JP2011033436A - Tilt sensor - Google Patents

Tilt sensor Download PDF

Info

Publication number
JP2011033436A
JP2011033436A JP2009178756A JP2009178756A JP2011033436A JP 2011033436 A JP2011033436 A JP 2011033436A JP 2009178756 A JP2009178756 A JP 2009178756A JP 2009178756 A JP2009178756 A JP 2009178756A JP 2011033436 A JP2011033436 A JP 2011033436A
Authority
JP
Japan
Prior art keywords
light
light receiving
lens
measurement
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009178756A
Other languages
Japanese (ja)
Other versions
JP5295900B2 (en
Inventor
Shinichi Katsura
伸一 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSURA OPTO SYSTEMS KK
Original Assignee
KATSURA OPTO SYSTEMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSURA OPTO SYSTEMS KK filed Critical KATSURA OPTO SYSTEMS KK
Priority to JP2009178756A priority Critical patent/JP5295900B2/en
Publication of JP2011033436A publication Critical patent/JP2011033436A/en
Application granted granted Critical
Publication of JP5295900B2 publication Critical patent/JP5295900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tilt sensor which can measure each tilt angle of a regular reflection surface and an irregular reflection surface simultaneously by one sensor. <P>SOLUTION: The tilt sensor includes an optical system constituted of a light projection part for emitting measuring light toward a detection domain, and a light reception part for receiving the measuring light reflected by the detection domain. The light projection part has a constitution including a light emitting element and a collimator lens, and the light reception part includes a regularly reflected light measuring part and an irregularly reflected light measuring part. The regularly reflected light measuring part includes a light receiving lens and a light receiving element, and the irregularly reflected light measuring part has a constitution including a light receiving lens, a light receiving element, an irregularly reflected light receiving mirror, and a regularly reflected light-irregularly reflected light composite half mirror. One light receiving lens is used in common for the light receiving lens in the regularly reflected light measuring part and the light receiving lens in the irregularly reflected light measuring part, and one light receiving element is used in common for the light receiving element in the regularly reflected light measuring part and the light receiving element in the irregularly reflected light measuring part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はチルトセンサに関し、特に正反射面及び回折光等の乱反射面のそれぞれの傾き角度を一つのセンサで同時に測定することができるチルトセンサに関する。   The present invention relates to a tilt sensor, and more particularly to a tilt sensor capable of simultaneously measuring the tilt angles of a regular reflection surface and a diffuse reflection surface such as diffracted light with one sensor.

従来より、検査物の傾き量を測定するチルトセンサ(傾きセンサ)が知られている。しかしながら、これらの従来のチルトセンサは、正反射面の傾き角度、あるいは乱反射面の傾き角度のいずれか一方のみしか測定することができない。このため、乱反射面の傾き角度の測定の基準出しが容易にできないという問題があった。   Conventionally, tilt sensors (tilt sensors) that measure the tilt amount of an inspection object are known. However, these conventional tilt sensors can measure only one of the inclination angle of the regular reflection surface or the inclination angle of the irregular reflection surface. For this reason, there has been a problem that it is not easy to obtain a reference for measuring the inclination angle of the irregular reflection surface.

そこで、例えば特許文献1に示されるように、0次光である正反射面の反射光と、n次光である回折光等の乱反射面の反射光を1つのセンサで測定するために、回折素子からの回折光を受光し、光電変換信号を出力する光検出器を備え、0次光を更に受光し、0次光の光電変換信号との差信号を生成する差信号生成手段をさらに備えることにより、正反射面の反射光と、乱反射面の反射光を1つのセンサで測定することを可能とした傾きセンサが提案されている。しかしながら、このような傾きセンサであっても、正反射面及び乱反射面の傾き角度の瞬時の基準出しを行うことが難しく、さらに、光検出器とは別に、差信号生成手段をさらに備えるため、装置が大型化するという問題があった。   Therefore, for example, as shown in Patent Document 1, in order to measure the reflected light of a regular reflection surface that is zero-order light and the reflected light of a diffuse reflection surface such as diffracted light that is n-order light, A photodetector that receives diffracted light from the element and outputs a photoelectric conversion signal is further provided, and further includes difference signal generation means for further receiving zero-order light and generating a difference signal from the photoelectric conversion signal of zero-order light. Thus, there has been proposed an inclination sensor that can measure the reflected light of the regular reflection surface and the reflected light of the irregular reflection surface with one sensor. However, even with such an inclination sensor, it is difficult to instantaneously determine the inclination angle of the regular reflection surface and the irregular reflection surface, and further, a difference signal generation means is further provided separately from the photodetector, There was a problem that the apparatus was enlarged.

特開2004−279191号公報JP 2004-279191 A

本発明は、上述したような実情に鑑みてなされたもので、その目的とするところは、一つのセンサで同時に正反射面及び乱反射面の傾き角度の測定を行うことができるチルトセンサを提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a tilt sensor capable of simultaneously measuring the inclination angles of the regular reflection surface and the irregular reflection surface with one sensor. There is.

本発明の上記目的は、検出領域に向けて測定用光を出射する投光部、および、検出領域で反射された測定用光を受光する受光部からなる光学系を備え、前記投光部は、発光素子と、コリメータレンズとを具備して構成され、前記受光部は、正反射光測定部と乱反射光測定部とを備え、前記正反射光測定部は、受光レンズと受光素子とを具備し、前記乱反射光測定部は、受光レンズと、受光素子と、乱反射光受光ミラーと、ハーフミラーとを具備して構成され、前記正反射光測定部の受光レンズ及び前記乱反射光測定部の受光レンズを1枚の受光レンズで兼用し、また前記正反射光測定部の受光素子及び前記乱反射光測定部の受光素子を1つの受光素子で兼用することを特徴とするチルトセンサを提供することによって達成される。   The above object of the present invention includes an optical system including a light projecting unit that emits measurement light toward the detection region and a light receiving unit that receives the measurement light reflected from the detection region, A light emitting element and a collimator lens, wherein the light receiving unit includes a regular reflection light measurement unit and a diffuse reflection light measurement unit, and the regular reflection light measurement unit includes a light reception lens and a light receiving element. The irregularly reflected light measuring unit includes a light receiving lens, a light receiving element, a diffusely reflected light receiving mirror, and a half mirror, and the light receiving lens of the regular reflected light measuring unit and the light receiving of the irregularly reflected light measuring unit. By providing a tilt sensor in which a lens is used as one light receiving lens, and the light receiving element of the specular reflection light measuring unit and the light receiving element of the irregular reflection light measuring unit are used as one light receiving element. Achieved.

また、本発明の上記目的は、前記受光部に遮光板を備えることを特徴とするチルトセンサを提供することによって、効果的に達成される。   In addition, the above object of the present invention can be effectively achieved by providing a tilt sensor characterized in that the light receiving portion includes a light shielding plate.

本発明に係るチルトセンサによれば、受光部の正反射光測定部の受光レンズ及び乱反射光測定部の受光レンズを1枚の受光レンズで兼用し、また正反射光測定部の受光素子及び乱反射光測定部の受光素子を1つの受光素子で兼用させたので、一つのセンサで同時に正反射面及び乱反射面の傾き角度の測定を行うことができる。   According to the tilt sensor of the present invention, the light receiving lens of the specular reflection light measurement unit of the light receiving unit and the light reception lens of the irregular reflection light measurement unit are combined with one light receiving lens, and the light receiving element and the irregular reflection of the specular reflection light measurement unit. Since the light receiving element of the light measuring unit is also used as one light receiving element, the tilt angle of the regular reflection surface and the irregular reflection surface can be simultaneously measured with one sensor.

本発明の一実施例に係るチルトセンサの光学系の構成を示す図である。It is a figure which shows the structure of the optical system of the tilt sensor which concerns on one Example of this invention. 図1に示すチルトセンサの正反射光の傾き量を測定する原理を説明するための構成図である。It is a block diagram for demonstrating the principle which measures the inclination amount of the regular reflection light of the tilt sensor shown in FIG. 図1に示すチルトセンサの乱反射光の傾き量を測定する原理を説明するための構成図である。It is a block diagram for demonstrating the principle which measures the inclination amount of the irregularly reflected light of the tilt sensor shown in FIG.

以下、本発明に係るチルトセンサについて、図面を参照しながら詳細に説明する。なお、本発明に係るチルトセンサは、以下の実施形態に限定されるものではなく、特許請求の範囲を逸脱しない範囲内において、その構成を適宜変更できることはいうまでもない。   Hereinafter, a tilt sensor according to the present invention will be described in detail with reference to the drawings. It should be noted that the tilt sensor according to the present invention is not limited to the following embodiments, and it goes without saying that the configuration can be changed as appropriate without departing from the scope of the claims.

図1は、本発明の一実施例に係るチルトセンサ1(以下、「本チルトセンサ1」と言う。)の光学系の構成を示す図であって、検出物体の正反射面の傾き量、及び回折光等の乱反射面の傾き量を一つのセンサで同時に測定するものである。すなわち、本チルトセンサ1は、検出領域に向けて測定用光を出射する投光部2、および、検出領域で反射された測定用光を受光する受光部3からなる光学系を備えている。   FIG. 1 is a diagram showing a configuration of an optical system of a tilt sensor 1 (hereinafter referred to as “the present tilt sensor 1”) according to an embodiment of the present invention, in which a tilt amount of a specular reflection surface of a detection object, In addition, the tilt amount of the irregular reflection surface such as diffracted light is simultaneously measured by one sensor. That is, the tilt sensor 1 includes an optical system including a light projecting unit 2 that emits measurement light toward the detection region, and a light receiving unit 3 that receives the measurement light reflected from the detection region.

投光部2は、発光ダイオード(LED)等の投光素子21と、コリメータレンズ等の投光レンズ22とを具備し、投光素子21及び投光レンズ22の互いの光軸23を一致させて構成されている。そして、投光素子21から出射された光は、投光レンズ22でコリメートされ、平行光である測定用光24として検出物体に照射されるようになっている。   The light projecting unit 2 includes a light projecting element 21 such as a light emitting diode (LED) and a light projecting lens 22 such as a collimator lens, and aligns the optical axes 23 of the light projecting element 21 and the light projecting lens 22 with each other. Configured. The light emitted from the light projecting element 21 is collimated by the light projecting lens 22 and irradiated to the detection object as measurement light 24 that is parallel light.

なお、投光素子21として、LEDの他、レーザ光を用いることもできる。このようなレーザ光の投光素子21としては、ヘリウム−ネオン(He−Ne)レーザ、半導体レーザ素子(LD)等のレーザ発振器や、レーザ発振器から出力されたレーザ光を導く光ファイバ等の光道管等を用いることができる。   In addition, as the light projecting element 21, laser light can be used in addition to the LED. Examples of such a laser beam projecting element 21 include a laser oscillator such as a helium-neon (He-Ne) laser and a semiconductor laser element (LD), or an optical fiber that guides laser light output from the laser oscillator. A pipe or the like can be used.

受光部3は、測定用光24を受光し、検出物体の正反射面の傾き角度である傾き量を検出する正反射光測定部31と、検出物体の回折光等の乱反射面の傾き角度である傾き量を検出する乱反射光測定部32とを具備して構成されている。   The light receiving unit 3 receives the measurement light 24 and detects the amount of tilt that is the tilt angle of the specular reflection surface of the detection object, and the tilt angle of the irregular reflection surface such as diffracted light of the detection object. And an irregular reflection light measuring unit 32 for detecting a certain amount of tilt.

正反射光測定部31は、上述したように、検出物体の正反射面の傾き量を検出する光学系で、受光レンズ33と受光素子34とを具備して構成されている。受光素子34は、位置検出素子(PSD)や電荷結合素子(CCD)等の位置を測定することができる種々のものを用いることができる。   As described above, the regular reflection light measurement unit 31 is an optical system that detects the amount of inclination of the regular reflection surface of the detection object, and includes the light receiving lens 33 and the light receiving element 34. As the light receiving element 34, various elements that can measure the position of a position detection element (PSD), a charge coupled device (CCD), or the like can be used.

乱反射光測定部32は、上述したように検出物体の回折光等の乱反射面の傾き量を検出する光学系で、乱反射光受光ミラー35と、受光レンズ36と、受光素子37と、ハーフミラー38とを具備することにより構成されている。   The irregular reflection light measuring unit 32 is an optical system that detects the amount of inclination of the irregular reflection surface such as the diffracted light of the detection object as described above, and the irregular reflection light receiving mirror 35, the light receiving lens 36, the light receiving element 37, and the half mirror 38. It comprises by comprising.

なお、正反射光測定部31の受光レンズ33及び乱反射光測定部32の受光レンズ36は1枚の受光レンズで兼用し、また、正反射光測定部31の受光素子34及び乱反射光測定部31の受光素子37を1つの受光素子で兼用している。このように正反射光測定部31と乱反射光測定部32の受光レンズ33(36)及び受光素子34(37)をそれぞれ同一のもので兼用することにより、すなわち、正反射光と乱反射光とを一つの受光素子34(37)で受光することにより、正反射面の傾き角度と、乱反射面の傾き角度とを一つのセンサで測定することができるようになる。   The light receiving lens 33 of the regular reflection light measurement unit 31 and the light reception lens 36 of the irregular reflection light measurement unit 32 are also used as one light reception lens, and the light receiving element 34 and the irregular reflection light measurement unit 31 of the regular reflection light measurement unit 31. The light receiving element 37 is also used as one light receiving element. In this way, the light receiving lens 33 (36) and the light receiving element 34 (37) of the specular reflection light measurement unit 31 and the irregular reflection light measurement unit 32 are used in common, that is, the specular reflection light and the irregular reflection light are used. By receiving light with one light receiving element 34 (37), the inclination angle of the regular reflection surface and the inclination angle of the irregular reflection surface can be measured with one sensor.

投光部2と受光部3とは、標準線SLを挟んでその両側に対称に配置されており、投光部2の光軸23と受光部3の光軸39とはいずれも標準線SLに対して等しい角度θをなしている。また、投光部2の光軸23と受光部3の光軸39とは標準線SLの1点で交差しており、この光軸23,39が交差している標準線SL上の点を標準点SPと呼び、標準点SPを通り標準線SLと垂直な平面を被検面(正反射面)SF1とする。   The light projecting unit 2 and the light receiving unit 3 are arranged symmetrically on both sides of the standard line SL, and the optical axis 23 of the light projecting unit 2 and the optical axis 39 of the light receiving unit 3 are both standard lines SL. Are equal to θ. Further, the optical axis 23 of the light projecting unit 2 and the optical axis 39 of the light receiving unit 3 intersect at one point of the standard line SL, and a point on the standard line SL at which the optical axes 23 and 39 intersect is determined. It is called a standard point SP, and a plane that passes through the standard point SP and is perpendicular to the standard line SL is defined as a test surface (regular reflection surface) SF1.

また、正反射面SF1において、投光素子21及び投光レンズ22の光軸23が標準点SPに集光するように、投光素子21及び投光レンズ22の間の距離を調整して投光部2を構成する。また、標準点SPで反射したコリメート光である測定用光24が、正反射光測定部31(受光部3)の受光レンズ33で集光されて受光素子34上に集光するように、正反射光測定部31の受光レンズ33と受光素子34との間の距離を調整して正反射光測定部31の光学系を構成する。   Further, on the regular reflection surface SF1, the distance between the light projecting element 21 and the light projecting lens 22 is adjusted so that the optical axis 23 of the light projecting element 21 and the light projecting lens 22 is focused on the standard point SP. The optical unit 2 is configured. Further, the measurement light 24 that is the collimated light reflected at the standard point SP is condensed by the light receiving lens 33 of the regular reflection light measuring unit 31 (light receiving unit 3) and condensed on the light receiving element 34. The optical system of the regular reflection light measurement unit 31 is configured by adjusting the distance between the light receiving lens 33 of the reflected light measurement unit 31 and the light receiving element 34.

これにより、図1に実線で示すように、検出物体が正反射面SF1に位置している場合(すなわち傾き量β=0である場合)には、投光素子21から出射された測定用光24が検出物体の表面に照射されると、測定用光24の光軸23は標準点SPで反射し、すなわち測定用光24は検出物体の表面で鏡面反射し、この反射した測定用光24は、受光レンズ33を通って受光素子34上で結像し、光軸39上の点で受光スポットP1を形成する。以下、この傾き量β=0の場合に生じる受光スポットP1の位置を、受光部3の原点位置とも言う。   Thereby, as shown by a solid line in FIG. 1, when the detection object is located on the regular reflection surface SF1 (that is, when the tilt amount β = 0), the measurement light emitted from the light projecting element 21 is obtained. When 24 is irradiated on the surface of the detection object, the optical axis 23 of the measurement light 24 is reflected by the standard point SP, that is, the measurement light 24 is specularly reflected by the surface of the detection object, and the reflected measurement light 24 is reflected. Passes through the light receiving lens 33 and forms an image on the light receiving element 34 to form a light receiving spot P 1 at a point on the optical axis 39. Hereinafter, the position of the light receiving spot P <b> 1 generated when the tilt amount β = 0 is also referred to as the origin position of the light receiving unit 3.

また、標準線SLと垂直な平面である(すなわち傾きβ´=0である)乱反射の被検面(乱反射面)SF2の乱反射角をαとした場合、標準線SLからθ−αの位置に乱反射光受光ミラー35を設置し、また乱反射光受光ミラー35で反射された測定用光40が、ハーフミラー38を介して受光レンズ36を通って受光素子37上の受光スポットP1の位置に結像するように、乱反射光受光ミラー35及びハーフミラー38を調整し、乱反射光測定部32の光学系を構成する。   Further, when the diffuse reflection angle of the irregularly reflected test surface (diffuse reflective surface) SF2 that is a plane perpendicular to the standard line SL (that is, the inclination β ′ = 0) is α, it is at a position θ−α from the standard line SL. The irregularly reflected light receiving mirror 35 is installed, and the measurement light 40 reflected by the irregularly reflected light receiving mirror 35 passes through the light receiving lens 36 via the half mirror 38 and forms an image at the position of the light receiving spot P1 on the light receiving element 37. As described above, the irregular reflection light receiving mirror 35 and the half mirror 38 are adjusted, and the optical system of the irregular reflection light measurement unit 32 is configured.

さらに、本チルトセンサ1の受光部3は遮光板41を設けることが好ましい。このように遮光板41を設けることにより、正反射光及び乱反射光の測定を切り換え、正反射光あるいは乱反射光の片方だけを通過させることができるので、正反射光及び乱反射光をそれぞれ単独で測定することができるようになる。すなわち、図1に示すように、遮光板41を正反射光測定部31の光学系に設ける(標準点SPとハーフミラー38との間に設ける)と、正反射光測定部31の測定光を遮断することができるので、乱反射光を単独で測定することができる。一方、図示しないが、遮光板41を乱反射光測定部32の光学系に設ける(標準点SPと乱反射光受光ミラー35との間に設ける)と、乱反射光測定部32の測定光を遮断することができるので、正反射光を単独で測定することができる。   Further, the light receiving unit 3 of the tilt sensor 1 is preferably provided with a light shielding plate 41. By providing the light shielding plate 41 in this way, the measurement of the specular reflection light and the irregular reflection light can be switched and only one of the regular reflection light or the irregular reflection light can be passed. Will be able to. That is, as shown in FIG. 1, when the light shielding plate 41 is provided in the optical system of the regular reflection light measurement unit 31 (provided between the standard point SP and the half mirror 38), the measurement light from the regular reflection light measurement unit 31 is supplied. Since it can interrupt | block, a diffusely reflected light can be measured independently. On the other hand, although not shown, if the light shielding plate 41 is provided in the optical system of the irregular reflection light measurement unit 32 (provided between the standard point SP and the irregular reflection light receiving mirror 35), the measurement light of the irregular reflection light measurement unit 32 is blocked. Therefore, specular reflection light can be measured independently.

次に、図1に検出物体SF1´で示すように、検出物体(正反射面)SF1が標準線SLに対してβだけ傾いている場合に、本チルトセンサ1により正反射面SF1の傾き量βを測定する原理を説明する。なお、分かり易さのため、本チルトセンサ1のうち、傾き量βを測定して検出する正反射光測定部31の光学系のみを取り出して図2に示す(なお、遮光板41は省略する。)。   Next, as shown by a detection object SF1 ′ in FIG. 1, when the detection object (regular reflection surface) SF1 is inclined by β with respect to the standard line SL, the tilt amount of the regular reflection surface SF1 is detected by the tilt sensor 1. The principle of measuring β will be described. For the sake of simplicity, only the optical system of the regular reflection light measuring unit 31 that measures and detects the tilt amount β is extracted from the tilt sensor 1 and shown in FIG. 2 (note that the light shielding plate 41 is omitted). .)

図2に示すように、投光素子21から出射された測定用光24は、投光レンズ22を通過してコリメート光となり、検出物体SF1´の表面に照射される。このとき、検出面である正反射面SF1が標準線SLに対してβだけ傾いて検出面SF1´となっている場合(β≠0の場合)には、図1及び図2に破線で示すように、検出面SF1´の表面で反射した測定用光42は、光軸39に対してθ+2βだけ傾くので、検出面SF1´で反射した測定用光42が受光レンズ33を通して受光素子34上に集光されて生じる受光スポットP2(以下、「正反射光測定用受光スポットP2」と言う。)の形成位置が、受光スポットの原点位置P1から移動する。この正反射光測定用受光スポットP2の原点位置からの移動量(原点位置から受光強度の重心位置である点P2までの距離)を移動量Dとする。この移動量Dを検出することにより、検出面SF1´の傾き量βを計算することができる。すなわち、焦点距離(標準点SPと受光レンズ33との間の距離)をf、正反射光測定用受光スポットP2の受光スポットの原点P1からの移動量をDとすると、標準線SLを基準とする検出面SF1´の傾き量βは、下記の(数1)で表される。
(数1)
・2β=D
β=D/2f
As shown in FIG. 2, the measurement light 24 emitted from the light projecting element 21 passes through the light projecting lens 22 and becomes collimated light, and is irradiated onto the surface of the detection object SF1 ′. At this time, when the regular reflection surface SF1 which is the detection surface is inclined by β with respect to the standard line SL to be the detection surface SF1 ′ (when β ≠ 0), it is indicated by a broken line in FIGS. As described above, the measurement light 42 reflected by the surface of the detection surface SF1 ′ is inclined by θ + 2β with respect to the optical axis 39, so that the measurement light 42 reflected by the detection surface SF1 ′ passes on the light receiving element 34 through the light receiving lens 33. The formation position of the light reception spot P2 (hereinafter referred to as “light reception spot P2 for specular reflection light measurement”) generated by focusing is moved from the origin position P1 of the light reception spot. The amount of movement of the regular reflected light measurement light receiving spot P2 from the origin position (the distance from the origin position to the point P2, which is the center of gravity position of the received light intensity) is defined as a movement amount D. By detecting the movement amount D, the inclination amount β of the detection surface SF1 ′ can be calculated. That is, when the focal length (distance between the standard point SP and the light receiving lens 33) is f 1 and the amount of movement of the light receiving spot P2 from the light receiving spot P2 from the origin P1 is D, the standard line SL is used as a reference. An inclination amount β of the detection surface SF1 ′ is expressed by the following (Equation 1).
(Equation 1)
f 1 · 2β = D
β = D / 2f 1

次に、図1に検出物体SF2´で示すように、乱反射角がαである場合の乱反射光を検出する検出物体(乱反射面)SF2が標準線SLに対してβ´だけ傾いている場合に、本チルトセンサにより、検出物体の乱反射面SF2´の傾き量β´を測定する原理を説明する。なお、分かり易さのため、本チルトセンサのうち、傾き量β´を測定して検出する乱反射光測定部の光学系のみを取り出して図3に示す(遮光板41は省略する)。   Next, as shown by the detection object SF2 ′ in FIG. 1, when the detection object (diffuse reflection surface) SF2 for detecting the irregular reflection light when the irregular reflection angle is α is inclined by β ′ with respect to the standard line SL. The principle of measuring the tilt amount β ′ of the irregular reflection surface SF2 ′ of the detected object by the tilt sensor will be described. For ease of understanding, only the optical system of the irregularly reflected light measuring unit that measures and detects the tilt amount β ′ is taken out from the tilt sensor and shown in FIG. 3 (the light shielding plate 41 is omitted).

図3に示すように、投光素子21から出射された測定用光24は、投光レンズ22を通過してコリメート光となり、検出物体SF2´の表面に照射される。このとき、検出面SF2が標準線SLに対してβ´だけ傾いて検出面SF2´となっている場合(β´≠0の場合)には、検出面SF2´の表面で反射した測定用光43も光軸39に対して傾くので、図1及び図3に二点鎖線で示すように、検出面SF2´で反射した測定用光43は、乱反射光受光ミラー35で反射された後、ハーフミラー38で反射されて受光レンズ36を通過して受光素子37上に集光されて受光スポットP3(以下、「乱反射光測定用受光スポット」3)と言う。)を形成する。このとき、乱反射光測定用受光スポットP3の形成位置が受光スポットの原点位置P1から移動する。この乱反射光測定用受光スポットP3の原点位置P1からの移動量(原点位置からの受光強度の重心位置である点P3までの距離)をD´とする。この移動量D´を検出することにより、検出面SF2´の傾き量β´を計算することができる。すなわち、焦点距離(標準点SPと受光レンズとの間の距離)をf、乱反射光測定用受光スポットP3の原点位置P1からの移動量をD´とすると、標準線SLを基準とする検出面SF2´の傾き量β´は、下記の(数2)で表される。
(数2)
・2β´=D´
β´=D´/2f
As shown in FIG. 3, the measurement light 24 emitted from the light projecting element 21 passes through the light projecting lens 22 and becomes collimated light, and is irradiated onto the surface of the detection object SF2 ′. At this time, when the detection surface SF2 is inclined by β ′ with respect to the standard line SL to become the detection surface SF2 ′ (when β ′ ≠ 0), the measurement light reflected on the surface of the detection surface SF2 ′ 43 also tilts with respect to the optical axis 39, so that the measurement light 43 reflected by the detection surface SF2 ′ is reflected by the irregularly reflected light receiving mirror 35 and then halfway as shown by a two-dot chain line in FIGS. The light is reflected by the mirror 38, passes through the light receiving lens 36, is collected on the light receiving element 37, and is referred to as a light receiving spot P <b> 3 (hereinafter, “light receiving spot for irregularly reflected light measurement” 3). ). At this time, the formation position of the light reception spot P3 for irregular reflection light measurement moves from the origin position P1 of the light reception spot. The amount of movement of the irregularly reflected light measurement light receiving spot P3 from the origin position P1 (the distance from the origin position to the point P3 that is the center of gravity of the received light intensity) is D ′. By detecting the movement amount D ′, the inclination amount β ′ of the detection surface SF2 ′ can be calculated. That is, when the focal length (distance between the standard point SP and the light receiving lens) is f 1 and the amount of movement of the light receiving spot P3 for irregularly reflected light measurement from the origin position P1 is D ′, detection based on the standard line SL is performed. The inclination amount β ′ of the surface SF2 ′ is expressed by the following (Equation 2).
(Equation 2)
f 1 · 2β ′ = D ′
β ′ = D ′ / 2f 1

従って、乱反射面SF2の傾き量β´も、正反射面SF1´の場合と同様に傾き角度を求めることができる。   Accordingly, the inclination angle β ′ of the irregular reflection surface SF2 can also be obtained as in the case of the regular reflection surface SF1 ′.

このように本チルトセンサ1によれば、正反射光測定部31及び乱反射光測定部32の受光レンズ33(36)及び受光素子34(37)を兼用し、一つの受光素子34(37)で測定することしたので、一つのセンサで同時に正反射面SF1及び乱反射面SF2の傾き量β,β´を測定することができる。
As described above, according to the tilt sensor 1, the light receiving lens 33 (36) and the light receiving element 34 (37) of the specular reflection light measuring unit 31 and the irregular reflection light measuring unit 32 are combined, and one light receiving element 34 (37). Since the measurement is performed, the inclination amounts β and β ′ of the regular reflection surface SF1 and the irregular reflection surface SF2 can be simultaneously measured with one sensor.

1 チルトセンサ
2 投光部
21 投光素子
22 投光レンズ
3 受光部
31 正反射光測定部
32 乱反射光測定部
33,36 受光レンズ
34,37 受光素子
35 乱反射光受光ミラー
38 ハーフミラー
41 遮光板
SL 標準線
SP 標準点
DESCRIPTION OF SYMBOLS 1 Tilt sensor 2 Light projection part 21 Light projection element 22 Light projection lens 3 Light reception part 31 Regular reflection light measurement part 32 Diffuse reflection measurement part 33, 36 Light reception lens 34, 37 Light reception element 35 Diffuse reflection light reception mirror 38 Half mirror 41 Light-shielding plate SL Standard line SP Standard point

Claims (2)

検出領域に向けて測定用光を出射する投光部、および、検出領域で反射された測定用光を受光する受光部からなる光学系を備え、
前記投光部は、発光素子とコリメータレンズとを具備して構成され、
前記受光部は、正反射光測定部と乱反射光測定部とを備え、
前記正反射光測定部は、受光レンズと受光素子とを具備し、
前記乱反射光測定部は、受光レンズと、受光素子と、乱反射光受光ミラーと、ハーフミラーとを具備して構成され、
前記正反射光測定部の受光レンズ及び前記乱反射光測定部の受光レンズを1枚の受光レンズで兼用し、また前記正反射光測定部の受光素子及び前記乱反射光測定部の受光素子を1つの受光素子で兼用することを特徴とするチルトセンサ。
An optical system including a light projecting unit that emits measurement light toward the detection region, and a light receiving unit that receives the measurement light reflected by the detection region,
The light projecting unit includes a light emitting element and a collimator lens,
The light receiving unit includes a regular reflection light measurement unit and a diffuse reflection light measurement unit,
The specular reflection light measurement unit includes a light receiving lens and a light receiving element,
The irregularly reflected light measuring unit includes a light receiving lens, a light receiving element, a diffusely reflected light receiving mirror, and a half mirror.
The light receiving lens of the specular reflection light measurement unit and the light reception lens of the irregular reflection light measurement unit are combined with one light reception lens, and the light reception element of the specular reflection light measurement unit and the light reception element of the irregular reflection light measurement unit are combined into one. A tilt sensor that is also used as a light receiving element.
前記受光部に遮光板を備えることを特徴とする請求項1に記載のチルトセンサ。   The tilt sensor according to claim 1, wherein the light receiving unit includes a light shielding plate.
JP2009178756A 2009-07-31 2009-07-31 Tilt sensor Active JP5295900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178756A JP5295900B2 (en) 2009-07-31 2009-07-31 Tilt sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178756A JP5295900B2 (en) 2009-07-31 2009-07-31 Tilt sensor

Publications (2)

Publication Number Publication Date
JP2011033436A true JP2011033436A (en) 2011-02-17
JP5295900B2 JP5295900B2 (en) 2013-09-18

Family

ID=43762661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178756A Active JP5295900B2 (en) 2009-07-31 2009-07-31 Tilt sensor

Country Status (1)

Country Link
JP (1) JP5295900B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029494A (en) * 2011-07-21 2013-02-07 Axis Ab Method for determining tilt of image sensor
JP2018132475A (en) * 2017-02-17 2018-08-23 国立大学法人東京工業大学 Angle measurement device, and angle measurement method
JP2021121031A (en) * 2017-03-29 2021-08-19 株式会社東京精密 Wafer positioning apparatus and chamfering apparatus using the same
CN114791352A (en) * 2021-01-26 2022-07-26 卡尔蔡司光谱学有限公司 Measuring arrangement for measuring diffuse and specular reflected light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261511A (en) * 1988-08-29 1990-03-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus for measuring cyclic surface structure
JP2006010347A (en) * 2004-06-22 2006-01-12 Sunx Ltd Optical measuring apparatus and optical pickup lens adjusting apparatus
JP2006090744A (en) * 2004-09-21 2006-04-06 Sunx Ltd Optical measurement device and optical pickup lens adjusting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261511A (en) * 1988-08-29 1990-03-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus for measuring cyclic surface structure
JP2006010347A (en) * 2004-06-22 2006-01-12 Sunx Ltd Optical measuring apparatus and optical pickup lens adjusting apparatus
JP2006090744A (en) * 2004-09-21 2006-04-06 Sunx Ltd Optical measurement device and optical pickup lens adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029494A (en) * 2011-07-21 2013-02-07 Axis Ab Method for determining tilt of image sensor
JP2018132475A (en) * 2017-02-17 2018-08-23 国立大学法人東京工業大学 Angle measurement device, and angle measurement method
JP2021121031A (en) * 2017-03-29 2021-08-19 株式会社東京精密 Wafer positioning apparatus and chamfering apparatus using the same
JP7170089B2 (en) 2017-03-29 2022-11-11 株式会社東京精密 Wafer positioning device and chamfering device using the same
CN114791352A (en) * 2021-01-26 2022-07-26 卡尔蔡司光谱学有限公司 Measuring arrangement for measuring diffuse and specular reflected light

Also Published As

Publication number Publication date
JP5295900B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6382303B2 (en) Surface roughness measuring device
JP2008070363A (en) Encoder
US10481264B2 (en) Laser processing device and laser processing system
JP2014182028A (en) Limited area reflection type photoelectric sensor
JP2007147299A (en) Apparatus and method for measuring displacement
JP5295900B2 (en) Tilt sensor
JP6063166B2 (en) Mechanism for measuring the distance by interferometer method
JP2010271133A (en) Optical scanning type plane inspection device
JP7112311B2 (en) Displacement measuring device
JP2008286793A (en) Position measuring device
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP5421677B2 (en) Displacement measuring device using optical interferometer
JP5330114B2 (en) Displacement tilt sensor
JP2002005617A (en) Optical measurement device
ATE453851T1 (en) OPTICAL SENSOR FOR MEASURING THE DISTANCE AND INCLINE OF A SURFACE
JP2009294154A (en) Inclination sensor
JP2008032669A5 (en)
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
WO2016002443A1 (en) Distance measurement device and method
JP2006189390A (en) Optical displacement measuring method and device
JP2009250676A (en) Distance measuring apparatus
US8169599B2 (en) Device and method for measuring parts
JP2011242292A (en) Thickness tilt sensor
JP4407433B2 (en) Tilt angle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250