領域には境目がなく1枚のレンズで遠くのものから近くのものまで見ることができる。遠用部領域、近用部領域および累進帯は、個々の使用目的(遠近重視、中近重視、近々重視、フルタイム使用、パートタイム使用、静的使用、動的使用など)に合わせて調整を行う必要がある(光学的フィッティング)。光学的フィッティングの中でも、累進屈折力レンズにおいては眼球下転量が重要である。眼球下転量とは、眼鏡装着者が水平視した状態でのレンズ上の視線位置を遠用アイポイント(FP)とし、近用視線の状態でのレンズ上の視線位置を近用アイポイント(NP)としたとき、遠用アイポイントから近用アイポイントまで眼球を下転させる距離である。   In addition to single-focus spectacle lenses, there are progressive-power spectacle lenses. This progressive-power lens is an aspherical lens having a distance portion region having a refractive power (frequency) corresponding to far vision and a near portion region having refractive power corresponding to near vision. The distance portion region is set at an upper position of the lens, the near portion region is set at a lower position of the lens, and includes a progressive zone in which refractive power changes progressively between these two regions. These areas have no borders and can be seen from a distance to a distance with a single lens. The distance area, near area, and progressive zone are adjusted according to each purpose of use (emphasis on perspective, focus on near distance, focus on near future, full time use, part time use, static use, dynamic use, etc.) Must be performed (optical fitting). Among optical fittings, the amount of downward eyeball movement is important for progressive-power lenses. The amount of downward eyeball movement refers to the distance eye point (FP) on the lens when the spectacle wearer is viewing horizontally, and the eye position on the lens in the near eye direction (near eye point ( NP) is the distance to which the eyeball is moved down from the distance eye point to the near eye point.

このような眼鏡レンズを設計するにあたり、眼球運動測定装置からの情報を得て眼鏡をかけた状態での個人の眼球運動経路をソフトウェアで分析することにより、1つ以上のアイポイント又は平均的な領域を特定し、その情報を元に標準レンズを個々人の眼に合わせて修正した眼鏡レンズをカスタム設計する従来例がある(特許文献1)。この特許文献1の従来例では、アイポイントを測定するために眼球運動測定装置が用いられている。
また、頭追跡システムと、装用者の動作統計モデルの統計分析結果から引き出される値を使用し、装用者の個々の視覚動作パターンを判定し、フレーム選択指導や、公知の複数のレンズから最適なレンズデザインを奨励する従来例(特許文献2)がある。
In designing such a spectacle lens, information from an eye movement measuring device is obtained, and the eye movement path of the individual in the state of wearing glasses is analyzed by software, so that one or more eye points or average There is a conventional example in which a spectacle lens is custom-designed by specifying a region and correcting a standard lens according to an individual's eye based on the information (Patent Document 1). In the conventional example of Patent Document 1, an eye movement measurement device is used to measure an eye point.
In addition, using the head tracking system and values derived from the statistical analysis results of the wearer's motion statistical model, the individual visual motion pattern of the wearer is determined, and frame selection guidance and the most suitable from multiple known lenses There is a conventional example (Patent Document 2) that encourages lens design.

特表2008−521027号公報Special table 2008-521027 gazette 特表2003−523244号公報Special table 2003-523244 gazette

特許文献1の従来例では、眼球運動測定装置を用いるので、装置全体が高価なものとなる。遠用アイポイントや近用アイポイントの決定に際しては、頭及び眼球運動だけでなく、眼鏡を装着している人(装用者)の姿勢もかかわってくるので、頭と眼球運動だけで決定する特許文献1では正確な測定値を得ることができない。
特許文献2の従来例では、特許文献1と同様に、頭追跡システムを用いているので、装置全体が高価なものになるだけでなく、装用者の姿勢によっては正確な測定を行うことができない。
In the conventional example of Patent Document 1, since the eye movement measuring device is used, the entire device becomes expensive. Patents for determining distance eyepoints and near eyepoints are determined not only by the head and eye movements, but also by the posture of the person wearing the glasses (the wearer). Document 1 cannot obtain an accurate measurement value.
In the conventional example of Patent Document 2, since the head tracking system is used as in Patent Document 1, not only the entire apparatus becomes expensive, but also accurate measurement cannot be performed depending on the posture of the wearer. .

本発明の目的は、装用者の個々に応じて眼球下転量を正確に求めることができる眼球下転量測定装置を提供することにある。   An object of the present invention is to provide a device for measuring the amount of downward eyeball movement that can accurately determine the amount of downward eyeball movement according to the wearer.

本発明の眼球下転量測定装置は、装着者が実際に装着するとともに上辺部と下辺部とを有するフレームに装着される眼鏡レンズの遠用アイポイントから近用アイポイントまでの長さを測定する装置であって、装用者の前記遠用アイポイントに対応する視線の位置と前記近用アイポイントに対応する視線の位置とを検出する視線位置検出手段と、この視線位置検出手段で検出された前記遠用アイポイントの位置と前記近用アイポイントの位置との間の距離を演算する演算手段とを備えたことを特徴とする。   The downward eyeball movement measuring apparatus of the present invention measures the length from a distance eye point to a near eye point of a spectacle lens that is actually worn by the wearer and is attached to a frame having an upper side and a lower side. A line-of-sight position detecting means for detecting a position of the line of sight corresponding to the far eyepoint of the wearer and a position of the line of sight corresponding to the near eyepoint, and detected by the line-of-sight position detecting means. And calculating means for calculating a distance between the position of the far eye point and the position of the near eye point.

この構成の本発明では、眼鏡をかけた状態で視線位置検出手段によって、眼の視線の位置が異なる近用アイポイントと遠用アイポイントとをそれぞれ検出し、これらのアイポイントの位置に基づいて前記遠用アイポイントの位置と前記近用アイポイントの位置との間の距離である眼球下転量を演算手段で演算する。
そのため、本発明では、装用者の姿勢にかかわらず、遠用アイポイントと近用アイポイントとをそれぞれ検出するので、眼球下転量を正確かつ簡単に測定することが可能となる。しかも、従来例のような高額な眼球運動測定装置やこの装置で出力された情報から眼球運動経路を分析する高額なソフトウェアが不要とされるので、安価に装置を提供することができる。
In the present invention with this configuration, the near eye point and the far eye point with different eye gaze positions are detected by the gaze position detecting means while wearing glasses, and based on the positions of these eye points. The amount of downward eyeball movement, which is the distance between the position of the distance eye point and the position of the near eye point, is calculated by the calculation means.
Therefore, according to the present invention, the far eyepoint and the near eyepoint are detected regardless of the posture of the wearer, so that the amount of downward eyeball movement can be measured accurately and easily. In addition, since an expensive eye movement measuring apparatus as in the conventional example and expensive software for analyzing the eye movement path from information output by this apparatus are not required, the apparatus can be provided at low cost.

本発明では、前記視線位置検出手段は、装用者の眼球に光を照射する光照射手段と、この光照射手段で照射した光が装用者の眼球で反射された反射光を含む正面画像を撮像する正面撮像手段と、これらの光照射手段と正面撮像手段とを眼球の周囲に沿って移動させる移動機構とを備えた構成が好ましい。
この構成の本発明では、光照射手段で照射された光を眼球で反射させて正面撮像手段で撮像することで、正確な遠用アイポイントと近用アイポイントの位置を求めることができる。
In the present invention, the line-of-sight position detecting means captures a front image including light irradiating means for irradiating a wearer's eyeball with light, and reflected light reflected by the wearer's eyeball with light irradiated by the light irradiating means. It is preferable to have a configuration including a front imaging unit that moves the light imaging unit and the front imaging unit along the periphery of the eyeball.
In the present invention having this configuration, the positions of the distance eye point and the near eye point can be obtained accurately by reflecting the light emitted from the light irradiating means with the eyeball and capturing the image with the front imaging means.

前記演算手段は、フレームの前傾角θと、眼球中心と前記近用アイポイントとを結ぶ下方視線と眼鏡レンズの眼球側平面とのなす角度βと、前記眼球中心と前記遠用アイポイントとを結ぶ正面視線と前記眼鏡レンズの眼球側平面とのなす角度γと、前記眼鏡レンズの眼球側平面と前記フレームの眼鏡側面の下端の位置から前記下方視線におろした法線とのなす角度δと、前記下端の位置と前記正面視線との間の距離Kと、前記下端の位置から前記下方視線におろした法線の距離Mとから、前記フレームの眼鏡側面の下端から前記近用アイポイントまでの近用アイポイントの長さNを、
N=M/COSδ (1)
δ=180°−(β+90°) (2)
β=180°−(α+γ) (3)
γ=180°−(90°+θ) (4)
の式から演算する構成が好ましい。
この構成の本発明では、(1)から(4)の式に基づいて、眼鏡レンズの厚みにかかわらず、近用アイポイントの長さNを正確に求めることができる。
The calculation means includes a forward tilt angle θ of the frame, an angle β formed by a downward line of sight connecting the eyeball center and the near eyepoint, and an eyeball side plane of the spectacle lens, and the eyeball center and the distance eyepoint. An angle γ between the frontal line of sight and the eyeball side plane of the spectacle lens, and an angle δ between the eyeball side plane of the spectacle lens and a normal line taken from the position of the lower end of the side surface of the spectacle lens to the lower line of sight From the distance K between the lower end position and the front line of sight, and the normal distance M from the lower end position to the lower line of sight, from the lower end of the glasses side surface of the frame to the near eye point The length N of the near eye point
N = M / COSδ (1)
δ = 180 ° − (β + 90 °) (2)
β = 180 ° − (α + γ) (3)
γ = 180 ° − (90 ° + θ) (4)
The structure which calculates from the formula of is preferable.
In the present invention having this configuration, the length N of the near eye point can be accurately obtained based on the equations (1) to (4) regardless of the thickness of the spectacle lens.

前記正面撮像手段は、装用者の眼球の網膜で反射された反射光を受光する構成が好ましい。
この構成の本発明では、網膜で反射された反射光は瞳孔を通じて広い面積の検出光として確実に検出することができる。
The front imaging means preferably receives reflected light reflected by the retina of the wearer's eyeball.
In the present invention having this configuration, the reflected light reflected by the retina can be reliably detected as detection light having a wide area through the pupil.

前記正面撮像手段は、装用者の眼球の角膜で反射された反射光を受光する構成が好ましい。
この構成の本発明では、角膜で反射された反射光は狭い面積であるので、精度のよい位置検出を行うことができる。
The front imaging means preferably receives reflected light reflected by the cornea of the wearer's eyeball.
In the present invention having this configuration, the reflected light reflected by the cornea has a small area, and therefore, accurate position detection can be performed.

前記眼鏡レンズが設けられたフレームの前傾角を測定する前傾角測定手段を備える構成が好ましい。
この構成の本発明では、前傾角を装用者が眼鏡を装用した状態で計測できるので、装用状態にかかわらず、正確な前傾角を求めることができる。
A configuration provided with a forward tilt measuring means for measuring the forward tilt angle of the frame provided with the spectacle lens is preferable.
In the present invention having this configuration, the forward tilt angle can be measured in a state where the wearer wears spectacles, so that an accurate forward tilt angle can be obtained regardless of the wearing state.

本発明の第1実施形態にかかる眼球下転量測定装置で測定される眼鏡レンズの概略図。1 is a schematic view of a spectacle lens measured by a downward eyeball movement measuring apparatus according to a first embodiment of the present invention. (A)(B)は第1実施形態にかかる眼球下転量測定装置の概略構成図。(A) (B) is a schematic block diagram of the downward eyeball amount measuring apparatus concerning 1st Embodiment. (A)〜(C)は眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図。(A)-(C) are the schematic of the image which image | photographed the wearer wearing spectacles with the front imaging means. (A)〜(C)は眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図。(A)-(C) are the schematic of the image which image | photographed the wearer wearing spectacles with the front imaging means. 前傾角測定手段で撮像された画像の概略図。Schematic of the image imaged by the forward tilt angle measuring means. 遠用アイポイントの長さを求めるための概略図。Schematic for calculating | requiring the length of a distance eyepoint. 近用アイポイントの長さを求めるための概略図。Schematic for calculating | requiring the length of a near eye point. (A)(B)は第2実施形態にかかる眼球下転量測定装置の概略構成図。(A) (B) is a schematic block diagram of the downward eyeball amount measuring apparatus concerning 2nd Embodiment. (A)〜(C)は眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図。(A)-(C) are the schematic of the image which image | photographed the wearer wearing spectacles with the front imaging means. (A)〜(C)は眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図。(A)-(C) are the schematic of the image which image | photographed the wearer wearing spectacles with the front imaging means.

以下に、本発明の実施形態を図面に基づいて説明する。
本実施形態では、眼鏡レンズとして累進屈折力レンズを使用する。また、本実施形態では、眼鏡を装着した場合の鉛直方向を上下方向、眼鏡を装着した場合の水平方向を左右方向として説明する。
[眼鏡レンズ]
図1に示すように、眼鏡レンズ10は、上方に位置する遠用部領域11と、下方に位置する近用部領域12と、これら遠用部領域11と近用部領域12との間に位置する累進帯13と、累進帯13の側方に隣接した側方領域14と、を有している。
Embodiments of the present invention will be described below with reference to the drawings.
In the present embodiment, a progressive power lens is used as the spectacle lens. In the present embodiment, the vertical direction when wearing glasses is described as the up and down direction, and the horizontal direction when wearing glasses is described as the left and right direction.
[Glasses lens]
As shown in FIG. 1, the spectacle lens 10 includes a distance portion region 11 located above, a near portion region 12 located below, and the distance portion region 11 and the near portion region 12. It has a progressive zone 13 and a side region 14 adjacent to the side of the progressive zone 13.

遠用部領域11は、遠方視するのに適した相対的にプラス度数の低い平均度数を備えている。特に、装着者が正面視をした場合に瞳中心を通る水平線(つまり視線)が通過する位置を遠用アイポイントFPとする。
近用部領域12は、近方視(例えば、読書)するのに適した相対的にプラス度数の高い平均度数を備えている。特に、装着者が近方視(下方視)した場合の視線が通過する位置を近用アイポイントNPとする。
The distance portion region 11 has an average power having a relatively low plus power suitable for far vision. In particular, the distance eye point FP is a position through which a horizontal line (that is, a line of sight) passing through the center of the pupil when the wearer performs a front view.
The near portion area 12 has an average power having a relatively high plus power suitable for near vision (for example, reading). In particular, a near eye point NP is a position through which a line of sight passes when the wearer views near (downward).

累進帯13は、遠用部領域11と近用部領域12との間で相対的なプラスの平均加入度数が累進的に変化する領域である。遠用アイポイントFPを通過して左右方向に延びる直線を遠用アイポイントラインFLとする。近用アイポイントNPを通過して左右方向に延びる直線を近用アイポイントラインNLとする。遠用アイポイントラインFLと近用アイポイントラインNL間の距離(長さ)は眼球下転量Indihであり、この眼球下転量Indihが本実施形態の測定対象である。
遠用部領域11と累進帯13との境界線から遠用アイポイントFPまでが遠用アイポイント高さFhである。遠用部領域11と累進帯13との境界線と、累進帯13と近用部領域12との境界線との間の長さ(距離)が累進帯長SPhである。
側方領域14は、非点収差領域と呼ばれるエリアである。側方領域14を通して見ると物が二重に見えたりするため、通常、装着者は側方領域14を通して物を見ない。
The progressive zone 13 is a region in which the relative positive average addition power changes progressively between the distance portion region 11 and the near portion region 12. A straight line that passes through the distance eye point FP and extends in the left-right direction is defined as a distance eye point line FL. A straight line that passes through the near eye point NP and extends in the left-right direction is defined as a near eye point line NL. The distance (length) between the distance eye point line FL and the near eye point line NL is the eyeball downward amount Indih, and this eyeball downward amount Indih is the measurement object of this embodiment.
The distance from the boundary line between the distance portion region 11 and the progressive zone 13 to the distance eye point FP is the distance eye point height Fh. The length (distance) between the boundary line between the distance portion region 11 and the progressive zone 13 and the boundary line between the progressive zone 13 and the near zone region 12 is the progressive zone length SPh.
The side area 14 is an area called an astigmatism area. Usually, the wearer does not see an object through the side region 14 because the object looks double when viewed through the side region 14.

眼鏡レンズ10は、このような累進屈折力レンズを成形加工することにより得られ、得られた眼鏡レンズ10はフレーム20に装着されて眼鏡となる。
フレーム20は、眼鏡レンズ10を装着して枠状に取り囲むフレーム枠21と、左右のフレーム枠21を連結するブリッジ22と、フレーム枠21からヒンジを介して回動可能に取り付けられたテンプル23(図5参照)とを備えている。フレーム枠21は上辺部21Uと下辺部21Dと側辺部21Sとを有する。これらの上辺部21Uと下辺部21Dとの間の距離が眼鏡レンズの玉型高さBhであり、遠用アイポイントFPからフレームの上辺部までの距離が上部フレーム高さOhである。フレーム枠21の下辺部21Dから近用アイポイントNPまでの距離が下部フレーム高さUhである。
The spectacle lens 10 is obtained by molding such a progressive-power lens, and the obtained spectacle lens 10 is attached to the frame 20 to become spectacles.
The frame 20 includes a frame frame 21 that is attached to the spectacle lens 10 and encloses in a frame shape, a bridge 22 that connects the left and right frame frames 21, and a temple 23 that is rotatably attached to the frame frame 21 via a hinge. (See FIG. 5). The frame 21 has an upper side 21U, a lower side 21D, and a side 21S. The distance between the upper side 21U and the lower side 21D is the eyeglass lens height Bh, and the distance from the distance eye point FP to the upper side of the frame is the upper frame height Oh. The distance from the lower side 21D of the frame 21 to the near eye point NP is the lower frame height Uh.

[第1実施形態]
第1実施形態にかかる眼球下転量測定装置を図2から図7に基づいて説明する。
図2(A)(B)は第1実施形態にかかる眼球下転量測定装置の概略構成図である。
図2(A)(B)において、眼球下転量測定装置1は、装用者の視線の位置を検出する視線位置検出手段3と、眼鏡レンズ10が設けられたフレームの前傾角θを測定する前傾角測定手段4と、これらの視線位置検出手段3及び前傾角測定手段4からの出力に基づいて眼球下転量Indihを演算する演算手段5とを備えている。
[First Embodiment]
The downward eyeball movement measuring apparatus according to the first embodiment will be described with reference to FIGS.
FIGS. 2A and 2B are schematic configuration diagrams of the downward eyeball movement measuring apparatus according to the first embodiment.
2A and 2B, the downward eyeball movement measuring apparatus 1 measures the forward tilt angle θ of the frame on which the eye gaze position detecting means 3 for detecting the gaze position of the wearer and the spectacle lens 10 is provided. An anteversion angle measuring means 4 and an arithmetic means 5 for calculating an eyeball inversion amount Indih based on outputs from the line-of-sight position detecting means 3 and the anteversion angle measuring means 4 are provided.

視線位置検出手段3は、装用者の遠用アイポイントFPに対応する視線の位置と近用アイポイントNPに対応する視線の位置とを検出するものであり、装用者の眼球Eに光を照射する光照射手段31と、この光照射手段31で照射した光が装用者の眼球Eで反射された反射光を含む正面画像を撮像する正面撮像手段32と、これらの光照射手段31と正面撮像手段32を移動する移動機構33とを有する。光照射手段31と正面撮像手段32とは共通のケーシング30に設けられており、このケーシング30は眼球Eの中心を回転中心として回動する移動機構33に連結される。
光照射手段31は近赤外線LEDから構成される。
The line-of-sight position detection means 3 detects the position of the line of sight corresponding to the far eye point FP of the wearer and the position of the line of sight corresponding to the near eye point NP, and irradiates the eyeball E of the wearer with light. Light irradiating means 31, front image capturing means 32 for capturing a front image including reflected light reflected by the eyeball E of the wearer, and the light irradiating means 31 and the front image capturing. A moving mechanism 33 for moving the means 32. The light irradiation means 31 and the front imaging means 32 are provided in a common casing 30, and the casing 30 is connected to a moving mechanism 33 that rotates about the center of the eyeball E.
The light irradiation means 31 is composed of a near infrared LED.

正面撮像手段32は、装用者の眼球Eの網膜で反射し瞳孔を通った反射光をカメラで撮像し、この撮像したデータに基づいて画像処理部で網膜反射による瞳孔の位置を検出する構成である。
図2(A)は遠用アイポイントの位置を撮像する状態が示されている。図2(A)において、装用者が正面を向いて正面視線LFが遠用アイポイントFPを通った際に、正面撮像手段32で瞳孔の位置を検出する。
画像処理部は、瞳孔の位置を検出するために、画像のうち瞳孔の部分を楕円と仮定し、楕円に内接する平行四辺形の成立条件により楕円中心を算出し、楕円中心を通る直線と交わる輪郭点の関係から輪郭点の除去を行い、除去後の楕円パラメータを最小二乗法から求める。
The front imaging means 32 has a configuration in which reflected light that has been reflected by the retina of the wearer's eyeball E and passed through the pupil is imaged by the camera, and the position of the pupil due to retinal reflection is detected by the image processing unit based on the captured data. is there.
FIG. 2A shows a state in which the position of the distance eyepoint is imaged. In FIG. 2A, when the wearer faces the front and the front line of sight LF passes through the distance eye point FP, the front imaging means 32 detects the position of the pupil.
In order to detect the position of the pupil, the image processing unit assumes that the pupil portion of the image is an ellipse, calculates the ellipse center based on the formation condition of the parallelogram inscribed in the ellipse, and intersects with a straight line passing through the ellipse center. The contour points are removed from the relationship of the contour points, and the ellipse parameters after the removal are obtained from the least square method.

つまり、瞳孔の位置を検出する方法は、図3に示される通りである。図3は眼鏡をかけた装用者を正面撮像手段32で撮像した画像32Aの概略図である。この画像32Aは後述する演算手段5の表示部に表示される。
図3において、画像32Aには眼鏡レンズ10とともに装用者の眼球Eが示されており、この眼球Eの画像32Aの右上には角度表示部32Bが設けられている。この角度表示部32Bは正面撮像手段32の装用者の眼球Eを中心とした鉛直面内の角度を[°]で示す表示部である。図3では、装用者が正面を向いている(水平方向を見ている)状態であるため、角度は0°とされる。
That is, the method for detecting the position of the pupil is as shown in FIG. FIG. 3 is a schematic view of an image 32 </ b> A obtained by capturing the wearer wearing glasses with the front imaging means 32. This image 32A is displayed on the display unit of the calculation means 5 described later.
In FIG. 3, the eyeball E of the wearer is shown together with the eyeglass lens 10 in the image 32A, and an angle display portion 32B is provided on the upper right of the image 32A of the eyeball E. This angle display part 32B is a display part which shows the angle in the vertical plane centering on the eyeball E of the wearer of the front imaging means 32 by [°]. In FIG. 3, since the wearer is facing the front (looking in the horizontal direction), the angle is 0 °.

図3(A)に示される通り、まず、光照射手段31を使用せず正面撮像手段32で装用者の画像を撮像する。図3(A)では、通常のカメラでの撮像画像と同じ画像が示されることから、眼球Eの瞳孔部分ECが黒く撮像される。そして、この状態で、光照射手段31から光を眼球Eに向けて照射すると、図3(B)に示される通り、正面撮像手段32で撮像された画像では、瞳孔部分ECの色が変わる。具体的には、いわゆる赤目と称されるように黒から赤に瞳孔部分ECの色が変わる。そして、図3(C)に示される通り、図3(B)の画像から図3(A)の画像を除去して、瞳孔部分ECのみの画像を残す。そして、前述の方法に従って、瞳孔部分ECの位置を検出する。   As shown in FIG. 3A, first, an image of the wearer is captured by the front imaging unit 32 without using the light irradiation unit 31. In FIG. 3A, the same image as the image captured by a normal camera is shown, so that the pupil portion EC of the eyeball E is imaged black. In this state, when light is emitted from the light irradiation unit 31 toward the eyeball E, the color of the pupil part EC changes in the image captured by the front imaging unit 32 as shown in FIG. Specifically, the color of the pupil part EC changes from black to red as so-called red eyes. Then, as shown in FIG. 3C, the image of FIG. 3A is removed from the image of FIG. 3B, leaving an image of only the pupil portion EC. Then, the position of the pupil part EC is detected according to the method described above.

図2(B)は近用アイポイントの位置を撮像する状態を示す概略図である。図2(B)において、装用者が下方を向いて視線が近用アイポイントを通った際に、正面撮像手段32で瞳孔の位置を検出する。
図4は、装用者の視線が近用アイポイントを通った際に、眼鏡をかけた装用者を正面撮像手段32で撮像した画像32Aの概略図である。図4は装用者が下を向いた状態であるので、図3に比べて装用者の眼が扁平に撮像される。
図4において、画像32Aには眼鏡レンズ10とともに装用者の眼球Eが示されている。画像32Aの右上には角度表示部32Bが設けられている。図4では、装用者の視線が近用アイポイントに向けている(斜め下方を見ている)状態であるため、角度は0°より大きい、図4では30°と表示されている。
FIG. 2B is a schematic diagram showing a state in which the position of the near eye point is imaged. In FIG. 2B, when the wearer turns downward and the line of sight passes through the near eye point, the front imaging means 32 detects the position of the pupil.
FIG. 4 is a schematic view of an image 32A obtained by capturing the wearer wearing glasses with the front imaging means 32 when the line of sight of the wearer passes through the near eye point. Since FIG. 4 shows a state in which the wearer faces downward, the wearer's eyes are imaged more flatly than in FIG.
In FIG. 4, the image 32 </ b> A shows the eyeball E of the wearer together with the eyeglass lens 10. An angle display section 32B is provided on the upper right of the image 32A. In FIG. 4, since the wearer's line of sight is directed toward the near eye point (looking obliquely below), the angle is larger than 0 °, and in FIG. 4, 30 ° is displayed.

図4(A)に示される通り、まず、光照射手段31を使用せず正面撮像手段32で装用者の画像を撮像する。図4(A)では、眼球Eの瞳孔部分ECが黒く撮像される。この状態で、光照射手段31から光を眼球Eに向けて照射すると、図4(B)に示される通り、正面撮像手段32で撮像された画像では、瞳孔部分ECの色が変化(赤)して撮像される。そして、図4(C)に示される通り、図4(B)の画像から図4(A)の画像を除去して、瞳孔部分ECのみの画像を残す。そして、前述の方法に従って、瞳孔部分ECの位置を検出する。   As shown in FIG. 4A, first, an image of the wearer is captured by the front imaging unit 32 without using the light irradiation unit 31. In FIG. 4A, the pupil portion EC of the eyeball E is imaged black. In this state, when the light irradiation means 31 emits light toward the eyeball E, the color of the pupil part EC changes (red) in the image picked up by the front image pickup means 32 as shown in FIG. 4B. And imaged. Then, as shown in FIG. 4C, the image of FIG. 4A is removed from the image of FIG. 4B, leaving an image of only the pupil portion EC. Then, the position of the pupil part EC is detected according to the method described above.

図2において、移動機構33は、円弧状のドーム33Aと、このドーム33Aに沿って光照射手段31と正面撮像手段32とが設けられたケーシング30を駆動する駆動部(図示せず)とを備える。この駆動部はモータ、歯車機構、チェーン等の適宜な構成を有する。
前傾角測定手段4は、眼鏡レンズ10が設けられた眼鏡を装着した装用者の側面を撮像するカメラと、このカメラで撮像された画像に基づいてフレーム20の前傾角θを求める画像処理部とを備える。
前傾角測定手段4で撮像された画像が図5に示されている。図5には、装用者が水平方向を向いた状態が撮像されているが、この装用者のフレーム20のテンプル23の位置やフレーム枠21の位置等の画像に基づいて画像処理部が前傾角θを算出する。この画像処理部で算出された前傾角θのデータは演算手段5に送られる。なお、本実施形態では、画像処理部を省略し、カメラで撮像された画面から作業員が前傾角θを直接求め、この数値を演算手段5に別途入力するものでもよい。
In FIG. 2, the moving mechanism 33 includes an arc-shaped dome 33A and a drive unit (not shown) for driving the casing 30 provided with the light irradiation means 31 and the front imaging means 32 along the dome 33A. Prepare. This drive unit has an appropriate configuration such as a motor, a gear mechanism, and a chain.
The forward tilt angle measuring means 4 includes a camera that captures the side surface of the wearer wearing the spectacle lens 10 and an image processing unit that calculates the forward tilt angle θ of the frame 20 based on the image captured by the camera. Is provided.
An image taken by the forward tilt measuring means 4 is shown in FIG. In FIG. 5, a state in which the wearer is oriented in the horizontal direction is captured, but the image processing unit is inclined forward based on images such as the position of the temple 23 of the frame 20 and the position of the frame frame 21 of the wearer. θ is calculated. Data of the forward tilt angle θ calculated by the image processing unit is sent to the calculation means 5. In this embodiment, the image processing unit may be omitted, and an operator may directly obtain the forward tilt angle θ from the screen imaged by the camera, and this value may be separately input to the calculation means 5.

図2において、演算手段5は、キーボード等の外部入力部と、ディスプレー部と、演算部とを有するパソコンであり、正面撮像手段32と前傾角測定手段4とのそれぞれ出力された情報やその他の情報に基づいて眼球下転量Indihを演算するものである。
眼球下転量Indihは遠用アイポイントラインFLと近用アイポイントラインNL間の距離(長さ)である。
図6には遠用アイポイントの長さを求めるための概略図、図7には近用アイポイントの長さを求めるための概略図が示されている。
In FIG. 2, the calculation means 5 is a personal computer having an external input unit such as a keyboard, a display unit, and a calculation unit. Information output from the front imaging unit 32 and the forward tilt measurement unit 4 and other information are output from the personal computer. The downward movement amount Indih of the eyeball is calculated based on the information.
The downward eyeball amount Indih is a distance (length) between the distance eye point line FL and the near eye point line NL.
FIG. 6 is a schematic diagram for obtaining the length of the distance eye point, and FIG. 7 is a schematic diagram for obtaining the length of the near eye point.

図6及び図7に示される通り、前傾角測定手段4から入力される前傾角θ、正面撮像手段32で求められた眼球中心と遠用アイポイントFPとを結ぶ正面視線LF、眼球中心と近用アイポイントNPとを結ぶ下方視線LN、正面視線LFと下方視線LNとのなす角度の眼球下転角度α、下方視線LNと眼鏡レンズの眼球側平面OLとのなす角度β、眼鏡レンズの眼球側平面OLと正面視線LFとのなす角度γ、眼鏡レンズの眼球側平面OLと下端20Pの位置から下方視線LNにおろした法線VLとのなす角度δ、フレーム20の眼鏡側面の下端20Pの位置と正面視線LFとの間の距離K、眼鏡側面の下端20Pの位置から下方視線LNにおろした法線VLの距離Mから、フレーム20の下端20Pから近用アイポイントNPまでの近用アイポイントの長さNは次の(1)〜(4)の式から求められる。なお、距離Kは眼鏡レンズ10の遠用アイポイントFPと下端20Pとのみかけ上の長さでもあり、距離Mは眼鏡レンズ10の近用アイポイントNPと下端20Pとのみかけ上の長さでもある。   As shown in FIGS. 6 and 7, the forward tilt angle θ input from the forward tilt angle measuring means 4, the frontal line of sight LF connecting the eyeball center obtained by the front imaging means 32 and the distance eye point FP, and the eyeball center and near. A lower line of sight LN connecting the eye point NP, an eyeball downturn angle α formed by the angle between the front line of sight LF and the lower line of sight LN, an angle β formed by the lower line of sight LN and the eyeball side plane OL of the eyeglass lens, and the eyeball of the eyeglass lens An angle γ formed by the side plane OL and the front line of sight LF, an angle δ formed by the eyeball side plane OL of the spectacle lens and the normal line VL taken from the position of the lower end 20P to the lower line of sight LN, and the lower end 20P of the side surface of the spectacles of the frame 20 A near eye point from the lower end 20P of the frame 20 to the near eye point NP from the distance K between the position and the front line of sight LF, the distance M of the normal line VL from the position of the lower end 20P on the side of the glasses to the lower line of sight LN Into length N is obtained from the following equations (1) to (4). The distance K is the apparent length between the distance eye point FP and the lower end 20P of the spectacle lens 10, and the distance M is the apparent length between the near eye point NP and the lower end 20P of the spectacle lens 10. is there.

N=M/COSδ (1)
δ=180°−(β+90°) (2)
β=180°−(α+γ) (3)
γ=180°−(90°+θ) (4)
また、フレーム20の眼鏡側面の下端20Pから遠用アイポイントFPまでの遠用アイポイントの長さLは次の(5)の式から求められる。
L=K/COSθ (5)
さらに、眼球下転量Indihは遠用アイポイントFPと近用アイポイントNPとの間の距離であるので、眼球下転量Indihは次の式(6)から求められる。
Indih=L−N (6)
N = M / COSδ (1)
δ = 180 ° − (β + 90 °) (2)
β = 180 ° − (α + γ) (3)
γ = 180 ° − (90 ° + θ) (4)
Further, the length L of the distance eye point from the lower end 20P on the side surface of the eyeglasses of the frame 20 to the distance eye point FP is obtained from the following equation (5).
L = K / COSθ (5)
Furthermore, since the eyeball downward amount Indih is a distance between the distance eye point FP and the near eye point NP, the eyeball downward amount Indih is obtained from the following equation (6).
Indih = L−N (6)

本実施形態では、以上の式を演算部のメモリーに記録させておく。
なお、フレーム20の眼鏡側面の下端20Pの位置と正面視線LFとの間の距離Kは正面撮像手段32で正面視線LFを中心で受光する位置から下端20Pを中心で受光する位置まで移動させた場合の移動距離として求めることができる。同様に、下端20Pの位置と下方視線LNとの間の距離Mは正面撮像手段32で下方視線LNを中心で受光する位置から下端20Pを中心で受光する位置まで移動させた場合の移動距離として求めることができる。正面撮像手段32の移動軌跡は円弧上であるが、移動距離が眼球と正面撮像手段32との間の距離に比べて短いので、平行移動と近似することができる。
In the present embodiment, the above formula is recorded in the memory of the calculation unit.
The distance K between the position of the lower end 20P on the side surface of the glasses 20 and the front line of sight LF is moved from the position where the front imaging means 32 receives light centered on the front line of sight LF to the position where light is received centered on the lower end 20P. It can be obtained as the movement distance in the case. Similarly, the distance M between the position of the lower end 20P and the lower line of sight LN is a movement distance when the front imaging means 32 moves from the position where light is received centered on the lower line of sight LN to the position where light is received centered on the lower end 20P. Can be sought. Although the movement trajectory of the front imaging means 32 is on an arc, since the movement distance is shorter than the distance between the eyeball and the front imaging means 32, it can be approximated as a parallel movement.

以上の構成の第1実施形態において、眼球下転量Indihを求める方法について説明する。まず、装用者が検査対象となる眼鏡レンズ10の眼鏡をかけ、前傾角測定手段4で前傾角θを測定する。
そして、自然な状態で、装用者に遠くをみるように正面に視線を向けてもらう。正面撮像手段32を装用者の正面に対向するように位置させ、移動機構33で移動させつつ装用者の正面を撮像する。装用者が正面を向いており、装用者の視線に一致すると思われる位置に正面撮像手段32を配置し、撮像を開始する。まず、図3(A)に示される通り、光照射手段31を使用せず正面撮像手段32で装用者の画像を撮像し、光照射手段31から光を装用者の眼球Eに向けて照射する。図3(B)に示される通り、正面撮像手段32で撮像された画像の瞳孔部分が赤となっている場合にはその位置が遠用アイポイントFPであり、その角度が正面撮像手段32に記憶される。瞳孔部分が赤になっていない場合には、正面撮像手段32をすこしずつ移動して遠用アイポイントFPの位置を求める。その後、眼鏡レンズ10の下端20Pの位置が正面の位置となるまで正面撮像手段32を下方にゆっくり移動させ、その位置を求め、眼鏡レンズ10の遠用アイポイントFPと下端20Pとの間のみかけ上の長さKを測定する。
In the first embodiment having the above-described configuration, a method for obtaining the downward eyeball movement amount Indih will be described. First, the wearer puts on the spectacle lens 10 to be inspected, and the forward tilt angle measuring means 4 measures the forward tilt angle θ.
Then, in a natural state, the wearer turns his gaze toward the front to look far away. The front imaging means 32 is positioned so as to face the front of the wearer, and the front of the wearer is imaged while being moved by the moving mechanism 33. The front imaging means 32 is arranged at a position where the wearer is facing the front and seems to coincide with the line of sight of the wearer, and imaging is started. First, as shown in FIG. 3A, an image of the wearer is captured by the front imaging unit 32 without using the light irradiation unit 31, and light is irradiated from the light irradiation unit 31 toward the eyeball E of the wearer. . As shown in FIG. 3B, when the pupil portion of the image captured by the front imaging unit 32 is red, the position is the distance eye point FP, and the angle is the front imaging unit 32. Remembered. If the pupil portion is not red, the front imaging means 32 is moved little by little to determine the position of the distance eye point FP. Thereafter, the front imaging means 32 is slowly moved downward until the position of the lower end 20P of the spectacle lens 10 becomes the front position, the position is obtained, and only between the distance eye point FP and the lower end 20P of the spectacle lens 10. Measure the upper length K.

その後、自然な状態で、装用者に近くをみるように下方に視線を向けてもらう。この下方の視線に対応すると推測される位置まで正面撮像手段32を移動機構33で移動させ、装用者を撮像する。まず、図4(A)に示される通り、光照射手段31を使用せず正面撮像手段32で装用者の画像を撮像し、光照射手段31から光を装用者の眼球Eに向けて照射する。図4(B)に示される通り、正面撮像手段32で撮像された画像の瞳孔部分が赤となっている場合にはその位置が近用アイポイントNPであり、正面視線と下方視線とのなす角度αが眼球下転角である。瞳孔部分が赤になっていない場合には、正面撮像手段32をすこしずつ移動して近用アイポイントNPの位置を求める。その後、眼鏡レンズ10の下端20Pの位置が正面の位置となるまで正面撮像手段32を下方にゆっくり移動させ、その位置を求め、眼鏡レンズ10の近用アイポイントNPと下端20Pとの間のみかけ上の長さMを測定する。
以上の工程で測定されたデータは演算手段5に出力され、この演算手段5では、前述の式(1)〜(6)に基づいて眼球下転量Indihが算出される。
After that, in a natural state, the wearer turns his gaze downward to look closer. The front imaging means 32 is moved by the moving mechanism 33 to a position estimated to correspond to the line of sight below, and the wearer is imaged. First, as shown in FIG. 4A, an image of the wearer is captured by the front imaging unit 32 without using the light irradiation unit 31, and light is irradiated from the light irradiation unit 31 toward the eyeball E of the wearer. . As shown in FIG. 4B, when the pupil portion of the image captured by the front imaging means 32 is red, the position is the near eye point NP, which is formed by the front line of sight and the lower line of sight. The angle α is the downward rotation angle of the eyeball. If the pupil portion is not red, the front imaging means 32 is moved little by little to determine the position of the near eye point NP. Thereafter, the front imaging means 32 is slowly moved downward until the position of the lower end 20P of the spectacle lens 10 becomes the front position, the position is obtained, and only between the near eye point NP and the lower end 20P of the spectacle lens 10. Measure the upper length M.
The data measured in the above steps is output to the calculation means 5, and the calculation means 5 calculates the downward eyeball movement amount Indih based on the above-described equations (1) to (6).

従って、第1実施形態では次の作用効果を奏することができる。
(a)装用者の遠用アイポイントFPに対応する正面視線LFの位置と近用アイポイントNPに対応する下方視線LNの位置とを検出する視線位置検出手段3と、この視線位置検出手段3で検出された遠用アイポイントFPの位置と近用アイポイントNPの位置との間の距離を演算する演算手段5とを備えて眼球下転量測定装置1を構成した。眼球下転量Indihを測定するにあたり、装用者が眼鏡をかけた状態であるので、装用者の姿勢にかかわらず、遠用アイポイントFPと近用アイポイントNPとをそれぞれ正確に検出することができ、眼球下転量Indihを正確かつ簡単にしかも低いコストで測定することができる。
Therefore, in the first embodiment, the following operational effects can be achieved.
(A) A line-of-sight position detection unit 3 for detecting a position of the front line of sight LF corresponding to the far eye point FP of the wearer and a position of the lower line of sight LN corresponding to the near eye point NP, and the line-of-sight position detection unit 3 The eyeball downward movement measuring device 1 is configured to include the calculation means 5 that calculates the distance between the position of the far eye point FP detected in step 1 and the position of the near eye point NP. Since the wearer wears glasses when measuring the downward eyeball amount Indih, the distance eyepoint FP and the near eyepoint NP can be accurately detected regardless of the posture of the wearer. It is possible to measure the downward movement amount Indih accurately and easily at a low cost.

(b)視線位置検出手段3は、装用者の眼球Eに光を照射する光照射手段31と、この光照射手段31で照射した光が装用者の眼球Eで反射された反射光を含む正面画像を撮像する正面撮像手段32と、光照射手段31と正面撮像手段32とを眼球Eの周囲に沿って移動させる移動機構33とを備えている。そのため、光照射手段31で装用者の眼球Eに光を照射し、眼球Eからの反射光を検出することで正確な遠用アイポイントFPの位置と近用アイポイントNPの位置とを求めることができる。 (B) The line-of-sight position detection unit 3 includes a light irradiation unit 31 that irradiates light to the wearer's eyeball E, and a front surface that includes the reflected light reflected by the wearer's eyeball E. A front imaging unit 32 that captures an image, and a moving mechanism 33 that moves the light irradiation unit 31 and the front imaging unit 32 along the periphery of the eyeball E are provided. Therefore, by irradiating the eyeball E of the wearer with the light irradiation means 31 and detecting the reflected light from the eyeball E, the accurate position of the distance eye point FP and the position of the near eye point NP are obtained. Can do.

(c)演算手段5は、前傾角θと、下方視線LNと眼鏡レンズ10の眼球側平面OLとのなす角度βと、眼鏡レンズ10の眼球側平面OLと正面視線LFとのなす角度γと、眼鏡レンズ10の眼球側平面OLとフレーム20の眼鏡側面の下端20Pの位置から下方視線LNにおろした法線VLとのなす角度δと、下端20Pの位置から下方視線LNにおろした法線VLの距離Mとに基づいて近用アイポイントの長さNを前述の(1)〜(4)の式から演算する構成とした。そのため、(1)〜(4)の式を演算手段5のメモリーに予め登録しておくことで、近用アイポイントの長さNを眼鏡レンズ10の厚さにかかわらず、簡単かつ正確に算出することができる。
(d)演算手段5は、前傾角θと、フレームの下端20Pの位置と正面視線LFとの間の距離Kとに基づいて、遠用アイポイントの長さLを前述の(5)の式から演算する構成とした。そのため、(5)の式を演算手段5のメモリーに予め登録しておくことで、遠用アイポイントの長さLを眼鏡レンズ10の厚さにかかわらず、簡単かつ正確に算出することができる。
(C) The computing means 5 includes a forward tilt angle θ, an angle β formed by the downward line of sight LN and the eyeball side plane OL of the spectacle lens 10, and an angle γ formed by the eyeball side plane OL of the spectacle lens 10 and the front line of sight LF. The angle δ between the eyeball side plane OL of the spectacle lens 10 and the normal line VL taken from the position of the lower end 20P of the spectacle side surface of the frame 20 to the lower line of sight LN, and the normal line taken from the position of the lower end 20P to the lower line of sight LN Based on the distance M of the VL, the length N of the near eye point is calculated from the above-described equations (1) to (4). Therefore, by previously storing the equations (1) to (4) in the memory of the calculation means 5, the length N of the near eye point can be calculated easily and accurately regardless of the thickness of the spectacle lens 10. can do.
(D) The computing means 5 calculates the length L of the distance eye point based on the forward tilt angle θ and the distance K between the position of the lower end 20P of the frame and the front line of sight LF in the expression (5) described above. It was set as the structure calculated from. Therefore, by previously storing the expression (5) in the memory of the calculation means 5, the length L of the distance eyepoint can be calculated easily and accurately regardless of the thickness of the spectacle lens 10. .

(e)フレーム20の前傾角θを測定する前傾角測定手段4を備えたから、前傾角θを装用者が眼鏡を装用した状態で計測できるので、装用状態にかかわらず、正確な前傾角θを求めることができる。 (E) Since the forward tilt angle measuring means 4 for measuring the forward tilt angle θ of the frame 20 is provided, the forward tilt angle θ can be measured in a state where the wearer wears spectacles. Therefore, an accurate forward tilt angle θ can be obtained regardless of the wearing state. Can be sought.

(f)正面撮像手段32は装用者の眼球Eの網膜で反射して瞳孔ECを通った反射光を受光する構成とした。網膜で反射された反射光は瞳孔ECを通じて広い面積の検出光として検出することができるから、検出信号にノイズがのることが少なく遠用アイポイントFPと近用アイポイントNPとの位置検出を確実に行うことができる。 (F) The front imaging means 32 is configured to receive the reflected light reflected by the retina of the eyeball E of the wearer and passing through the pupil EC. Since the reflected light reflected by the retina can be detected as detection light of a wide area through the pupil EC, the detection signal is less subject to noise and position detection of the far eye point FP and the near eye point NP is performed. It can be done reliably.

[第2実施形態]
次に、本発明の第2実施形態について図8から図10に基づいて説明する。第2実施形態は第1実施形態に比べて正面撮像手段の構成が相違するもので、他は第1実施形態の構成と同じである。なお、第2実施形態の説明において、第1実施形態と同一構成要素は同一符号を付して説明を省略もしくは簡略にする。
図8(A)(B)は第2実施形態にかかる眼球下転量測定装置2の概略構成図であり、図2に対応する図である。図9(A)〜(C)は第2実施形態において眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図であり、図3に対応する図である。図10(A)〜(C)は第2実施形態において眼鏡をかけた装用者を正面撮像手段で撮像した画像の概略図であり、図4に対応する図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is different from the first embodiment in the configuration of the front imaging means, and the rest is the same as the configuration of the first embodiment. In the description of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
8A and 8B are schematic configuration diagrams of the downward eyeball movement measuring apparatus 2 according to the second embodiment, and are diagrams corresponding to FIG. FIGS. 9A to 9C are schematic diagrams of images obtained by capturing the wearer wearing glasses with the front imaging unit in the second embodiment, and are diagrams corresponding to FIG. 3. FIGS. 10A to 10C are schematic diagrams of images obtained by capturing a wearer wearing glasses with the front imaging unit in the second embodiment, and correspond to FIG.

図8(A)(B)において、第2実施形態にかかる眼球下転量測定装置2は、装用者の視線の位置を検出する視線位置検出手段3Aと、前傾角測定手段4と、これらの視線位置検出手段3A及び前傾角測定手段4からの出力に基づいて眼球下転量Indihを演算する演算手段5とを備えている。
視線位置検出手段3Aは、装用者の遠用アイポイントFPに対応する視線の位置と近用アイポイントNPに対応する視線の位置とを検出するものであり、光照射手段31と、この光照射手段31で照射した光が装用者の眼球Eの角膜SEで反射された反射光を含む正面画像を撮像する正面撮像手段320と、これらの光照射手段31と正面撮像手段320を移動する移動機構33とを有する。
8A and 8B, the downward eyeball movement measuring apparatus 2 according to the second embodiment includes a gaze position detecting means 3A for detecting the position of the gaze of the wearer, a forward inclination measuring means 4, and these Computation means 5 for computing an eyeball downward movement amount Indih based on outputs from the line-of-sight position detection means 3A and the forward tilt angle measurement means 4 is provided.
The line-of-sight position detecting means 3A detects the position of the line of sight corresponding to the far eye point FP of the wearer and the position of the line of sight corresponding to the near eye point NP. The light irradiation means 31 and the light irradiation Front imaging means 320 that captures a front image including reflected light reflected by the cornea SE of the eyeball E of the wearer, and a moving mechanism that moves the light irradiation means 31 and the front imaging means 320 33.

正面撮像手段320は、装用者の眼球Eの角膜SEで反射した反射光をカメラで撮像し、この撮像したデータに基づいて画像処理部で角膜SEの上の反射点を検出する構成である。画像処理部は角膜SEの上の反射点を検出するために、第1実施形態の画像処理部と同じ信号処理を行う。
図9(A)は遠用アイポイントの位置を撮像する状態が示されている。
図9(A)に示される通り、まず、光照射手段31を使用せず正面撮像手段320で装用者の画像を撮像する。図9(A)では、通常のカメラでの撮像画像と同じ画像が示されることから、眼球Eの角膜SEが黒く撮像される。そして、この状態で、光照射手段31から光を眼球Eに向けて照射すると、図9(B)に示される通り、正面撮像手段320で撮像された画像では、角膜SE上での反射点の色が変わる。そして、図9(C)に示される通り、図9(B)の画像から図9(A)の画像を除去して、角膜SEの反射点のみの画像を残す。そして、第1実施形態と同様の方法に従って、角膜SEの反射点の位置を検出する。
The front imaging means 320 has a configuration in which reflected light reflected by the cornea SE of the wearer's eyeball E is captured by a camera, and a reflection point on the cornea SE is detected by an image processing unit based on the captured data. The image processing unit performs the same signal processing as the image processing unit of the first embodiment in order to detect a reflection point on the cornea SE.
FIG. 9A shows a state in which the position of the distance eye point is imaged.
As shown in FIG. 9A, first, an image of the wearer is captured by the front imaging unit 320 without using the light irradiation unit 31. In FIG. 9A, the same image as the image captured by a normal camera is shown, so that the cornea SE of the eyeball E is imaged black. In this state, when light is irradiated from the light irradiation unit 31 toward the eyeball E, the reflection point on the cornea SE is reflected in the image captured by the front imaging unit 320 as shown in FIG. The color changes. Then, as shown in FIG. 9C, the image of FIG. 9A is removed from the image of FIG. 9B, leaving an image of only the reflection point of the cornea SE. Then, according to the same method as in the first embodiment, the position of the reflection point of the cornea SE is detected.

図8(B)は近用アイポイントの位置を撮像する状態を示す概略図である。
図10(A)に示される通り、まず、光照射手段31を使用せず正面撮像手段320で装用者の画像を撮像する。図10(A)では、眼球Eの角膜SEの反射点が黒く撮像される。この状態で、光照射手段31から光を眼球Eに向けて照射すると、図10(B)に示される通り、正面撮像手段320で撮像された画像では、角膜SEの反射点の色が変化して撮像される。そして、図10(C)に示される通り、図10(B)の画像から図10(A)の画像を除去して、角膜SEの反射点のみの画像を残す。そして、前述の方法に従って、角膜SEの上の反射点の位置を検出する。
第2実施形態でも、第1実施形態と同様に、眼球下転量Indihを遠用アイポイントFPの長さLと近用アイポイントNPの長さNとの差から求める。遠用アイポイントFPの長さLと近用アイポイントNPの長さNとは、前述の(1)〜(5)の式から求める。
FIG. 8B is a schematic diagram illustrating a state in which the position of the near eye point is imaged.
As shown in FIG. 10A, first, an image of the wearer is captured by the front imaging unit 320 without using the light irradiation unit 31. In FIG. 10A, the reflection point of the cornea SE of the eyeball E is imaged black. In this state, when the light irradiation means 31 emits light toward the eyeball E, the color of the reflection point of the cornea SE changes in the image picked up by the front image pickup means 320 as shown in FIG. To be imaged. Then, as shown in FIG. 10C, the image of FIG. 10A is removed from the image of FIG. 10B, leaving an image of only the reflection point of the cornea SE. Then, the position of the reflection point on the cornea SE is detected according to the method described above.
Also in the second embodiment, similarly to the first embodiment, the downward eyeball amount Indih is obtained from the difference between the distance L of the distance eye point FP and the length N of the near eye point NP. The length L of the distance eye point FP and the length N of the near eye point NP are obtained from the above-described equations (1) to (5).

従って、第2実施形態では第1実施形態の(a)〜(e)と同様の作用効果を奏することができる他、次の作用効果を奏することができる。
(g)正面撮像手段320を装用者の眼球Eの角膜SEで反射された反射光を受光する構成とした。角膜SEで反射された反射光の面積は狭いので、精度の高い位置検出を行うことができる。
Therefore, in the second embodiment, the same operational effects as the first embodiment (a) to (e) can be obtained, and the following operational effects can be obtained.
(G) The front imaging unit 320 is configured to receive the reflected light reflected by the cornea SE of the eyeball E of the wearer. Since the area of the reflected light reflected by the cornea SE is small, highly accurate position detection can be performed.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。
例えば、前記実施形態では、フレーム20の前傾角θを測定する前傾角測定手段4を備えて眼球下転量測定装置1,2を構成したが、本発明では、装用者が正しい姿勢で眼鏡をかけているものであれば、前傾角θは設計上のデータを眼球下転量の測定にそのまま用いることができ、前傾角測定手段4を省略することができる。
また、画像32Aには必ずしも角度表示部32Bを設けることを要しない。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that modifications and improvements within the scope of achieving the objects and effects of the present invention are included in the contents of the present invention. Absent.
For example, in the above-described embodiment, the forward tilt angle measuring means 4 for measuring the forward tilt angle θ of the frame 20 is provided to configure the downward eyeball movement measuring devices 1 and 2, but in the present invention, the wearer wears glasses with a correct posture. If it is applied, the design data for the forward tilt angle θ can be used as it is for measuring the amount of downward movement of the eyeball, and the forward tilt angle measuring means 4 can be omitted.
Further, it is not always necessary to provide the angle display portion 32B in the image 32A.

本発明は、累進屈折力レンズの眼球下転量を測定する装置として、眼鏡の販売店等で広く利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used in eyeglass stores and the like as an apparatus for measuring the amount of downward eyeball movement of a progressive power lens.

1,2…眼球下転量測定装置、3,3A…視線位置検出手段、4…前傾角測定手段、5…演算手段、10…眼鏡レンズ、11…遠用部領域、12…近用部領域13…累進帯、20…フレーム、20P…下端、21…フレーム枠、21D…下辺部、21U…上辺部、31…光照射手段、32,320…正面撮像手段、33…移動機構、33A…ドーム、E…眼球、EC…瞳孔部分、EP…遠用アイポイント、Indih…眼球下転量、LF…正面視線、LN…下方視線、NP…近用アイポイント、SE…角膜、α…眼球下転角度、θ…前傾角     DESCRIPTION OF SYMBOLS 1, 2 ... Eyeball downward amount measuring apparatus 3, 3A ... Eye-gaze position detection means, 4 ... Forward inclination measuring means, 5 ... Calculation means, 10 ... Eyeglass lens, 11 ... Distance part area | region, 12 ... Near part area | region DESCRIPTION OF SYMBOLS 13 ... Progressive zone, 20 ... Frame, 20P ... Lower end, 21 ... Frame frame, 21D ... Lower side part, 21U ... Upper side part, 31 ... Light irradiation means, 32, 320 ... Front imaging means, 33 ... Moving mechanism, 33A ... Dome E: Eyeball, EC: Pupil portion, EP: Distance eye point, Indih: Eyeball downward amount, LF ... Frontal line of sight, LN ... Downward line of sight, NP ... Near eyepoint, SE ... Cornea, α ... Eyeball downside Angle, θ ... forward tilt angle

Claims (6)

装着者が実際に装着するとともに上辺部と下辺部とを有するフレームに装着される眼鏡レンズの遠用アイポイントから近用アイポイントまでの長さを測定する装置であって、
装用者の前記遠用アイポイントに対応する視線の位置と前記近用アイポイントに対応する視線の位置とを検出する視線位置検出手段と、
この視線位置検出手段で検出された前記遠用アイポイントの位置と前記近用アイポイントの位置との間の距離を演算する演算手段と
を備えたことを特徴とする眼球下転量測定装置。
An apparatus for measuring the length from a distance eye point to a near eye point of a spectacle lens mounted on a frame having an upper side and a lower side while being actually worn by the wearer,
A line-of-sight position detecting means for detecting a position of the line of sight corresponding to the far eyepoint of the wearer and a position of the line of sight corresponding to the near eyepoint;
An eyeball downward movement amount measuring device comprising: a calculating means for calculating a distance between the position of the distance eye point detected by the line-of-sight position detecting means and the position of the near eye point.
請求項1に記載された眼球下転量測定装置において、
前記視線位置検出手段は、
装用者の眼球に光を照射する光照射手段と、
この光照射手段で照射した光が装用者の眼球で反射された反射光を含む正面画像を撮像する正面撮像手段と、
これらの光照射手段と正面撮像手段とを眼球の周囲に沿って移動させる移動機構と
を備えたことを特徴とする眼球下転量測定装置。
In the downward eyeball movement measuring device according to claim 1,
The line-of-sight position detecting means includes
A light irradiation means for irradiating the wearer's eyeball with light;
A front imaging unit that captures a front image including reflected light in which the light irradiated by the light irradiation unit is reflected by the eyeball of the wearer;
An eyeball downward movement measuring device comprising a moving mechanism for moving the light irradiation means and the front imaging means along the periphery of the eyeball.
請求項2に記載された眼球下転量測定装置において、
前記演算手段は、フレームの前傾角θと、眼球中心と前記近用アイポイントとを結ぶ下方視線と眼鏡レンズの眼球側平面とのなす角度βと、前記眼球中心と前記遠用アイポイントとを結ぶ正面視線と前記眼鏡レンズの眼球側平面とのなす角度γと、前記眼鏡レンズの眼球側平面と前記フレームの眼鏡側面の下端の位置から前記下方視線におろした法線とのなす角度δと、前記下端の位置と前記正面視線との間の距離Kと、前記下端の位置から前記下方視線におろした法線の距離Mとから、前記フレームの眼鏡側面の下端から前記近用アイポイントまでの近用アイポイントの長さNを、
N=M/COSδ (1)
δ=180°−(β+90°) (2)
β=180°−(α+γ) (3)
γ=180°−(90°+θ) (4)
の式から演算することを特徴とする眼球下転量測定装置。
In the downward eyeball movement measuring device according to claim 2,
The calculation means includes a forward tilt angle θ of the frame, an angle β formed by a downward line of sight connecting the eyeball center and the near eyepoint, and an eyeball side plane of the spectacle lens, and the eyeball center and the distance eyepoint. An angle γ between the frontal line of sight and the eyeball side plane of the spectacle lens, and an angle δ between the eyeball side plane of the spectacle lens and a normal line taken from the position of the lower end of the side surface of the spectacle lens to the lower line of sight From the distance K between the lower end position and the front line of sight, and the normal distance M from the lower end position to the lower line of sight, from the lower end of the glasses side surface of the frame to the near eye point The length N of the near eye point
N = M / COSδ (1)
δ = 180 ° − (β + 90 °) (2)
β = 180 ° − (α + γ) (3)
γ = 180 ° − (90 ° + θ) (4)
The apparatus for measuring the amount of downward movement of the eyeball, which is calculated from the formula:
請求項3に記載された眼球下転量測定装置において、
前記正面撮像手段は、装用者の眼球の網膜で反射された反射光を受光することを特徴とする眼球下転量測定装置。
In the eyeball downward movement measuring device according to claim 3,
The frontal imaging means receives the reflected light reflected by the retina of the wearer's eyeball.
請求項4に記載された眼球下転量測定装置において、
前記正面撮像手段は、装用者の眼球の角膜で反射された反射光を受光することを特徴とする眼球下転量測定装置。
In the downward eyeball movement measuring device according to claim 4,
The frontal imaging means receives the reflected light reflected by the cornea of the eyeball of the wearer, and the downward eyeball movement measuring device.
請求項2から請求項5のいずれかに記載された眼球下転量測定装置において、
前記眼鏡レンズが設けられたフレームの前傾角を測定する前傾角測定手段を備えたことを特徴とする眼球下転量測定装置。
In the downward eyeball movement measuring device according to any one of claims 2 to 5,
An apparatus for measuring the amount of downward movement of the eyeball, comprising forward tilt angle measuring means for measuring the forward tilt angle of the frame provided with the spectacle lens.
JP2009177444A 2009-07-30 2009-07-30 Device for measuring amount of downward rotation of eyeball Pending JP2011033677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177444A JP2011033677A (en) 2009-07-30 2009-07-30 Device for measuring amount of downward rotation of eyeball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177444A JP2011033677A (en) 2009-07-30 2009-07-30 Device for measuring amount of downward rotation of eyeball

Publications (1)

Publication Number Publication Date
JP2011033677A true JP2011033677A (en) 2011-02-17

Family

ID=43762844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177444A Pending JP2011033677A (en) 2009-07-30 2009-07-30 Device for measuring amount of downward rotation of eyeball

Country Status (1)

Country Link
JP (1) JP2011033677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279153B1 (en) * 2012-10-19 2013-09-04 正一 中村 Pupil position measuring method and bilateral lens manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279153B1 (en) * 2012-10-19 2013-09-04 正一 中村 Pupil position measuring method and bilateral lens manufacturing method

Similar Documents

Publication Publication Date Title
US9323075B2 (en) System for the measurement of the interpupillary distance using a device equipped with a screen and a camera
US10890786B2 (en) Method and system for determining an adaptive parameter for a spectacle lens accommodated in a spectacle frame
WO2004086962A1 (en) Refraction measuring instrument
KR20100061651A (en) Improvements relating to the fitting of spectacles
CN111033362B (en) Method for correcting a centering parameter and/or an axial position, and corresponding computer program and method
JP2011253042A (en) Selection method for spectacle lens and selection system for spectacle lens
KR101812249B1 (en) Automatic measurement machine of strabismus
JP6332392B2 (en) Spectacle lens design method, spectacle lens manufacturing method, spectacle lens selection device, and spectacle lens selection method
JP2012239566A (en) Measuring apparatus for glasses, and three-dimensional measuring apparatus
KR20140138660A (en) Method for determining a behavioural, postural or geometric-morphological characteristic of a person wearing spectacles
CN110998417B (en) Method, apparatus and computer-readable storage medium for determining a near point of view
US20140240470A1 (en) Method, system and device for improving optical measurement of ophthalmic spectacles
JP4536329B2 (en) Eye point position determination method and eye point measurement system
JP5351691B2 (en) Eyeball downward amount measuring device and eyeball downward amount measuring method
JP7165994B2 (en) Methods and devices for collecting eye measurements
EP3669753B1 (en) Gaze tracking via tracing of light paths
EP2772795A1 (en) Method, system and device for improving optical measurement of ophthalmic spectacles
JP2011033677A (en) Device for measuring amount of downward rotation of eyeball
CN111417893B (en) Method and assembly for verifying the mounting of an ophthalmic lens in a frame
KR102085285B1 (en) System for measuring iris position and facerecognition based on deep-learning image analysis
CN111356397B (en) Method and apparatus for determining a reference head pose of a subject
US20220395176A1 (en) System and method for digital optician measurements
JP2011048327A (en) Method for selection of spectacle lens and system for selection of spectacle lens
KR20140118530A (en) Mirror tester having eyeball position measurement camera for fitting multifocal lens
DARABANT et al. OPTIMEASURE: A MOBILE IMPROVEMENT ALTERNATIVE TO CLASSIC OPTICAL MEASUREMENTS.