JPH0261511A - Apparatus for measuring cyclic surface structure - Google Patents

Apparatus for measuring cyclic surface structure

Info

Publication number
JPH0261511A
JPH0261511A JP21249388A JP21249388A JPH0261511A JP H0261511 A JPH0261511 A JP H0261511A JP 21249388 A JP21249388 A JP 21249388A JP 21249388 A JP21249388 A JP 21249388A JP H0261511 A JPH0261511 A JP H0261511A
Authority
JP
Japan
Prior art keywords
light
surface structure
period
intensity
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21249388A
Other languages
Japanese (ja)
Inventor
Masashi Nakao
中尾 正史
Fumiyoshi Kano
文良 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21249388A priority Critical patent/JPH0261511A/en
Publication of JPH0261511A publication Critical patent/JPH0261511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the shape distribution of a surface structure having cyclicity within a short time with high accuracy by providing a plurality of photodiode arrays and a cycle calculation means. CONSTITUTION:A photodiode 9 calculates the angle of diffracted beam to the surface of a sample 8 based on what number is a photodiode detecting diffracted beam. A photodiode array 11 calculates the angle of reflected beam to the surface of the sample 8 based on which number is a photodiode detecting reflected beam. A data processing unit 16 inputs the photocurrents outputted from the arrays 9, 11 through a relay 15 to respectively integrate the same and respectively sets these integrated quantities to diffraction intensity and reflection intensity to further convert them to digital data to output the same to a personal computer 19. A cycle calculation means is constituted of the relay 15, the unit 16, the computer 19 and a control program for operating the computer 19 to calculate the cycle of a surface structure on the basis of the output signals of the arrays 9, 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回折をひきおこすような周期性を有する表面構
造の分布状態を高速に非破壊自動測定する装置に関し、
更に詳しくは基板上に形成された回折格子がその発振特
性に著しく影響するような分布帰還型の半導体レーザの
製作工程において、非破壊で回折格子の形状の分布状態
を測定し得る装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an apparatus for automatically and non-destructively measuring the distribution state of a surface structure having periodicity that causes diffraction.
More specifically, the present invention relates to a device that can nondestructively measure the distribution state of the shape of a diffraction grating in the manufacturing process of a distributed feedback semiconductor laser in which the diffraction grating formed on the substrate significantly affects its oscillation characteristics. be.

(従来の技術) 従来、光の回折を利用した周期性を有する表面構造(以
下周期性表面構造という)の周期Aの測定は、回折光も
しくは反射光を入射光方向に戻し、回折光と反射光の角
度の差δθを求め、ブラッグの式、 2 A −5in(δθ)mmλ、 (m−± 1. ±2. ・・・)  ・・・(1)を
用いて行っている。ここでλはflll+定波長である
(Prior art) Conventionally, the period A of a surface structure with periodicity (hereinafter referred to as a periodic surface structure) using diffraction of light is measured by returning the diffracted light or reflected light to the direction of the incident light and separating the diffracted light and the reflected light. The difference in angles of light δθ is determined using Bragg's equation: 2 A −5in(δθ) mmλ, (m−±1.±2. . . . ) (1). Here, λ is fllll+constant wavelength.

一方、光の回折強度を利用して周期性表面構造の深さを
推定できるが、回折強度の基板面内分布を求めた例とし
ては富士通研究所の報告(検出ら、昭和61年電子通信
学会総合全国大会No、931)がある。また、回折格
子の回折効率並びに基板からの反射光、散乱光を観察す
る技術がKDD研究所より報告(秋葉ら、昭和61年応
用物理学会総会No、ip−に−2)されている。
On the other hand, the depth of a periodic surface structure can be estimated using the diffraction intensity of light, but an example of determining the in-plane distribution of the diffraction intensity is a report by Fujitsu Laboratories (Detection et al., Institute of Electronics and Communication Engineers, 1986). There is a comprehensive national competition No. 931). In addition, a technique for observing the diffraction efficiency of a diffraction grating as well as reflected light and scattered light from a substrate has been reported by KDD Laboratories (Akiba et al., 1985 Society of Applied Physics General Meeting No. ip-2).

(発明が解決しようとする課題) しかしながら、従来の光の回折を利用した周期性表面構
造の周期への測定方法では、回折光もしくは反射光の角
度を求めるために、反射光あるいは回折光を入射光方向
に正確に戻さなければならないが、それは原理上無理で
必ずn1定光ビーム径に応じた誤差を生じる。その誤差
は周期に換算して、士数オングストロームとなる。回折
格子の周期により発振波長が決定されるような分布帰還
型半導体レーザではこの誤差は設計上無視できないもの
である。また、従来の方法では周期の自動測定も困難で
ある。従って回折格子の周期の分布状態を自動的に測定
する装置はこれまで報告されていない。
(Problem to be Solved by the Invention) However, in the conventional method of measuring the period of a periodic surface structure using diffraction of light, in order to find the angle of the diffracted light or reflected light, the reflected light or diffracted light is incident. Although it is necessary to accurately return the beam to the optical direction, this is impossible in principle and always causes an error corresponding to the n1 constant beam diameter. The error is converted into a period and becomes a number of angstroms. In a distributed feedback semiconductor laser in which the oscillation wavelength is determined by the period of the diffraction grating, this error cannot be ignored in terms of design. Furthermore, it is difficult to automatically measure the period using conventional methods. Therefore, no device has been reported to date that automatically measures the period distribution state of a diffraction grating.

また、前述の富士通研究所の報告による技術では、aP
I定点の位置を常に可視光でモニターしながら、測定点
を中心にして試料を回転することによって回折強度の最
大値を求めるために、1測定点あたりに比較的時間を要
する。また、この技術では回折強度に関する知見しか得
られない。
In addition, with the technology reported by Fujitsu Laboratories mentioned above, aP
It takes a relatively long time for each measurement point to obtain the maximum value of the diffraction intensity by rotating the sample around the measurement point while constantly monitoring the position of the fixed point using visible light. Furthermore, this technique can only provide knowledge regarding diffraction intensity.

また、前述のKDD研究所より報告されている技術は、
回折パダーンを視覚的にとらえるだけであるために空間
的な解像度が著しく劣る欠点がある。
In addition, the technology reported by the KDD Research Institute mentioned above is
Since the diffraction patterns are only visually captured, the spatial resolution is significantly inferior.

本発明の目的は上記の問題点に鑑み、基板上に作製した
回折格子などのような周期性を有する表面構造の形状分
布を短時間、且つ高精度で測定できる周期性表面構造の
測定装置を提供することにある。
In view of the above-mentioned problems, an object of the present invention is to provide a periodic surface structure measuring device that can measure the shape distribution of a periodic surface structure such as a diffraction grating fabricated on a substrate in a short time and with high precision. It is about providing.

(課題を解決するための手段) 本発明は上記の目的を達成するために、請求項1では、
周期的な表面構造を有する測定対象物の表面にレーザ光
を照射し、該nj定対象物の表面からの回折光と反射光
のそれぞれの該測定対象物の表面に対する角度から該a
ll定対象物の表面構造の形状を求める周期性表面構造
”の測定装置において、前記測定対象物の表面構造の周
期に対応した回折光と反射光をそれぞれ独立に、且つ同
時に受光する複数の受光素子アレイを設け、前記複数の
受光素子アレイの出力信号に基づいて、前記表面構造の
周期を算出する周期算出手段を備えた。
(Means for Solving the Problem) In order to achieve the above object, the present invention has the following features in claim 1:
A laser beam is irradiated onto the surface of the object to be measured which has a periodic surface structure, and the angle of each of the diffracted light and reflected light from the surface of the object is determined by
In a measuring device for measuring a periodic surface structure for determining the shape of a surface structure of a fixed object, a plurality of light receivers each independently and simultaneously receive diffracted light and reflected light corresponding to the period of the surface structure of the object to be measured. An element array is provided, and period calculation means is provided for calculating the period of the surface structure based on the output signals of the plurality of light receiving element arrays.

また、請求項2では、周期的な表面構造を有する測定対
象物の表面にレーザ光を照射し、該測定対象物の表面か
らの回折光と反射光のそれぞれの該測定対象物の表面に
対する角度から該測定対象物の表面構造の形状を求める
周期性表面構造のn1定装置において、前記a11定対
象物の表面構造の周期に対応した回折光と反射光をそれ
ぞれ独立に、且つ同時に受光する複数の受光素子アレイ
を設け、前記複数の受光素子アレイの出力信号に基づい
て、前記表面構造の周期を算出する周期算出手段を備え
ると共に、前記測定対象物の表面からの散乱光を受光す
る2個以上の受光素子と、前記2個以上の受光素子のそ
れぞれの出力信号に基づいて、前記散乱光の強度を算出
する散乱光強度算出手段とを備えた。
Further, in claim 2, the surface of the object to be measured having a periodic surface structure is irradiated with a laser beam, and the angles of the diffracted light and reflected light from the surface of the object to be measured with respect to the surface of the object to be measured, respectively. In the periodic surface structure n1 constant device for determining the shape of the surface structure of the object to be measured, a plurality of devices each independently and simultaneously receive diffracted light and reflected light corresponding to the period of the surface structure of the a11 constant object. a light-receiving element array, and a period calculation means for calculating the period of the surface structure based on the output signals of the plurality of light-receiving element arrays, and two light-receiving element arrays that receive scattered light from the surface of the object to be measured. The light receiving element described above and a scattered light intensity calculation means for calculating the intensity of the scattered light based on the respective output signals of the two or more light receiving elements are provided.

(作 用) 本発明の請求項1によれば、複数の受光素子アレイによ
り、測定対象物の表面構造の周期に対応した回折光と反
射光のそれぞれが独立に、且つ同時に受光され、周期算
出手段により、前記複数の受光素子アレイの出力信号に
基づいて、前記表面構造の周期が算出される。
(Function) According to claim 1 of the present invention, each of the diffracted light and the reflected light corresponding to the period of the surface structure of the object to be measured is independently and simultaneously received by the plurality of light receiving element arrays, and the period is calculated. The means calculates the period of the surface structure based on the output signals of the plurality of light receiving element arrays.

また、請求項2によれば、複数の受光素子アレイにより
、11定対象物の表面構造の周期に対応した回折光と反
射光のそれぞれが独立に、且つ同時に受光され、周期算
出手段により、前記複数の受光素子アレイの出力信号に
基づいて、前記表面構造の周期が算出される。更に、2
個以上の受光素子により、前記測定対象物の表面からの
散乱光が受光され、散乱光強度算出手段により、前記2
個以上の受光素子のそれぞれの出力信号に基づいて、前
記散乱光の強度が算出される。
Further, according to claim 2, each of the diffracted light and the reflected light corresponding to the period of the surface structure of the 11 constant object is independently and simultaneously received by the plurality of light receiving element arrays, and the period calculation means calculates the The period of the surface structure is calculated based on the output signals of the plurality of light receiving element arrays. Furthermore, 2
Scattered light from the surface of the object to be measured is received by the plurality of light receiving elements, and the scattered light intensity calculating means calculates the amount of light scattered from the surface of the object to be measured.
The intensity of the scattered light is calculated based on the output signals of each of the plurality of light receiving elements.

(実施例) 本発明の一実施例として、表面に回折格子を有する基板
を試料としだn1定において、回折格子の周期、深さ(
回折強度)、反射光及び散乱光の強度、並びに基板の光
吸収に基づくフォトルミネセンスの分布を測定する測定
装置を構成した。
(Example) As an example of the present invention, a substrate having a diffraction grating on the surface was used as a sample, and the period and depth of the diffraction grating (
A measuring device was constructed to measure the distribution of photoluminescence based on the diffraction intensity), the intensity of reflected light and scattered light, and the light absorption of the substrate.

第1図は本発明の一実施例における光学系配置図、第2
図は本発明の一実施例における」1定処理系統図、第3
図は本発明の一実施例における制御プログラムチャート
である。
FIG. 1 is an optical system layout diagram in one embodiment of the present invention, and FIG.
The figure is a ``1 constant processing system diagram'' in one embodiment of the present invention.
The figure is a control program chart in one embodiment of the present invention.

第1図において、1は11定光源で、例えば、波長λが
383.8nmのレーザ光を出射するHe−Cdレーザ
装置である。測定光源1から出射されたレーザ光は、ハ
ーフミラ−2により分けられ、一部はフォトダイオード
3に至り、レーザ出力1exとしてモニターされるよう
になっている。また、ハーフミラ−2により分けられた
残りのレーザ光は、ミラー4、スリット5、レンズ6を
通過した後、X−Y−θステージ7の上に置かれた測定
対象物である試料8に入射角αで照射されるようになっ
ている。試料8は、表面に干渉露光法で回折格子を作製
した15mmX 12mmのInP基板である。9はフ
ォトダイオードアレイで、試料8の表面からの回折光を
シリンドリカルレンズ10を介して受光できる位置に配
設されている。更に、フォトダイオードアレイ9の何番
目のフォトダイオードで回折光を受光したかにより、試
料8の表面に対する回折光の角度即ち、回折角βを算出
できるようになっている。11はフォトダイオードアレ
イで、試料8の表面からの反射光をシリンドリカルレン
ズ12を介して受光できる位置に配設されている。更に
、フォトダイオードアレイ11の何番目のフォトダイオ
ードで反射光を受光したかにより、試料8の表面に対す
る反射光の角度即ち、反射角αを算出できるようになっ
ている。
In FIG. 1, reference numeral 1 denotes an 11 constant light source, for example, a He-Cd laser device that emits a laser beam with a wavelength λ of 383.8 nm. A laser beam emitted from a measurement light source 1 is divided by a half mirror 2, and a portion reaches a photodiode 3, where it is monitored as a laser output 1ex. The remaining laser beam separated by the half mirror 2 passes through the mirror 4, slit 5, and lens 6, and then enters the sample 8, which is the object to be measured, placed on the X-Y-θ stage 7. The beam is irradiated at an angle α. Sample 8 is a 15 mm x 12 mm InP substrate with a diffraction grating formed on its surface by interference exposure method. A photodiode array 9 is arranged at a position where it can receive diffracted light from the surface of the sample 8 via a cylindrical lens 10. Further, depending on which photodiode in the photodiode array 9 receives the diffracted light, the angle of the diffracted light with respect to the surface of the sample 8, that is, the diffraction angle β can be calculated. A photodiode array 11 is arranged at a position where it can receive reflected light from the surface of the sample 8 via a cylindrical lens 12. Furthermore, depending on which photodiode in the photodiode array 11 receives the reflected light, the angle of the reflected light with respect to the surface of the sample 8, that is, the reflection angle α can be calculated.

前記シリンドリカルレンズ10.12は、円柱状レンズ
とも呼ばれるもので、入射した光を直線上に集光するレ
ンズである。
The cylindrical lenses 10.12 are also called cylindrical lenses, and are lenses that condense incident light onto a straight line.

13.13−はフォトダイオードで、試料8の表面から
の散乱光を受光して散乱強度1scaを測定するもので
あり、試料8の表面に対して任意の角度に設定できるよ
うになっている。14は硫化鉛からなる受光素子(以下
、PbSと称す)で、試料8の光吸収に基づくフォトル
ミネセンス光強度1pLをll1lJ定できるように配
設されている。
13. 13- is a photodiode that receives scattered light from the surface of the sample 8 and measures the scattering intensity 1 sca, and can be set at any angle with respect to the surface of the sample 8. Reference numeral 14 denotes a light receiving element made of lead sulfide (hereinafter referred to as PbS), which is arranged so that the photoluminescence light intensity 1 pL based on the light absorption of the sample 8 can be determined.

第2図において、15はリレーで、フォトダイオードア
レイ9,11の出力信号を入力し、パーソナルコンピュ
ータ19の指示信号によってフォトダイオードアレイ9
.11の出力信号を切替えてデータ処理ユニット16に
出力する。データ処理ユニット16は、フォトダイオー
ドアレイ9゜11から出力される光電流をリレー15を
介して入力し、それぞれを精分し、これらの積分量をそ
れぞれ回折強度1dir、反射強度旨efとし、更にデ
ィジタルデータに変換してパーソナルコンピュータ19
に出力する。
In FIG. 2, reference numeral 15 denotes a relay, which inputs the output signals of the photodiode arrays 9 and 11, and receives the output signals of the photodiode arrays 9 and 11 from the personal computer 19.
.. 11 output signals are switched and outputted to the data processing unit 16. The data processing unit 16 inputs the photocurrent outputted from the photodiode array 9゜11 via the relay 15, refines each of them, sets these integral amounts as a diffraction intensity 1 dir, a reflection intensity ef, and further Convert to digital data and use personal computer 19
Output to.

17は10チヤンネル用マルチチヤンネルデイジタルマ
ルチメータ(以下単にマルチメータ)で、フォトダイオ
ード3,13.13−の出力、並びにロックインアンプ
18を経由したPbS14の出力をディジタルデータに
変換してパーソナルコンピュータ19に出力する。また
、ロックインアンプ18はパーソナルコンピュータ、1
9に接続され、ロックインアンプ18の動作はパーソナ
ルコンピュータ19によって制御される。
17 is a multi-channel digital multimeter for 10 channels (hereinafter simply referred to as a multimeter), which converts the outputs of the photodiodes 3, 13. Output to. Further, the lock-in amplifier 18 is a personal computer, 1
The operation of the lock-in amplifier 18 is controlled by a personal computer 19.

20はステージコントローラで、パーソナルコンピュー
タ19とX−Y−θステージ7に接続され、パーソナル
コンピュータ19の指令に基づいて、X−Y−θステー
ジの位置及び角度を制御する。
A stage controller 20 is connected to the personal computer 19 and the X-Y-θ stage 7, and controls the position and angle of the X-Y-θ stage based on commands from the personal computer 19.

21はデイスプレィユニット及びハードコピープリンタ
からなる出力系で、パーソナルコンピュータ19によっ
て算出されたデータ等を表示及び印字するものである。
Reference numeral 21 denotes an output system consisting of a display unit and a hard copy printer, which displays and prints data etc. calculated by the personal computer 19.

前記周期算出手段は、リレー15、データ処理ユニット
16、パーソナルコンピュータ19及びパーソナルコン
ピュータ19を動作させる制御プログラムによって構成
される。また、前記散乱光強度算出手段は、マルチメー
タ17、パーソナルコンピュータ19及びパーソナルコ
ンピュータ19を動作させる制御プログラムによって構
成される。
The period calculating means is constituted by a relay 15, a data processing unit 16, a personal computer 19, and a control program for operating the personal computer 19. Further, the scattered light intensity calculation means is constituted by a multimeter 17, a personal computer 19, and a control program for operating the personal computer 19.

次に、本実施例の動作を第3図に示す制御プログラムフ
ローチャートに基づいて説明する。
Next, the operation of this embodiment will be explained based on the control program flowchart shown in FIG.

パーソナルコンピュータ19は、測定を開始する前に、
データ処理ユニット16、ステージコントローラ20、
出力系21等の初期設定を行い(SL ) 、オペレー
タにより測定条件が入力され、測定開始の命令が入力さ
れるまで待機する(S2)(S3)。オペレータは、前
記測定条件として、試料8の名称、試料8のサイズ及び
試料8のX方向とY方向の測定間隔等をパーソナルコン
ピュータ19に入力した後、測定開始命令を入力する。
Before starting the measurement, the personal computer 19
data processing unit 16, stage controller 20,
The output system 21 and the like are initialized (SL), and the operator waits until measurement conditions are input and an instruction to start measurement is input (S2) (S3). The operator inputs the name of the sample 8, the size of the sample 8, the measurement interval of the sample 8 in the X direction and the Y direction, etc. into the personal computer 19 as the measurement conditions, and then inputs a measurement start command.

パーソナルコンピュータ19は、測定開始命令を受けた
後、X−Y−θステージ7を試料8のサイズ及び測定間
隔に従って移動させ(S4 ) 、測定を行う(S5)
。また、このときX−Y−θステージ7は、次に示すブ
ラッグの条件に基づいて、フォトダイオードアレイ11
により反射光を検出できるように移動される。
After receiving the measurement start command, the personal computer 19 moves the X-Y-θ stage 7 according to the size of the sample 8 and the measurement interval (S4), and performs the measurement (S5).
. In addition, at this time, the X-Y-θ stage 7 is configured to move the photodiode array 11 based on the following Bragg conditions.
is moved so that reflected light can be detected.

A−nλ/ (5Ina +sinβ)     −(
2)(2)式において、α、βは、それぞれ反射角、回
折角で、λは7illj定光源1の波長である。nの値
に応じてn次の回折条件になる。
A−nλ/ (5Ina +sinβ) −(
2) In equation (2), α and β are the reflection angle and the diffraction angle, respectively, and λ is the wavelength of the 7illj constant light source 1. Depending on the value of n, the diffraction condition becomes n-th order.

次に、パーソナルコンピュータ19は、データ処理ユニ
ット16から回折強度1dir、反射強度1rer、回
折角β、反射角α等のデータを入力し、更にマルチメー
タ17からレーザ出力Iex s散乱強度1sca及び
フォトルミネセンス光強度1pLを入力して、前記ブラ
ッグの条件を用いて各測定点毎の回折格子の周期へを算
出する(S6)。
Next, the personal computer 19 inputs data such as a diffraction intensity 1dir, a reflection intensity 1rer, a diffraction angle β, and a reflection angle α from the data processing unit 16, and further inputs the laser output Iex s scattering intensity 1sca and the photoluminescence intensity from the multimeter 17. A sense light intensity of 1 pL is input, and the period of the diffraction grating for each measurement point is calculated using the Bragg condition (S6).

また、回折強度1dif’、反射強度1ref’s散乱
強度1sca、及びフォトルミネセンス光強度1pLの
それぞれは時間的ゆらぎを有しているので、このゆらぎ
をなくすためにレーザ出力1exで除し、分布値のデー
タとしている。即ち、1dif/lexを回折強度の値
、Irer/Iexを反射強度の値、l5ca/ Ie
xを散乱強度の値、IpL/lexをフォトルミネセン
ス光強度の値としている。更に、分布図作成の際は、そ
れぞれの値を規格化している。
In addition, each of the diffraction intensity 1dif', reflection intensity 1ref', scattering intensity 1sca, and photoluminescence light intensity 1pL has temporal fluctuations, so in order to eliminate these fluctuations, divide by the laser output 1ex, and distribute the It is treated as value data. That is, 1dif/lex is the value of diffraction intensity, Irer/Iex is the value of reflection intensity, l5ca/Ie
x is the value of scattering intensity, and IpL/lex is the value of photoluminescence light intensity. Furthermore, when creating the distribution map, each value is standardized.

次に、最終測定点に至ったか否かを判断しくS7 ) 
、最終測定点に至っていないときはS4の処理に移行し
て、X−Y−θステージを移動させた後、S5.S8の
処理を実行する。
Next, determine whether the final measurement point has been reached (S7)
, if the final measurement point has not been reached, the process moves to S4, moves the X-Y-θ stage, and then moves to S5. Execute the process of S8.

S7の判断の結果、最終測定点に至っているときは、デ
ータ処理ユニット16とマルチメータ17から入力した
複数のデータ及びこれらのデータから算出した値等をパ
ーソナルコンピュータ19の中に備わるメモリに蓄積す
ると共に(S8)、出力系21にデータ出力する(S9
)。次に、測定終了か否かの判定を行う(S 10)。
As a result of the determination in S7, if the final measurement point has been reached, a plurality of data inputted from the data processing unit 16 and the multimeter 17, values calculated from these data, etc. are stored in the memory provided in the personal computer 19. At the same time (S8), data is output to the output system 21 (S9
). Next, it is determined whether the measurement is completed (S10).

この測定終了の判定は、オペレータによって測定終了命
令が入力されたときに測定終了とし、測定継続命令が入
力されたときSlの処理に移行して測定を継続できる状
態にする。
The end of the measurement is determined when the operator inputs a measurement end command, and when the measurement continuation command is input, the process shifts to Sl and the measurement can be continued.

本実施例においては、試料8の周期への値を正確に1オ
ングストロ一ム単位で求めることができた。更に、周期
Aの値を算出するには1秒も要せず、従来のゴニオメー
タ等を用いた回折光と反射光の角度差を求める方法と比
べると、精度、時間ともに著しい向上をはかることがで
きた。
In this example, the value for the period of sample 8 could be accurately determined in units of 1 angstrom. Furthermore, it takes less than 1 second to calculate the value of period A, and compared to the conventional method of calculating the angular difference between the diffracted light and the reflected light using a goniometer, this method significantly improves both accuracy and time. did it.

本実施例において測定を行った例として、第4図に回折
格子の周期分布図を、第5図に回折強度分布図をそれぞ
れ示す。測定した試料は、前記試料8のInP基、板で
、測定光源1にはII e −Cdレーザ(λ−363
.8nrA)を用いた。第4図においては、周期の分布
を2オングストローム毎に、2398オングストローム
、2400オングストローム、2402オングストロー
ムの周期分布を表わしている。また、第5図においては
、回折強度を10段階の濃淡で表わしている。
As an example of measurements performed in this example, FIG. 4 shows a periodic distribution diagram of a diffraction grating, and FIG. 5 shows a diffraction intensity distribution diagram. The measured sample was the InP substrate and plate of sample 8, and the measurement light source 1 was a II e-Cd laser (λ-363
.. 8nrA) was used. In FIG. 4, the period distribution is expressed every 2 angstroms, and period distributions of 2398 angstroms, 2400 angstroms, and 2402 angstroms are shown. Further, in FIG. 5, the diffraction intensity is expressed in 10 levels of shading.

第6図に、走査型電子顕微鏡で実?ipJシた試料8の
回折格子の深さと本実施例で測定した回折強度の関係を
示す。図において、横軸は回折格子の深さを、縦軸は回
折強度をそれぞれ表わしている。
Figure 6 shows the actual results obtained using a scanning electron microscope. The relationship between the depth of the diffraction grating of ipJ sample 8 and the diffraction intensity measured in this example is shown. In the figure, the horizontal axis represents the depth of the diffraction grating, and the vertical axis represents the diffraction intensity.

また、測定値は、n1定に際しての誤差を含んでいるの
で、図中に、その誤差をエラーパーで示した。
Furthermore, since the measured value includes an error in the n1 constant, the error is shown in error par in the figure.

この結果、回折強度は回折格子の深さと直線性を有する
関係にあることがわかる。走査型電子顕微鏡の測定限界
は数十n111であるが、本測定装置で測定した回折強
度を、本実施例で予測した素子特性即ち、前記回折強度
と回折格子の深さとの直線性を有する関係に対応させる
ことにより、本測定装置では回折格子の深さを数n+m
までn1定することが可能である。
As a result, it can be seen that the diffraction intensity has a linear relationship with the depth of the diffraction grating. Although the measurement limit of a scanning electron microscope is several tens of n111, the diffraction intensity measured by this measuring device is based on the element characteristics predicted in this example, that is, the linear relationship between the diffraction intensity and the depth of the diffraction grating. In this measurement device, the depth of the diffraction grating can be reduced to several n+m.
It is possible to set up to n1.

尚、本実施例においては、il’P1定光源1としてH
e−Cdレーザ(λ−383,8na+)を用いたが、
試料8の周期Aにより、種々の波長λのレーザを選択し
て用いることにより高精度の測定データを得ることがで
きる。
In this embodiment, H is used as the il'P1 constant light source 1.
Although an e-Cd laser (λ-383, 8na+) was used,
Highly accurate measurement data can be obtained by selecting and using lasers with various wavelengths λ depending on the period A of the sample 8.

また、本実施例では、散乱光を受光するためのフォトダ
イオードを2個しか配設していないが多数配設すること
により、複数の方向への散乱光強度を同時に得ることが
できるため、より詳細な形状解析を行うことができる。
In addition, in this embodiment, only two photodiodes are provided for receiving scattered light, but by providing a large number of photodiodes, it is possible to obtain scattered light intensities in multiple directions at the same time. Detailed shape analysis can be performed.

また、本発明の測定装置を用いると、周期性表面構造の
周期、深さ、並びに形状に関する基板面内分布の迅速な
測定が可能になる。従来、回折格子の周期分布は光学的
には、基板の面内数点を測定した例しかなく、本装置は
周期の面内分布を、空間分解能として入射光のスポット
サイズ(約50μm)まで測定できる。これは従来の技
術では不可能であり、新しい技術として位置付けられる
ものである。
Further, by using the measuring device of the present invention, it becomes possible to quickly measure the distribution in the substrate plane regarding the period, depth, and shape of the periodic surface structure. Conventionally, the periodic distribution of a diffraction grating has only been optically measured at several points within the plane of a substrate, but this device measures the in-plane periodic distribution with spatial resolution down to the spot size of the incident light (approximately 50 μm). can. This is not possible with conventional technology and is positioned as a new technology.

(発明の効果) 以上説明したように本発明の請求項1によれば、周期的
な表面構造を有する測定対象物の表面にレーザ光を照射
し、該8111定対象物の表面からの回折光と反射光の
それぞれの該測定対象物の表面に対する角度から該測定
対象物の表面構造の形状を求める周期性表面構造のal
lJ定装置において、前記測定対象物の表面構造の周期
に対応した回折光と反射光をそれぞれ独立に、且つ同時
に受光する複数の受光素子アレイを設け、前記複数の受
光素子アレイの出力信号に基づいて、前記表面構造の周
期を算出する周期算出手段を備えたので、周期性表面構
造の光学的な総合#111定を短時間に且つ非破壊で行
うことができるため、素子作成プロセスの歩溜まりの著
しい向上、並びに素子特性の予測を行える等の利点を有
する。また、回折を起こすような周期的な構造をもつも
のであれば、どのようなr(1定対象物でも周期の正確
な411定、分布状態の観察を行うことができる。更に
、長さ及び深さの測定が原子のオーダーまで可能であり
、さらに改良することによって、新しい型の顕微鏡へと
発展することが期待できる。
(Effects of the Invention) As explained above, according to claim 1 of the present invention, the surface of the object to be measured having a periodic surface structure is irradiated with a laser beam, and the diffracted light from the surface of the 8111 object is emitted. al of the periodic surface structure to determine the shape of the surface structure of the object to be measured from the angle of each of the reflected light and the surface of the object to be measured.
In the LJ determination apparatus, a plurality of light receiving element arrays are provided which independently and simultaneously receive diffracted light and reflected light corresponding to the period of the surface structure of the object to be measured, and the method is based on the output signals of the plurality of light receiving element arrays. Since the period calculation means for calculating the period of the surface structure is provided, the optical comprehensive #111 determination of the periodic surface structure can be performed in a short time and non-destructively, thereby reducing the yield rate of the device manufacturing process. This method has advantages such as a remarkable improvement in performance and the ability to predict device characteristics. Furthermore, as long as it has a periodic structure that causes diffraction, it is possible to accurately observe the distribution state of the period of any r (1 constant object). Depth measurements can be made down to the atomic order, and further improvements can be expected to develop into a new type of microscope.

また、請求項2によれば、周期的な表面構造を有する測
定対象物の表面にレーザ光を照射し、該測定対象物の表
面からの回折光と反射光のそれぞれの該測定対象物の表
面に対する角度から該JIIJ定対象物の表面構造の形
状を求める周期性表面構造の測定装置において、前記測
定対象物の表面構造の周期に対応した回折光と反射光を
それぞれ独立に、且つ同時に受光する複数の受光素子ア
レイを設け、前記複数の受光素子アレイの出力信号に基
づいて、前記表面構造の周期を算出する周期算出手段を
備えると共に、前記測定対象物の表面からの散乱光を受
光する2個以上の受光素子と、前記2個以上の受光素子
のそれぞれの出力信号に基づいて、前記散乱光の強度を
算出する散乱光強度算出手段とを備えたので、測定対象
物表面から複数の方向への散乱光の強度を同時に得るこ
とができるため、71111定対象物の表面構造をより
詳細に解析、観察することができる。
According to claim 2, the surface of the object to be measured having a periodic surface structure is irradiated with a laser beam, and each of the diffracted light and the reflected light from the surface of the object to be measured is reflected from the surface of the object to be measured. A periodic surface structure measuring device that determines the shape of the surface structure of the JIIJ constant object from an angle to the surface of the object, which independently and simultaneously receives diffracted light and reflected light corresponding to the period of the surface structure of the object. A plurality of light receiving element arrays are provided, and period calculation means is provided for calculating a period of the surface structure based on output signals of the plurality of light receiving element arrays, and the second method receives scattered light from the surface of the measurement target. The present invention includes two or more light receiving elements and a scattered light intensity calculation means for calculating the intensity of the scattered light based on the respective output signals of the two or more light receiving elements. Since the intensity of the scattered light can be obtained at the same time, the surface structure of the 71111 object can be analyzed and observed in more detail.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光学系配置図、第2
図は本発明の一実施例における測定処理系統図、第3図
は本発明の一実施例における制御プログラムフローチャ
ート、第4図は本発明の一実施例による回折格子の周期
分布の測定例を示す図、第5図は本発明の一実施例によ
る回折強度分布の測定例を示す図、第6図は回折強度と
回折格子の深さの関係を示す図である。 1・・・測定光源、2・・・ハーフミラ−3,13゜1
3″・・・フォトダイオード、4・・・ミラー 5・・
・スリット、6・・・レンズ、7・・・X−Y−〇ステ
ージ、8・・・試料、9,11・・・フォトダイオード
アレイ、10.12・・・シリンドリカルレンズ、14
・・・pbs 。 15・・・リレー 16・・・データ処理ユニット、1
7・・・マルチチャンネルディジタルマルチメータ、1
8・・・ロック、インアンプ、19・・・パーソナルコ
ンピュータ、20・・・ステージコントローラ、21・
・・出力系。 特許出願人  日本電信電話株式会社 代理人 弁理士  吉 1)精 孝 第3図 第4図 回J’l梧子の1:!(nm)
FIG. 1 is an optical system layout diagram in one embodiment of the present invention, and FIG.
The figure shows a measurement processing system diagram in one embodiment of the present invention, FIG. 3 shows a control program flowchart in one embodiment of the present invention, and FIG. 4 shows an example of measurement of periodic distribution of a diffraction grating in one embodiment of the present invention. FIG. 5 is a diagram showing an example of measurement of the diffraction intensity distribution according to an embodiment of the present invention, and FIG. 6 is a diagram showing the relationship between the diffraction intensity and the depth of the diffraction grating. 1...Measurement light source, 2...Half mirror 3, 13゜1
3″...Photodiode, 4...Mirror 5...
・Slit, 6... Lens, 7... X-Y-〇 stage, 8... Sample, 9, 11... Photodiode array, 10.12... Cylindrical lens, 14
...pbs. 15... Relay 16... Data processing unit, 1
7...Multi-channel digital multimeter, 1
8... Lock, in-amp, 19... Personal computer, 20... Stage controller, 21...
...Output system. Patent Applicant Nippon Telegraph and Telephone Corporation Agent Patent Attorney Yoshi 1) Takashi Sei Figure 3 Figure 4 Time J'l Goko's 1:! (nm)

Claims (2)

【特許請求の範囲】[Claims] (1)周期的な表面構造を有する測定対象物の表面にレ
ーザ光を照射し、該測定対象物の表面からの回折光と反
射光のそれぞれの該測定対象物の表面に対する角度から
該測定対象物の表面構造の形状を求める周期性表面構造
の測定装置において、前記測定対象物の表面構造の周期
に対応した回折光と反射光をそれぞれ独立に、且つ同時
に受光する複数の受光素子アレイを設け、 前記複数の受光素子アレイの出力信号に基づいて、前記
表面構造の周期を算出する周期算出手段を備えた ことを特徴とする周期性表面構造の測定装置。
(1) A laser beam is irradiated onto the surface of a measurement object having a periodic surface structure, and the angles of the diffracted light and reflected light from the surface of the measurement object with respect to the surface of the measurement object are determined. In a periodic surface structure measuring device for determining the shape of a surface structure of an object, a plurality of light receiving element arrays are provided that independently and simultaneously receive diffracted light and reflected light corresponding to the period of the surface structure of the object to be measured. A measuring device for a periodic surface structure, comprising a period calculation means for calculating a period of the surface structure based on the output signals of the plurality of light-receiving element arrays.
(2)測定対象物の表面からの散乱光を受光する2個以
上の受光素子と、 前記2個以上の受光素子のそれぞれの出力信号に基づい
て、前記散乱光の強度を算出する散乱光強度算出手段と
を備えた ことを特徴とする請求項1記載の周期性表面構造の測定
装置。
(2) Two or more light-receiving elements that receive scattered light from the surface of the measurement target, and a scattered light intensity that calculates the intensity of the scattered light based on the output signals of each of the two or more light-receiving elements. 2. The periodic surface structure measuring device according to claim 1, further comprising calculation means.
JP21249388A 1988-08-29 1988-08-29 Apparatus for measuring cyclic surface structure Pending JPH0261511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21249388A JPH0261511A (en) 1988-08-29 1988-08-29 Apparatus for measuring cyclic surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21249388A JPH0261511A (en) 1988-08-29 1988-08-29 Apparatus for measuring cyclic surface structure

Publications (1)

Publication Number Publication Date
JPH0261511A true JPH0261511A (en) 1990-03-01

Family

ID=16623568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21249388A Pending JPH0261511A (en) 1988-08-29 1988-08-29 Apparatus for measuring cyclic surface structure

Country Status (1)

Country Link
JP (1) JPH0261511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033436A (en) * 2009-07-31 2011-02-17 Katsura Opto Systems:Kk Tilt sensor
JP2018151353A (en) * 2017-03-15 2018-09-27 ファナック株式会社 Measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61945A (en) * 1984-06-14 1986-01-06 Matsushita Electric Ind Co Ltd Measuring instrument of optical disc groove shape
JPS6337205A (en) * 1986-07-31 1988-02-17 Tokyo Seimitsu Co Ltd Method for measuring surface roughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61945A (en) * 1984-06-14 1986-01-06 Matsushita Electric Ind Co Ltd Measuring instrument of optical disc groove shape
JPS6337205A (en) * 1986-07-31 1988-02-17 Tokyo Seimitsu Co Ltd Method for measuring surface roughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033436A (en) * 2009-07-31 2011-02-17 Katsura Opto Systems:Kk Tilt sensor
JP2018151353A (en) * 2017-03-15 2018-09-27 ファナック株式会社 Measurement device
US10203201B2 (en) 2017-03-15 2019-02-12 Fanuc Corporation Measurement device

Similar Documents

Publication Publication Date Title
US10495446B2 (en) Methods and apparatus for measuring height on a semiconductor wafer
KR101486899B1 (en) High resolution monitoring of CD variations
TWI429896B (en) Ellipsometric metrology tool and method of monitoring a babrication process
DE69912061T2 (en) Improvements in measuring particle size distribution
US8289527B2 (en) Optimization of ray tracing and beam propagation parameters
EP0655620A1 (en) Real-time wafer temperature measurement based on light scattering
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
US20110246400A1 (en) System for optical metrology optimization using ray tracing
US4569592A (en) Plasma monitor
US20110245955A1 (en) Automated process control using an adjusted metrology output signal
JPS58120154A (en) Monitoring method for distribution of plasma
US7724375B1 (en) Method and apparatus for increasing metrology or inspection tool throughput
JP2732849B2 (en) Interferometer
KR20220120588A (en) Combined OCD and Optical Reflection Modulation Method and System
JPH0261511A (en) Apparatus for measuring cyclic surface structure
JPS6338102A (en) Method and device for measuring fine displacement
DE4105509A1 (en) Scattered light measuring arrangement for surface roughness investigation - using angular resolution of scattered light received by several receiver arrays arranged on curved holder
US7826072B1 (en) Method for optimizing the configuration of a scatterometry measurement system
DE10119072C1 (en) Reflectometer arrangement and method for determining the reflectivity of selected measuring locations from spectrally dependent reflecting objects
Verhoglyad et al. Certification of a two-channel automated infrared image synthesis system for testing array photodetectors
JPH11190695A (en) Semiconductor stress measuring raman spectrophotometer
US5959725A (en) Large area energy beam intensity profiler
JPS62269036A (en) System for automatically measuring diffraction efficiency distribution of diffraction grating
JP2540430B2 (en) Laser beam condensing characteristics measuring device
JPH0118371B2 (en)